
Dependency-based Distributed Intrusion Detection

Ji Li Dah-Yoh Lim Karen Sollins
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139
{jli, dylim, sollins}@csail.mit.edu

Abstract
Distributed network intrusion detection has attracted
much attention recently. Our main focus in this work
is on zero-day, slow-scanning worms, of which no exist-
ing signatures are available. We organize end hosts into
regions based on network knowledge, which we posit is
positively correlated to the dependency structure. Lever-
aging on this organization, we apply different intrusion
detection techniques within and across regions. We use a
hidden Markov model (HMM) within a region to capture
the dependency among hosts, and use sequential hypoth-
esis testing (SHT) globally to take advantage of the inde-
pendence between regions. We conduct experiments on
DETER, and preliminary results show improvement on
detection effectiveness and reduction of communication
overhead.

1 Introduction

Traditionally, intrusion detection is carried out at a cen-
tral point, usually a gateway, as it is a natural position
to observe incoming and outgoing traffic. This approach
does not scale well, is prone to DoS attacks, and depends
on non-local detection of anomalies, prompting a need
for new approaches to monitor and respond to security
incidents. To that end, host-based distributed intrusion
detection has been a promising direction. A key chal-
lenge in such a distributed intrusion detection system is
that end hosts need to be organized efficiently and in-
trusion detection techniques applied effectively, so that
an intrusion detection decision can be made before the
worm infects most of the hosts. Many current mech-
anisms use simple gossiping protocols or peer-to-peer
protocols [10, 6, 5] to aggregate local determinations.

Since the behaviors of zero-day worms are not known
a priori, the best location for initial attention is the local
host itself, in the context of local behavior and applica-
tions [6, 5]. However, at the local node, one loses the

aggregation effect of repeated or simultaneous low level
anomalies. In addition, it is difficult to make local de-
tectors strong because they see only a small percentage
of the global traffic. Thus one must aggregate the re-
sults of weak local detectors to get a broader perspective.
This work addresses the question of algorithms for effec-
tive aggregation. Improving local detection is a separate
problem that we do not address here.

New intrusion detection techniques are needed to deal
with different dependency structures among hosts more
effectively. We postulate an observable causal relation-
ship between the success likelihood of a particular intru-
sion attempt and network proximity between end hosts.
This is based on the observation that enterprise net-
works are reflected in topological neighborhoods, and
also likely to be supporting many similarly configured
and managed machines, thus repeating the same weak-
nesses across an enterprise. Thus, if one host in an en-
terprise is susceptible in a certain way, it is more likely
that its peers are as well. In contrast, random hosts far
away from each other in the broad Internet are likely to
be independent of each other. Therefore, we can take ad-
vantage of different dependency structures between hosts
with different detection techniques. In addition, worms
often scan consecutive IP addresses, which causes an-
other kind of dependency. For example, Code Red II
chose a random IP address from within the class B ad-
dress space of the infected machine with probability 3

8
;

with probability 1

2
it chose randomly from its own class

A; with probability 1

8
it would choose a random address

from the whole Internet [16].

We believe that a good distributed intrusion detection
system should satisfy two key requirements: (1) efficient
host organization based on network proximity and (2)
detection techniques that leverage this host organization
and dependency structure. In this work, we propose a
dependency-based host organization and message prop-
agation protocol. End hosts are organized into cooperat-
ing regions based on their network proximity. Then dif-

ferent detection techniques are applied at different levels.
We use a discrete-time Hidden Markov Model (HMM)
with unsupervised learning to estimate intrusion within a
region (this captures the dependency) [13], and a sequen-
tial hypothesis testing (SHT) globally to coordinate find-
ings across regions (this captures the independence) [7].
We implement our mechanism on the DETER testbed
[1], and evaluate the performance of our detection tech-
niques and the communication overhead. Preliminary re-
sults show that our mechanism can detect intrusion faster,
better and cheaper.

As a first step, in this work we only evaluate time-
homogeneous first order HMMs (where the transition
probabilities between the different states do not vary with
time), and use a simple static organization based on both
dependency and network proximity. Non-homogeneous
higher order HMMs, based on an adaptive organization
utilizing various kinds of network knowledge, will be
considered in future work.

