Software Support for Software-Independent Auditing — Short Paper

Gabrielle A. Gianelli, Jennifer D. King, Edward W. Felten, and William P. Zeller

Center for Information Technology Policy
Department of Computer Science
Princeton University
{gianelli, jdking, felten,wzeller}@princeton.edu

Abstract

Electronic voting machines have the potential to make
the election process more efficient, but concerns over
their reliability and security could undermine confidence
in election results. The most effective way of verifying
election results is by auditing physical copies of the bal-
lots that have been verified by the voter. Since manually
viewing every ballot is unrealistic, a variety of algorithms
can be used to determine which ballots or precincts to
audit. These algorithms generate a list of ballots (or
precincts) to audit and declare the election outcome cor-
rect (with a certain confidence level) if the audited phys-
ical ballot matches the corresponding electronic records.
Many of these algorithms are complicated and require a
computer on which to run. Since this computer is suscep-
tible to the same issues as electronic voting machines,
we want to be able to trust the output of these algo-
rithms without trusting the computer on which the au-
diting algorithms run. We created an online auditing sys-
tem with three goals in mind. First, we ensure software-
independence by publishing a log that allows anyone to
verify (either manually or by using a computer) that the
audit procedures were followed correctly. This allows
the computer running the auditing algorithms to be un-
trusted. Second, we implemented recently published au-
diting algorithms that reduce the number of precincts or
ballots to be inspected. Third, we provide a user-friendly
interface that can be used by ordinary government of-
ficials. Additionally, the modular design of our system
does not restrict the algorithms that can be used, allowing
it to satisfy the variety of legal requirements in different
states.

1 Introduction

When electronic voting machines are used in elections,
the correctness of the outcome depends on the correct-
ness of these machines. In order to prevent machine fail-
ure or corruption from influencing the outcome of an

election, voter-verified paper auditing trails (VVPATSs)
can be used to confirm that the electronic results match
the verified paper ballots. (We use the term “VVPAT” to
describe both optical-scan ballots and Direct-Recording
Electronic (DRE) paper trails.) This verification is done
by an audit that requires a manual inspection of some
number of the ballots used in the election.

Many algorithms exist for choosing which ballots to
inspect manually. These algorithms vary in their com-
plexity, their method of selecting ballots for manual au-
diting, and the number of ballots they require to be in-
spected to guarantee a given level of confidence in the
election.

An electronic auditing system could be used to carry
out these algorithms, but this approach would create a
need for yet another layer of verification.

In order to avoid having to trust any auditing machine,
we implemented an electronic auditing system that logs
all of the information necessary to allow an independent
system to recreate and verify the selection of ballots to be
audited. This information includes pseudorandom num-
bers generated using a variant of “Dice Plus CSPRNGS”
of Calandrino et al. [5].

Our system achieves software independence [12] be-
cause its log allows any third-party to check the correct-
ness of our system either by hand or by using its own
verification software. Our design follows the principle in
[12]: “One should strongly prefer any approach where
the integrity of the election outcome is not dependent on
trusting the correctness of complex software”. To show
that the logs could be verified by a third-party, we imple-
mented a prototype log verifier as a separate program.

We implemented this system as a website with an in-
tuitive interface that allows a non-technical user to run
a variety of auditing algorithms. As a part of this web-
site, we implemented four common algorithms and de-
signed the system to allow additional algorithms to be
easily added. Our system, as implemented, is compat-
ible with the voting regulations of many US states and

could easily be extended.

Our paper is organized as follows. Section 2 discusses
the problems with current election technology and audit-
ing procedures. In Section 3, we walk through the steps
of the auditing process. In Section 4, we discuss the im-
portance of keeping a verifiable log of all electronic cal-
culations to ensure that the machine running the audit
has not been compromised. In Section 5, we discuss the
implementation of our system. In Section 6 we discuss
our system’s performance auditing unofficial November
2008 election data from a California county.

