
On the Security of Election Audits with Low Entropy Randomness

Eric Rescorla

RTFM, Inc.
ekr@rtfm.com

Abstract

Secure election audits require some method of ran-
domly selecting the units to be audited. Because
physical methods such as dice rolling or lottery-
style ping pong ball selection are inefficient when a
large number of audit units must be selected, some
authors have proposed to stretch physical methods
by using them to seed randomness tables or ran-
dom number generators. We analyze the security of
these methods when the amount of input entropy
is low under the assumption that the attacker can
choose the audit units to attack. Our results in-
dicate that under these conditions audits do not
necessarily provide the detection probability implied
by the standard statistics. This effect is most pro-
nounced for randomness tables, where significantly
more units must be audited in order to achieve the
detection probability that would be expected if the
audit units were selected by a truly random process.
It is still unclear whether there are practical methods
for safely using such tables for this application.

1 Introduction

Randomized audits are becoming an increasingly
popular method of verifying election results. In a
typical audit, preliminary results for each precinct
are posted and then a fixed percentage of precincts
are selected for audit. Those precincts are then man-
ually recounted and the results are compared with
the machine count. Depending on the county, dis-
crepancies may lead to escalated auditing or simply
be resolved in favor of the manual count.1

Unlike many statistical audit situations (e.g.,
quality control), election auditing is an adversarial
situation and thus more care than usual must be

1Hall [8] provides a good summary of the procedure used
in the California One Percent Manual Recount.

exercised in the sample selection procedure. Con-
sider what happens if an attacker knows that only
precincts 1, 2, and 9 will be audited; he can then
attack other precincts without fear of detection via
the audit. Similarly, if an attacker can influence the
selection of audit units, he might be able to prevent
precincts that he has attacked from being audited,
thus concealing evidence of the attack.

In order to prevent these attacks, it is impor-
tant that the precincts which will be subject to au-
dit be unpredictable. While there are well-known
techniques for generating random numbers using
dice rolling [1] and numbered ping pong balls [6],
the overhead of these mechanisms is relatively high
and scales linearly with the number of audit units
which must be selected. For example, Calandrino
et al. [3] describe plausible scenarios where hours of
dice rolling might be required to perform a single
audit. In order to minimize this overhead, there has
been interest in methods for leveraging a small ini-
tial random value generated using one of these phys-
ical mechanisms to mechanically generate a series of
“random” values which are then used to select the
audit units.

As suggested by Calandrino et al., one natural
approach is to use a computer-based pseudorandom
number generator (PRNGs). PRNGs take a ran-
dom seed value and generate an arbitrary number of
pseudorandom values which can then be used for au-
dit unit selection. Unfortunately, cryptographically
secure PRNG algorithms (CSPRNGs) are generally
too complicated to compute by hand and so must
be executed by computer software, making their cor-
rect execution difficult for average citizens to verify
(though of course someone who is moderately sophis-
ticated can implement the algorithm themselves and
verify that the output matches). Rivest [11] has pro-
posed an algorithm which can be executed using a
hand calculator. However, while observers can verify

1

ekr@rtfm.com


that the algorithm is being executed correctly, ver-
ifying that the algorithm is actually secure requires
analysis beyond the capabilities of most laymen.

An intermediate alternative, mentioned by
Cordero et al. [1], is to use a preexisting table of
random numbers such as “A Million Random Dig-
its” (AMRD) [10]. The idea here is that one uses a
true RNG to select the starting place in the table
and then simply reads off successive table entries. If
the table is widely available (as with AMRD), then
observers can obtain it themselves and have reason-
able confidence that they have the correct table. It
should be readily apparent that a table of this kind is
simply a form of PRNG—and vice-versa—with the
starting place serving as a seed.2 However, viewed in
that light, it’s clear that this is a quite low entropy
PRNG. For instance, AMRD has 200,000 groups of
5-digit numbers. If a starting group is randomly se-
lected, there are less than 18 bits of entropy (i.e.,
less than 218 distinct sequences of values). By com-
parison, random number generators used in crypto-
graphic applications typically try to collect closer to
256 bits of entropy. This raises the question: Does
this low level of entropy leave room for attacks?

2 The Auditing Game

In order to analyze this question, we start by for-
malizing the situation as an“Auditing Game”played
between the attacker and the auditor.

In this game, we have a set U of N audit units,
numbered U0,U1, ...UN−1. The attacker must select
any subset K of size k of them to attack but must
do so prior to the preliminary election results being
posted (depending on the attack type, the attacker
might need to attack before the election, but this is
not relevant for our model.) After the election re-
sults are posted, a subset V of size v units will be
randomly selected and audited. If any unit in K is
audited (V∩K 6= /0) then the auditor detects the at-
tack and wins. If none of the units in K is audited
(V∩K = /0) then the attacker wins. This reflects an
auditing system in which evidence of attack is inves-
tigated somehow—as for instance would be appro-
priate with a DRE, which should never report any
discrepancies—rather than one in which the machine

2There is a superficial relationship here to randomness ex-
tractors (see [13] for an overview), which take a small uniform
random seed value and a large amount of weakly-random data
and output an unbiased random value. However, in this set-
ting, the entire point of the random number table is to avoid
the use of complicated operations like those used to produce
extractors. If such functions are tolerable, as discussed in Sec-
tion 6, it is simpler to use the random value to directly seed
the PRNG.

count is simply replaced with a manual count. In the
latter case, the security guarantees provided by an
audit are much weaker, since it only acts as a correc-
tion mechanism for the audited units. It should be
possible to extend this model to deal with situations
where errors are dealt with by escalating audits such
as those described by Stark [9], but we leave that for
future work.