2 Related Work

2.1 Intrusion detection techniques
Our main focus is on zero-day, slow-scanning worms, as
in [16, 5, 3]. Such worms propagate themselves slowly to
avoid attention caused by dramatic traffic increase. There
are no signatures available as they are completely new.

Many intrusion detection techniques have been de-
veloped. Anything based on prior knowledge, such as
signature-based approaches [12, 14, 4], cannot be used
against zero-day worms since there is no prior knowl-
edge available in a zero-day intrusion.

Bayesian network based techniques are used in [6]
to imbue end hosts with probabilistic graphical models.
With random messaging to gossip state among the lo-
cal detectors, they show that such a system is able to
boost the weak local detectors to detect slowly propa-
gating worms.

Sequential hypothesis testing (SHT) was first adopted
to intrusion detection by Jung et al. in [7]. The original
algorithm was centralized, with detection performed at
the gateway. It was decentralized in [5], where hosts ex-
change their information, and perform the inference indi-
vidually in parallel. We identify two issues with this ap-
proach. First, it assumes independence among intrusion
attempts and, second, it cannot deal with the case when a
worm interleaves the intrusion traffic with non-intrusion
traffic. In our work, we assume dependence among hosts
within a region, and assume independence between re-
gions. To address this dependence/independence, we
use a Hidden Markov Model (HMM) to detect intrusion
within a region and SHT globally between regions. The
HMM allows us to incorporate our dependency assump-

tion into the regional aggregations, and SHT depends on
our assumption of independence between regions.

Machine learning has been applied to intrusion detec-
tion in various aspects. For example, Agosta et al. de-
signed an adaptive mechanism that adjusts the threshold
of anomaly based on traffic [3]. This does not seem to
handle alternating traffic either. Our use of the HMM
approach allows us to handle such interleaving, because
it learns both transition and emission probabilities from
observations, since neither is known a priori.

2.2 Communication protocols

In a centralized intrusion detection system such as [7],
all the information is collected and processed at a central
point. In a collaborative intrusion detection system, end
hosts need to communicate with each other to pool their
information together.

Various communication protocols have been applied
to distributed intrusion detection systems. One is cen-
tralized where all local detectors report intrusion infor-
mation to a global detector. A recent innovation is to use
gossiping protocols between local detectors or multiple
global detectors [5, 6].

In [5], decision making is completely distributed.
Hosts exchange observations using an epidemic spread
protocol without any organizing structure. When a po-
tential intrusion is detected by an end host, it forwards
an alert to m randomly selected neighbors, and then each
neighbor forwards the alert to its m neighbors together
with its own observations, and so on. Each host com-
putes the possibility of intrusion using all the informa-
tion it has received. This continues unless a decision is
made by a host. Usually m equals 1 or 2 for scalability
reasons. Each host computes the possibility of intrusion
using all the alerts it has received plus its own conclu-
sion. If a host believes that there is an intrusion, it will
broadcast its decision to all hosts. In contrast, [6] uses a
set of global detectors with a gossiping protocol.

To the best of our knowledge, previous systems have
not considered host organization to achieve more ef-
fective detection and efficient communication. There-
fore, the communication can be inefficient. More im-
portantly, intrusion detection techniques often assume in-
dependence in the intrusion attempts amongst all hosts.
This is unlikely to be true when nearby hosts are scanned
by a worm. In our method, we make use of the network
topology and dependency information to organize a re-
gion, and consider the dependency among hosts within
each region. In this sense, our method can be seen as a
hybrid between a centralized and a distributed intrusion
detection system.

3 Host Organization

To build an effective intrusion detection system, we pro-
pose a host organization based on the concept of re-
gions, and discuss the communication mechanism be-
tween hosts [15, 8]. Then we customize the host orga-
nization in the intrusion detection scenario.

3.1 Regions

We organize hosts into a two-level hierarchy, using the
knowledge from the networks. First, hosts are clustered
into regions based on certain criteria. We list three kinds
of criteria here: network proximity, including network
properties, such as network topology, geographic dis-
tance, latency [8]; local host properties, such as operating
system types and running services; policy constraints and
boundaries, such as enterprise networks. Within each
region, hosts elect a regional leader using a distributed
leader election algorithm periodically.