2 Background

2.1 Flaws in Voting Devices

The use of electronic voting machines raises security and
privacy issues. These systems are general purpose com-
puters, which means they are capable of running any pro-
gram, whether benign or malicious. Due to the complex-
ity of these systems, the software itself might contain
bugs that could change the outcome of an election. An
attacker could also compromise these machines. Certain
electronic voting systems store election results in their
own internal memory, which can be silently erased or
manipulated. Additionally, many of these electronic sys-
tems share data on election day, possibly allowing an in-
fected computer to spread a virus to other machines. Re-
searchers have discovered vulnerabilities in a variety of
voting systems, ranging from major security design flaws
to minor, but exploitable, bugs.

Numerous research studies have found security flaws
in electronic voting systems. For example, Feldman ez al.
[6] describe the ease with which they were able to com-
promise the Diebold AccuVote-TS, a widely used elec-
tronic voting system at that time [6]. The authors were
able to quickly obtain access to the memory slot on the
side of the machine and insert their own memory card
containing malicious code which secretly flipped votes.
They also described how a virus could be designed to
spread automatically between voting machines to ma-
nipulate votes or to disable the machines entirely, which
could change election results on a large scale or entirely
shut down precincts.

These vulnerabilities are not limited to Diebold ma-
chines. A 2007 study commissioned by California’s Sec-
retary of State found similar security flaws in voting ma-
chines made by two other major companies [3].

2.2 Safeguards Against Election Fraud

Many researchers promote the use of physical paper bal-
lots as a way to prevent and detect some types of voting

fraud [10, 4, 6, 9, 7]. (While the use of optical scan ma-
chines is typically recommended, many DRE machines
are able to generate a paper trail. Again, we use the
term VVPAT to describe both optical scan ballots and
DRE paper trails.) In a system that uses VVPAT, voters
must be able to check that a physical copy of their vote
matches how they voted. These records are kept for post-
election auditing. Some electronic voting systems, such
as optical scan machines, automatically generate paper
records in their normal course of operation (the voter
records her vote directly on a paper ballot before it is
scanned). However, many DRE machines print either no
paper record, or only print a report at the end of the day
summarizing the vote totals on that machine. Ideally, if a
DRE machine is to be used, it should print a paper record
after each ballot is cast and allow the voter to inspect that
paper before exiting the voting booth [10, 7].

The availability of physical copies of the ballots pro-
vides a layer of redundancy that makes fraud more diffi-
cult because of the differences between paper and elec-
tronic media. Feldman et al. [6] write, “the real advan-
tage of a paper trail is that its failure modes differ signifi-
cantly from those of electronic systems, making the com-
bination of paper and electronic record-keeping harder
to defraud than either would be alone...”. Even if ad-
ditional electronic copies were kept, there would be no
guarantee that whatever problem affected the first copy
of electronic records did not have an impact the sec-
ond. Furthermore, an audit of the paper records can be
rechecked by humans, allowing officials to be sure that
the auditing software was not compromised as well [6].

2.3 Current Audit Legislation

Each state currently has its own election auditing laws. In
2007, fifteen states required manual recounts [8]. Often
the laws dictate that a certain percentage of all precincts
must undergo manual inspection, but this percentage can
vary widely. For instance, California requires an audit of
only 1% of precincts, whereas Connecticut requires 10%
[8, 2].

When the precincts chosen by this method are large,
the sizable number of ballots that must be audited can
present a major challenge to the auditing process. Af-
ter observing the Connecticut audits after the November
2007 election, the Connecticut Citizen Election Audit
Coalition observed that “many of the audits, as observed,
[left them] uncertain as to whether an error or fraud
would have been detected in an audited race in this elec-
tion,” largely due to inconsistencies in the auditors’ indi-
vidual counting techniques and the lack of transparency
that prohibited any public audit of the recount[13].