When the sample is drawn randomly from a uni-
form distribution without replacement, the statistics
of this setting are well-known (see, for instance [2]).
The probability that the attack will be detected is
given by:

Pr(detection) = 1−
v−1

∏
i=0

N− i− k
N− i

(1)

The expected number of matches is kv
N . If V is

truly randomly generated, then it does not matter
how the attacker selects the units to attack, any set
K is equally likely to be in the set of audited units.
However, if the attacker can exactly predict the con-
tents of V then he can obviously obtain an advan-
tage. We are interested in intermediate cases where
the attacker has some information but it is incom-
plete.

As opposed to a true random number genera-
tor, any PRNG or table-based mechanism inherently
provides some information about V: the number of
distinct V sets

(N
v

)
is generally far greater than the

size of any plausible table or even the number of dis-
tinct outputs that a PRNG can generate, so some Vs
will never occur. Equally clearly, if the seed value is
small enough (e.g., only one seed is possible), then
there are practical attacks. The question we focus on
is how small the seed needs to be before the attacker
can gain a significant advantage.

3 Forms of Bias

We initially consider the simpler to analyze case of
a common table of random numbers. The table con-
sists of T randomly generated entries, with each en-
try being in the range [0..N− 1].3 We assume that
the table is publicly known prior to the audit (this
is necessary to prevent insider attack via table sub-
stitution). To select a sample of size v, a random
offset o in the range [0..T −1] is generated, and then
entries are read off one by one (wrapping around as

3As a practical matter, one would probably start with an
existing table such as AMRD. Such a table requires some ad-
justment since the entries will not fall into the exact range
[0..N−1]. However, methods are readily available [7] for mak-
ing these adjustments.

2



necessary) until v unique entries have been collected.
These then become the sample to audit. Thus, any
audit sample is uniquely defined by the pair (v,o).
For simplicity, we assume that the attacker knows v
in advance. In jurisdictions where a fixed size au-
dit is performed, this is always true. In jurisdictions
where the size of the audit depends on the margin
of victory, the attacker will likely have some idea
of v from polls. The only value the attacker does
not know is o, which, as we have said, is randomly
generated.

Because the attacker has the table available to him
in advance, he has an opportunity to analyze it for
aggregate properties which he can then exploit. In
the following section we describe two such proper-
ties.

3.1 Natural Variance

While in a randomly generated table the expected
number of instances of each value is T

N , each in-
dividual value does not appear in the table with
equal frequency. Rather, they follow the multino-
mial distribution, with some units appearing more
often than T

N and some appearing less often4 This
variance allows the attacker who has access to the
table to gain an advantage: he simply selects the
audit units which are represented least frequently in
the table. In order to estimate the size of this effect,
we need to ask what fraction of the entries in the
table will be “bad” (correspond to the units under
attack) if the attacker follows this strategy. In other
words, what is the total number of entries in the
table corresponding to the k least frequent units?

The distribution of the number of instances of
any given unit follows the binomial distribution with
count T and probability 1

N . We denote the proba-
bility density function of that binomial distribution
as ϕ(n) and the cumulative distribution function as
cdf(n), with both functions defined on the domain
[0..T −1]. Thus, the expected number of units that
appear exactly n times is Nϕ(n).

In order to estimate the number of appearances
of the kth least frequent unit, we simply need to
compute the n value that represents the bottom k/T
fraction of the distribution. Thus, the number of
appearances of that value nk is given by:

nk = min
{

n : cdf(n)≥ k
N

}
(2)

Similarly, we can compute the total number of ap-
pearances of the least frequent k values put together

4The Wikipedia articles on the multinomial [15] and bino-
mial [14] distributions provide a good introduction here.

(and hence the total number of bad entries) by com-
puting:

Tbad = N
nk

∑
n=0

nϕ(n) (3)

Conversely, there are T −Tbad “safe” entries in the
table, which correspond to units which have not been
tampered with and therefore can be audited without
fear of discovery. If we were to simply to select one
entry from the table at random and audit the corre-
sponding unit, we would thus have an Tbad/T chance
of detecting the attack.

Because we are sampling without replacement, we
must remember that each “good” sample removes
some of the safe space. On average, the remain-
ing units each appear in the table with frequency
F = T−Tbad

N−k . Thus, each audit removes approximately
fraction F of the space. Putting this all together, the
probability of detection becomes approximately:

Pr(detection) = 1−
v−1

∏
i=0

T − iF−Tbad

T − iF
(4)

Note the similarity in structure of Equation (4)
to Equation (1). The only difference is that we are
now working with table entries rather than with au-
dit units. If we assume that all units occur equally
frequently, then this equation just becomes Equa-
tion (1) with the numerator and denominator mul-
tiplied by the unit frequency of T/N.

Unfortunately, Equations (2) and (4) provide an
(often significant) overestimate of the probability of
detection because of quantization effects: cdf(n) is
only meaningful at whole integer intervals, and thus
typically cdf(nk− 1) < k

N < cdf(nk). So, for instance
we might find that if we pick out units which occur
50 or fewer times, we get the bottom 2% of units, but
if we pick out units which occur 51 or fewer times
we get the bottom 4% of units. If we’re looking for
the bottom 3%, then, we need to select only some of
the units that occur 51 times and Equation (3) gives
us a significant error. We can get a better estimate
by scaling the last term in the sum to match the
“remainder” of the probability mass after the terms
through nk−1 have been added, as shown in Equa-
tion (5)5

Tbad =

(
N

nk−1

∑
n=0

nϕ(n)

)
+nk

(
k
N
− cdf(nk−1)

)
(5)

5This equation provides results that match simulations un-
der random sampling, but not always under samples with con-
tiguous ranges. We are still investigating this point, but the
clustering effect discussed in the next section is suspected.

