

The Virtual Power System Testbed (VPST) and Inter-Testbed Integration

David Bergman
Dong Jin
Prof. David Nicol
Tim Yardley (Presenter)

www.iti.illinois.ed

Information Trust Institute

Providing World-Wide Excellence in Information Trust and Security

Institute Vision:

Trust in Society

Institute Personnel:

Core faculty from CS and ECE 95+ faculty and senior researchers from 21 Dept's.

Institute Themes:

- Critical Applications, Infrastructures, and Homeland Defense
- Embedded and Enterprise Computing
- Multimadia and Distributed Systems

Institute Centers

- Boeing Trusted Software Center
- CAESAR: the Center for Autonomous Engineering Systems and Robotics
- Center for Information Forensics
- NCASSR: the National Center for Advanced Secure Systems
- NSA Center for Information Assurance Education
- TCIP: Trustworthy Cyber Infrastructure for the Power Grid

Institute Highlights

- Established, rapidly growing effort
- Large, diverse community of researchers
- Societal and industrial problems
- Major corporate partnerships

Led by the College of Engineering at UIUC

Trusted ILLIAC Center

TCIP Center: Trustworthy Cyber Infrastructure for Power

TCIP secures the devices, communications, and data systems that make up the power grid, to ensure trustworthy operation during normal conditions, cyber attacks and/or power emergencies.

William H. Sanders, Director

Organization -- 19 Faculty and Senior Staff; 30 Graduate Research Assistants from Univ. of Illinois, Dartmouth, Cornell, and Washington State University

Focus Research Areas

- Developing a secure and reliable computing base and providing foundations for system-wide security and reliability.
- Designing, implementing and integrating communications and control protocols that provide secure, timely and reliable data collection and control.
- Providing evaluative methodologies and tools for modeling, simulation, emulation and experimentation for security technologies for the power grid.
- Providing education, outreach and training at the K-12, undergraduate, and graduate levels and to prepare the next generation workforce.

TCIP Industry Advisory Board

Comprises over 30 industry organizations, representing the entire spectrum of the power industry.

VPST - Introduction

- VPST Designed to support exploration of security technologies being developed for large scale power grid infrastructure
- Integrates the following
 - Real Power Equipment
 - Electrical Simulations (PowerWorld)
 - Computation/Communication Simulation (RINSE)
 - Secure remote connectivity to other resources

VPST – High Level Overview

- •Read-Only Grid
- •Research Systems
- Data Feeds

RINSE objectives

- Modeling methodologies for high performance / high capability network analysis
 - Model composition to support nearly transparent parallel processing
 - Multi-resolution modeling of traffic
 - mixed/fluid models of transport protocols, routers, links
 - immersive faster-than-real-time simulation for exercises
 - very fast net-wide background bandwidth use computation
 - x1000s speedup over optimized full-resolution model
 - Multi-resolution modeling of network topology

RINSE Host Architecture

VPST Motivation (SCADA context)

- Supervisory Control And Data Acquisition (SCADA)
 - Simplified, a hybrid of physical devices and the software controlling and monitoring them
- SCADA systems have a rising need for security
- Scale and operational context makes using actual equipment infeasible in the long run
- SCADA resources have a relatively high barrier to entry
- Emulation alleviates part of this concern, but accurate models are needed
- Other testbeds have valuable resources as well, and we'd like to leverage that

VPST Architecture

- VPST-E
 - Electrical powergrid simulation
 - PowerWorld (can simulate over 100,000 buses)

VPST-R

Local

← Emulation **←**

VPST-C

ITC ←→ ITC

VPST-R

Remote

- VPST-C
 - RINSE-based network simulator
 - Trusted ILLIAC (can simulate over 1 million devices)
- VPST-R-local
- Real SCADA devices in TCIP lab converter VPST-E
 VPST-R-Remote
 Other SCADA/security testbeds
 - DETER, NSTB, VCSE
 - "Super node"

Interconnection Requirements

- Secure Connectivity
 - May face threats from external cyber-attack and internal malicious code
 - Several layers of protection similar to OPSAID
 - Transmission security (IPSec and SSL)
 - Authentication and access control at all accessing points (IPSec)
 - Traffic isolation (private network)
 - Intrusion detection if necessary (Snort)

Performance Requirements

- Performance
 - Overcome latency across multiple testbeds
 - Inter-Testbed Connector (ITC), single point of contact and then distributes the workload
 - Two connections between each testbed
 - Control channel
 - Aggregated data channel
 - Use lookahead algorithms to keep the simulation at least as fast as real time (emulated devices)
 - Must use highly scalable simulation environment
 - VPST-C (RINSE network simulator)
 - VPST-E (PowerWorld simulator)

Resource Requirements

- Resource Allocation
 - Flexible configuration
 - Accurate resource mapping that can balance customizability and speed
 - Design of ITC takes decentralized approach and is decomposed into modules
 - VPST must intelligently partition simulation models and expand that to heterogeneous testbeds

Reproducibility Requirements

- Reproducibility
 - Dynamics of SCADA networks (size of network, type of physical medium, time-varying traffic patterns) requires precise experiment reproduction
 - VPST-C enhances local reproducibility with fully configurable and controllable parameter space
 - Human-in-the-loop interaction necessitates that parameters can be changed online and recorded for later reproduction (VPST uses tcpdump/libpcap files for network traffic capture)

Fidelity Requirements

- Fidelity
 - VPST must be as transparent as possible to real devices
 - Realistic data patterns and interactions
 - Latency
 - Accurate simulated hosts
 - Counterpoint to performance, must be addressed carefully

