
A Hypervisor Based Security Testbed

Dan Duchamp and Greg DeAngelis

Computer Science Department
Stevens Institute of Technology

Hoboken, NJ 07030 USA
djd@cs.stevens.edu, gdeangel@stevens.edu

ABSTRACT
We are developing an experimental testbed intended to help
support security research. The testbed allows a network of
unmodified hosts, running any of several of unmodified op-
erating systems, to execute in a controlled and reproducible
manner. The network is implemented on a hypervisor that is
instrumented to observe and control security-relevant events.
These events are securely logged to a relational database for
later analysis.

1. INTRODUCTION
We are developing an experimental testbed intended

to help support security research. The testbed allows
a network of unmodified hosts to be subjected to se-
curity attacks in a controlled, observable, and repro-
ducible manner using hypervisor technology.

The two most notable characteristics of our testbed
are the use of a virtual machine monitor (VMM, aka
hypervisor) as a tool for gathering information over an
entire heterogeneous LAN, and a highly generalized in-
frastructure for the description, measurement, and anal-
ysis of experiments.

Unmodified guest host software (operating system
and applications) runs on an instrumented virtual ma-
chine monitor. The VMM provides a powerful tool
for observing and controlling the behavior of the guest
software. Measurement points added to the hypervi-
sor allow the experimenter to log the occurrence of key
security-relevant events such as a system call or a buffer
overflow. When our work is complete, the experimenter
will be able not only to log but also to control guest host
behavior via the measurement points; for example, the
hypervisor could intercept and verify a system call be-
fore allowing it to proceed.

The VMM not only emulates x86 hardware, it also
implements a virtual Ethernet. Emulating both hosts
and network on the same hypervisor provides experi-
menters with a more complete view of how network-
based attacks spread.

Furthermore, the idea of implementing a LAN and all
its hosts on a single virtual machine might also prove
to be a superior way to deploy an intrusion detection

system (IDS) on a real world network that is small and
highly vulnerable, such as a honeypot [13] or a DMZ.

Conventional approaches to intrusion detection are
either host-based or network-based. A host-based IDS
monitors computing activity on a host and raises an
alarm when suspicious activity is observed. One weak-
ness of a host-based IDS is that it places the IDS in
the same domain of execution as the vulnerable ma-
chine, exposing the IDS to whatever happens when the
machine is compromised. Another weakness is that in-
trusion detection logic is applied to only a single host.
To protect an entire installation using host-based IDS
software, each host must run the IDS and anomalous ac-
tivity must be detectable on a per-host basis. Attacks
that manifest across several hosts may not be detected
by a host-based IDS approach. In contrast, a network
IDS sniffs packets, reconstructs “flows” from the con-
stituent packets, then applies intrusion detection logic
to each flow. One weakness of a network-based IDS
is that flow reconstruction can be very difficult, espe-
cially if—as is often the case—an attack intentionally
includes nonsense packets specifically intended to con-
fuse or trick the recipient. A classic example of an at-
tack containing nonsense packets is when two TCP seg-
ments contain overlapping data; e.g., one segment con-
tains bytes numbered 100-300, while the next segment
contains bytes numbered 200-400. It is implementation-
dependent whether TCP will accept bytes 200-300 from
the first segment or the second. A network IDS must
first reconstruct the flow that will be seen by the host
under attack, then analyze the flow for anomalies or
suspicious content. In the case of overlapping TCP
segments, merely to reconstruct the flow the network-
based IDS must be aware of the host’s exact TCP state
and even of the host’s TCP implementation details.
Host-based and network-based intrusion detection ap-
proaches each suffer from their own blind spot. A se-
curity testbed facility based on virtual machine (VM)
technology need not have a blind spot.

Having a system-wide view permits capture and record-
ing of a timestamped “movie” of activity in all parts of
the system during an attack. Such movies can be an-



alyzed off-line afterward to discover attack signatures
that could then serve as input to standard IDSs. Movies
could also be stored and replayed later to reproduce an
attack on demand.

The main components of our testbed are:

1. Hardware base
2. Infrastructure for experiment description and con-
figuration
3. Support for measurement and logging during exper-
iments

Each component is discussed in its own section below.

2. HARDWARE BASE
Our current hardware base is shown in Figure 1. Ex-

periments run on five real machines, each of which has
two dual-core Xeon 5060 (Dempsey) processors with In-
tel Virtualization Technology (IVT) extensions [8, 6] for
virtualization and 8GB of RAM. IVT provides VMentry
and VMexit state transitions that manage where inter-
rupts and system calls are directed. Certain instruc-
tions must be trapped within a guest host and for-
warded to the hypervisor. Access to I/O devices is han-
dled as described below.

