

Clifford Neuman, Deepak Dayama, Arun Viswanathan. Emulating an Embedded Firewall.
In Proceedings of the DETER Community Workshop on Cyber-Security and Test, August 2007, Boston.
http://clifford.neuman.name/publications/2007/200708-usecdw-emulating-embedded-firewall/

Emulating an Embedded Firewall

Clifford Neuman, Deepak Dayama, and Arun Viswanathan
University of Southern California

Abstract

The Adventium Labs Embedded Distributed Firewall
provides a simple interface for securely managing
approved network flows between computers on a
network. A “conversation” manager provides a
simple interface for managing flows, defining the
connections authorized between nodes on a network.
These policies are enforced in hardware embedded in
the network interface card of each computer. The
policies are managed to create groups of
communicating machines and services and to exclude
undesired traffic.

This paper describes the emulation of the Adventium
Labs distributed embedded firewall, using an
additional node associated with each user node
emulated on the DETER testbed. We provide
observations on our implementation and current
experiments, and discuss how the emulation can be
used by other experimenters.

1 Introduction

The Adventium Labs Embedded Distributed Firewall
[3] centrally manages network communication
between computers on a network. Policy is generated
on a management node using a conversation manager
[4] and transmitted to a hardware firewall on the
network interface card of each managed computer.
Such firewalls are more resistant to compromise from
malicious code on the host computer itself, and
central management allows communication to be
enabled for virtual groups of machines sharing the
same physical network with other groups.

Responding to certain kinds of attacks, such as denial
of service (DoS), may require dynamic changes to
certain policies to block traffic that was once allowed,
yet policy changes must be propagated across the
network, and policy updates might themselves
compete for bandwidth with the DoS flows
themselves.

We were interested in understanding the interaction
between the embedded firewall policy updates, and
potential denial of service flows that policy updates
are intended to mitigate. We were also interested in
developing a capability to model such embedded
firewalls on the DETER testbed [1], even without the
actual hardware firewalls in NIC cards, and for this
capability to be available for other experimenters.

2 Distributed and Embedded Firewalls
Ioannidis, Keromytis, Bellovin and Smith [2]
introduced the concept of a distributed software
firewall in 2000 to address the classic problem of
providing continued protection to end systems even
once an outer perimeter firewall has been breached.
A distributed firewall is implemented on each
computer in a network, but managed centrally to
enforce an organization’s relevant policies for
network communication.

Subsequently, Prevelakis and Keromytis [5]
introduced an embedded firewall (EFW), a host-
based firewall implemented in separate hardware,
placed between a host and the rest of a network,
addressing software compatibility problems and
improving resistance to compromise from within an
infected system. 3Com Corporation and others offers
embedded firewalls that resides on network interface
cards, and the 3Com hardware is used in the
Adventium Embedded Distributed firewall solution.

A common characteristic of most distributed
firewalls is that updates to policy are communicated
through the same network whose network flows are
controlled by the managed firewalls.

3 Modeling the Adventium Firewall
The DETER testbed provides researchers with an
environment for conducting repeatable computer
security experiments [1]. The testbed was built using
Utah’s EMULAB [7], and has been configured and
extended to provide stronger assurance of isolation

Figure 1. Policy Dissemination and Attack Topology

and containment. At present, no nodes or network
interface cards within the DETER testbed are
configured with embedded firewalls. We wanted to
model network configurations with such firewalls,
and to provide that capability for other DETER users
studying the effect of alternate network topologies on
security.

By using a second testbed node associated with each
application node, we were able to use the DETER
testbed to emulate the function of the embedded
firewalls. We developed a tool to translate the policy
language used by the Adventium conversation
manager to iptables, which were then loaded on the
“firewall” nodes to model the use of an embedded
firewall. Since we were interested in studying the
effect on policy updates, it was also necessary to
model the management node on which the
conversation manager disseminates updates, and to
consider alternate topologies for the dissemination of
firewall policies. Figure 1 shows the interconnection
of firewall nodes and manager used in our study,
relative to the interconnection of the production
network, and the nodes protected by the firewalls.

4 Representing Rule Sets

Because of the hardware and base operating system
configurations readily available on the DETER
testbed, we chose to emulate the embedded firewall
using netfilter [6] and to manage the local policy rules
using iptables.

Netfilter is the successor to ipchains as a package for
filtering network packets within the linux operating
system. Iptables is a user space tool that enables the
specification and creation of the filters applied by
Netfilter. The Adventium Labs Embedded Distributed
firewall policies are represented in a format that is
more readily suited to identifying specific allowed
communication among a set of nodes, and these
policies needed to be converted to a representation
more readily used by iptables before they can be
loaded into an emulated embedded firewall node
implemented with netfilter.