3



0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

6 7 8 9 2 3 4 5 6 7

8 9 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 2 3

4 5 6 7 8 9 2 3 4 5

6 7 8 9 2 3 4 5 6 7

8 9 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 2 3

4 5 6 7 8 9 2 3 4 5

Figure 1: A table constructed to minimize detec-
tion

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

0 2 3 4 5 1 6 7 8 9

Figure 2: A table constructed to maximize de-
tection

Qualitatively, we can state the following:

� As the expected number of counts for each
unit increases, the distribution of the number
of counts for each unit tightens. Thus, larger
tables offer the attacker less advantage.

� As the number of units increases, then the ex-
pected number of counts per unit for a fixed
size table decreases. Thus, the attacker can ob-
tain a higher advantage with large N (e.g., more
precincts).

� Higher k values decrease the attacker’s advan-
tage because he must select increasingly proba-
ble units to attack.

3.2 Clustering

The above analysis only provides a lower bound on
the attacker’s edge. The second form of bias that the
attacker might exploit is clustering. Just as the table
entries do not appear with equal probability, they do
not have uniform density throughout the table. If
the audit sample is selected via consecutive ranges of
entries, which is by far the simplest method, this can
be exploited to depress the probability of detection
by overlapping the samples that capture the regions
to be attacked.

As an intuition pump, consider what happens if
the attacker is allowed to construct his own table of
entries with the restriction that all entries must ap-
pear with equal probability. For T = 100, N = 10,
k = 2, v = 5, the table shown in Figure 1 minimizes
the chance that units 0 or 1 will be selected. This
construction places all values of 0 and 1 together in
the table, with the result that only offsets which di-
rectly land on 0,1 or which are less than v values be-
fore the contiguous block produce a sample contain-

ing either 0 or 1. These offsets are shaded, with off-
sets which would produce samples containing both 0
and 1 shaded darker. Note that as any hit causes the
attacker to lose the game, having both units discov-
ered doesn’t make the situation worse. The attacker
thus has a 75% chance of winning. (The chance of
winning for randomly chosen attack units is around
22%.) By contrast, it is easy to construct a table in
which the probability of discovery is unity, simply
by arranging that either a 0 or 1 appears every 5
entries, as shown in Figure 2.

Obviously, in our scenario, the attacker does not
get to control the table, and the tables are much
larger, so the magnitude of this attack is lessened.
However, randomly generated tables contain natu-
rally occurring clusters which can be exploited to
some advantage, as we explore in the next section.

4 Simulations

While we don’t yet have an analytic model for the
clustering effect we can start to get a handle on the
problem via simulation. The general approach is to
randomly generate a table of a given size with a good
PRNG (OpenSSL RAND_bytes(3)). We then ran-
domly select an attack set K and compute the frac-
tion of offsets in the table which would sample at
least one member out of the attack set for a given
audit sample size v. The result is equal to the prob-
ability of detection of attack K with that size audit.
We ran simulations with both random attack sets
and ones where the audit units were chosen to min-
imize detection and determined the mean detection
rate (which should be equal to the expected value)
as well as the chance of detection for the attack set
with the lowest detection probability.

4



If we were to ignore the clustering effect, for in-
stance by doing non-sequential sampling, then the
attacker’s best strategy would be to select the k least
probable units. We don’t currently know how to ef-
ficiently compute an optimal attack set in the face of
clustering, but we can start by randomly sampling
out of the lower tail of the audit unit frequency dis-
tribution. As a heuristic, we randomly generate k-
sized subsets out of the least frequent 2k audit units.
This lets us explore the space and select the least
probable attack set out of those we generate.6

Each sampling procedure was repeated 10,000
times, using a separate randomly generated table for
each combination of N and T . In addition, to avoid
the impact of “unlucky” random tables, to generate
the figures below we repeated the entire procedure
for multiple randomly generated tables. Where pos-
sible, we used 25 trials, but for Table 2, Figures 4,
5, 9, and the permuted curve in Figure 7, we only
ran 5 trials due to time constraints. In addition,
we ran some experiments with the values in AMRD
with qualitatively similar results. The AMRD [10]
table seems to have slightly fewer outlying values,
but that’s most likely due to natural variation, not
due to any defect in the tables.

4.1 Parameter Selection

As mentioned above, the usefulness of this attack
depends on both the size of the random table and
the number of audit units (e.g, precincts). Two nat-
ural anchor points for the random table are 200,000
and 65,000 entries, with the first value corresponding
to the number of entries in AMRD and the second
approximating the period of a PRNG with a 16-bit
state. [Note that this is sometimes but not always
the same as a PRNG with a 16-bit seed. We take up
the question of PRNGs with large states but small
seeds in section 6.] We also examine the case of
1,000,000 entries, which is about the largest table
that can plausibly fit into a single book.

The number of precincts varies widely between
different counties and states. Somewhat arbitrar-
ily, we chose 5000 (approximately the number of
precincts in Los Angeles County [4883]), 1000 (ap-
proximately the number of precincts in Santa Clara
County [929]), and 100 (approximately the number
of precincts in Yolo County [149]).