Second, the leaders organize themselves into a com-
munication structure. If the number of leaders is small,
the leaders form a complete graph; otherwise other or-
ganizations such as multiple disjoint trees can be used
[9]. Figure 1 demonstrates a region-based organization.
It consists of three regions. Nodes close to each other are
clustered into the same region. The shaded nodes are the
leaders elected in each region.

Corresponding to the region-based structure, we have
three kinds of detectors: local detectors, regional detec-
tors, and global detectors. One local detector resides on
each host, regional detectors reside on the regional lead-
ers, and global detectors may reside on any hosts. There
may be one or more global detectors, depending on the
requirement on robustness and the communication struc-
ture.

SHT

����

��

��

����

HMM

HMM

HMM

	

���
�PSfrag replacements

end host/local detector

region leader/detector region

global detector

Figure 1: A region-based organization example.

3.2 Communication
Local detectors only communicate with their regional de-
tector. When a local detector detects a potential intru-
sion attempt, it sends an alert to its regional detector di-
rectly. The regional detector collects alerts from local
hosts, runs its regional detection algorithm, and then re-
ports to the global detectors. Global detectors wait for re-
ports from multiple regional detectors, and run the global
detection algorithm.

Depending on the tradeoff between robustness and
overhead, there may be different communication struc-
tures between regional detectors and global detectors.
For example, we can deploy only one global detector,
and all the regional detectors report to it. This centralized
method has low communication overhead, but the global
detector may become the target of DoS attacks. As an-
other extreme example, we can have one global detector
on each regional leader, together with the regional detec-
tor. And each regional detector multicasts its report to all
the global detectors. Therefore, each region (through its
global detector) has a global view of the intrusion situa-
tion. Whenever a global detector has enough information
to make a decision, it announces its decision to the other
global detectors and all the regional detectors. We could
also have chosen an intermediate position in which there
was more than one global detector, but not as many as
one per region.

4 Intrusion detectors

As mentioned above, there are three kinds of detectors
in our system: local detectors, regional detectors, and
global detectors. Each kind of detector runs the appro-
priate algorithm, as described in this section.

4.1 Local detector
A local detector resides on each end host. These are weak
in their capability of detecting intrusions, and as stated
earlier the design of local detectors is a separate problem
that we do not address here. The detection criteria may
vary, depending on each host. For concreteness, we use
the following simple local detector in our experiments:
when an end host receives a packet at an un-serviced
port, the corresponding local detector triggers an alert
to its regional detector; otherwise, it sends a clean sig-
nal. There are two things to note. First, there are both
false positives and false negatives in the signals the local
detector sends. Second, there is a tradeoff between time-
liness and detection overhead. If the end host sends one
signal upon receiving every packet, the overhead may be
too high. If the end host batches signals, this causes a
delay in the detection. As alerts are more important than
clean signals, we can send out alerts immediately, but

batch clean signals.

4.2 Regional detector
Regional detectors diagnose potential intrusions at the
neighborhood level, using discrete-time Hidden Markov
Models (HMMs) to detect intrusion for each region. We
choose to use HMMs instead of SHTs, because, as dis-
cussed above, we believe that the probability of effective
intrusion between close neighbors can be dependent on
that proximity, and HMMs allow us to reflect that. The
second advantage of the HMM approach is the ability to
capture a notion of time and therefore multiple connec-
tion attempts to the same host. In contrast, SHT systems
are particularly easy to game: the worm can make sure
that the first connection attempt to any host is always to
a servicing port. This is because SHT systems can only
handle the first connection attempt to any host, lest the
independence assumption breaks down.