Representation of firewall rules

We were provided with an initial version of the rule
set language used by the Adventium Labs
conversation manager for representing permitted
communication through their embedded firewall. In
the initial version, EFW rules were retrieved and in
most cases, the firewall policies were readily
converted to equivalent iptables notation. The
handling of group memberships however, required
using the ‘ipset’ extensions to ipfilter. Ipset is a utility
and set of kernel patches which allowed us to create
groups with multiple addresses and ports which are to
be matched to the same rule. These sets correspond to
placeholders in the Adventium Labs firewall rules.

To use iptables to represent the Adventium EFW
rules, we first create sets of ip addresses using ipsets
which contain the member addresses and ports of the
sources and destinations corresponding to the
placeholders in the EFW rulesets. Our strategy was to
look for the presence of either source or destination
group membership for the packets, and direct them to
user-defined ipchains which apply to those sets of
addresses. In effect, we have one rule in the INPUT
and OUTPUT chains of iptables for every permitted
group in the EFW file. When a packet arrives at the
firewall, the rules on the INPUT chain cause a check
for membership of the packet source for all permitted
groups. When a match is found, the packet is
forwarded to a user defined chain in the iptables
corresponding to the packet’s group.

Figure 2 shows the traversal of a packet through
iptables in our emulated embedded distributed
firewall. Each user-defined chain corresponds to at
least one rule name in the EFW rule-set. The
remaining part of the packet, including destination

Shared by Policy Updates
Attack Traffic

and Application Traffic

Figure 2. Traversal of packet through iptables

group membership and protocol are matched in the
user-defined chain. When multiple destination groups
match the same source address in EFW rules, two or
more rules of the embedded firewall are applied by
sequentially forwarding the packet to the next rule
within the same chain when a match fails for earlier
rules.

All rules within user-defined chains have an
ACCEPT or DROP for a matching destination group
(a set of host, port, protocol) and there is a DROP at
the end of each chain in case a match is not found.

5 The experiments

In a relatively short time, we were able to
successfully emulate the embedded firewall using a
secondary Linux node with support for ipset and
iptables, on an emulated network of on the order of
10 nodes. Our initial experiments used a static
distribution of policies from the conversation
manager, which were translated to iptables
representation, which were then installed using a
script. At this stage we were not using the required
separate node as the conversation manager to
communicate policies (or for that matter, changes to
policies).

Once the emulation of the firewall was in place, the
next step was to define the emulated network
topologies on which the embedded firewalls were to
run. Here it is necessary to consider special nodes,
such as the computer on which the conversation
manager runs, and to decide how policies would be
disseminated to the embedded firewalls.

Figure one shows the representative topology, before
introducing attack traffic. The conversation manager
is resident on a single DETER node, and policies are
pushed through the network to the DETER nodes that
represent the EFW’s. Unfortunately, because the
implementation of the EFW’s is different than the
actual hardware NIC cards, experiments using the
emulated EFW’s will not be useful for understanding
the performance of the EFW’s themselves. The EFW
extensions can be used, however, to understand the
effects of the EFW’s on network response under
varying scenarios.

In particular we can vary attack traffic using tools
already available on the DETER testbed, and we can
model different strategies for disseminating policy
changes from the conversation manager to the
emulated embedded firewalls. If policies are to be
dynamically updated in response to observed attacks,
we are interested in knowing whether the attack
traffic itself will prevent the necessary policy updates
from being received and enforced by the EFWs.

INPUT CHAIN

…..

SourceMembership = Provider1
SourceMembership = Provider2
SourceMembership = Provider3

USER_DEF_CHAIN_PROVIDER3
…..

ACTION = DROP

USER_DEF_CHAIN_PROVIDER2

…..

DestMemb=Consumer1,
Proto=…,ACTION=ACCEPT

ACTION = DROP(LOG)

USER_DEF_CHAIN_PROVIDER1

…..

DestMemb=Consumer1,
Proto=…,ACTION=ACCEPT

ACTION = DROP

DestMemb=Consumer2,
Proto=…,ACTION=ACCEPT
DestMemb=Consumer3,
Proto=…,ACTION=ACCEPT

We will consider approaches where policies are
pushed to the EFW’s nodes from the conversation
manager, polled by the EFW’s, as well as
hierarchical approaches where changes are pushed to
intermediate nodes and then redistributed. Finally,
we can consider how the use of alternate initial EFW
policies will affect the ability to disseminate updates
in response to network attack.

Finally, we will want to know how accurately our
EFW emulation models the production firewalls
embedded on NIC cards. The size of the network
configurations studied to date is not sufficient for us
to draw conclusions regarding the fidelity of our
emulations, nor do we have data from the NIC card
implementations, but we need to look at the expected
performance of the emulated EFW under varying
circumstances of load and number of policies rules
being implemented. Understanding such differences
is important because delays in communicating
network traffic across the emulated EFW would have
an impact on experiments in DDoS response or
malicious code propagation, where timing is critical.

These experiments are still ongoing and results will
be available to DETER users as part of the
documentation of the emulated embedded firewall
package when it is available for use by other
experimenters.