Note that with precinct-based audits, the at-
tacker’s optimal strategy is generally to concentrate

6There’s no dependency on this search algorithm being
random; it’s just that we don’t have a better algorithm so this
seemed like a reasonable way to explore. Finding a superior
search algorithm is an open question.

his attacks on as few of precincts as possible, be-
cause this minimizes his chance of detection. Thus,
the total amount the attacker can shift the election
is bounded by the maximum amount he can shift
any individual precinct without the anomaly being
so great it will be detected by other means (e.g.,
100% turnout for one candidate in a district that
polls in favor of his opponent) multiplied by the
number of precincts he attacks. It’s hard to esti-
mate this quantity, since in principle every vote for
the nominal winner could actually be a vote for the
nominal loser. It’s common to talk about within
precinct miscount (WPM)[12], and assume that no
more than 20% of votes in a precinct can be shifted
without detection. Without taking a position on the
appropriate error bounds, we consider attacks on 1%
and 5% of the units, which could represent shifts up
up to 5% of votes, though in practice they are almost
certainly lower, since it is very unusual for the nomi-
nal loser to get no votes, so even if the attacker could
completely control the results he would be counting
votes for the nominal winner “accurately”. The rest
of the paper is discussed purely in terms of the num-
ber of attacked units, with the understanding that
the total vote shift is controlled by the reader’s as-
sumptions about the error bounds.

4.2 Results

Figure 3 shows the results of a typical simulation,
for a 200,000 entry table with 1000 precincts, 10
of which (1%) are being attacked. The dashed line
shows the mean probability of detection for a ran-
domly selected set of precincts under attack and
closely follows Equation (1). The solid line shows the
minimum observed probability of detection for an at-
tack set chosen from the least frequent precincts, as
described in the previous section. The slight shak-
iness in this line is due to sampling error: We are
exploring the lower tail of the frequency distribu-
tion and so successive simulations may get more or
less lucky. This line represents an upper bound on
the detection rate experienced by the attacker, be-
cause there may be even more optimal attack sets we
have not explored. The dotted lines indicate 80%,
90%, 95%, and 99% detection probabilities. Note
that each line represents the mean of trials with 25
separate tables. We do not show error bars because
on the scale shown they track so closely to the lines
that they obscure the figure.

There are two ways of looking at these results:
from the perspective of the attacker and from the
perspective of the auditor. From the perspective of
the attacker, who cares about how much he can re-

5



0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under Attack

Figure 3: Probability of detection: 200,000 en-
tries, 1000 precincts, 10 attacked precincts

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under Attack

Figure 4: Probability of detection: 200,000 en-
tries, 5000 precincts, 50 attacked precincts

duce the probability of detection, the effect is rel-
atively modest. For an audit intended to achieve
a 99% detection probability, the attacker can lower
his probability of detection to approximately 96%, a
factor of 4 improvement in his odds, but still a very
high chance of being detected. The situation is a
little better for lower intended detection probabili-
ties, but the attacker never gains more than about
a 10% absolute advantage. Whether this is signif-
icant depends on one’s model of attacker behavior:
it seems unlikely that the advantage is large enough
to make an attacker choose to mount an attack they
otherwise would not except in very marginal cases.
However, if an attacker was planning to mount an
attack anyway, it clearly would be to their benefit to
select the audit units to attack carefully.

From the perspective of the auditor, however, the
situation looks very different.7 An auditor who
wants to achieve a given detection probability must
work significantly harder against an attacker who
can analyze his random number generation proce-
dure than against one who cannot. Table 1 shows
the number of units which must be audited at four
natural audit levels, rounded up to the nearest 10,
with the analytically projected values from Equa-
tion (1) in parentheses. This effect becomes more
pronounced as we approach higher intended detec-

7I am grateful to Hovav Shacham for suggesting this way
of looking at the data.

tion probabilities and the curves start to level off; at
the 99% level, the we must audit almost 50% more
precincts to achieve the same detection probability.

Detection Units to Audit Units to Audit
Probability (random) (targeted)

80% 150 (148) 190 (148)
90% 210 (205) 270 (205)
95% 260 (258) 340 (258)

<99% 370 (368) 540 (358)

Table 1: Required audit levels: 200,000 entries, 1000
precincts, 10 attacked precincts

Figure 4 shows another example, with the same
table size and attack level parameters but 5,000 au-
dit units. Here the effect is even more pronounced,
with the size of the required audit set under attack
being over twice as large as that which would be
expected from Equation (1).

Finally, Figures 5 and 6 show two parameter sets
where this attack doesn’t work well. In Figure 5, we
see a large table, which greatly reduces the impact
of both effects. In Figure 6, despite the small table
size (65,000), the small number of precincts (100)
and the high attack rate (5%) result in a small ad-
vantage for the attacker. Note, however, how high
the audit rate is in this case: in order to get 99%
detection probability you need to audit 59 units out

6



0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under Attack

Figure 5: Probability of detection: 1,000,000 en-
tries, 1000 precincts, 10 attacked precincts

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under Attack

Figure 6: Probability of detection: 65,000 en-
tries, 100 precincts, 5 attacked precincts

of 100. This is a result of the small number of audit
units and reflects an unfortunate tradeoff: Dividing
the election into a high numbers of audit units yields
better statistical power with less total auditing8 but
makes precomputation attacks on the random num-
ber generation more powerful.

