
Ballot Permutations in Prêt à Voter

Peter Y A Ryan
Dept. Computer Science and Communications

University of Luxembourg
peter.ryan@uni.lu

Vanessa Teague
Dept. Computer Science and Software Engineering

University of Melbourne
vteague@csse.unimelb.edu.au

June 23, 2009

Abstract

Handling full permutations of the candidate list along
with re-encryption mixes is rather difficult in Prêt à
Voter but handling cyclic shifts is straightforward.
One of the versions of Prêt à Voter that uses Pail-
lier encryption allows general permutations of can-
didates on the ballot, rather than just cyclic shifts.
This improves the robustness of the system against
an adversary who tries to alter checkmarks on ballots
before they are posted to the bulletin board. Even if
the adversary could predict which voters would fail to
check their vote on the bulletin board, the best they
could do would be to choose another random candi-
date. By contrast, when using only cyclic shifts the
adversary can systematically shift a biased distribu-
tion from one candidate to another.

We show in this note that the Paillier version of
Prêt à Voter with full permutations of the candidates
is not receipt-free when the number of possible per-
mutations is much larger than the number of voters,
and we propose a construction that addresses this is-
sue while retaining the defence against an adversary
who can shift checkmarks.

1 Introduction

The key idea behind the Prêt à Voter suite of voter-
verifiable schemes is to encode the vote in a protected
ballot by independently permuting the order of the
candidates for each ballot form [Rya04, CRS05]. A
cryptographic value printed on the ballot form car-

Candidates Your vote
Obelix
Idefix
Asterix
Panoramix

7rJ94K
Destroy Retain

Figure 1: Prêt à Voter ballot form

ries information defining the order shown on the form,
see Figure 1. In the booth, the voter marks her X or
ranking etc against her candidate(s) of choice, then
detaches and shreds the candidate order. The result-
ing form constitutes the ballot receipt, see Figure 2.
Without the candidate list or the relevant keys to re-
cover the candidate list, it is not possible to determine
what vote is encoded in the receipt, so proving ballot
secrecy. After the election, verifiable, anonymising
tabulation processes allow the set of original votes to
be recovered and tallied. The receipts allow the vot-
ers to confirm, typically via a public bulletin board,
that their votes are input into the tabulation.

The original versions of Prêt à Voter used RSA en-
cryption and decryption mixes. This had the advan-
tage that it was straightforward to handle full per-
mutations of the candidates and perform the tabu-
lation without revealing any information about the
permutations that appeared on ballots that had been
cast. Decryption mixes have the disadvantage of be-
ing rather inflexible and difficult to recover in the

1

Your Vote

X

7rJ94K
Retain

Figure 2: Prêt à Voter ballot receipt encoding a vote
for “Idefix”

event of errors or corruption being detected. This
prompted later versions to incorporate randomising
algorithms and re-encryption mixes. These are more
flexible and robust but have the disadvantage that it
is harder to deal with full permutations, at least in a
way that does not reveal information about permuta-
tions that appear on cast ballots. It is however quite
easy to handle cyclic shifts of the candidate list.

1.1 Shift Happens

While cyclic shifts are clearly enough to hide the vot-
ers choice, at least where the voter is required to
select just one candidate, there remains a concern
regarding the robustness of such an approach. The
main concern with cyclic shifts is that if a corrupt
poll-worker (or scanner) could predict which voters
would not check their vote on the bulletin board, they
could move those voters’ checkmarks before posting.
If ballot permutations were all cyclic shifts of a canon-
ical permutation, then this would provide a system-
atic way to shift votes from one candidate to another.
Suppose that the adversary knows that a majority of
votes will be cast for candidate A and she wishes to
swing the election in favour of candidate C. She sim-
ply applies a cyclic shift of 2 to the position of the X
on a suitable proportion of the receipts. Of course,
voters or their proxies checking their receipts should
catch such manipulation, but it is not clear to what
extent we can rely on this.

This is the only known method of vote manipula-
tion against Prêt à Voter 05 [CRS05] that relies on the
individual voter’s vigilance for its detection. Others,
such as incorrect mixing or faulty ballot production,
will be detected by auditors or bulletin board ob-
servers with some fixed probability. Indeed, shifting
checkmarks could be a practical attack if performed
by a pollworker who could confidently predict that
a certain voter would not verify their recipt on the

bulletin board. So, in the spirit of deploying a strat-
egy of layered defence, it is desirable to avoid this
possibility.

One of the variants of Prêt à Voter [Rya08], uses
Paillier encryption and incorporates an additional
cryptographic value on the ballot forms to allow
general permutations of candidates along with re-
encryption mixes, rather than just cyclic shifts. Un-
fortunately, the scheme of [Rya08] is not perfectly
receipt free. Any permutation can appear on the bal-
lot, and the whole permutation is revealed after mix-
ing, in order to compute the selected candidate. This
opens the scheme up to a pattern identification attack
(similar to the “Italian attack” on more complex vot-
ing methods) even though the voter only selects one
candidate.

The purpose of this note is to examine the choice
of possible permutations that can appear on ballots.
We observe that allowing all possible permutations as
values introduces a coercion attack when the number
of possible permutations is large. We propose instead
a much smaller set of possible permutations, which re-
tains most of the advantages of general permutations
over cyclic shifts. Our construction is adequate for
first-past-the post elections, but not for more expres-
sive voting schemes such as STV or approval voting.

Our construction retains the advantages of Prêt
à Voter with Paillier over earlier versions of Prêt à
Voter [CRS05, RS06]. The comparison with Xia et
al’s modification of Prêt à Voter with Paillier encryp-
tion [XSHT08] is more mixed: our construction re-
tains the classic voter experience of simply making a
checkmark on a piece of paper, rather than detaching
and resticking a scratch strip. However, we neither
solve the coerced-randomization attack nor accom-
modate complex voting schemes.