VPST Architecture

- VPST-E
 - Electrical powergrid simulation
 - PowerWorld (can simulate over 100,000 buses)

VPST-R

Local

← Emulation **←**

VPST-C

ITC ←→ ITC

VPST-R

Remote

- VPST-C
 - RINSE-based network simulator
 - Trusted ILLIAC (can simulate over 1 million devices)
- VPST-R-local
- Real SCADA devices in TCIP converter VPST-E VPST-R-Remote converter Other SCADA/security testbeds ITC - Inter-Testbed Connector - DETER, NSTB, VCSE
 - "Super Node"

- Simulation Control Plane
 - ITC Controller
 - Exchanges control commands with a remote ITC
 - Collects/distributes commands on local control plane
 - Resource Allocator
 - Load balancing and allocation
 - Verify correctness of topology mapping
 - Guarantee IP uniqueness/mapping
 - Resource configurator
 - Uses DML to configure hosts, links, traffic, etc.

- Simulation Control Plane (continued)
 - Run-time controller
 - Control experiment online
 - E.g. launch DoS attacks, altering data polling behavior
 - Error Detector
 - Detect host failures, asynchronization, out-ofbound parameters, etc.
 - Respond by allocating extra resources, generating alerts, writing to logs or terminating/restarting experiment
 - Data Plane Configurator
 - Issue controls to the data plane at initialization, run-time, and cleanup stages

- Model Data Plane
 - Traffic Distributor
 - Bridges traffic across interconnected testbeds
 - Minimizes the number of physical links by using a "super node"
 - Measurement Reporter
 - Collects metrics
 - Leverages both local and remote collection

Use Case 1

- Training and Human-in-the-loop Event Analysis
 - Mid-western blackout of 2003
 - Operators need to be trained with full situational awareness
 - Requirements
 - Secure Connectivity for sensitive information
 - Reproducibility for event replay and analysis of the impact of human decisions
 - Scalability for large-scale power systems
 - Fidelity to ensure realistic scenarios

Use Case 2

- Analysis of Incremental Deployment
 - Old and new technologies must co-exist
 - DNP3SA, for instance, must be tested on a large-scale heterogeneous environment before being deployed
 - Requirements
 - Reproducibility for ensuring new technology is the root cause of change
 - High performance for accurate scale models
 - Fidelity to ensure new technology behaves the same as in the wild

Use Case 3

- Attack Robustness Analysis
 - Simulation & Emulation can combine to test a proposed defense against an attack
 - Goals
 - Leverage something like DETER for cyber-attack capabilities
 - Use National Labs for various SCADA equipment
 - VPST-C is the "master" coordinating and providing the modeling and analysis for the experiment
 - Requirements
 - Secure connectivity to provide containment
 - Reproducibility to allow attack replay against various defenses
 - Fidelity to ensure defense results are real

Difficult Problems

- Coordinated resource allocation and aggregation
- Time contraction and dilation
- Representative traffic generation and modeling
 - Production SCADA networks are generally very closed
 - Responses can be highly contextual leading to complex models
- Interconnected testbed GOTCHA's
 - "virtual" attacks become real

Summary

- Shown the need to integrate multiple testbeds for SCADA networks and requirements/difficulties therein
- Some aspects currently implemented, more to come
- Future work
 - To develop a black-box implementation of the ITC
 - To develop a mechanism to ensure efficient WAN transmission via coordinated control and integration

Acknowledgments

- We thank Prof Susan Hinrichs for constructive feedback early on in this project
- This work was supported in part by a grant from the National Science Foundation (CNS-0524695) as part of the TCIP Center

References

- [1] Dnp3 specification, secure authentication, supplement to volume 2. http://www.dnp.org/Modules/Library/Document.aspx.
- [2] National scada test bed program. http://www.inl.gov/scada/publications/index.shtml.
- [3] Powerworld simulator. http://www.powerworld.com/.
- [4] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and S. Schwab. Experience with deter: a testbed for security research. pages 10 pp.–388, 0-0 2006.
- [5] DNP.org. Dnp: Distributed network protocol. http://www.dnp.org.
- [6] W. Hwu, W. Sanders, R. Iyer, and K. Nahrstedt. Trusted illiac: A configurable, application-aware, high-performance platform for trustworthy computing. http://www.iti.illinois.edu/sites/default/files/docs/crisnowbird-06-talk-final.pdf.
- [7] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier. Rinse: The real-time immersive network simulation environment for network security exercises. In PADS '05: Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation, pages 119–128, Washington, DC, USA, 2005. IEEE Computer Society.
- [8] M. J. McDonald, G. N. Conrad, T. C. Service, and R. H. Cassidy. Cyber effects analysis using vcse. Tech. Rep. SAND2008-5954, Sandia National Laboratories, September 2008.
- [9] D. M. Nicol, C. M. Davis, and T. Overbye. A virtual power system testbed for cyber-security decision support. Proceedings of the 2009 INFORMS Simulation Society Workshop on Simulation: At the Interface of Modeling and Anaylsis.
- [10] OPSAID. Department of energy office of electric delivery and reliability's national scada testbed program. Initial Design and Testing Report.
- [11] PNNL. Looking back at the august 2003 blackout. http://eioc.pnl.gov/research/2003blackout.stm.
- [12] UIUC. Trustworthy cyber infrastructure for the power grid. http://tcip.iti.illinois.edu.

Thanks!