The virtualization software is KVM [10, 11], a load-
able module for Linux versions 2.6.20 and later. KVM
leverages IVT to implement a virtual machine monitor
with much less code than traditional hypervisors like
VMWare [15], Xen [2], etc. KVM expands the tradi-
tional two modes of a UNIX process (user and system)
to three: user, system, and guest. When guest software
runs in such a 3-state process, I/O instructions execute
in user mode at the Linux privilege level of the user
who owns the guest host process. Non-I/O code runs in
guest mode, and system mode is used only to transition
among modes and for special instructions.

Linux/KVM can host any unmodified x86-based op-
erating system. Therefore, our testbed supports all op-
erating systems of interest to us: Windows, Linux, and
NetBSD. Support for heterogeneity allows the execution
of more varied and realistic experiments.

Because Linux exposes dual dual-core Xeon proces-
sors with hyperthreading enabled as 8 virtual proces-
sors, each hypervisor is configured to support 8 guest
hosts by default. So the overall facility supports a min-
imum of 40 guest hosts. However, the hypervisors can
be configured to support more than 8 guest hosts each,
so larger virtual networks are possible. Memory is the
resource most likely to limit the number of virtual hosts
that can be supported.

Each real machine has 3 Ethernet ports that are all
attached to a Cisco Catalyst 3750 switch. The switch
implements three types of network. A “management”
network connects the 5 real machines to a control server
(to be described below). The management network is

used exclusively to control the physical machines in lim-
ited ways such as rebooting them and initializing their
disks. A second “control” network is used exclusively
for logging. Events logged by each virtual machine
are transmitted over the control network to a database
server (to be described below).

The third type of network implemented by the switch
is the “data” network. Guest hosts use only the data
network for their traffic. To form networks of guest
hosts, each guest operating system is given a virtual
network interface. Each virtual network interface is
connected to a software bridge running on the physi-
cal machine. The software bridge also connects to its
machine’s physical Ethernet adapter for the data net-
work. A combination of the settings on the software
bridges on each machine and the VLAN settings of the
Catalyst switch allow guest hosts on the same or dif-
ferent physical machines to be grouped arbitrarily into
virtual networks. Traffic for the virtual network passes
through either one or two hypervisor(s) and therefore
can be monitored.1

Besides the five physical machines that support guest
hosts for experiments, two physical machines provide
support functions. One machine is used as a database.
During experiments, it collects records about security-
relevant events produced by measurement points within
KVM and transmitted over the control network. After
queueing, these records are stored in a MySQL database.
The database machine also acts as a disk image server.
We initialize the disk images of the physical machines
when a complete physical reset is necessary.

The final machine shown in Figure 1 is the control
host. Users connect to this machine to configure the
system in preparation for an experiment, configure and
run experiments, and perform post-experiment analysis
of events logged in the database.

The database server and control host are connected
to only the control and management networks, keep-
ing them physically isolated from the dangerous data
network.

All this hardware is separated from the campus net-
work and Internet by a Cisco ASA 5510 firewall. The
firewall allows connections between the outside and the
control host so that users can enter the testbed, set up
and run their experiments.

Experiments running on the data network can also be
granted access to the outside when appropriate. Not ev-
ery experiment will involve dangerous code; the testbed
can be used for non-security experiments as well as
for security experiments. The firewall supports 100

1Traffic between guest hosts passes through one hypervi-
sor if the two guest hosts are running on the same physical
machine; otherwise, the two guest hosts are running on dif-
ferent physical machines so their traffic passes through two
hypervisors.



Figure 1: The hardware base includes five physical machines dedicated to experimental software.
Each machine runs the Linux/KVM hypervisor and is capable of supporting several guest hosts.
Each of these machines is connected to three networks, two of which are reserved for control and
management. A Catalyst switch helps to connect guest hosts together on VLANs. Two support
machines are dedicated for configuration and data storage, respectively. The entire facility lies
behind a firewall.

VLANs. Therefore, if an experiment requires access to
the outside—and the experiment is deemed trustworthy—
then the firewall can join the VLAN allocated to a vir-
tual network of guest hosts. In this way, guest hosts
can access the outside through the firewall. The firewall
configuration is part of the definition of an experiment.

3. SYSTEM AND EXPERIMENT CONFIG-
URATION

To set up and run an experiment, a user connects to
the control host and runs a web application, cleverly
named “WebApp.” WebApp allows the user to set up,
initiate, monitor, and post-analyze the experiment. The
setup process is suggested by Figure 2 while experiment
execution is suggested by Figure 3.