The following section describes the attack on the
original version of Prêt à Voter with Paillier encryp-
tion. Section 3 describes our alternative construction
for prime numbers of candidates, which is generalized
to composites in Section 4. Then Section 5.1 contains
a discussion of stronger attack models.

2 Why the scheme is not re-
ceipt free when any permuta-
tion can appear on the ballot

The permutation of the candidate names that is
printed on the ballot in [Rya08] is the composition
of a permutation φ with a cyclic shift κ. The per-

2

mutation φ is generated by applying some publicly
known function f to a random seed value ρ. When
a voter selects the candidate at index ι, this value is
added to the cyclic shift and then the encrypted pair
(ρ, ι + κ) is posted on the bulletin board, mixed with
other votes, and finally decrypted. The selected can-
didate can then be recovered as the (ι+κ)-th element
of φ.

Let n be the number of candidates. Suppose that
n is large enough that n! is much larger than the
number of voters. (A dozen candidates is enough.)
Also suppose that f is a total function over the set
of possible permutations, with a close-to-uniform dis-
tribution, so that any permutation is roughly equally
likely to appear on the ballot. This section describes
how a coercer can discover how a person voted, even
if the person votes privately in a polling booth.

1. After the voter leaves the polling station, but
before the votes are decrypted on the bulletin
board, the coercer demands to know the candi-
date permutation P that was on the ballot. (Of
course the voter could lie at this point, but we
will argue that he would likely get caught.) The
coercer must of course tell the voter beforehand
that he will be expected to record the permuta-
tion.

2. After tallying, the coercer searches the decrypted
values of φ on the bulletin board for P or any
cyclic shift of it. If she finds no such value,
she punishes the voter (who must have lied at
Step 1). If she finds only one such value, then
she uses the decrypted corrected index to find
out how the voter voted.

If the voter lies in Step 1, and chooses a random
permutation instead, then only n out of the n! possi-
ble permutations will be consistent with that lie. If
the number of votes on the bulletin board is much
smaller than (n−1)! then there’s only a small chance
that in Step 2 the coercer will find a permutation con-
sistent with the voter’s lie. (And likewise, if the voter
tells the truth, the probability of the coercer finding
more than one consistent permutation is small.)

If the voter lies in Step 1, and tells the coercer a
cyclic shift of P , then he might as well have told the
truth—the coercer can still check for the presence of
that permutation and discover how he voted.

Of course, if the voter knows of another valid per-
mutation that is guaranteed to be on the bulletin
board, then he can tell that to the coercer instead.

But this doesn’t seem reasonable for most voters,
especially since the coercer is probably demanding
a vote for a particular candidate, so the coercion-
avoiding voter would have to know of an(other) obe-
dient vote.

This shows that the construction is not receipt-free
when f ranges over the whole set of permutations.
The rest of the paper shows how to restrict the range
of f so as to retain both receipt freeness and defence
against an attacker who can undetectably shift check-
marks. We begin by describing a construction that
works when the number of candidates is prime, then,
in Section 4, we generalize this to composites.

3 Restoring receipt-freeness

3.1 Background

The problem described in the previous section arises
because the set of possible permutations is typically
much larger than the number of voters. The obvious
response is to restrict the possibilities to a smaller
subset of the permutations, but we need to do this
without re-introducing the problems associated with
cyclic shifts.

We describe now a construction that ensures that
an attacker who tries to alter votes by shifting the
checkmark (without decrypting the onion) should not
be able to do better than randomise votes. In fact
our construction goes further: it allows the tabula-
tion to be performed without having to reveal the set
of permutations that appeared on cast ballots. We
will discuss counters to attempts to manipulate the
receipts in other ways, i.e. manipulating the onion
values, in Section 5.1.

Number the candidates from 0 to n − 1. For this
section we assume that n is prime. (We show how to
remove this restriction in Section 4.) Construct an
n − 1 × n table T of candidate names, in which the
item in the r-th row and j-th column is:

Trj = r·j mod n for 1 ≤ r ≤ n− 1 and 0 ≤ j ≤ n− 1.

An example for n = 7 is shown in Figure 3.
For prime n, this construction produces a circular

florentine square of order n [CD07], defined as fol-
lows:

Definition 1. A circular florentine square of order
n has n− 1 rows and n columns such that

1. each row is a permutation of the n symbols, and

3

0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4
0 4 1 5 2 6 3
0 5 3 1 6 4 2
0 6 5 4 3 2 1

Figure 3: A circular florentine square of order 7.

2. for any two distinct symbols a and b and for each
m from 1 to n − 1, there is exactly one row in
which b is m steps to the right of a.

The term “circular” in the definition refers to the
idea of each row having the end glued to the begin-
ning, so that the first element is one step to the right
of the last. This means that moving m steps to the
right is the same as moving n−m steps to the left.

Writing a randomly-chosen row of the circular flo-
rentine square directly onto the ballot would not quite
achieve the security properties we require. The first
column is always 0, so receipts would leak informa-
tion about the vote, and an adversary who wanted
to bias the outcome towards or away from candidate
0 could easily do so. More subtly, if the adversary
could guess how someone voted, then they could in-
fer the exact position of any other candidate given
the position of the checkmark. Returning to the ex-
ample in Figure 3, if the adversary believed that the
voter chose candidate 1, and wanted to shift the vote
to candidate 2, then they could shift the checkmark
from j = 1 to j = 2 (row 1), or j = 4 to j = 1 (row
2), or j = 5 to j = 3 (row 3), etc.

