
The Conundrum of Declarative Security
HTTP Response Headers: Lessons Learned

Aditya K Sood, Richard J. Enbody
Department of Computer Science and Engineering

Michigan State University, East Lansing, MI 48824-1226, USA
soodadit@cse.msu.edu, enbody@cse.msu.edu

Abstract

The stringency of attacks has grown simultaneously with
the development of the web. To combat some of the new at-
tacks, declarative security has been proposed in the form
of HTTP response headers from the server side. The
declarative model provides an extensible set of security
parameters in form of HTTP responses. In this, browsers
can respond with a requested security mechanism. This
paper explores the state of HTTP declarative security and
how it is being applied today.

1 Introduction

With the advent of new web attacks, protective strategies
have had to adapt. The latest attacks such as Clickjack-
ing [1], XSS Filter bypassing, MIME sniffing [9] have
dramatically affected the World Wide Web community.
No doubt XSS has been the most exploited bug in ap-
plications, but the new generation attacks such as Cross
Site Request Forging (CSRF), Clickjacking and so on
have transformed the nature of exploitation. The new at-
tack patterns require new type of security mechanisms be-
cause of the vector of origination. New security solutions,
named Declarative Security have been proposed and are
applied at a low level in the HTTP. The main idea is to
specify security in an HTTP parameter that is set by the
server and is sent along to the web browser as a part of the
in-line response. A browser renders the content of that
web page by scrutinizing the HTTP headers and tries to
invoke the specified security module in order to head off
the attacks.

As the name implies, the protection parameters for a
specific set of attack are declared by the developer as a

part of the web server or application running on the server.
In this way, declarative security provides both portable
and flexible security defense. Most of these declarative
security protection parameters are not the part of HTTP
1.1 specification, but are considered as vendor specific or
customized security solutions related to a specific prod-
uct. Usually, the declarative security in HTTP param-
eters is understood as the ”X” factor protection. Most
of the HTTP headers start with ”X” in order to differen-
tiate between standard HTTP 1.1 and normalized ones.
Some of the headers that define the declarative secu-
rity are X-XSS-Protection, X-Frame-Options, X-Content-
Type-Options, X-Download-Options, X-Content-Security-
Policy, etc. Microsoft and Mozilla have adopted this type
of security. We will describe declarative security and the
corresponding attacks in the next section in more detail.

This paper aims to determine the state of declarative se-
curity by testing the Alexa [11] top 1000 websites to find
the penetration of this type of security. In addition, we
will discuss some fallacies and problems with the declar-
ative security model and the lessons learned during this
experiment. For our analysis, we will be covering a set of
declarative protection headers which have been deployed
to prevent the new attack trends on the web.

2 Applied Security Model

According to the Microsoft’s applied security model
[12,13], implementation of security can be either impera-
tive or declarative. The security model is deployed based
on the two factors as:

• A security model is considered as declarative [12], if
the security features are implemented in the applica-
tion as a parameter which is used at the run time.

1



• A security model is considered as imperative [13] , if
the security features such as permissions are allowed
to generate or invoke a new object based on the re-
quirements of the code.

The major difference between these two security mod-
els is that imperative security is used to perform opera-
tions based on the demands and overrides, whereas declar-
ative security issues requests. Declarative security has the
advantage that the ’request’ model allows easier integra-
tion within existing implementations as well as the flexi-
bility to adapt to new attacks.

3 HTTP Declarative Security

Recent web attacks have proven to be difficult to handle
in the real time. Examples include Clickjacking, MIME
sniffing, manipulating file downloads, CSRF, and XSS
variants. In response, the declarative security model has
been proposed. It uses an HTTP header that has to be de-
clared on the server side by the developer or administra-
tor. The HTTP header triggers a response in the browser
to deploy requested security on the client side.

