Argonne°

NATIONAL LABORATORY

Bcfg2, Config Management, and You

Narayan Desai

desai@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

& BCFG?

Overview

= Configuration Management
— Whatiisit, why is it hard

= Bcfg2
— Overview and design goals

= Considerations in choosing a configuration tool

Configuration Management

= Configuration management is an API for programming your configuration
— Each tool defines a DSL

= Why would | want that?
— Too many nodes to do it by hand
— Too many people modifying configuration
— Too much configuration diversity
— Higher level configuration programming
= Goals for configuration management tools
— Efficient representation of diversity
— Node scalability
— Programmability

Sounds simple, right?

= Node count is the easiest thing to scale (IMO)
— Lots of scalable algorithms for broadcasts, etc
= Configuration diversity is a lot trickier
— Combinations can be brittle
— Some tastes don’t taste good together
= Increasing administrator population is ever harder to support
— Larger head count usually means more specialization
— More coordination overhead
= Matching administrator mental models is key
— Administrators in charge of ensuring things work
— Vary from administrator to administrator
— Often no consensus within groups

Comparisons to software development

= Configuration management development is similar to software development
= Similar pitfalls

— Branches are trivial and merges are hard
= Similar approaches help

— Version control

— Testing and validation

— Release management processes
= Still an active area of development, with new buzzwords from year to year
= Most techniques are vastly easier to deploy in new environments

— Much more costly in pre-existing ones

— Like adding unit testing to pre-existing codebases

Bcfg2

= Client/Server system written in Python
— ~20K sloc
= Lightweight
— Single server easily handles 1k nodes
= Flexible enough to handle wide range of use cases
— Start with small static environments requiring auditing
— Grow to large scale HPC systems
— Elegantly configure dynamic cloud infrastructures
= Production grade and reliable
— First external deployment in 2005
— Used at minimally 100 sites

— Users cut across all major market segments

= Active and helpful community

Key Design Goals

= Model system configuration in unambiguous, simple terms

= C(Close the loop between administrators, configuration specification, and current
system states

= Enable a variety of administrative regimen for systems

= Support extensive configuration debugging

= Composition of information from a number of sources

= Expose plugin api to all aspects of the configuration process
= Configuration Meta-programming

System Configuration Modelling

= Specifications are declarative

— Describe goals, not process

= Entries describe common system objects
— Software packages
— Services
— Configuration files
— POSIX filesystem entries
= Validation based on congruency
— Matches performed against all entries in the configuration
— And no extra configuration detected on the client
= Design allows translation between specification and current state
— Specification can be rendered into reconfiguration operations when needed
— State can be rendered into a declarative configuration specification

Closing the loop between goals and reality

= Tools faill
— Bugs
— System failures
— Thinko’s
= Need independent verification capabilities
— Do I have what | said | wanted?

= Built an interface that reports on client state back to the server
— Full operation log
— Divergence between stated goals and current state
— Extra configuration entries
— Performance data

= And a reporting system that shows overall system configuration health
— Multi-client patterns in state

Enable administrator choice of deployment
strategies

= |tis essential that administrators control how configuration happens
— Bcfg2 designed as a swiss army knife
= Basic client modes
— Dryrun
— Interactive
= Selective rule based deployments
— Only deploy changes selectively
— (based on the change itself, the client or the time)
= Support bidirectional specification flow
— Server -> Client (typical)
— Client -> Server (delegation)

Configuration Debugging

= Like in software engineering, debugging is needed

— Complicated systems don’t always act as expected
= Built a full system introspection capability into Bcfg2
=" From the server-side

— Query full client metadata

— Perform configuration goal construction

— Drop into a configuration debugger

= Good framework for centralized testing

Configuration Process/Plugin API

= Bcfg2 is configuration plumbing

= Users can customize all aspects of the configuration process

Using Python
With a simple API

= Major functional areas

Client probing

Metadata resolution
Configuration goal specification
Validation

Processing of state information

Configuration Meta-programming

= The first stage in configuration management is literal configuration
— “copy this file into that location”
= The next stage is rule based configuration
— “webservers get this configuration, ftpservers get that one”
= The third stage is meta-programming
— Configuration patterns used to generate configuration goals
— “ntp clients should talk to our ntp servers”
“the ssh_known_hosts file should contain entries for all machines”
= Supported in Bcfg2
— Through entry templating
— Query interface to metadata
— Raw access through Plugin API

Considerations in choosing and deploying a tool

= Using any robust tool will be better than manual administration
= Find the tool that matches your administrative philosophy
— Mental models are a big part of that
= Communities have different personalities
— Find a comfortable one
= Assume deployment will take twice as long as you expect
— The first 70% goes fast, but the rest..
= Building group consensus is key
— You will have problems if you force a solution into place by fiat
— Take the time to teach people how to use the system
— Listen to their concerns

Questions?

http://www.bcfg2.org
Irc.freenode.net #bcfg?2