These problems are easily fixed by introducing a
random cyclic shift σ to each row of the florentine
square. Obviously this implies that a given check-
mark position is equally likely to indicate any candi-
date (including 0). We will show that this solves the
second issue as well—any other candidate is equally
likely to be located any any other position, even given
the checkmark’s location and knowledge of which can-
didate was selected. The properties we need are de-
fined precisely as follows:

Definition 2. A pairwise-symmetrical ballot con-
struction is one in which

1. Each candidate’s ballot location is uniformly dis-
tributed, and

2. For all (distinct) candidates A and B, for all
ballot positions j, candidate b’s location is uni-

formly distributed (over locations other than j),
given that A is located at j.

This is almost the same as a pairwise-independent
set of uniform probability distributions, except that
two candidates can’t occupy the same location on the
ballot. This is sufficient for single-choice elections,
but not for more expressive voting methods. For ex-
ample, if we were to allow voters to select their two
favourite candidates, then we would need to gener-
alise the idea to a three-wise symmetrical construc-
tion; if we wanted to allow full permutations, then
we would need n-wise symmetry, which would take
us back to the whole set of permutations.

3.2 Ballot construction

Notation For any integers α and β, α < β, let
[α, β] denote the set of integers between α and β,
inclusive.

Notation For any variable x and finite set S, write
x ∈R S to mean that x is chosen uniformly at random
from S.

3.2.1 The main idea: perfectly shifted floren-
tine square

Index the locations on the ballot form from 0 to n−1,
listed downwards. The ballot order is defined by a
row k ∈R [1, n− 1], and a cyclic shift σ ∈R [0, n− 1].
The candidate in the i-th location is determined by
computing i · k + σ mod n. Equivalently, the list of
candidates on the ballot is derived by selecting the k-
th row of the florentine square of order n, then adding
σ to each value, mod n.

Lemma 1. A perfectly-shifted florentine square is a
pairwise-symmetrical ballot construction.

Proof. We consider the two parts of Definition 2 in
turn.

1. The uniformly distributed ballot location follows
from σ being uniformly chosen in [0, n− 1], and
each row of the florentine square containing each
number exactly once.

2. Suppose candidate A is at location j, and con-
sider the location i of candidate B 6= A. For
each pair (j, i) with i 6= j there is exactly one
pair of ballot parameters (k, σ) that would place
A at location j and B at location i. (To prove
this, suppose instead that there are two pairs

4

(k, σ) and (k′, σ′) such that A = ik + σ mod n
and A = ik′ + σ′ mod n and B = jk + σ mod n
and B = jk′ + σ′ mod n with i 6= j. Since n is
prime, the only solution is σ = σ′ and k = k′.)
Since all pairs (k, σ) are equally likely a priori,
each value of j is equally likely.

3.2.2 Practical details - the almost-perfectly
shifted florentine square

In practice, instead of using σ ∈R [0, n− 1] we would
instead choose s ∈R Z∗

q , and take the final result mod
n. (q is the size of the domain of the encryption
function (El Gamal or Paillier), with length propor-
tional to the security parameter.) This is important
for perserving privacy during tabulation, as described
below. This would produce a distribution of negligi-
ble statistical distance from a pairwise-symmetrical
one. We call this the almost-perfectly shifted floren-
tine square construction. It is summarised in Proto-
col 1.

Protocol 1 Almost-perfectly shifted florentine
square construction
1: Each ballot form comes equipped with two

onions, Θk and Θs.
2: Θk is the encryption using exponential ElGamal

or Paillier of k, where k ∈R [1, n− 1] and can be
thought of as indexing the row of the florentine
square.

3: Θs is the encryption of s ∈R Z∗
q where s deter-

mines a cyclic shift mod n.
4: Location i corresponds to candidate i · k + s mod

n.

Corollary 1. The almost-perfectly shifted florentine
square construction produces a distribution of negli-
gible distance from a pairwise-symmetrical one.

Proof. The statistical distance between the distribu-
tions produced by the almost-perfectly shifted floren-
tine square construction and the perfectly shifted one
is at most the difference between the two distributions

• ŝ uniformly chosen from [0, n− 1]

• s, uniformly chosen from Z∗
q and reduced mod n

The difference is at most (n − 1)/q, which for q the
order of a typical ElGamal group will be negligible.

3.3 Tabulation and Decryption

Notation {m}PK denotes the encryption of mes-
sage m under public key PK.

We assume that that all onions are formed using
either exponential El Gamal or Paillier, and so enjoy
the homomorphic property:

{x}PK · {y}PK = {x + y}PK

Suppose that the voter chooses the ith cell on such
a ballot. We see that they will have selected the i·k+
s mod n candidate. The receipt will have the form:
(i, Θk,Θs), so this can be transformed into a single
ciphertext term Θ̂ suitable for the mix by computing:

Θ̂ := (Θk)i ·Θs

Which will equal {k ·i+s}PK , i.e. an encryption of
the voter’s choice. Note that this transformation can
be performed on the Bulletin board and is universally
verifiable. Strictly speaking there is a faint possibility
of the modular arithmetic of the cryptographic algo-
rithm interfering with the modn arithmetic. How-
ever, k · i is bounded by n2 so problems would only
arise if q−s < n2 where q is the order of the El Gamal
group for example. Clearly if s is chosen at random
from Z∗

q the chance of this is vanishingly small.
We can send such terms through a mix and then

decrypt them and take the results mod n to recover
the voter’s choices. Notice that the presence of the
s term serves to mask any information about the k
and i terms that might have been revealed had the
product i·k been revealed. This is important as we do
not want our construction to allow the adversary to
deduce anything about the linkage between decrypted
terms and receipts. It is particularly important to
conceal the i value as this would indicate the subset
of receipts with the X in this position.

