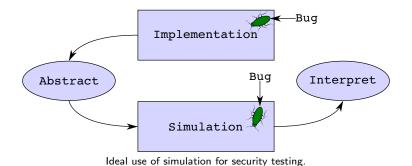
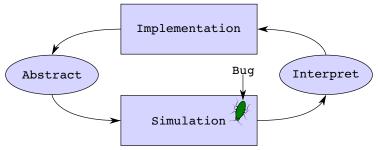
Beyond Simulation: Large-Scale Distributed Emulation of P2P Protocols

Nathan S. Evans Christian Grothoff

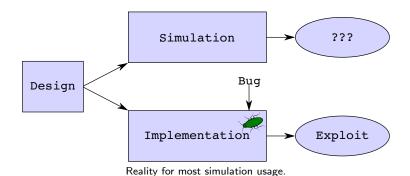
Technische Universität München


August 8, 2011

Presented by: Bartlomiej Polot and Matthias Wachs



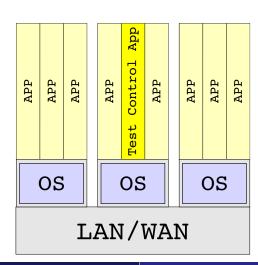
Systems Research — Simulation


Systems Research — Simulation

Ideal use of simulation for security testing.

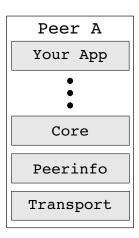
Systems Research — Simulation

Systems Research — Emulation

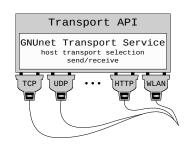


o APP	O APP		S APP	O APP	O APP	O APP
	VLAN		VLAN		VLAN	
VLAN					VLAN	
os			os		os	
OS			О	S	0)

Our Emulation Approach

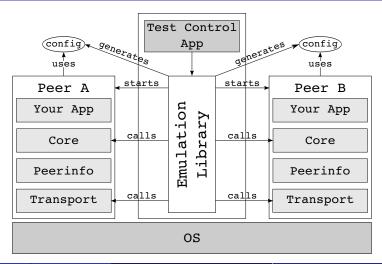


GNUnet Architecture


- P2P framework
- Focus on security
- Written in C
- Portable & extendable
- Multi-process architecture & IPC
- Extensive utility library

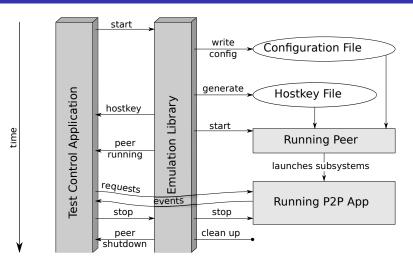
The Transport Service

- Low-level P2P connectivity
- Transport plugins: provide many connection options
- Unix domain sockets
- Blacklisting & whitelisting



P2P Emulation Steps

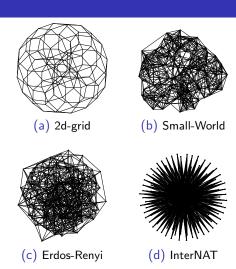
- Design P2P application
- Implement as GNUnet service
- Use built-in statistics or design logging facility
- Create test control application
 - Links against emulation library
 - Peer group startup/shutdown
 - Utilizes API to access service



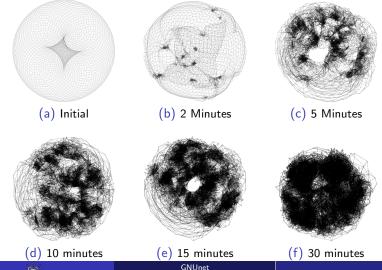
Our Emulation Approach

Single Peer Startup Sequence

Peer Group


- "Peer group" is the handle to running peers
- Layering peer group reuses single peer startup code
- Peer group features
 - Configuration mangling
 - Resource allocation, throttling
 - Connects peers in desired topology
 - Capture running topology/statistics
 - Start/stop/reconfigure peers
 - Induce churn
 - Provide handles to specific peers

Peer Group Startup, Code Example


Network Topologies

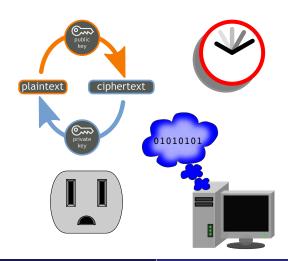
Simple topology creation/import/export

Topology Generation and Evolution

Limitations of Emulation

- Timing accuracy
 - Network latency
 - Throughput
- Underlying OS interference
 - CPU scheduling
 - Disk access
 - Memory usage

- Speed
- Shared IP/hostnames
- Peer diversity
- GNUnet


Overcoming Limitations

- Single OS per peer
 - \Rightarrow Testing framework can be used on lower level emulators focused on timing accurate results
 - PlanetLab, Emulab, DETER, etc.
 - Sacrifice scalability
- Shared IP/hostnames Virtual addresses, VMs
- Peer diversity Configure per-peer bandwidth, VMs
- GNUnet Benefit and limitation

Important Lessons Learned

- Cryptography
- Start-up time
- Periodic tasks
- Sockets
- Memory

Peer and Emulation Performance

Memory consumption

Service	Non-shared	Heap	Shared
supervisor	228 KB	32 KB	2,364 KB
transport	359 KB	99 KB	2,888 KB
core	300 KB	84 KB	2,428 KB
dht	536 KB	240 KB	3,684 KB
total	1,424 KB	456 KB	11,364 KB

Peer and Emulation Performance

Architecture	Hosts	Cores	Memory	Peers	Connections	Time to
		(Total)	(Total)		per second	start peer
Cortex-A8	1	1	512 MB	100	~ 1	\sim 206 ms
Xeon W3505	1	2	12 GB	2,025	~ 60	$\sim 12~\text{ms}$
Xeon W3520	1	8	12 GB	2,025	~ 188	\sim 5 ms
Opteron 8222	1	16	64 GB	10,000	~ 327	\sim 27 ms
Opteron 850	31	124	217 GB	80,000	~ 559	~ 1 ms

Example: Comparison of DHT Performance

- Performance comparison of different DHT implementations
- 60,000 peers
- Specific peers were changed into malicious sybil nodes
- Success rate of requests measured

Example: NSE Implementation

- Network Size Estimation algorithm
- 2 days to implement
- 2 weeks from idea to paper
- Single host: 4,000 peers

Conclusion

- Framework available at https://gnunet.org
- We encourage people to use our framework
- 80,000 peers on cluster: what happens on supercomputer?
- at least consider: emulation vs. simulation even at large scale

Questions?