Figure 2 demonstrates an HMM for a region. It has
four states: 00, 01, 10, 11, representing a value pair of
(infected?, suspicious?). The first bit represents whether
there is a worm in the region, and the second bit repre-
sents whether there is some host whose behavior is sus-
picious. This captures the adaptivity of the worm in the
sense that an infected host can decide to lay dormant for
the time being to avoid detection (similarly, a clean host
might accidentally behave suspiciously). Higher order
models can be used to capture more of the adaptivity.
In general, the model parameters are unknown and have
to be estimated. Each regional detector uses the reports
(alert or clean) from local hosts to Baum-Welch train the
model and to generate the Viterbi path of hidden states
[13]. This Viterbi path gives the most likely sequence of
hidden states that could have generated the observed se-
quence of triggering of the local detectors, under the cur-
rent estimated parameters. Note that the HMM models
the current incoming traffic pattern, so it does not matter
whether the region is under one worm attack or simulta-
neous worm attacks.

4.3 Global detector
The global detector uses sequential hypothesis testing
(SHT) to determine whether there is an intrusion at the
global level, because we believe that under a good or-
ganization, different regions can be assumed to be inde-
pendent of each other in terms of intrusion conditions.
Therefore, we use SHT with the independence assump-
tion, and always use the newest information from each
region as input to the SHT. The following equation of
L(Ȳ) defines the likelihood ratio from the observation
vector Ȳ = {Y1, Y2, ..., Yn}, given two hypotheses H0

(“no intrusion”) and H1 (“intrusion”), respectively. Yi

indicates whether the regional detector at region i be-
lieves there is an intrusion (1) or not (0). Note that

PSfrag replacements

00 01

10 11

0.7

0.1

0.1

0.1

0.7
0.1

0.1

0.10.1

0.1

0.3
0.5

0.1
0.1

0.4
0.4

Figure 2: Initial Hidden Markov Model at regional de-
tectors. 00 means the region is clean and its behavior is
not suspicious, 01 means clean but suspicious, 10 means
infected but not suspicious, 11 means infected and suspi-
cious.

P [Yi = 0|H1] is the probability of false negative, and
P [Yi = 1|H0] is that of false positive.

L(Ȳ) =
P [Ȳ |H1]

P [Ȳ |H0]

=
P [Y1|H1] · P [Y2|H1] · · · P [Yn|H1]

P [Y1|H0] · P [Y2|H0] · · · P [Yn|H0]

Then L(Ȳ) is compared with the lower and upper
thresholds. The thresholds, T0 and T1, are calculated by
two parameters: desired detection rate, DD, and desired
false alarm rate, DF , as follows:

T0 =
1 − DD

1 − DF
, T1 =

DD

DF

If L(Ȳ) is less than T0, then the global detector ac-
cepts hypothesis H0; if L(Ȳ) is greater than T1, then H1

is accepted; otherwise, i.e., L(Ȳ) is between T0 and T1,
no conclusion is made. For the details of SHT, please
refer to [17].

5 Experiments on DETER

In this section we present our experiments on DETER.
We choose to do our experiments on DETER instead
of simulation, as the former is more realistic and may
provide more insights. Our evaluation consists of two
parts. The first is the effectiveness of our on-line detec-
tion mechanism, in which we evaluate the performance
of both regional HMM (rHMM) and global SHT (gSHT).
The second is the efficiency of region-based host orga-
nization, in which we measure the detection speed and
communication overhead.

5.1 Experiment Setup
Our experiments run on 88 nodes on DETER. Nodes are
clustered into 8 regions, 11 nodes each, and the links
between regions are slower than those within a region.
Worms are emulated using WormSim [11], and we im-
plement a special worm that scans sequentially within
a region and randomly chooses the next region to scan,
thus creating dependency with a region and indepen-
dence between regions. Normal (clean) traffic is gener-
ated on each node at a constant rate. There are both false
positives and false negatives. That is, normal traffic may
be mistaken as intrusion attempts, and intrusion attempts
may be viewed as clean. Nodes are divided into two
categories: vulnerable and non-vulnerable. Vulnerable
nodes will be infected when an intrusion attempt arrives,
and then the worm will propagate from the infected host.
Non-vulnerable nodes will issue an alert when receiving
an intrusion attempt. WormSim and local detectors run
on all the nodes except the regional leader nodes. Re-
gional detectors run on the regional leaders, one for each
region. rHMM is implemented using the General Hidden
Markov Model library (GHMM) [2]. In this experiment,
there is only one global detector.