3.4 Receipt freeness

A formal proof of receipt freeness is beyond the scope
of this paper. We provide here an informal expla-
nation of why our proposed scheme does not suffer
from the coercion issue described in Section 2. The
main idea in coercion resistance definitions includ-
ing [MN06], [PR06] and [DKR05] is that a coerced
voter has a stragegy (called a “coercion resistance
strategy” in [MN06]) that allows him to pretend to
cooperate with the coercer but vote instead for the

5

candidate of his choice. This is successful if the co-
ercer cannot tell whether the voter cooperated or dis-
obeyed.

Suppose a coercer attempts the attack described in
Section 2, demanding a particular candidate, and ask-
ing to know the ballot permutation as proof that that
candidate was selected. The voter instead chooses a
different candidate. The voter has a simple coercion
resistance strategy: he simply chooses any valid row
of a florentine square, rotates it so that his checkmark
is consistent with the vote the coercer demanded,
then claims that that was the ballot permutation.
One easy way to find a valid row is to use the one
that really was printed on the ballot, appropriately
rotated. This sort of resistance strategy should be
simple enough for almost all voters. This is a suc-
cessful coercion resistance strategy because no step
of the public tallying process contradicts this claim.
The coercer cannot distinguish the truth from a lie
based on the ballot onion (which she cannot decrypt),
and she cannot identify the coerced voter’s contribu-
tion from the decrypted output (assuming that at
least one voter chose the candidate she demanded,
and that at least one of the mix servers keeps their
shuffle secret).

Depending on exactly how ballots are produced
and distributed, this construction may still suffer
from the privacy problem mentioned by Xia et al
[XSHT08], Sec 4.3(7). Because s is chosen randomly
from a very large range, a particular value of s is prob-
ably consistent with only one of the k · i + s values
decrypted on the bulletin board. Whoever decrypts
s to produce the ballot permutation can infer from
the bulletin board, with high probability, what vote
was cast with that ballot. The mitigations suggested
by Xia et al would work here too, for example choos-
ing s from a smaller range (taking care that that did
not introduce another privacy violation), or ensuring
that the ballot producer did not know the identity
of the voter who used the ballot. Alternatively, it is
possible to design a protocol in which the authorities
could reveal only k · i + s mod n.

3.5 Set-up

We now describe how one can create the ballots in a
distributed fashion in such a way as to ensure that no
single entity can undermine privacy by leaking infor-
mation. Our construction is also designed to counter
kleptographic attacks, [?], in which an entity that de-
termines cryptographic variables can exploit this ca-
pability to establish subliminal channels.

Firstly we need to generate a sufficient number of
Θk onions with the k values evenly distributed across
[1, n − 1]. A simple way to achieve this is to firstly
generate a sufficient batch of k values, evenly dis-
tributed, and publicly encrypt these with Exponen-
tial ElGamal or Paillier. These are then put through
a number of verifiable re-encryption mixes by a set
of Clerks. The result is a batch of k onions of the
correct form with the correct distribution.

For Paillier encryption, the s onions require no
special constraint on the plaintexts other than the
values be randomly selected from Z∗

q . For this we
can use the style of construction of [Rya08] to ensure
that several entities contribute to the randomness of
the s values, so eliminating the possibility of klepto-
graphic channels. In essence, onions are constructed
as the product of onions supplied by a number of bal-
lot generation authorities. The final onions therefore
contain entropy supplied by several sources and all
would have to collude to determine the values in the
final onions.

For Exponential ElGamal we need to constrain the
s values to render the decryption feasible. We might
constrain the values to be drawn at random from
a suitable binomial distribution along the lines sug-
gested in [RS06].

The k and s onions so generated can be paired off
at random to form the encrypted proto-ballots. Once
paired off, the onion pairs are digitally signed by the
Voting Authority.

We need now to consider how best to reveal the
candidate order. We might do this ahead of time or
on-demand when the voter is ready to cast her vote.
In either case, for each ballot we need to send the
pair of onions to a threshold set of Tellers to reveal
the k and s values so allowing the candidate order
to be derived and printed on the ballot. Doing this
in advance allows for ballots to be audited for well-
formedness in advance. If we do this on-demand in
the booth we need to introduce some form of cut-and-
choose style protocol: for example, allow the voter to
choose a set of encrypted ballots, have them all de-
crypted and the candidate orders committed in print,
then auditing all but one, chosen at random. Print-
ing the ballots in advance allows for a simpler voter
experience but introduces chain of custody problems
and involved greater reliance on auditing authorities.
On-demand avoids chain of custody and empowers
voters to trigger the ballot audits but makes for a
more complex voting ceremony. For a full discussion
of these options and the trade-offs between them see

6

[Rya07].

3.6 Summary

The crucial property of the florentine square is that
for any given, distinct candidates A and B, and any
given shift δ ∈ [1, n − 1] there is exactly one row
of the square such that A and B are cyclically sep-
arated by a shift of δ. Consequently, the adversary
cannot systematically shift a distribution centered on
one candidate onto another, at least not by shifting
the index value in the receipts. Given a ballot, any
shift to the position of the X will be equally likely
to produce any other candidate. The adversary can
of course just seek to randomise (a subset of) the
votes but this is a much weaker attack. At worst,
by altering a significant proportion of the ballots, the
adversary can shift he outcome towards a draw.

Our construction avoids coercion attacks as the
tabulation process reveals nothing about the permu-
tation on the ballot form. Our construction also helps
with what we might call 2-approval voting, in which
voters are allows to cast up to two votes, in that
the resulting receipts are fully hiding: reveal nothing
about the voters choice. Unfortunately the construc-
tion does not fully eliminate bias attacks.