Since human error is an integral factor in the correct-
ness of manual audits, reducing the number of ballots

that must be counted could reduce its effect. Statistical
algorithms, such as those discussed in Section 5.2, can
reduce the number of ballots selected while guaranteeing
a high confidence level that fraud will be uncovered if it
does exist. By reducing the total number of ballots that
must be recounted, the accuracy of hand recounts would
increase and less manpower would be needed to execute
them. Thus, statistical algorithms are a useful tool for
post-election auditing, though the implementation may
be too complicated to do by hand.

3 Overview of the Auditing Procedure

The system we implemented was designed to handle the
lack of uniformity between state auditing laws. Any
number of algorithms can be added to the system, allow-
ing a single, consistent interface to be used in states with
different requirements. The following steps, also shown
in Figure 1, would be performed during any audit on our
system.

3.1 Administrative Set Up

The ballot information, such as the lists of precincts,
races, and candidates, and the votes recorded on each
ballot must be uploaded into the database. The system
includes support for multiple elections, multiple races,
and multiple winners within a given race. It is also pos-
sible to audit races that do not have individual ballots
available using the precinct-based algorithms, as long as
vote totals from each precinct can be uploaded.

If our system were to be adopted, we imagine tools
would be created to automatically convert ballot data
from currently existing vote tabulation systems. How-
ever, because many of these formats are undocumented,
we did not implement these tools ourselves. For the test
audits we ran, we converted the ballot data into a format
suitable for our database by creating a few simple scripts.

3.2 User Log-In and Dashboard

After the system is initialized, a user (e.g., an election
official) can login and view her main page, where she
is presented with a dashboard that allows her to view a
summary of all audits that she has performed and each
audit’s current status. She also has the option to resume
any incomplete audits at the step where she was inter-
rupted.

When starting a new audit, the user can either read
a description of the audit’s steps or immediately begin
the audit process. The first page lists the name and date
of each election the user is authorized to audit. The user

selects the election to audit and decides whether to “link”
the precincts!.

If precincts are linked, then the algorithms will give
preference to precincts that have already been selected
for auditing for a previous race that is part of the same
election. Linking precincts does not affect the auditing
probabilities. This feature reduces the overall number of
precincts where manual inspections are performed for a
given election.

3.3 Race and Algorithm Selection

Once the user has selected an election, she is prompted to
choose a race in the election and an algorithm to use on
that race. A drop-down description of each algorithm ap-
pears when it is selected, along with a box for the user to
enter her desired confidence level or probability, depend-
ing on the selected algorithm. The process of selecting
arace and an associated algorithm is repeated until algo-
rithms have been chosen for all races.

3.4 Pseudorandom Number Generation

In order to introduce pseudorandomness into the system,
we follow the method described by Calandrino et al. [5],
which asks the user to physically roll dice and enter a
sequence of die rolls. These die rolls later are used as a
seed for all pseudorandom number generation. Our sys-
tem provides the option of using either six- or twenty-
sided dice, which would require fifty or thirty rolls, re-
spectively, in order to generate a 128-bit random seed.
Pseudorandom number generation must be done after
all data has been uploaded into the system, and after all
choices have been made by election officials. This pre-
vents a potentially corrupt official from altering aspects
of the data (such as re-ordering or re-naming precincts)
in order to affect the order or manner in which precincts
are processed. It is only after election officials have

!“Linking” precincts is an optimization, used in elections with mul-
tiple races, in which ballots that are audited for one race are prefer-
entially chosen for auditing in another race, in a way that preserves
the required statistical confidence guarantees. For example, suppose
that there are two races, and the auditing algorithms require auditing
of 15 randomly chosen precincts for Race A, and 10 randomly cho-
sen precincts for Race B. Without linking, the precincts to be audited
in Race A would be chosen independently of those audited in Race B.
With linking, we would randomly choose 10 precincts to be audited in
both races, and randomly choose five additional precincts to be audited
in only Race A. This would meet the required statistical confidence in
both races, at lower cost than in the unlinked case. A possible draw-
back of linking is that the possibility of an auditing “failure” (i.e., of
the auditing algorithm failing to catch a significant error due to rare
bad luck in choosing where to audit) in Race A is correlated with the
possibility of failure in Race B. Whether this correlation matters is a
value judgment beyond the scope of this paper. For more information
on our implementation of linking, see Appendix B.