5.2 Intrusion detection performance
In this experiment, we evaluate the performance of our
system. The regional detectors run rHMM, and the
global detector runs gSHT over all regions. Table 1
lists the parameters used in rHMM and gSHT. As we
described in Section 4.2, a regional detector trains the
model and infers a Viterbi path. Given the Viterbi path,
there is still a question of how to determine whether the
region is under intrusion or not. In this work, we use a
simple empirical algorithm: if the latest six states contain
three consecutive intrusion states (11 or 10), then there is
an intrusion. Recall that 11 means that the rHMM thinks
that (some nodes of) this region is infected and suspi-
cious activity is detected, and 10 means that this region
is infected and currently exhibiting normal behavior.

Figure 3 shows the intrusion detection of a region
using rHMM. The experiment is divided into alternate
clean periods (blank areas in Figure 3) and infection pe-
riods (gray areas). 0 means clean and 1 means infected.
The solid line (TRUE in the figure) shows the true in-
trusion status (i.e., no false positives or false negatives).
The dashed line (rHMM) shows the detection result of an
rHMM using the reports from local detectors. Note that
the time axis is not linear due to data aggregation. We
can see that at the beginning of the experiment, rHMM
makes a few mistakes due to the false positives and the
relatively untrained model. However, it learns to correct
the errors very soon. Although there are some noticeable
lags, overall, rHMM’s performance is very close to the
model trained using the true state sequence, despite the

false positives and false negatives. We stress again that
the training of the rHMM is unsupervised.

Due to the large number of data points, Figure 3 only
shows aggregate results. To look at how well an rHMM
works in detail, we compare a sequence of true states
with the predicted sequence of states from an rHMM in
Figure 4, which is between 265 and 433 seconds in Fig-
ure 3. Local detectors report an alert (1) or a clean signal
(0) to the regional detector, which may be a false positive
or a false negative. Corresponding to that, the solid line
shows the true state sequence. Its states labeled 0,1,6,7,8
represents that a host receives the following packets re-
spectively: a clean signal, an alert caused by false posi-
tives, a clean signal caused by false negatives, a true alert,
a false negative from a vulnerable host who cannot tell
intrusion. The dashed line shows the transition of states
observed by the rHMM. The states {0, 1, 2, 3} corre-
spond to the four states {00, 01, 10, 11} in Figure 2. We
can see that at the beginning there are two small spikes,
and rHMM considers it clean but suspicious. When in-
trusion really happens at 325 seconds, the true sequence
jumps to state 8 and then 7; the inferred Viterbi path first
jumps to 1, thinking that it might be just a clean host
that accidentally acted suspicious. As more alerts are re-
ceived, it realizes that the region is under attack, and the
state oscillates between states 2 and 3. This in particular
means that when the rHMM thinks the region is under at-
tack, but normal packets are received, the rHMM thinks
that the worm is laying dormant, as opposed to the region
being clean. After that, it remains between 2 and 3 dur-
ing the infection period, and is not affected by the false
negatives and normal traffic. Figure 5 demonstrates the
new rHMM model after the experiment.

Figure 6 demonstrates the detection performance of
the global detector using Sequential Hypothesis Testing

Regional Hidden Markov Model (rHMM)
Noise level 0.03
Initial transition matrix see Figure 2
Initial state probability {0.7, 0.1, 0.1, 0.1}

Global Sequential Hypothesis Testing (gSHT)
False positive 0.10
False negative 0.01
Desire false alarm rate 0.02
Desire detection rate 0.98

Experiment settings
Number of regions 8
Number of nodes per region 11
Vulnerable nodes 25%
Worm propagation rate 1 scan/second
Normal traffic rate 1 message/second

Table 1: The rHMM and gSHT experiment parameters.