Table 2 provides a summary of the results for a
variety of parameter values. The “Detected.01” and
“Detected.05” columns indicate the fraction of at-
tacks that would be detected when attacking 1% and
5% of the units respectively. Note that while the
intended detection probabilities are the same, the
number of units that must be audited (“Sampled.01”
and “Sampled.05”) is dependent on the expected at-
tack level.

The results in Table 2 confirm the qualitative as-
sertions from Section 3.1. Larger table sizes pro-
vide more of an advantage for the auditor; more
audit units provide an advantage for the attacker;
the more units the attacker has to attack the less
advantage he can obtain. The worst case scenario,
then is a table size of 65000 in a very large county,
where the attacker can reduce his probability of de-
tection to 76% under an audit designed to have 99%
probability of detection if he need only attack 1%
of precincts. By contrast, when there are only 100
audit units, the attacker gains a very marginal ad-

8I owe this formulation of this fact to Arlene Ash.

vantage at nearly every audit size.
One final question to address is the relative mag-

nitude of the variance and clustering effects. It is
difficult to provide a precise quantitative estimate
but they are both significant. As discussed earlier,
just selecting the least frequent k units does not pro-
duce as much of an advantage as searching through
the least frequent 2k. We can also get a qualita-
tive impression by comparing the attacker’s advan-
tage on tables which are randomly generated versus
those which are generated by randomly permuting
equal numbers of each unit as shown in Figure 7.
The attacker still gains an advantage with the per-
muted table, but it lies in between the random table
and the expected probability of detection. For this
set of parameters, the probability of detection with a
permuted table at the nominal 99% level is around
97.6% (as compared to around 96% with the ran-
dom table); the auditor needs to audit around 470
units as opposed the normal 368 units and 540 with
a random table.

5 Sparse Tables

So far we have considered only dense tables: those
in which the auditor can select any entry within the
table as his starting point. However it is also pos-
sible to have “sparse” tables, in which only some
offsets into the table are possible. For instance,

7



Table.Size Num.Units Confidence Sampled.01 Detected.01 Sampled.05 Detected.05
1000000 5000 0.800 158 0.729 32 0.758
1000000 5000 0.900 224 0.843 45 0.863
1000000 5000 0.950 290 0.908 59 0.926
1000000 5000 0.990 438 0.971 89 0.979
1000000 1000 0.800 148 0.765 31 0.778
1000000 1000 0.900 205 0.872 44 0.882
1000000 1000 0.950 258 0.929 57 0.938
1000000 1000 0.990 368 0.981 86 0.985
1000000 100 0.800 80 0.790 27 0.791
1000000 100 0.900 90 0.892 37 0.899
1000000 100 0.950 95 0.945 45 0.948
1000000 100 0.990 99 0.988 59 0.988
200000 5000 0.800 158 0.620 32 0.687
200000 5000 0.900 224 0.740 45 0.802
200000 5000 0.950 290 0.822 59 0.880
200000 5000 0.990 438 0.922 89 0.956
200000 1000 0.800 148 0.714 31 0.744
200000 1000 0.900 205 0.831 44 0.854
200000 1000 0.950 258 0.896 57 0.916
200000 1000 0.990 368 0.961 86 0.975
200000 100 0.800 80 0.784 27 0.783
200000 100 0.900 90 0.884 37 0.893
200000 100 0.950 95 0.939 45 0.944
200000 100 0.990 99 0.986 59 0.985
65000 5000 0.800 158 0.443 32 0.568
65000 5000 0.900 224 0.559 45 0.689
65000 5000 0.950 290 0.646 59 0.781
65000 5000 0.990 438 0.773 89 0.892
65000 1000 0.800 148 0.641 31 0.698
65000 1000 0.900 205 0.762 44 0.811
65000 1000 0.950 258 0.836 57 0.885
65000 1000 0.990 368 0.925 86 0.956
65000 100 0.800 80 0.765 27 0.768
65000 100 0.900 90 0.871 37 0.880
65000 100 0.950 95 0.928 45 0.934
65000 100 0.990 99 0.978 59 0.980

Table 2: Summary of Attacker Advantage: Confidence indicates the desired detection probability; Sam-
pled.01 and Sampled.05 indicate the number of units sampled assuming a 1% and 5% attack fractions;
Detected.01 and Detected.05 indicate the probability of detection at those attack fractions.

AMRD has 1000 entries per page (for a total of 200
pages). If, instead of selecting a random entry, we
just select a random page and start at the top of
the page, then there are only 200 possible offsets,
0,1000,2000, ...200,000.

More formally, as before we have a table contain-
ing T randomly generated entries, but instead of
choosing any offset in the range [0..T −1], the audi-
tor only chooses randomly from some smaller set of
offsets. Intuitively, this weakens the security of the
system. Consider the limiting case where there are
only two possible offsets, 0 and 100,000; the attacker
gets quite a large amount of information about which
units will be audited. Indeed, if v < 1

2 N, there will
always be some units which are not audited at all
and so can be attacked safely.

Even in less extreme cases there is a substantial
loss of security. Figure 8 shows the same parameters
as Figure 3, but with only 200 offsets, simulating
the use of AMRD with page level addressing. The
detection rate under attack with normal addressing
is shown for reference. While the expected behavior
of this addressing mode is the same, the attacker

gains significantly more advantage, with only about
a 92% chance of detection at the nominal 99% level
and 640 units which must be sampled to achieve a
99% detection probability.