Inspection Results
Upload

Main Page
(Start)

Log
Download

1

Audit
Results

1

Algorithm
Computation

i

User manually
inspects ballots

Election
. A
Selection »”

Race
Selection

Die Roll
Confirmation

Algorithm
Selection

Y

l A

Die Roll
Input

Die Ty.pe -
Selection »

Figure 1: Flowchart of web page interaction.

made all of their discretionary choices that pseudoran-
dom number generation starts.

It is essential for audit security that the random infor-
mation be created by a truly stochastic process, which
makes it necessary for the user, not the computer, to pro-
vide the initial string of bits, and for the die rolling to
be done in public after the election, in the presence of
observers.

3.5 Running the Algorithms

Once the user has entered the die roll information, she is
presented with a page that displays the progress of each
algorithm. After the algorithms have completed running
in a background thread, the site automatically forwards
the user to the results page.

3.6 Audit Results

The user can download or inspect her audit results in a
log file, formatted in XML. This file contains a list of
precincts and ballots to be audited, as well as all the log-
ging information generated by the system in the course
of the auditing process.

3.7 Ballot Inspection

At this point, the user should log out of the system and
perform the specified manual inspections in accordance
with the appropriate laws. When this process is com-
pleted, she should log back into the system to enter the
results of the manual inspections. After entering this in-
formation, the page will display whether the inspection
totals match those stored in the database. If the selected
algorithm provides deterministic escalation criteria, the
system can evaluate the outcome of the audit and pro-
ceed with escalation if a discrepancy exists. Otherwise,
the user can decide whether the discrepancy in vote to-
tals is enough to merit concern and can take the appro-
priate actions, according to the applicable election laws
and procedures.

4 Log

4.1 Generating the Log

The log that the program generates is the most critical
part of our auditing system. Our log records every detail
needed to recreate the entire audit with a third-party sys-
tem, allowing the audits to be verified by other computers
or by hand. This feature provides the software indepen-
dence that is necessary for users to have confidence in
any machine-assisted auditing system.

The log is organized so that general information is
stored first (e.g., the date and time of the audit, and the
election name and date). The sequence of die rolls en-
tered by the user and whether the user has chosen to link
precincts are also stored in this section.

The next section contains all of the inputs for each al-
gorithm and the associated outputs. These records allow
a verification program to run each of the algorithms again
using the logged input and verify that its output matches
the output in the log. All outputs can be predicted be-
cause the seed of the pseudorandom generator is stored
as the input.

For convenience, the final section of the log compiles
the results of all the algorithms that have been run and
lists the precincts and/or ballots that must be audited.
This allows election officials to have a single list of the
results of the algorithms without duplicates. The user can
choose either to download this XML file or view it with
an XSL template, which allows the user to more easily
read the contents.

4.2 Verifying the Log

As we have said, the log file should be both human and
computer readable so that the software’s audit process
can be verified. The use of XML allows a computer to
parse this data with relative ease. We also implemented a
prototype log verifier which parses the log file, runs each
of the algorithms again based on the input recorded in
the log file, and checks its own results against the output
sections of the log. This module was designed to serve
as a template for other log parsers.

In practice, any organization or member of the public
would be free to verify the logs themselves.

5 Implementation

5.1 Programming Tools

We implemented our project modules in Python using a
MySQL database. The schema is represented in Figure
2. The web interface uses the Django web development
framework [1].