The first step is to configure the software on the sub-
set of virtual nodes necessary for the experiment. For
this purpose, we are developing a tool for virtual node
configuration that is a “generalized package manager”
(GPM) that can interoperate with popular Linux pack-
age managers such as RPM, portage, and apt. The
GPM is not a single cross-OS package manager like Au-
topackage [1]. Instead, it is much simpler—it translates
the user’s specifications into calls to the native package
manager of the underlying Linux distribution. GPM

Figure 2: The experiment is configured by a
user employing a modified version of Emulab’s
Netbuild client to specify network connections
and our own Generalized Package Manager to
specify guest software. The experiment descrip-
tion is compiled into XML and stored in the
database. If necessary, the physical machines
are given a clean disk image.



allows a user to load and configure both the kernel and
application software for any Linux-based virtual node.
In the future, we hope to configure Windows guest hosts
in the same way if a package manager for Windows be-
comes available (e.g., WPM [12]).

The second step in setting up an experiment is to
specify the mapping of virtual hosts to virtual LANs.
For this step, we use a modified version of Emulab’s
“Netbuild” client in which nodes, links between them,
and link properties are specified visually. A significant
difference, however, is that our experiment configura-
tion is compiled into XML and the XML is then loaded
into the database. The reason for doing so is to create a
machine readable permanent record of the experimental
setup that can be associated with the data it produces,
which will also be stored in the database. Once in the
database, an experiment and its data can be analyzed
and/or archived.

There are two ways to prepare virtual host software
in advance of an experiment. One way is to reconfigure
with the package manager as described above. How-
ever, if there is reason to suspect that either or both of
the guest host or the hypervisor has been compromised
or damaged, a second and more complete preparation
can be performed using IPMI [5]. This preparation ini-
tializes an entire physical machine, not just a virtual
host.

Our physical machines are each equipped with an
IPMI card. IPMI allows a machine to be remotely con-
trolled even if it is not yet running an operating system.

To initiate a clean-slate experiment, a physical ma-
chine is booted using IPMI commands sent over the
management network. The physical machine boots up
into the disk image client which then loads a virgin disk
image containing the hypervisor operating system (i.e.,
Linux with KVM extensions). After receiving a com-
plete clean disk image, the physical machine reboots,
this time coming up running the Linux/KVM hypervi-
sor.

Once KVM is running, virtual hosts are booted in
the order specified as part of experiment configuration.
Virtual hosts start application software following their
usual procedures; e.g., /etc/rc, cron and the like. The
sequencing of application startup, creation of background
traffic, placement of innocent and malicious software,
etc.—all this is the responsibility of the experimenter.

We plan to eventually add a hypervisor checkpoint
facility so that an experimenter can pause a guest host
and save its state. Being able to run a guest host from
a prior saved state can benefit experiments that require
a lengthy and/or complicated setup of the state that
immediately precedes an attack.

4. MEASUREMENT AND LOGGING
Measurement points exist inside the hypervisor to re-

port the occurrence of relevant low level events. Since
KVM is implemented as a loadable module, we are de-
veloping a library of modules, each of which provides a
different set of measurement points. The experimenter
can select from among these modules, or he can write his
own. Part of the experiment description is a specifica-
tion of which measurement points should be activated,
how often they should report, and what is the format
of the log record that describes the event.

Logged events are queued within the hypervisor be-
fore being transmitted to the database server over the
control network. Once at the database server, they
are again queued there before being entered into the
MySQL database. The purpose of queueing at both
ends is to provide buffering to absorb variations in load.

One consequence of compiling the experiment descrip-
tion into XML is that the database holds an XML de-
scription of the format of log records produced by each
type of monitored event. This allows XSLT to translate
an XML description of a group of logged variables into
typed headers of functions in a variety of languages.

For example, this XML description

<target name="target1">
<value name="param1" type="integer" />
<value name="param2" type="float" />
<value name="param3" type="double" />

</target>

is translated into

void target1(int param1, float param2,
double param3) {

// C or Java implementation
}

for C or Java and

def target1(param1, param2, param3):
// Python implementation

for Python.
The function implementation is responsible for send-

ing a message to the local queueing daemon. Messages
are tagged with the time, target name, and experiment
name so that the message can be unwrapped and in-
serted into the “ExperimentName.TargetName” table in
the relational database.

Presently, events are only logged. We plan to allow
future modules to invoke policy modules so as to control
the guest host.