6 Cryptographically Strong PRNGs

We now take up the question of PRNGs. As men-
tioned in Section 1, these can be thought of as a large
table, with the seed selecting an offset into the table.
The way that PRNGs are typically implemented is
that there is some internal state value s which can
take on any value in the range [0..S−1]; an output
function f (); and a transition function δ (); as shown
below:

To extract one value from a PRNG in state s, we
first compute f (s) to get the output and then set
s = δ (s) to determine the next state. It should be
apparent that if the state value has maximum size S
than no more than S values may be extracted before

9Actually performing this rearrangement is deliberately
impractical with any strong PRNG, but we’re just using this
notation for analytical simplicity.

8



0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under attack (permuted)
Under attack (random)

Figure 7: Probability of detection: 200,000 en-
tries, 1000 precincts, 10 attacked precincts, per-
muted vs. random

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Sampled Precincts

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Expected
Under attack
Under attack (sparse)

Figure 8: Probability of detection: 200,000 en-
tries, 1000 precincts, 10 attacked precincts, 200
offsets

the output pattern starts to repeat. Ideally, this“cy-
cle length” would be approximately S, but in some
inferior PRNGs, it is actually far smaller. For the
purposes of this discussion, we ignore such PRNGs.
Without loss of generality, then, we can simply re-
order the states so that they are numbered [0..S−1]
with δ (s) = (s+1) mod S.9

Of course, before a PRNG can be used, we must
first select the initial state (the “seed”)—if the same
initial state is always used then the output of the
PRNG is perfectly predictable. To use a PRNG in
an audit system, one would generate the seed in some
publicly verifiable way and then use the PRNG to
generate the audit units. The case we are interested
in is that where the size of the seed is much smaller
than S. Internal states are typically on the order of
several hundred bits and generating that much ran-
domness by dice rolling, coin flipping, etc. seems
impractical. For instance, to generate 160 bits of
entropy would require 54 rolls of 8 sided dice. Obvi-
ously, this means that some s-values are not accessi-
ble as initial states.

What does this mean for the security of an audit-
ing system? First, if S is much larger than the seed
space, the table is likely to be very sparse. In prin-
ciple, it is possible to construct a PRNG so that the
seed space would map to a small, adjacent, set of in-
ternal states, so that if you started with seed i, and

hence state si and then extracted some small num-
ber of values, you would end up in internal state s j
corresponding to seed j. Effectively, this would be a
PRNG with a much smaller state space—about the
same size as the seed space. In that case, the analysis
of the previous sections would hold and the attacks
we have already discussed would be equally effective.
However, the design of CSPRNGs generally ensures
that even small input ranges are mapped across the
entire internal state space, and so the probability of
overlaps between the unit sequences induced by var-
ious seeds will be negligible. Increasing S beyond the
point where S

N >> v has negligible effect on security;
it simply results in a large number of states which
can never be reached in any audit.

It’s easiest, then, to model a PRNG as a set of in-
dependent tables containing [0..N−1]∗ and indexed
by seed. Since each unit can only be sampled once,
we can simply regard each of these tables as a per-
mutation of [0..N − 1], with a (v,o) audit selecting
the first v units in table o. Because this is effectively
a much larger table (N times the seed size), even
with a small seed (e.g., 16 bits), such a PRNG pro-
vides a fairly good level of security. Figure 9 shows
the probability of detection for seeds from 1–16 bits
with an audit sized at the nominal 99% level. Note
that we are using a slightly different search algo-
rithm here: instead of looking for the least common

9



● ● ●

●

●

●

●

●
●

● ● ● ● ● ● ●

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bits of entropy

P
ro

ba
bi

lit
y 

of
 D

et
ec

tin
g 

A
tta

ck

Figure 9: Probability of detection for PRNGs: 1000
precincts, 10 attacked precincts

units (as all are equally frequent), we instead look
for the ones that appear least frequently in the first
v entries for each seed (recall that the sequences for
adjacent seeds do not overlap.) This does not have
a significant impact on large, overlapping tables like
the ones we considered in Section 4.2, but does make
a difference here.

As shown in Figure 9, for PRNGs with very small
seed the attacker is actually able to find units which
never appear in the first v entries for each seed, thus
obtaining a detection probability of 0. As expected,
as the seed space increases, we approach the ex-
pected security level. With a 16-bit seed, we see
a detection probability of 98.9, which is only a very
marginal advantage for the attacker. By contrast,
the 65,000-entry tables shown in Table 2, which
models a PRNG with a small state space as well as
a small seed space, provide the attacker with a sub-
stantial advantage. This reinforces the importance
of using a PRNG with a large state space even if the
seed space is small.

7 Potential Approaches

It is clearly very desirable to have some mechanism
for stretching a small amount of verifiable public
randomness into an arbitrary number of audit se-
lections. However, as we have shown, some natural
approaches provide a lower probability of detection

than would be expected from the conventional statis-
tical models of auditing, which assume perfect ran-
domness. In this section we consider some variants
of these mechanism which potentially offer higher
detection levels.

7.1 Randomness Tables

While randomness tables are potentially safe as a
mechanism for generating audit units, AMRD pro-
vides the attacker with a significant advantage in a
number of plausible settings. Any table provides the
attacker with some advantage, but a large enough
table can potentially reduce the advantage to the
acceptable level. Unfortunately, the table has to be
very large; as Table 2 shows, even a table of size
106 provides the attacker a significant advantage in
large jurisdictions. Equation (4) suggests that a ta-
ble of 107 may be sufficient (the attacker’s advan-
tage at the 99% level with 5000 precincts and 1%
of units attacked is < .5%) however, this ignores the
clustering effects and in any case a table of size 107

would be 10,000 pages using the AMRD formatting
(2,000 pages if we were to address individual dig-
its as described below), which seems on the edge of
prohibitively large.