This completes the scheme in the case that n is
prime. We now show how to extend it to a composite
number of candidates.

4 When the number of candi-
dates is not prime

If n is not prime, the florentine square construction
above does not work. We could simply add some ex-
tra dummy candidates to the list until the total is
prime. This has the feature that voters could effec-
tively spoil their ballot by selecting a “NULL” candi-
date rather than a real one. Indeed, if there are sev-
eral “NULL” options, it allows possibilities for voters
to express distinctions between the various flavours of
“NULL” vote: “I don’t wish to vote for any of these
characters” to “Any of these is ok with me” to “I’m
only putting a X on this bloody form because I get
fined if I don’t”. Most likely the politicians will be
disinclined to allow voters to express their feelings so
eloquently.

The number of dummies typically would not be
very large—there would never be a need to add more
than 5 when there were fewer than 90 candidates.
However, it could be argued that this changes the

voters’ experience too much. Hence we provide an
alternative construction which allows the authorities
to print an arbitrary number of candidate names on
the ballot, while preserving the same symmetry prop-
erties as in the circular florentine square.

4.1 Venetian rectangles

We will describe how to generate a pairwise-
symmetrical ballot construction for composite num-
bers of candidates. Let p be the largest prime number
less than n, and let m = n− p. Remember that m is
very small, unlikely ever to be more than 5. We will
use the florentine square of order p and add m extra
symbols, then rearrange things so that the symmetry
still holds.

In the next section we will describe what onions
are written on the ballot—for now, we simply con-
sider how to generate the ballot permutation. We
call the result a venetian rectangle. The construction
is summarised in Protocol 2.

We describe a recursive construction which, start-
ing with a florentine square for a prime p, allows us
to construct a rectangle for n elements with the ap-
propriate balance property.

Construction: Start with a florentine square Fp

of (prime) order p, and define the Vp to be equal to
Fp. This has p − 1 rows. To move to the next level
of the hierarchy and obtain the venetian rectangle
Vp+k+1 from Vp+k, we proceed as follows: we add
the numeral p + k in all possible gaps between the
elements of the Vp+k. Due to the circular nature of
the rows, adding a symbol at the beginning is the
same as adding it at the end.

Terminology: We define the following predicate
on rows: a row satisfies (A,B, s) if B is shifted
s places to the right cyclically from A. Thus a
row with the form (...., A, B,) satisfies (A,B, 1),
(...., A, ∗, ∗, B, ...) satisfies (A,B, 3) and so on. We
know that for any A,B ∈ [0, p− 1] and 1 ≤ s ≤ p− 1
we have exactly one row of Fp satisfying (A,B, s).

Given a set of permutations Γ on an alphabet A we
refer to the number of rows of Γ that satisfy (A,B, s)
as the multiplicity of (A,B, s) in Γ. When Γ has the
property that the multiplicity is independent of A,
B and s we will refer to the (constant) number of
rows satisfying (A,B, s) (for any A, B and s) as the
multiplicity of Γ.

7

Theorem A venetian rectangle Vp+k constructed
as above has (p+k−1)!/(p−2)! rows and multiplicity
(p + k − 2)!/(p− 2)!. More precisely:
∀A,B ∈ A,∀s ∈ Zn the number of rows of Vp+k

satisfying (A,B, s) equals (p + k − 2)!/(p− 2)!

Proof. By induction: we assume that the property
holds for Vp+k, and proceed to show that it holds for
Vp+k+1.

The base case: we need to show that the result
holds for k = 0 i.e. for Fp, but this is immediate
from the property of the florentine square.

The induction step: The venetian rectangle
Vp+k+1 clearly has p + k − 1 times the rows of Vp+k,
which, by induction, is (p + (k + 1) − 2)!/(p − 2)!.
We now need to show that ∀A,B ∈ [0, p + k] and
1 ≤ s ≤ p + k, Vp+k+1 has (p + (k + 1)− 2)!/(p− 2)!
rows such that (A,B, s).

Consider first the case: A,B ∈ [0, p + k − 1], i.e.
where both A and B are elements of Vp+k. For
each row of Vp+k satisfying (A,B, s), we can add the
“p + k” in p + k − s places, i.e. in all the places
not between A and B, to produce a row of Vp+k+1

satisfying (A,B, s). For the rows of Vp+k satisfying
(A,B, s − 1), there are s − 1 places that we can in-
sert “p + k” between A and B to produce a row of
Vp+k+1 with (A,B, s). Thus Vp+k+1 has p + k − 1,
(i.e p + k − s + (s − 1)) times as many rows as
Vp+k satisfying (A,B, s). By induction, the total is
(p + (k + 1)− 2)!/(p− 2)!.

Note that if s = 1 we ignore the second clause: we
cannot get any s = 1 rows by inserting entries into an
s = 0 row. If s = p+k then we ignore the first clause:
we take the row of Vp+k for which (A,B, p + k − 1)
holds. There are p + k− 1 places we can insert p + k
between A and B to give p+k−1 rows with s = p+k.

Now consider the case that A = p + k and B ∈
[0, p + k − 1], (note we always have A 6= B and since
the role of A and B is entirely symmetric we can just
consider A = p + k without loss of generality):

For any given 1 ≤ s ≤ p+k we see that each row of
the Vp+k will give rise to exactly one row of Vp+k+1

for which (A,B, s) holds, essentially because each row
of Vp+k is a (cyclic) permutation of [0, p + k− 1]. By
induction Vp+k has (p+k−1)!/(p−2)! rows so again
we get a multiplicity of (p + (k + 1)− 2)!/(p− 2)!.