The system was written to be as modular as possi-
ble, with special emphasis on the separation between the
database implementation and the algorithm module. This
separation allows new algorithms to be added, as long as
they implement the interface we define. The current ver-
sion of our system contains four algorithms, all of which
are unit tested in order to guarantee a certain level of con-
fidence in our implementation.

5.2 Auditing Algorithms

In our system, we implemented four algorithms. The
first two, Exact Percent (EP) and Percent by Probability
(PBP) choose precincts for auditing based on a user de-
fined percentage. The EP algorithm selects precincts at
random, guaranteeing that at least the defined percentage
of all precincts is chosen. The PBP algorithm is derived
from a paper by Rivest, in which each precinct is chosen
independently with the probability determined by the au-
dit official [11].

We also implemented two other algorithms, proposed
by Calandrino et al. [4], which select individual ballots
for manual auditing. These are referred to as Constant
Sample Size (CSS) and Varying Sample Size (VSS).

CSS chooses enough ballots across all precincts in a
given race to guarantee with a user-defined confidence
level that a fraudulent ballot will be chosen, if one ex-
ists. VSS is similar to CSS but also takes into account
the fact that different precincts have different numbers
of ballots. Because VSS chooses precincts first and bal-
lots only from those precincts, it decreases the number of
precincts that election officials may have to visit.

The CSS and VSS algorithms can provide huge bene-
fits in comparison to other algorithms?. In practice, how-
ever, these methods are complicated to implement, and
the computations can be difficult for nontechnical elec-
tion officials to carry out manually. A software system
like ours makes such algorithms practical.

6 Evaluation Using Humboldt County
Data

To test our system on a realistic data set, we obtained un-
official data from the November 2008 elections in Hum-
boldt County, CA, publicly available at [15]. The data
consists of text files representing all the votes recorded
on each ballot and scans of the physical ballots. The
text files were generated by Ballot Browser, a publicly
available tool that converts the ballot images to a textual
representation [14]. Because of this format, the data was
easily parsed into a form that was compatible with our
system.

We ran three sample audits on the data to compare the
results of the algorithms and simulate an actual audit. All
of the audits spanned 145 precincts containing 128,144
ballots.

In the first audit, for each of the 29 races, we selected
1% of the precincts using the Exact Percent algorithm,
in accordance with the requirements of California law.
Thirty-three precincts were chosen for auditing, which

2Calandrino et al. [4] calculated that using their methods reduced
the number of ballots that needed to be manually audited from 22% to
0.06% while maintaining a 99% confidence level for one election.

] AlgorithmStatus v] Race v] Precinct_races v] Precinct v
] voting_user v - —
id INT(11) id INT(11) id INT(11) name VARCHAR(200) |
username VARCHAR(20) id VARGHAR(20) VARGHAR >
user_l name 200, inct_i
password VARCHAR(200) somame VARGHAR(200) | o 1() precinct_id VARCHAR(200)
election_i 1 id INT(11 ES
salt VARCHAR(32) d INT(11) race_id INT(11)
. percent_complete INT(11) numwinners INT(11) >
email VARCHAR(75))
timestamp DATETIME
secret_key VARCHAR(200)
isAdmin TINYINT(1) error TINYINT(1) »
isAdmin
! > user_percent DOUBLE j Ballot_Vote v
race_id_id INT(11) id INT(11)
audit_id_id INT(11) ballot_id INT(11)
» race_candidate_id INT(11) 7 Ballot v
" - p A L id INT(11)
j Election_officials v " precinct_id VARCHAR(200)
id INT(11)] Audit_Info_auditedRaces v] Race_Candidate v >
election_id INT(11) id INT(11) id INT(11)
user_id VARCHAR(20) auditinfo_id INT(11) candidate_id INT(11)
> race_id INT(11) race_id INT(11) H =
> N
X > T CcandidateTotals v
Y | id INT(11)
:l Audit_Info \4) precinct_id VARCHAR(200)
audit_id INT(11) } ' race_candidate_id INT(11)
user_id VARCHAR(20) total INT(11)
dierolls_id INT(11) 7] Candidate v > 1
filename VARCHAR(200) m id INT(11)
i i RecountPrecinctinfo v
linkPrecincts TINYINT(1) ‘ name VARCHAR(200)] StoredBallots ¥ :\
auditStep VARCHAR(200) 1 > id INT(11) id INT(11)
currentrace_id INT(11) ballot_id INT(11) sprecinct_id INT(11)
complete TINYINT(1) +] audit_id_id INT(11) race_candidate_id INT(11)
election_id INT(11) ' > response INT(11)
> A status VARCHAR(50)
x] storedPrecincts ¥ >
#}] RecountBallotinfo ¥ id INT(11)
:, Die Rolls v id INT(11) ‘ . precinct_id VARCHAR(200)
id INT(11) sballot_id INT(11) \ ‘ audit_id_id INT(11)
' * E: >
diecount INT(11) race_id INT(11) T 3
status VARCHAR(50)] Election v