Browsers play a critical role in determining the suc-
cess of these types of attacks, so it is required that servers
and client browsers coordinate to fend off the attacks. To
facilitate coordination, browsers are modified to recog-
nize declarative security headers in HTTP headers sent
by servers. Once a declarative security HTTP header is
detected, the browser will execute the requested secu-
rity mechanism. Of course, if the server does not serve
up HTTP headers with declarative security parameters,no
protection can be implemented. Similarly, if browsers
cannot recognize the headers, no protection can be de-
ployed.

3.1 Types of Threats

The HTTP header parameters are specific to particular
types of attacks. Here we examine a set of attacks (and
protections) that can be specified in the headers.

3.1.1 Clickjacking Attacks: The clickjacking attacks
[1] are a new class of attacks that use differential tech-
niques to hide or obscure an element for trapping the user
to visit destinations that he did not intend to visit. They

use differential techniques such as compressed frames as
hidden or transparent, trapping mouse events [2], or UI
Redressing [3] primarily to trap the user. A number of
protection mechanisms have been implemented including
frame bursting codes [4], or restricting the frame execu-
tion. Microsoft introduced a protection feature in HTTP
headers as a part of declarative security. The X-FRAME-
OPTIONS [5] sets a restriction on the framing of a web
page for a particular domain. It uses the value DENY
and SAMEORIGIN for rendering the contents into a child
frame. It is possible to stop the rendering completely in
a child frame using DENY as a parameter. The SAMEO-
RIGIN parameter declares that the content can only come
from the parent site and that no third party content render-
ing is allowed.

3.1.2 CSRF and XSS Attacks: The advanced level of
Cross-Site Scripting (XSS) attacks in collaboration with
the Cross Site Request Forging (CSRF) has had a dra-
matic impact on the World Wide Web. In order to protect
against this attack, companies such as Mozilla and Mi-
crosoft have introduced a declarative security parameter.
Mozilla has introduced Content Security Policy (CSP) [6].
The CSP provides the HTTP header X-Content-Security-
Policy which is defined by a particular site in order to
define the characteristics of the content to be rendered.
In particular, the header specifies what content can be
trusted. To prevent reflective cross site scripting attacks,
Microsoft implemented a protection feature in the form of
HTTP header X-XSS-Protection[8]. If a website specifies
this HTTP header, the browser will trigger the XSS filter
and stop the rendering of the content in Internet Explorer.

3.1.3 MIME Scripting Attacks: An unrestricted con-
tent type included from a third party can disrupt the ro-
bustness of a web application resulting in security prob-
lems. There are a number of attacks that utilize the
Content-Type header to replace specific content elements
with malicious code to be downloaded and rendered in
the browser. The malicious code gets executed in the con-
text of the domain which can result in stealing of data.
Microsoft has introduced a protection feature in the form
of HTTP header as X-Content-Type-Options [9] for sub-
verting the MIME sniffing attacks. The nosniff parameter
stops the rendering of image as a MIME object and trans-
forms it into plain text format to avoid the execution of
scripts.

2



3.1.4 File downloading Scripting Attacks: These
types of attacks are commonly used for exploitation. It
is based on the fact that some browsers such as Internet
Explorer use inbuilt functionality to open the files directly
from the domain while downloading . As a result, any
malicious file that opens directly from the domain results
in untamed output which is a result of the scripts present
in it. Microsoft has introduced a new protection feature as
a part of its declarative security as X-Download-Options
[9] which stops the opening of the files directly from the
domain. The browser removes the file-opening control
from the download box when it encounters a noopen pa-
rameter in the X-Download-Options as a part of the HTTP
response.

4 Experiment

What is the state of declarative security? Are servers
making these declarations? Are clients responding? As
pointed out earlier, action is needed from both the server
and client sides in order for this technique to work.