This completes the induction.

Of course, when we reach to next prime, q say, we
can replace Vq by Fq.

The above construction gives us venetian rectan-
gles with the balance property: ∀A,B ∈ [0, n−1], s ∈
[1, n− 1], the number of rows satisfying (A,B, s) is a
constant. It does not however give us a flat distribu-
tion for the probability of any symbol falling in any
particular row. For this, as previously for the floren-
tine squares, we need to add a final random cyclic
substitution to each row.

We could go ahead and use the above construction
to form ballots with three onions, Θk, Θs and Θm,
where the Θm encodes the positions of the P terms.
Receipts would then have the form:

(i, Θk,Θs,Θm)

We could put such terms through a re-encryption
mix, but this would have the drawback that the in-
dices would be left invariant by the mix. However, it
is quite straightforward to enhance the construction
to eliminate this problem. To this end we introduce
an additional cyclic shift by position: after the row
has been constructed from the P sequence, the appro-
priate row of Fp, and the values substituted by the
modular addition by s2, we rotate the row s1 steps
to the left cyclically, that is, we move every element
up s1 places on the ballot, cycling around to the bot-
tom as necessary. The complete algorithm is shown
in Protocol 2.

Protocol 2 Venetian rectangle construction - pair-
wise symmetry for composites
1: Choose a random list P of m distinct elements of

[0, n − 2]. Call them cp, cp+1, ..., cn−1. Place ele-
ments {p, . . . , n−1} in positions cp, cp+1, ..., cn−1

respectively.
2: Choose k ∈R [1, p− 1]. Place the elements of the

kth row of Fp in order in the remaining positions
on the ballot.

3: Choose s2 ∈R [0, n− 1]. Add s2 to each element,
mod n.

4: Choose s1 ∈R Z∗
q . Rotate the row by s1 to the

left.

Lemma 2. The venetian rectangle construction
(Protocol 2) is a symmetrical ballot construction.

Proof. That each element’s position is uniformly dis-
tributed follows immediately from the uniformly cho-
sen modular addition in Step 3.

8

Now consider condition 2. We need to prove that,
for all pairs of candidates A and B, B’s location is
uniformly distributed given A’s, over locations other
than A’s.

Firstly we observe that the balance property of Vn

resulting from steps 1 and 2 of the protocol asserts
that the multiplicity is independent of the A and B
chosen. consequently we can treat the As and Bs as
dummy variables and freely substitute them with a 1-
1 mapping leaving the balance property invariant. It
follows that the permutation on the candidate indices
we apply in step 3 preserves the balance property.

We index the rows of Vn by the tuple
(k, s1, s2, cp, . . . , cn−1), with the cs pairwise distinct.
We now show that there is a 1-1 correspondence be-
tween the rows of Vn and the elements of the tuple
space:

S := {k, s1, s2, cp, . . . , cn−1 | i, j ∈ [p, n− 1],
i 6= j ⇒ ci 6= cj}

This follows straightforwardly using an argument
much like that presented in section 3.

Now, as long as we chose randomly with a flat dis-
tribution from S we guarantee the following:

∀i,∀A,B ∈ A,∀s ∈ Zn, A 6= B,
Prob(Vx+s (mod n) = B|Vx = A) = 1/(n− 1)

Where A denotes the alphabet of symbols used to
index the candidates, Vx denotes the value occupying
position x and Prob(X|Y) denoted the conditional
probability of X given Y .

This guarantees again that the attacker, by shift-
ing the position of the Xs, cannot do better than
randomise the resulting values.

4.2 Tabulation

We now describe how the votes should be tabulated
to avoid leaking too much information.

Now ballots carry m + 3 onions:

(Θk,Θs2 ,Θs1 ,Θp,Θp+1, . . . ,Θn−1)

That is, we encrypt each of the c positions sepa-
rately. Receipts have the form:

(i,Θk,Θs2 ,Θs1 ,Θp,Θp+1, . . . ,Θn−1)

Tabulation on the Bulletin Board proceeds as fol-
lows: first we absorb the index value into the s1 onion
in the usual fashion:

Θi := Θs1 · {i}PK

to give tuples of the form:

(Θk,Θs2 ,Θi,Θp,Θp+1, . . . ,Θn−1)

The Θi term is an encryption of the index value
corrected for the rotation by s1. Call this corrected
index value î. The resulting m+3 tuples of onions are
put through re-encryption mixes. After the mixes,
we perform a Plaintext Equivalence Test (PET) test
of the Θis against each of the Θp,Θp+1, . . . ,Θn−1).
Where we find a match, between Θi and Θj say, this
means that the index term that has been corrected
for the s1 rotation, corresponds to one of the P po-
sitions. If the match is with Θj , this means that
the voter chose the slot into which the jth candi-
date was inserted, prior to the cyclic substitution.
We can now correct for the substitution by forming
Θ̂ := {j}PK ·Θs2 as before.

Where we do not find a match, we need, as before,
to determine how many of the cs are less that î in
order to determine the correct column of the floren-
tine square. This can be accomplished by forming
encryptions of î−1, î−2, . . . , î−n+1 by computing:

Θi · {−1}PK , . . . ,Θi · {−n + 1}PK

We now shuffle these and run (PET) tests of these
against the Θcp

,Θcp+1 , . . . ,Θcn−1 . The number of
matches tells us how many of the c values are less
than î and we now correct î accordingly. Call this
corrected index value g. We can compute the corre-
sponding Θ̂ = (Θk)g · Θs2 as before. Finally we put
all the Θ̂ terms through a final mix and decrypt to
reveal the original votes.