The situation can be substantially improved if we
substitute a randomly permuted table containing
equal frequencies of each entry. [For instance, fill
entry i of the table with i mod N and then randomly
permute. Knuth [4] provides a suitable permutation
algorithm.] This eliminates the frequency variance
effects leaving us only with clustering effects (see
Figure 7 for an example). While we do not yet have
an analytic model for the clustering effects, initial
simulations suggest that a table of size 106 is suffi-
ciently large to minimize them, though 107 is prob-
ably safer.

While it is possible to create a truly random table
using updated versions of the methods used to pro-
duce AMRD, this is likely to be a relatively expen-
sive proposition. An alternative would be to use a
CSPRNG to produce the digits but then print them
in a book form factor. The major difficulty here is to
demonstrate that the paper version accurately rep-
resents the output of the CSPRNG. There are two
major approaches to this problem. The first is pro-
cedural: distribute the PDF file corresponding to the
book and allow others to verify that the CSPRNG
stream matches the PDF. Outside auditors could be
allowed to verify that the correct PDF was used to
generate the book. The second defense is technical:
random auditing could be used to detect systematic
errors.

10



The second, more minor, issue is to verify that
the seeds for the CSPRNG were randomly gener-
ated. However, since this only need be done once,
it is efficient to generate a large seed (> 160 bits)
in a public ceremony using techniques like those de-
scribed by Cordero et al. [1].

Another alternative is to try to further stretch an
existing table such as AMRD. There are a number of
natural strategies, suggested to me variously by Na-
dia Heninger, Mark Lindeman, Dennis Paull, David
Wagner, and an anonymous reviewer.

Addressing individual digits rather than
columns. While digits in AMRD are organized
into groups of five, one more dice roll would suffice to
define an offset into columns. The improvement this
provides is modest: If we stick with five digits at a
time it makes AMRD a 1,000,000-entry table, which,
as noted above, still gives the attacker a substantial
edge. In addition, it seems like it would be easy to
get out of alignment, since you’re regularly reading
the end of one group and the beginning of another,
this is an opportunity for mistakes. It would be even
more confusing if you were reading less than five dig-
its, since you then are constantly shifting the offset
into the groups.

Add a random offset. Another possibility is to
generate a random value which is then added to ev-
ery entry in the table (mod N) before it is used to
look up a precinct. One would probably need at min-
imum 8 bits of additional entropy (4 bits if used with
individual digit addressing) in order to provide a suf-
ficient security improvement under our model. In
the limit, if the offset is chosen in the range [0..N−1],
then it effectively rotates the unit numbers and the
result nullifies the natural variance effect. There is
no point in an offset larger than this since any offset
r ≥ N has the same effect as r mod N. This proce-
dure also seems somewhat unwieldy, since it requires
arithmetic for each entry. However with some care
it might be practical.

Pick Two Starting Points An anonymous re-
viewer suggests using two separate starting points
(potentially with two tables) and then add each
value to get the unit to audit. In the best case,
this seems like it squares the number of possible se-
quences.

Random intervals. Finally, one might imagine
not selecting consecutive entries but rather generat-
ing a random value m and then choosing every mth

entry. In the best case, it seems like this would sim-
ulate a table of size mT . However it seems like this
would be very error-prone with values of m larger
than 10–20, as it would require counting forward
quite carefully over multiple pages.

In all of these cases, one might naively think that
an additional input entropy of b bits would pro-
vide an effective table size of 2b. However, be-
cause the same table entries are being reused, albeit
salted with the additional entropy, further analysis
is needed to determine whether this is in fact the
case.

7.2 PRNGs

A PRNG provides the potential for a less unwieldy
solution. While a complete prescription for select-
ing a PRNG for auditing applications is outside the
scope of this paper, our analysis points to some min-
imal guidelines: such a PRNG should have a large
internal state and should be designed to accept small
seeds but distribute them to widely divergent inter-
nal states, thus minimizing the probability of over-
lap. CSPRNGs such as those specified by NIST SP
800-90 [5] are an appropriate choice for this task.
Further, they should be seeded with at least 16 bits
of entropy, however, 32 bits would provide a signif-
icantly greater margin of safety.10 Other PRNGs
may also be suitable, however further study would
be required. In particular, SSR [11] seems like an
interesting possibility, but we have not yet applied
the techniques described in this paper to these alter-
natives.

8 Conclusions

Secure election audits rely on random selection of the
units to be audited. We find that two natural meth-
ods, randomness tables and pseudorandom number
generators may be susceptible to pre-analysis by at-
tackers who can select audit units to attack which
are unlikely to be audited. In such cases, randomized
audits may not deliver their intended detection prob-
ability and significantly more units must be audited
in order to attain the desired detection probability.
It is still unclear whether there are practical meth-
ods for using random number tables for this purpose.

10Note that the NIST CSPRNGs are specified as requiring
a very large amount of seed material. This is necessary for
cryptographic applications in order to prevent attacks where
the attacker exhaustively searches the key space. However,
for this application we merely need the attacker to have very
little information in advance about which units will be chosen
and so a much smaller seed suffices. Thanks to an anonymous
reviewer for suggesting this point.