rolls VARCHAR(200)
> > id INT(11)
name VARCHAR(128)

date VARCHAR(128)

>

Figure 2: The database schema for our prototype. Tables created by Django have been removed.

amounts to 15,613 ballots, 12% of the total number of
ballots. In the second trial, we used the same algo-
rithm with the same percentage, but we linked precincts
as described in Section 1. In this audit, the number of
precincts selected was 15, less than half the number se-
lected in the first trial, and altogether these precincts con-
tained 5,768 ballots, or 4% of the total.

In the third audit, we used the Constant Sample Size
algorithm, described in Section 5.2. This algorithm
chose 3,006 ballots (2% of the total) for all 29 races,
approximately half as many selected by EP with linked
precincts and about one-eighth of the number chosen by
EP without linked precincts. Manually checking the im-
age files for every selected ballot was infeasible, but we
manually confirmed the results for the Ferndale Mayor
race, in which twelve ballots were selected for audit-
ing using the CSS algorithm. Every vote on each of
the twelve ballots we audited matched the corresponding

record in the database.

7 Conclusion

The system we implemented provides an easy to use,
extensible, software-independent vote auditing frame-
work. While we implemented four different auditing al-
gorithms, the modularity of the system allows new algo-
rithms to be easily added, making our system amenable
to any state’s auditing requirements. The extensive log-
ging we perform allows every meaningful action our sys-
tem performs to be verified and replicated by any third
party.

By providing a simple and trustworthy way of per-
forming audits, we hope to encourage the use of paper
records as a means of verifying the correctness of elec-
tronic voting machines. Electronic voting technology

will continue to be used across the country, but physi-
cal copies of ballots are necessary to ensure that these
machines provide a fair and accurate record of the way
people vote.

References

[1] Django. http://www.djangoproject.com.

[2] Title 9-Elections, Sec. 9-320f. In General Statutes
of Connecticut, chapter 158. 2009.

[3] M. Bishop. Overview of Red Team Re-
ports. http://www.sos.ca.gov/elections/voting_
systems/ttbr/red_overview.pdf.

[4] J.A. Calandrino, J.A. Halderman, and E.W.
Felten. = Machine Assisted Election Auditing.
USENIX/ACCURATE Electronic Voting Technol-
ogy Workshop *07, 2007.

[5] Joseph A. Calandrino, J. Alex Halderman, and Ed-
ward W. Felten. In defense of pseudorandom sam-
ple selection. USENIX/ACCURATE Electronic Vot-
ing Technology Workshop 2008, July 2008.

[6] A.J. Feldman, J.A. Halderman, and E.W. Felten.
Security Analysis of the Diebold AccuVote-TS Vot-
ing Machine. USENIX/ACCURATE Electronic Vot-
ing Technology Workshop ’07, 2006.