4.1 Objectives

Here is a list of objectives that what we want to achieve:

1. To determine how widely adopted declarative secu-
rity is for new attacks.

2. To determine whether server softwares from different
vendors are using the solutions by default.

3. To examine the effectiveness of the combined security
solution between the client side and the server side.

4. To estimate the risks to the business in the online
world.

4.2 Testbed

For our experiment, we used Alexa [11] for a list of the
top 1000 websites across a number of different domains.
Since their ranking is based on web traffic we will be ex-
amining sites that are not only popular, but also attractive
to malicious users. The number of users associated with
a specific domain indicates the severity of risk and ex-
ploitation if an attack happens. The protection factor can

be determined only based on the deployed security solu-
tions. In addition, we have tested some popular websites
that are not on the list.

We wrote a small PERL tool named x enum to ana-
lyze websites. Since this experiment is entirely based on
the protection features implemented in HTTP headers, we
resorted to low level HTTP debugging to analyze the re-
sponses. The tool is designed in two modules. The first
module traps the responses and performs pattern match-
ing to detect the presence of a particular security param-
eter. The second module examines the behavior of HTTP
headers. Based on the output, we are able to determine
the type of attack that is sanitized by the domain through
these headers.

The experiment is strictly based on the security that is
declared in the HTTP headers and does not cover the stan-
dard security modules used on the client side. It is possi-
ble to have a number of countermeasures for a particular
attack, but this analysis only covers the security solutions
implemented at a low level in the HTTP protocol.

4.3 Results

The results indicate that very few websites out of the
Alexa [11] top 1000 websites are using any of the declar-
ative security headers when a request is initiated for the
default web page and other linked pages at the time of
testing. Out of the 1000 websites containing over 15,000
pages, that were put to test, we have not detected any
website that is using all the parameters. We also tried
some intensive tests on the sub-domains and mail service
providers on the popular websites such as Google, Yahoo,
Ebay, etc.

Table 2 shows the acceptance level of declarative secu-
rity in HTTP response headers in the top 1000 websites.
A ”Yes” indicates that at least one type of declarative se-
curity header was used. Only one site out of the top 25
uses any declarative security headers and only 7 of the top
25 use headers. Overall, only 8 of the top 1000 use any
declarative security headers. At the bottom of the table
we have included a few security-oriented sites to indicate
that usage does exist outside the top 25.

Table 1 shows the applied declarative security by
different web servers that are mostly used in top 1000
domains ranked by Alexa. We have looked at the type
of web servers that are used extensively. There is a
possibility of existence of different web servers apart

3



Web Server Headers
GSE Yes
Apache/1.3.41.fb2 None
Apache Yes
YTS None
MS-IIS None
Sun-JS-Web-Server None
sffe Yes
Apache-Coyote None
Server None
GFE 2.0 Yes
BWS/1.0 None
Resin/2.1.17 None
Ning HTTP Server 2.0 None
nginx None
IBM HTTP Server None
KONICHIWA/1.0 None
Cafe Yes
AmazonS3 Yes

Table 1: Types of Web servers used in the top 1000 Web-
sites and their declarative security header usage.

from the web servers listed in the Table 1. The Google’s
GSE server is using most of HTTP header protection
parameters during monetary transactions. This has been
noticed in Gmail and Google checkout sub-domain. The
response is evaluated as

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, max-age=0
Pragma: no-cache
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Date: Wed, 14 Apr 2010 19:46:54 GMT
Content-Type: text/html; charset=UTF-8
Set-Cookie: [Cookie value is truncated]
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
Server: GSE

The Yahoo Traffic Server (YTS), used for Yahoo mail
and other service websites, does not provide any signs of
usage of declarative security. The Rediff Apache Server
and Microsoft IIS 6.0/7.0 used for Rediffmail and Hotmail
respectively, are completely ignoring the HTTP header
protection parameters. The s0.2mdn.net and *.ytimg.com
hosts images and flash files that are used in major websites
such as Youtube, Amazon, Hotmail etc. for advertisement
purposes. It uses X-Content-Type-Options:nosniff in its
responses for preventing MIME sniffing. The Youtube’s
Apache server, Google Advertisement Cafe server and