4.3 Receipt Freeness

The same simple coercion resistance strategy as in
Section 3.4 works for this construction too. The voter
simply rotates the list of candidates on the ballot un-
til their checkmark is consistent with what the co-
ercer demanded, then claims that that was the ballot
permutation.

Consider what is revealed about each anonymised
ballot:

9

1. If the corrected index î matches one of
cp, cp+1, . . . , cn−1, then this fact is revealed
(without showing which one matched).

2. Otherwise, we reveal how many of the
cp, cp+1, . . . , cn−1 occurred before î.

This implies that

1. all votes for anything in {cp, cp+1, . . . , cn−1} (be-
fore the cyclic shift by s2) are indistinguishable,
and

2. for all C ≤ m, all votes that place a checkmark
after C inserted values are indistinguishable.

The coerced voter’s receipt, combined with the per-
mutation he tells the coercer that he saw, might al-
low her to infer exactly all of the ballot parameters.
However, she is still overwhelmingly likely to find on
the bulletin board a(nother) vote consistent with the
story he told her, even if he told her a rotation of
the true ballot permutation. If he claimed to have
voted for one of {cp, cp+1, . . . , cn−1} (before the cyclic
shift by s2), then the coercer will be satisfied as long
as at least one other voter did so; if he claimed to
have placed the checkmark at a point after C inserted
items, then all he needs to assume is that some other
voter actually did so. (And in many cases the value of
C cannot be determined from a particular ballot per-
mutation anyway, because there are multiple values
of s1 that produce the same result.)

In summary, the coercion resistance strategy is
likely to be successful whenever the number of votes
is much more than n. It seems impossible to do better
than this and also reveal candidates’ tallies—if there
are candidates that absolutely nobody votes for, then
a coercer can always pay a voter to choose one of
them. In practice this threat is small enough to be
ignored for almost all reasonable elections.

5 Discussion

5.1 Stronger Attack Models

So far we have been considering an attacker who tries
to manipulate the outcome by altering the position of
the X on receipts, or equivalently, altering the index
values. The construction presented above ensures, as
long as the attacker has no access to the k values on
the receipts, he cannot do better than a randomisa-
tion attack. Thus the attacker can at best shift the

outcome towards a draw. Now we consider attack-
ers who attempt other manipulation of receipts and
cryptographic terms involved in the tabulation.

An attacker with access to receipts may try to alter
the k and s onions. Our constructions are not so
effective against such an attacker. Examination of
Fp for example shows that an attacker who can shift
the k and s values can do better than random. If he
wants to shift s by δs and k by δk for example he can
simply multiply Θs by {δs}PK and Θk by {δk}PK .
In effect this is a move δs to the right and δk down
on a the florentine square. Of course, the attacker
doesn’t know what square he starts from, but the
balance property does not hold with respect to an
attacker able to execute such moves. Nor is it clear
how one might fix the florentine square construction
to reestablish a balance property with respect to such
moves. However, an attacker who could perform such
manipulations could presumably just overwrite the
onions with some other, more politically desirable,
encrypted values anyway.

We can counter such an attacker by making it hard
to manipulate the onions, which we can do by en-
suring that all onions are signed prior to the start
of voting. Such ballot signatures can be pre-audited
before the election. This is in contrast to the signa-
tures applied to the receipts once the voter has made
her mark. Clearly, receipt signatures cannot be con-
structed until after the voter has made her choice and,
consequently, we cannot pre-audit such signatures.
This means that the receipt signatures are harder to
validate that the onion signatures. There is the dan-
ger that the device that signs the receipts may be
corrupt or faulty. This would result in valid com-
plaints by voters being regarded as malicious. Con-
sequently, it is necessary to introduce procedures to
validate receipt signatures immediately after casting
in the polling station so that a corrupt signing device
is quickly identified and removed. This complicates
the voting procedure for the voters and the officials.

The upshot of this is that it is much easier to en-
sure the integrity of the onions than that of the index
value. Our florentine squares construction does not
counter attempts to shift votes by manipulating the
onions, but then the argument above suggests that it
is easier to detect such manipulation.

We need also to consider attempts to manipulate
the fused onions, that is the Θ̂ onions computed
from the receipts. Again, our construction does not
counter the possibility of shifting votes by adding a
constant shift to the fused onions. Here again though

10

we can argue that the audit mechanisms applied to
the Bulletin Board will with high probability detect
such manipulation. Firstly note that the Θ̂ terms are
computed in a universally verifiable fashion from the
receipts. From then on we employ the usual tech-
niques to detect any manipulation as these terms go
through the re-encryption mixes. Partial Random
Checking [JJR02] only gives a 50% chance of detect-
ing any single manipulation but we can improve this
by using for example the Neff style verification of
mixes, [Nef01], or indeed by using several mixes in
parallel and applying RPC to each independently.

In summary, the integrity of position of the Xs
seems to be the hardest element of the ballot pro-
cessing to protect. The construction we propose here
serves to blunt the effectiveness of any such attack
by ensuring that an attacker can at best randomise
votes by such manipulation.

5.2 Defining Recipt Freeness

An earlier version of this work contained a venetian
rectangle construction similar to that in Section 4.1,
but with no row rotation. If a coercer saw a voter’s
receipt and demanded to know what permutation had
been printed on the ballot, there was a coercion resis-
tance strategy: the voter had to compute the differ-
ence d between the candidate (number) the coercer
demanded and the candidate he actually voted for,
then add d mod n to each other candidate on the
ballot, and tell the coercer that that was the candi-
date order.