[7]1 E.A. Fischer. Election Reform and Electronic Vot-
ing Systems (DREs): Analysis of Security Issues.
CRS Report for Congress, 2003.

[8] Post-Election Audit Standards Working Group.
Evaluation of Audit Sampling Models and
Opinions for Strengthening California’s Manual
Count. http://www.sos.ca.gov/elections/peas/
final_peaswg_report.pdf.

[9] T. Kohno, A. Stubblefield, A.D. Rubin, and D.S.
Wallach. Analysis of an Electronic Voting System.
IEEE Symposium on Security and Privacy 2004,
May 2004.

[10] Rebecca Mercuri. Explanation of Voter-Verified
Ballot Systems. ACM Software Engineering Notes
(SIGSOFT), 27(5), 2002.

[11] R.L. Rivest. On Auditing Elections When Precincts
Have Different Sizes. Electronic Voting Technolo-
gies 2008), 2008.

[12] R.L. Rivest and J.P. Wack. On the notion of “soft-
ware independence” in voting systems. http://vote.
nist.gov/SI-in-voting.pdf, July 2006.

[13] The Connecticut Citizen Election Audit Coali-
tion. Report and Feedback: November
2007 Connecticut Election Audit Observa-
tion. http://www.ctelectionaudit.org/Reports/
AuditObservationReport.pdf.

[14] M. Trachtenberg. Ballot Browser.
TEVSystems.com.

http://www.

[15] M. Trachtenberg. Humboldt County November
2008 Election: Completely Unofficial Results.
http://www.mitchtrachtenberg.com/Nov2008/
index.html.

A Algorithms
A.1 Constant Sample Size (CSS)

CSS chooses a constant number of ballots to be audited
across all the precincts in a given race, given a statis-
tical confidence level. For the outcome of any race to
change, the minimum number of ballots that must be
changed is equal to half the difference in votes between
the just winning candidate and the just losing candidate
(e.g., in a race with one winner, the candidates with the
top two vote totals; in a race with two winners, the can-
didates with the second and third top vote totals, etc.).
This number of ballots, B, is the number of bad ballots
that must exist in the election for any fraud to affect the
outcome. Using the hypergeometric distribution, the al-
gorithm finds a sample size n ballots which must be se-
lected across all the precincts in the race, and those n
ballots are selected from the full pool by shuffling the list
of ballots and selecting the first n ballots to be manually
audited.

A.2 Varying Sample Size

The second Calandrino algorithm selects precincts
nonuniformly, with larger precincts more likely to be
chosen, according to a formula derived by Calandrino. It
then draws ballots to be manually audited from each cho-
sen precinct. Based on a method of Rivest, who suggests
that auditors select precincts using a method like Per-
cent by Probability rather than selecting a certain sam-
ple size as in Exact Percent [11] this algorithm first se-
lects precincts by probability and then does the same for
ballots in those precincts. The probability of choosing
a given ballot is p, where p > 1 — (1 — c)é, and c is
the user-specified confidence level. Thus, the probability
for a given precinct to be chosen is the probability that
at least one of its ballots would be chosen for sampling,
or 1 — (1 — p)?, where v is the total number of votes
in that precinct. The number k of ballots chosen from
a selected precinct is determined by a more complicated

http://www.djangoproject.com
http://www.sos.ca.gov/elections/voting_systems/ttbr/red_overview.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/red_overview.pdf
http://www.sos.ca.gov/elections/peas/final_peaswg_report.pdf
http://www.sos.ca.gov/elections/peas/final_peaswg_report.pdf
http://vote.nist.gov/SI-in-voting.pdf
http://vote.nist.gov/SI-in-voting.pdf
http://www.ctelectionaudit.org/Reports/AuditObservationReport.pdf
http://www.ctelectionaudit.org/Reports/AuditObservationReport.pdf
http://www.TEVSystems.com
http://www.TEVSystems.com
http://www.mitchtrachtenberg.com/Nov2008/index.html
http://www.mitchtrachtenberg.com/Nov2008/index.html

distribution, and ballots are chosen for manual auditing
by shuffling the list of ballots in that precinct and select-
ing the first k£ ballots.