�

�

� �� ��� ��� ��� 	

�
��� ��� �� ��� ��

�
��� ��� ��� ��� �� ��� ��� �

�� ��� ��
�
��
�
�
�� ��
 ��

� ���� ���
�
��
�	
���� ���� ���� ���

�
�

�
��� ���� ���� ���� ���

�
���
�
���� ���

���� ���� ���� ���� ���

�
��� �� ���� ��

�� �� ��
�� ���
�

�

�
���
�

� �� �
�� �
� �
���
�

�! #"$"&%('*)+'-,)/.0�1.023)/402+)65-7(%8)/�!20':9 7<;<'-,=)/9 .07?>)+5@)+'

A@BDC3E
F G3HIH

J K@L M=N O P

J Q@RSN TVU L P W X Y[Z \] ^

Figure 3: Regional Hidden Markov Model performance. TRUE is the states based on the true status (no false positive
or false negative), and rHMM is that based on the observations of a regional detector. Gray areas represent actual
infection periods.

_
`
a
b
c
d
e
f
g
h

ijk ijl mno ipl ilk moq ill ir
i mso tur tvk wxs tik tip wms ttv tti wwy ttp tzu w{n tzl tzr wq

m tkj tkl wy| tj
i tjk wyn tjl tjr wys tpu tpi wny tpl tlu wo

m tlz tlp ws| trj zuu {|
m
zu
t
zuk {|n zup zur {x| {xx zv

i
{x
w
{x{ zvk {xn {xo ziu ziv {m{ zil ztu {wx ztv zt

t

}I~ �=�����3~I�<�V�+���[���+�1�[� � ����� �[���+� �V~��3�V�����������1�<���(�!�<���D�S�V�=���@� �#�3�1�3�*�

¡ ¢
£ ¢

¤ ¥ ¦¨§3© ª «
¬S

¬S®
¯ @°

¯ D±

¯ ®

²=³ ´ µ¶ · ¸ · µ ¹ ºS» µ ¼¶ · ¸ · µ

½S
½ ¾

¿ À
Á

Figure 4: Viterbi path of an rHMM and the true state sequence. tp is the true state/event sequence, and vp is the inferred
state sequence by the rHMM. In the dashed line, 0,1,2,3 in Y-axis correspond to the four states in Figure 2: clean and
not suspicious (CN, corresponds to state 00), clean but suspicious (CS, to state 01), infected but not suspicious (IS, to
state 10), and infected but suspicious (IS, to state 11). In the solid line, 0,1,6,7,8 represents an event that a host receives
the following packets respectively: a normal packet (true negative, TN), an alert caused by false positives (FP), a clean
signal caused by false negatives (false negative case 1, FN1), a true alert caused by an intrusion attempt (true positive,
TP), a clean signal from a vulnerable host who cannot/would not distinguish intrusion attempts from normal traffic
(false negative case 2, FN2).

PSfrag replacements

00 01

10 11

0.95

0.05

0.0

0.0

0.90
0.05

0.04

0.010.0

0.0

0.51
0.49

0.0
0.0

0.51
0.49

Figure 5: A trained hidden Markov model at a regional
detector.

(gSHT): the solid line is the result using the true states
and the dashed line is that using rHMM outputs. Since
they are quite close, this shows that as far as the gSHT is
concerned, the rHMM outputs are almost as good as the
truth, lagging a little bit behind.

Compared with Figure 3, gSHT does not have the
false positives at the beginning and near 1445 seconds in

rHMM. This is because that the global detector collects
information from multiple regions, and the independence
of regions helps eliminate the false positives.

5.3 Region-based host organization
To evaluate the efficiency of region-based host organi-
zation, we compare our method with a gossiping pro-
tocol in three aspects: detection speed, communication
overhead, and cost. Detection speed measures how fast
hosts make a decision on intrusion detection. Commu-
nication overhead refers to the number of messages that
hosts propagate to reach a decision. Cost is the number
of nodes infected by the time of detection.

One set of the experiment results is shown below in
Figure 7. Gossip refers to the gossiping protocol in [5],
where hosts exchange observations using an epidemic
spread protocol without any organizing structure, as de-
scribed in Section 2.2. The gossiping rate is 2. Region
refers to our region-based protocol. We can see that Re-
gion outperforms Gossip in all the three metrics. Re-

�

�

� ��� ��� ��� �	
 ��
 ��� ��� �� ��� 	

 ��� � ��� ��
 ��� ���

� �� ��� ��
�
��
�
�
�
��
�
��� ��	
�
���
� ���
�
���
�
���
�
��
��
�
�
�
���� ���
�
���� �
��� �
��� ���
�
���
�
��� �	
��
��

� ���
�
��
�
��
�
��
�

��	
�
��
�
���
�
���
�
��
��
��

�
��
�� ���
�
���
�

��
�

� �
� ��
� �
� �
���
�

�! !"$#&%('*)+"$,-,.%(/(021(/(0+3546)2%(798;:=<?>*)+8=�A@ %('*B!3DCA�! !"$#E%('F02)+/G8E3H02:A0I8=3546)2%(7J8=:=<?>*)+8=�!@ %K'

LNM
L6O

P QHR S6T U V

P WYXIT Z![NR V U \ Z!S P] V

Figure 6: Global sequential hypothesis testing performance. gt is gSHT’s decision based on rHMM outputs, and gv is
gSHT’s decision based on the true states from each region. Gray areas represent actual infection periods.

gion is faster in detection time, because alerts are aggre-
gated within each region first before being processed at
the global detector, while in Gossip messages may cross
slow links many times between hosts before reaching a
decision. Similarly, the number of infected nodes is also
smaller in Region than in Gossip. Finally, the number of
messages transmitted in Region is significantly smaller
than that in Gossip. The reason for this is because that
the number of messages increases almost exponentially
among hosts in Gossip, while in Region messages from
end hosts are only sent to the regional detector, and then
processed at the global detector after aggregation.

0

20

40

60

Time (seconds) Infected nodes Messages

Gossip

Region

Figure 7: Detection speed and overhead comparison.
Note that the messages do not include those for maintain-
ing the cooperation among hosts in their method Gossip
or messages for training the rHMMs in our method. The
number of messages is in units of 10.

6 Discussions

6.1 Robustness and flexibility

Our method is semi-centralized, and can be made more
robust to DoS attacks in two ways. First, instead of hav-
ing only one global detector, multiple widely distributed
regional detectors can exchange information so that ev-
eryone has an approximate global view and make the de-
cision, thus reducing the vulnerability. Second, leaders

(regional detectors) are periodically re-elected distribu-
tively, so it is hard for attackers to predict the leaders
when attacks happen.

There are two kinds of dependency to be recognized.
One is the dependency between end hosts, caused by
their proximity, similarity of hardware, software, man-
agement, and policy boundaries, etc. Therefore, we as-
sume that network proximity is positively correlated to
the dependency structure. The other is the dependency
caused by worm scan: for instance, worms may scan an
IP block each time, or intentionally scan hosts distant
from each other. To deal with this, our approach provides
for the flexibility to re-organize regions by considering
both kinds of dependency.

6.2 DETER testbed

Our experience with DETER testbed shows that DETER
provides a valuable infrastructure for security-related ex-
periments. We suggest several possible improvements
here. First, it would be very helpful if DETER incorpo-
rated more security-related facilities, such as traffic gen-
erator based on real traces, worm simulators, etc. This
would greatly simplify the design of experiments and
provide the basis for comparison of results among re-
searchers. Second, NS extension commands are impor-
tant to experiment automation. We hope more commands
can be provided in the future. Third, the swap-in pro-
cess can take a long time when experiments scale up.
A way to automatically kill the preloaded experimental
programs and reload everything without swap-in or re-
booting would significantly reduce the waiting time and
speed up the experiment process.

7 Conclusions and Future Work

In this work, we design a dependency-based host orga-
nization for collaborative intrusion detection. Hosts are
clustered into regions based on network proximity and
dependency, and communication among them becomes
more efficient. To capture the dependency, we apply dif-
ferent intrusion detection techniques within regions and

across regions. At the regional level, we use a hidden
Markov model; at the global level, we use sequential hy-
pothesis testing.

Our experiments on the DETER testbed suggest that
dependency-based host organization can improve intru-
sion detection by providing valuable network-layer and
application-layer knowledge to intrusion detection sys-
tems. In the future we will follow up with a series of
further experiments:

1. Use HMMs across different regions, to confirm that
across different regions, there is essentially no loss
of effectiveness if we assume independence. Worms
with different scanning features will be tested.