Rank Website Server Headers
1 google.com GSE 2.0 Yes
2 facebook.com Apache/1.3.41.fb2 None
3 youtube.com Apache Yes
4 yahoo.com YTS/1.18.4 None
5 live.com MS-IIS/7.0 None
6 wikipedia.org Sun-JS-Web-Server/7.0 None
7 baidu.com BWS/1.0 None
8 blogger.com sffe Yes
9 msn.com Microsoft-IIS/6.0 None
10 qq.com nginx/0.6.39 None
11 twitter.com Apache, hi None
12 yahoo.co.jp YTS/1.16.4 None
13 google.co.in GWS Yes
14 taobao.com Apache None
15 google.de GWS Yes
16 google.com.hk GWS Yes
17 wordpress.com nginx None
18 sina.com.cn Apache/2.0.54 (Unix) None
19 google.co.uk GWS None
20 amazon.com Server None
21 myspace.com MS-IIS/7.5 None
22 microsoft.com MS-IIS/7.5 None
23 google.fr GWS Yes
24 bing.com Microsoft-IIS/6.0 None
25 ebay.com Apache-Coyote/1.1 None
. . .
62 orkut.com GFE 2.0 Yes
. . .
1000+ adsense.google.com Cafe Yes
1000+ gmail.com GSE 2.0 Yes
1000+ ha.ckers.org Apache Yes
1000+ noscript.net Apache Yes
1000+ flashgot.net Apache Yes
1000+ eyeviewdigital.com AmazonS3 Yes

Table 2: Applied declarative security as HTTP response
headers in top 1000 websites.

Blogger’s sffe server also implement this option.

The Facebook Apache/1.3.41.fb2 , Twitter’s Apache
and Server hi , MySpace’s Microsoft IIS 7.5 servers do
not indicate usage of declarative parameters, but Orkut’s
GFE 2.0 server uses X-XSS-Protection:0 as one of the re-
sponse header. Further, Orkut uses GSE server for collab-
orative work. Popular websites such as NetFlix, Flickr,
Ning, Photobucket, Linkedin, Internet Movie Database
(IMDb), Paypal, Skype are not using declarative security
specific HTTP response headers.

Further, we looked at a number of websites having a
high page rank apart from the top 1000 list from Alexa

4



[11]. We noticed that some of the websites that are
popular in the security community provide us with some
good signs. The ha.ckers.org, noscript.net, flashgot.net
shows the use of declarative security as:

HTTP/1.1 200 OK
Date: Thu, 15 Apr 2010 17:45:28 GMT
Server: Apache
Content-Script-Type: text/javascript
X-FRAME-OPTIONS: SAMEORIGIN
X-XSS-Protection: 0
Vary: Accept-Encoding,User-Agent
Connection: close
Content-Type: text/html; charset=UTF-8

In summary, we have not seen much variations as few
commercial websites include any HTTP headers that con-
tain the specific set of declarative security parameters. We
noticed that even some of the most popular and recog-
nized security companies, banks, and organizations have
not adopted this solution. It appears that declarative secu-
rity is not widely implemented on the server side.

5 Lessons Learned

During the course of this testing, we did not encounter
any serious problems, but there were certain issues that
made the testing a time consuming process. The handling
and generation of responses depend a lot on the nature and
design of web application including configuration of the
web server. During our research, websites using HTTP to
HTTPS redirection produced long delays in the responses
and even experienced hanging of processes. We found
that different web servers handle the request differently
and hence showed differential behavior in their response.
A lot of variance has been noticed during the course of this
experiment. In the end, with the appropriate manual effort
and automated solutions, the tests have been completed
successfully. We conclude:

5.1 The main commercial web servers, such as IIS
and IBM HTTP SERVER, have not implemented attack-
specific HTTP headers in their default responses.

5.2 Our analysis shows that websites running open and
customized web servers such as Apache, GWE, GWS,
Cafe are the only ones deploying the security parameters

in HTTP headers. Declarative security appears to be ”Se-
curity by Choice”. On the other hand, many open source
web servers have not implemented these security solu-
tions by default.