11



While it is clear that with enough entropy PRNGs
can be used safely, this analysis provides some lower
bounds on the level of entropy that must be used.

Acknowledgements

Thanks to Joseph Lorenzo Hall for inspiring me to
consider this problem and for his comments on a pre-
vious version of this paper. This work was shaped by
productive discussions with Kevin Dick, Cullen Jen-
nings, Hovav Shacham, and Terence Spies. Thanks
to Nadia Heninger, Mark Lindeman, Neal McBur-
nett, Dennis Paull, David Wagner, and Dan Wal-
lach for their useful comments on previous versions.
Thanks also to the anonymous EVT reviewers for
their helpful comments and to Steve Checkoway for
comments and a close read.

This version of this paper is revision 113, and is
dated June 27, 2009. A previous revision, dated
June 23, was briefly available on the EVT site.

References

[1] Arel Cordero and David Wagner and David Dill.
The Role of Dice in Election Audits—Extended Ab-
stract. IAVoSS Workshop on Trustworthy Elections 2006
(WOTE 2006), June 2006. http://www.cs.berkeley.

edu/~daw/papers/dice-wote06.pdf.

[2] J. A. Aslam, R. A. Popa, and R. L. Rivest. On estimat-
ing the size and confidence of a statistical audit. In Proc.
2007 USENIX/ACCURATE Electronic Voting Technol-
ogy Workshop (EVT ’07), 2007.

[3] J. A. Calandrino, J. A. Halderman, and E. W. Fel-
ten. In Defense of Pseudorandom Sample Selection.
In Proceedings of the 2008 Electronic Voting Technol-
ogy Workshop, 2008. http://www.usenix.org/events/

evt08/tech/full_papers/calandrino/calandrino.pdf.

[4] Donald E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Addison-Wesley,
3 edition, 1998.

[5] Elaine Barker and John Kelsey. Recommenda-
tion for Random Number Generation Using De-
terministic Random Bit Generators (Revised).
NIST Special Publication 800-90, March 2007.
http://csrc.nist.gov/publications/nistpubs/

800-90/SP800-90revised_March2007.pdf.

[6] Joseph Lorenzo Hall. Research Memorandum: On Im-
proving the Uniformity of Randomness with Alameda
County’s Random Selection Process, March 2007.

[7] Joseph Lorenzo Hall. Dice Binning Calculator for Post-
Election Audits, March 2008. http://www.josephhall.

org/dicebins.php.

[8] Joseph Lorenzo Hall. Policy Mechanisms for Increasing
Transparency in Electronic Voting. PhD thesis, Univer-
sity of California, Berkeley, 2008. http://josephhall.

org/papers/jhall-phd.pdf.

[9] Philip B. Stark. Conservative statistical post-election au-
dits. The Annals of Applied Statistics, 2:550–581, 2008.
arxiv.org/abs/0807.4005).

[10] RAND Corporation. A Million Random Digits with
100,000 Normal Deviates. American Book Publishers,
2002.

[11] Ronald L. Rivest. Sum of Square Roots (SSR)
Pseudorandom Sampling Method for Election Au-
dits. http://people.csail.mit.edu/rivest/Rivest-

ASumOfSquareRootsSSRPseudorandomSamplingMethod

ForElectionAudits.pdf, April 2008.

[12] H. Stanislevic. Random auditing of e-voting systems:
How much is enough?, 2006. http://www.votetrustusa.
org/pdfs/VTTF/EVEPAuditing.pdf.

[13] S. Vadhan. Randomness extractors & their crypto-
graphic applications. Invited Tutorial TCC 2008, 2008.
http://people.seas.harvard.edu/~salil/papers/

extractors-tcc08.pps.

[14] Wikipedia. Binomial Distributions. http://en.

wikipedia.org/wiki/Binomial_distribution.

[15] Wikipedia. Multinomial Distributions. http://en.

wikipedia.org/wiki/Multinomial_distribution.

12

http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://www.usenix.org/events/evt08/tech/full_papers/calandrino/calandrino.pdf
http://www.usenix.org/events/evt08/tech/full_papers/calandrino/calandrino.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://www.josephhall.org/dicebins.php
http://www.josephhall.org/dicebins.php
http://josephhall.org/papers/jhall-phd.pdf
http://josephhall.org/papers/jhall-phd.pdf
arxiv.org/abs/0807.4005
http://people.csail.mit.edu/rivest/Rivest-ASumOfSquareRootsSSRPseudorandomSamplingMethodForElectionAudits.pdf
http://people.csail.mit.edu/rivest/Rivest-ASumOfSquareRootsSSRPseudorandomSamplingMethodForElectionAudits.pdf
http://people.csail.mit.edu/rivest/Rivest-ASumOfSquareRootsSSRPseudorandomSamplingMethodForElectionAudits.pdf
http://www.votetrustusa.org/pdfs/VTTF/EVEPAuditing.pdf
http://www.votetrustusa.org/pdfs/VTTF/EVEPAuditing.pdf
http://people.seas.harvard.edu/~salil/papers/extractors-tcc08.pps
http://people.seas.harvard.edu/~salil/papers/extractors-tcc08.pps
http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Multinomial_distribution

	Introduction
	The Auditing Game
	Forms of Bias
	Natural Variance
	Clustering

	Simulations
	Parameter Selection
	Results

	Sparse Tables
	Cryptographically Strong PRNGs
	Potential Approaches
	Randomness Tables
	PRNGs

	Conclusions