The most difficult and least mature part of this work
is how to relate low level events that the hypervisor can
easily observe to high level actions that would be rele-
vant to intrusion detection. Mapping low level events
(such as system calls) and facts (such as the contents
of a region of memory) to a security-relevant high level



Figure 3: The data network is reserved for experiments. Several experiments can be in progress
simultaneously by configuring the Catalyst switch to assign separate VLANs to separate groups of
virtual hosts. The control network is reserved for log records produced by measurement points within
the hypervisor and sent to the database server. The management network is reserved for IPMI-based
reset, initialization, and monitoring of the physical hardware.

conclusion (such as that a buffer overflow occurred) re-
quires non-trivial knowledge about how the guest oper-
ating system and guest applications use memory. This
knowledge, encoded in data structures of the guest op-
erating system, is complex and is subject to corruption
when the guest operating system is compromised during
an attack.

Previous work—most notably Livewire [4]—tackled
this problem by implementing an interface between the
hypervisor and an out-of-hypervisor intrusion detection
module that had detailed knowledge about the guest
operating system. The Livewire interface allowed the
external IDS module to give commands to the hypervi-
sor to inspect and monitor guest host state.

In contrast, we are designing a callout mechanism
that would permit an out-of-hypervisor IDS (i.e., Linux
process that is not supporting a guest host) to register
callout criteria with the hypervisor, in much the same
way that processes can register packet filters with the
Berkeley Packet Filter (BPF) [7]. Whenever a callout’s
criteria are met the hypervisor will pause the guest host
and transfer control to the external IDS so that it can

inspect the guest host’s memory. This approach isolates
guest-host-specific knowledge in the external IDS, leav-
ing the hypervisor largely ignorant of any of the guest
host’s implementation details.

Until such time as the callout-based control mech-
anism is working, users can log (only) events such as
system call, interrupt service, and I/O instructions (es-
pecially packet transmit/receive).

5. SUMMARY
We are developing an experimental testbed intended

to help support security research. The testbed allows
a network of unmodified hosts to execute on a hyper-
visor that is instrumented to observe and eventually
to control security-relevant events occurring across the
network. As much as possible, experimental parameters
are compiled into XML and recorded in order to ease
repeatability, control, and analysis.

6. ACKNOWLEDGEMENT
This work was supported in part by the U.S. Army

Armament Research, Development and Engineering Cen-



ter (ARDEC) under contract W15QKN-05-D-0011, Task
Order 12.

7. REFERENCES
[1] Autopackage development team. Autopackage: Easy

Linux Software Installation. http://autopackage.org

[2] P. Barham et al. Xen and the Art of Virtualization. in

Proc. 19th ACM Symp. on Operating Systems

Principles (SOSP ’03), October 2003.

[3] T. Benzel et al. Experience with DETER: A Testbed

for Security Research. in Proc. 2006 IEEE

TridentCom, March 2006

[4] T. Garfinkel and M. Rosenblum A Virtual Machine

Introspection Based Architecture for Intrusion

Detection. in Proc. Network and Distributed Systems

Security Symposium, February 2003.

[5] Intel Corp. Intelligent Platform Management

Interface. http://www.intel.com/design/servers/ipmi

[6] Intel Corp. Intel Trusted Execution Technology.

http://download.intel.com/technology/security/

downloads/31516803.pdf

[7] S McCanne and V. Jacobson The BSD Packet Filter:

A New Architecture for User-level Packet Capture. in

Proc. Winter USENIX Technical Conf., pp. 259–270,

1993.

[8] G. Neiger et al. Intel Virtualization Technology:

Hardware Support for Efficient Processor

Virtualization. Intel Technology Journal 10(3),

August 2006.

http://developer.intel.com/technology/itj/index.htm

[9] M. Ott et al. ORBIT Testbed Software Architecture:

Supporting Experiments as a Service. in Proc. 2005

IEEE TridentCom, Feb. 2005

[10] Qumranet Corp. KVM Wiki.

http://www.qumranet.com/kvmwiki

[11] Qumranet Corp. KVM: Kernel-based Virtualization

Driver. http://www.qumranet.com/wp/kvm wp.pdf

[12] E. Ropple WPM—Windows Package Manager.

http://blacken.superbusnet.com/oss/wpm

[13] K. Seifried Honeypotting with VMWare—basics

http://www.seifried.org/security/ids/20020107-

honeypot-vmware-basics.html

[14] M. Singh et al. ORBIT Measurements Framework and

Library (OML): Motivations, Design, Implementation

and Features. in Proc. 2005 IEEE TridentCom, Feb.

2005

[15] J. Sugerman et al. Virtualizing I/O Devices on

VMWare Workstation’s Hosted Virtual Machine

Monitor. in Proc. USENIX 2001.

[16] B. White et al. An Integrated Experimental

Environment for Distributed Systems and Networks.

in Proc. 5th USENIX Symp. on Operating Systems

Design and Implementation (OSDI ’02), October

2002.