2. Use more general HMMs, specifically a non-
homogeneous higher order HMM, based on an
adaptive organization utilizing different network
knowledge. If a strong global clock is available,
then continuous time HMMs can be used too.

3. Enhance the reporting scheme to record the signa-
ture of a worm. This will provide two improved ca-
pabilities. The first is to significantly reduce the im-
pact of false positives. The second is to improve the
reporting of a worm, by allowing for reporting of a
particular worm signature, thus enabling the disen-
tanglement of simultaneous worm intrusions.

8 Acknowledgments

We would like to thank the DETER operators for help on
setting up the experiment, Senthilkumar G. Cheetancheri
for providing the original WormSim and defense code.
We also thank Rob Beverly and the anonymous review-
ers for their comments on the initial draft of this paper.
Karen Sollins and Ji Li are supported by a research fund
from the Intel Corporation, for which we are grateful.

References

[1] The DETER Testbed. http://www.isi.edu/deter/.

[2] The General Hidden Markov Model library
(GHMM). http://ghmm.sourceforge.net/.

[3] AGOSTA, J. M., DIUK-WASSER, C., CHAN-
DRASHEKAR, J., AND LIVADAS, C. An adaptive
anomaly detector for worm detection. In Proceed-
ings of Second Workshop on Tackling Computer
Systems Problems with Machine Learning Tech-
niques (SysML07) (2007).

[4] BRUMLEY, D., NEWSOME, J., SONG, D., WANG,
H., AND JHA, S. Towards automatic generation of
vulnerability-based signatures. In the 2006 IEEE
Symposium on Security and Privacy (Washington,
DC, USA, 2006).

[5] CHEETANCHERI, S. G., AGOSTA, J. M., DASH,
D. H., LEVITT, K. N., ROWE, J., AND

SCHOOLER, E. M. A distributed host-based worm
detection system. In the 2006 SIGCOMM work-
shop on Large-scale attack defense (2006).

[6] DASH, D., KVETON, B., AGOSTA, J. M.,
SCHOOLER, E., CHANDRASHEKAR, J.,
BACHRACH, A., AND NEWMAN, A. When
gossip is good: Distributed probabilistic inference
for detection of slow network intrusions. In
Proceedings of the 21st National Conference on
Artificial Intelligence (2006), pp. 1115–1122.

[7] JUNG, J., PAXSON, V., BERGER, A. W., AND

BALAKRISHNAN, H. Fast Portscan Detection Us-
ing Sequential Hypothesis Testing. In IEEE Sympo-
sium on Security and Privacy (Oakland, CA, May
2004).

[8] LI, J., AND SOLLINS, K. Exploiting autonomous
system information in structured peer-to-peer net-
works. In the 13th IEEE International Conference
on Computer Communications and Networks (IC-
CCN) (October 2004).

[9] LI, J., SOLLINS, K., AND LIM, D.-Y. Implement-
ing aggregation and broadcast over distributed hash
tables. ACM SIGCOMM Computer Communica-
tion Review Volume 35, Number 1 (January 2005).

[10] MALAN, D. J., AND SMITH, M. D. Host-based
detection of worms through peer-to-peer coopera-
tion. In the ACM workshop on Rapid malcode (New
York, NY, USA, 2005).

[11] MCALERNEY, J. An internet worm propagation
data model. Master’s thesis, University of Califor-
nia, Davis, September 2004.

[12] PAXSON, V. Bro: a system for detecting network
intruders in real-time. Computer Networks (Ams-
terdam, Netherlands: 1999) 31 (1999).

[13] RABINER, L. R. A tutorial on hidden markov mod-
els and selected applications in speech recognition.
Readings in speech recognition (1990), 267–296.

[14] ROESCH, M. Snort - lightweight intrusion detec-
tion for networks. In LISA ’99: the 13th USENIX
conference on System administration (1999).

[15] SOLLINS, K. Designing for scale and differenti-
ation. In ACM SIGCOMM 2003 FDNA Workshop
(2003).

[16] STANIFORD, S., PAXSON, V., AND WEAVER, N.
How to own the internet in your spare time. In the
11th USENIX Security Symposium (2002).

[17] WALD, A. Sequential Analysis. J. Wiley and Sons,
New York, 1947.