A.3 Percent By Probability

In this test, all precincts have a user-defined probabil-
ity of each precinct being selected for manual inspec-
tion. The user defines a percentage probability in the
range (0, 100], and a random number is generated for ev-
ery precinct. If the random number associated with that
precinct is less than the decimal form of the user-defined
percentage, then the precinct is selected for auditing. By
probability, this algorithm will select approximately the
user-defined percentage of precincts from the race being
audited.

A.4 Exact Percent

Because the probabilities in the above algorithm are eval-
uated precinct by precinct, the number of precincts se-
lected will vary, and there is a nonzero chance that none
at all will be selected. Exact Percent corrects this by
guaranteeing that at least the user-defined percentage of
precincts is selected for each race. In this algorithm, each
precinct is also assigned a random number. Then the
precincts are sorted in ascending order by their associ-
ated random numbers. If n is the number of precincts
to be selected for that race, which is defined as the user-
specified percentage times the total number of precincts
in the race, rounded up, then we select the n precincts
with the smallest random numbers, which always guar-
antees an output of at least one precinct.

B Linking Precincts

In these last two algorithms, since precincts are chosen
at random depending on the user-entered percentage, it is
possible to reduce the costs of manual auditing by mini-
mizing the number of precincts that are chosen for audit-
ing while maintaining the randomness of the selection.
In both implementations, each precinct is assigned a cer-
tain random number, which is then used for later com-
parisons. If, in a single audit, more than one race will be
audited with either of these two algorithms, then instead
of generating a new random number for each precinct in
each algorithm, we can reuse the random numbers as-
signed to precincts that have been evaluated before.
First we take the union of the sets of precincts that are
covered by each race. For each precinct in that union,
we generate a random number. Then, we audit each race
with the one of the two above algorithms (specified by
the user) using that same mapping of precincts to ran-
dom numbers to make selections in every race. Because

the random numbers are chosen independently for each
precinct, the selection is still random for any given race
that uses this dictionary. The Percent by Probability al-
gorithm selects all precincts with random numbers less
than or equal to a certain threshold, so precincts that are
assigned the lowest numbers and overlap between races
will be selected multiple times if more than one race is
audited. Exact Percent also selects the required percent-
age of precincts with the smallest random numbers as-
signed, so the same precincts will also be chosen multiple
times if the same random number mapping is used for all
races running this algorithm and those running Percent
by Probability.

This algorithm for linking precincts does not maxi-
mize the number of precincts audited, because that would
require identifying the precincts that overlap across the
greatest number of races. That approach would unfairly
bias the selection toward those precincts with the great-
est number of overlaps. Such a bias would encourage an
attacker to target precincts that do not overlap, since they
would have less likelihood to be chosen for auditing, un-
dermining the auditing process. Here, however, precincts
are all given the same probability of being chosen ini-
tially, so using the same mapping in the selections for
each race only biases results toward precincts that have
already been chosen randomly and independent of other
identifying features. The linking of precincts is simply a
consequence of reusing the mapping.

	Introduction
	Background
	Flaws in Voting Devices
	Safeguards Against Election Fraud
	Current Audit Legislation

	Overview of the Auditing Procedure
	Administrative Set Up
	User Log-In and Dashboard
	Race and Algorithm Selection
	Pseudorandom Number Generation
	Running the Algorithms
	Audit Results
	Ballot Inspection

	Log
	Generating the Log
	Verifying the Log

	Implementation
	Programming Tools
	Auditing Algorithms

	Evaluation Using Humboldt County Data
	Conclusion
	Algorithms
	Constant Sample Size (CSS)
	Varying Sample Size
	Percent By Probability
	Exact Percent

	Linking Precincts