5.3 Our analysis has shown that awareness may be a
roadblock in the effective development of an optimal se-
curity solution. Looking at the results, we speculate that
there are three main issues that impact the awareness. The
first one may be that the developers are not well educated
about the existence of the new types of web attacks. In
the absence of awareness about the attacks, it is hard to
expect an appropriate and robust solution to be deployed.
Second, changes are required in a huge number of web
applications and the deployed hosting infrastructure to
strengthen the security. Third, a problem may lie in the
acceptance of these solutions as being robust. For exam-
ple, most of the HTTP header based solutions are vulner-
able to classic HTTP Response Splitting [10] attacks, but
these can be circumvented by applying additional security
measures.

5.4 A declarative solution requires participation of both
the server and the client. If either is not participating, no
security action is taken. From our results, it is apparent
that there is little participation on the server side so the
risk of these web attacks remains high.

5.5 While we found that the declarative security solu-
tions are not widely implemented, we have noticed some
evidence of acceptance of declarative security in security-
oriented sites.

6 Conclusion and Future Work

We have taken a look at one of the issue of getting an op-
tional security mechanism embedded in HTTP response
headers: adoption. A declarative solution requires partici-
pation of both the server and the client. There are pros and
cons of such a protocol. An advantage is that if few major
browsers implement the client side, the burden then falls
on the server side. However, the downside is the same:
the burden is now on the server side, and that is where we
find ourselves.

Briefly, some browsers have it, but few servers are
serving it. In this case, half a solution is no solution, but

5



it is early in the game.

Once both servers and clients are fully compliant, the
open question becomes: how effective will declarative
headers be to circumvent this class of attack? There is
hope that the flexibility of this approach may allow fast
response to any weaknesses.

Finally, if this approach proves to be successful, what
other classes of attack will this be appropriate for?

Acknowledgment: A sincere thanks to SecNiche Secu-
rity [14] and Armorize [15] for supporting and giving me
enough time to pursue work of this kind.

7 References

[1] Clickjacking - Robert R Hansen and Jeremiah Gross-
man. http://sectheory.com/clickjacking.htm, 2009

[2] Blog Article - More towards Clickjacking, Aditya
K Sood. http://zeroknock.blogspot.com/2009/02/more-
towards-clickjacking-simulating.html, 2009

[3] Browser Security Handbook- UI Redressing.
http://code.google.com/p/browsersec/wiki/Part2

[4] Frame Bursting Technique. Source Wikipedia -
http://en.wikipedia.org/wiki/Framekiller

[5] Blog Article - ClickJacking Protection Feature.
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-
security-part-vii-clickjacking-defenses.aspx

[6] Complete Details - Content Security Policy.
http://people.mozilla.org/b̃sterne/content-security-
policy/details.html

[7] Specification Details - Content Security Policy.
https://wiki.mozilla.org/Security/CSP/Spec

[8] XSS Filter Details - Reflected XSS Protec-
tion. http://blogs.msdn.com/ie/archive/2008/07/01/ie8-
security-part-iv-the-xss-filter.aspx

[9] IE Blog - Comprehensive Protection Parame-
ters http://blogs.msdn.com/ie/archive/2008/07/02/ie8-
security-part-v-comprehensive-protection.aspx

[10] Details about HTTP Response Splitting Attacks.
http://www.securiteam.com/securityreviews/5WP0E2KFGK.html

[11] Alexa Top Sites. http://www.alexa.com/topsites

[12] MSDN - Microsoft Declarative Security Model.
http://msdn.microsoft.com/enus/library/kaacwy28.aspx

[13] MSDN - Microsoft Imperative Security Model.
http://msdn.microsoft.com/enus/library/0xkh23z7.aspx

[14] SecNiche Security - http://www.secniche.org

[15] Armorize Technologies - http://www.armorize.com

6