Should this variant be regarded as “receipt free” or
not? We suggest that it should not, because in prac-
tice a coercer could succeed in this attack knowing
that the computation was infeasible for an ordinary
voter.1 Of course, this also assumes some competence
on the coercer’s part—we assume she can detect when
the voter claims an invalid ballot permutation. This
seems more reasonable because she could consider the
question long after the vote, while the voter may have
to generate the lie on the spot.

Our current construction requires the voter to per-
form a much simpler coercion resistance strategy,
simply rotating the list of candidate names by the
appropriate amount. Nevertheless, we acknowledge
that for some voters, in some elections, this may
be too difficult. The exact definition of a human-
computable coercion resistance strategy we leave as
an interesting open problem.

1We thank an anonymous reviewer for this insight.

6 Conclusions

This paper addresses a vulnerability of the Prêt à
Voter schemes that use simple cyclic shifts: an ad-
versary able to manipulate index values on receipts
before they are entered into the tabulating mixes,
can shift a skewed distribution from one candidate
to another. Firstly we have shown that the simple fix
of introducing full permutations introduces coercion
threats. Instead we have introduced a construction
based on the notion of florentine squares that pro-
vides a combinatorial balance property that ensures
that an adversary can now, at best, randomise ballots
for which he is able to manipulate the index. The al-
gebra of the florentine squares meshes nicely with the
homomorphism of Paillier or exponential ElGamal al-
lowing us to perform the tabulation without revealing
anything about the set of permutations that appears
on the voted ballots.

The florentine square construction only works for
prime numbers. Given that we probably can’t leg-
islate for all elections to be conducted with a prime
number of candidates, and it may not be allowed to
add a number of null candidates, we have presented
an extension to the florentine squares to deal with
composite numbers of candidates. This is not as el-
egant as the construction for prime numbers of can-
didates. The decryption process is less efficient, but
still fully hiding.

Our explorations here have also thrown light on
the subtleties of the notion of coercion-resistance. It
is not enough just for a coercion-resistance strategy
to exist, it must also be extremely easy for voters to
understand and execute. We have observed that Prêt
à Voter is potential vulnerable to Italian style attacks
in which the voter is required to record the candidate
order on the ballot. The best situation is where no
information is revealed about the actual, ballot per-
mutations during tabulation and all permutations are
potentially valid. In this case the voter always has the
very simple strategy of switching his vote and the co-
ercer’s. If some information about the set of actual
permutations is revealed during tabulation then there
may the possibility that this strategy is not guaran-
teed to work. Also, if the set of valid permutations is
constrained, then the voter’s strategy must be such
that it will always yield a valid permutation. In this
paper we have ensured that rotation of the candidate
list will always yield a valid permutation. The simple
flipping of two candidates will only work if the full
set of permutations is allowed.

11

7 Acknowledgements

Thanks to Alina Vdovina, Ian Wanless and Kim
Ramchen.

References

[CD07] Charles Colbourn and Jeffery Dinitz, edi-
tors. Handbook of Combinatorial Designs.
Chapman and Hall (CRC), 2007.

[CRS05] D. Chaum, P. Y. A. Ryan, and S. A.
Schneider. A practical voter-verifiable
election scheme. In Proc. European Sym-
posium on Research in Computer Secu-
rity (ESORICS), pages 118–139. Springer,
2005. LNCS 3679.

[DKR05] S. Delaune, S. Kremer, and M. Ryan.
Receipt-freeness: formal definition and
fault attacks. Workshop on Frontiers of
Electronic Elections, 2005.

[JJR02] M. Jakobsson, A. Juels, and Ronald
Rivest. Making Mix Nets Robust for
Electronic Voting by Randomized Partial
Checking. In USENIX Security Sympo-
sium, pages 339–353, 2002.

[MN06] Tal Moran and Moni Naor. Receipt-free
universally-verifiable voting with everlast-
ing privacy. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 373–
392. Springer-Verlag, August 2006.

[Nef01] A. Neff. A verifiable secret shuffle and its
application to e-voting. In Conference on
Computer and Communications Security,
pages 116–125. ACM, 2001.

[PR06] T. Peacock and P. Y. A. Ryan. Coercion-
resistance as opacity in voting systems.
Technical Report CS-TR 959, Newcastle
University, 2006.

[RS06] P.Y.A. Ryan and S. Schneider. Prêt à
Voter with Re-encryption Mixes. Number
4189. Springer-Verlag, 2006.

[Rya04] P. Y. A. Ryan. A variant of the chaum
voter-verifiable scheme. Technical
Report CS-TR-864, School of comput-
ing science, University of Newcastle, 2004.
www.cs.ncl.ac.uk/research/pubs/trs/papers/864.pdf.

[Rya07] P.Y.A. Ryan. The computer ate my vote.
Technical Report CS-TR-988, University
of Newcastle upon Tyne, 2007.

[Rya08] Peter Y. A. Ryan. Prêt à Voter with
paillier encryption. Mathematical and
Computer Modelling, 48(9-10):1646–1662,
November 2008.

[XSHT08] Zhe Xia, Steve A. Schneider, James
Heather, and Jacques Traor’e. Analysis,
improvement, and simplification of Prêt à
Voter with paillier encryption. In Proc.
USENIXACCURATE Electronic Voting
Technology Workshop, 2008.

12

	Introduction
	Shift Happens

	Why the scheme is not receipt free when any permutation can appear on the ballot
	Restoring receipt-freeness
	Background
	Ballot construction
	The main idea: perfectly shifted florentine square
	Practical details - the almost-perfectly shifted florentine square

	Tabulation and Decryption
	Receipt freeness
	Set-up
	Summary

	When the number of candidates is not prime
	Venetian rectangles
	Tabulation
	Receipt Freeness

	Discussion
	Stronger Attack Models
	Defining Recipt Freeness

	Conclusions
	Acknowledgements