6 Leave-behind for experimenters
At present, setting up emulated embedded firewall
experiments requires manual configuration of the
topology for each experimental node, and installation
of the scripts needed to accept policies from the
conversation manager and install them through
iptables. Those needing to use an embedded firewall
on the DETER testbed would need to retrieve an
archived experiment to use as a template, and modify
it to meet their own experimental needs. This
process needs to be simplified.

It is our intent to provide greater automation to help
the DETER experimenter model embedded firewalls.
The experimenter should be able to view a node with
an embedded firewall as a single node, with special
capabilities, rather than defining a topology with
twice as many nodes, as modeled machines.
Depending on the nature of the experiment, it might
be possible to emulate the function of the embedded

firewall using iptables on the host computer itself.
Whether such a modeling of the embedded firewall
would be accurate requires that we understand the
benefit of embedding a firewall.

The first benefit is software independence, i.e. if the
software on the end node to which the embedded
firewall would have been attached can support
Netfilter and iptables, then the end node can emulate
the function of the embedded firewall without an
auxiliary node. We can increase the likelihood of
being able to emulate an embedded firewall on the
end node itself if we develop alternate emulations for
the most common system images in use on DETER.

The second benefit is one of isolation, i.e. the
functioning of the embedded firewall itself is not
subject to interference from other code running on
the attached end node. With the exception of
malware experiments, this benefit too is not
necessary, and the emulation could be run on the end
node itself.

To be fair, we should note that an experiment that
does not require a separate node for running a
firewall is really capable of running using a simple
host-based firewall, a software commodity that is
readily available. In such a case, an important aspect
of this work is making it clear when the embedded
firewall really is needed to properly model a DETER
experiment, and to provide the management
interfaces within an experiment that matches the
conversation manager used by the Adventium Labs
distributed embedded firewall.

It is our intent to make support for embedded
firewalls an optional capability for configuring nodes
within tools available to DETER experimenters.

7 Conclusion
Adventium Labs’ conversation manager for the
Distributed Embedded firewall provides a simpler
interface for centrally defining policies enforced by a
network of embedded firewalls. By providing tools to
map the conversation manager’s policy language to
iptables notation, and by using a second testbed node
associated with each user node, we are able to emulate
such embedded firewalls on the DETER testbed
without the special hardware used in production
networks.

Our work to model the Adventium conversation
manager and embedded firewall on the DETER
testbed leaves behind code that is usable by other
experimenters seeking to emulate network topologies
that includes such hardware. For some experiments,
in particular, those running common OS’s and that do
not involve malicious code, this support can be
provided without the need to allocate a second node.
Future support may allow embedded firewall
configurations to be specified as options during the
specification of the topology of an experiment.

8 Acknowledgements

This material is based on research that was supported
by funding from the United States National Science
Foundation (NSF) and the United States Department
of Homeland Security (DHS) under contract numbers
ANI-0335298 (DETER) and CNS-0454381
(DECCOR) and by the United States Air Force and
the Department of Homeland Security HSARPA as a
subcontract to Adventium Labs under contract
number FA8750-05-C-0144. Opinions, findings,
conclusions and recommendations expressed in this
paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation,
the United States Air Force, the Department of
Homeland Security or Adventium Labs. Figures and
descriptions are provided by the authors and are used
with permission.

9 References

[1] Benzel, Terry, Robert Braden, Dongho Kim, Clifford
Neuman, Anthony Joseph, Keith Sklower, Ron
Ostrenga, and Stephen Schwab, Design Deployment
and Use of the DETER Testbed In Proceedings of the
DETER Community Workshop on Cyber-Security and
Test, August 2007, Boston.

[2] Ioannidis S., A.D. Keromytis, S.M. Bellovin and J.M.
Smith, Implementing a Distributed Firewall,
Proceedings of the ACM Conference on Computer and
Communications Security (CCS) 2000, pp. 190-199.

[3] Payne, Charles and Tom Markham. Architecture and
Applications for a distributed embedded firewall. In
17th Annual Computer Security Applications
Conference, December 2001.

[4] Payne, Charles. The Conversation Manager, Version
1.0. Adventium Labs report, October 2006.

[5] Vassilis Prevelakis, Angelos Keromytis, Designing an
Embedded Firewall / VPN Gateway. Proceedings of
the International Network Conference 2002,
Plymouth, UK..

[6] Welte, H. The Netfilter Framework in Linux,
Proceedings of the Linux Kongress 2000.

[7] White, B., J. Lepreau, L.Stoller, R. Ricci, S.
Guruprasad, M. Newbold, M. Hibler, C. Barb, and A.
Joglekar. An Integrated experimental environment for
distributed systems and networks. In Proceedings of
the Fifth Symposium on Operating Systems Design
and Implementation (OSDI02), (Dec. 2002). Pp 255-
270.

