
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A Digital Preservation Network Appliance Based on OpenBSD

David S. H. Rosenthal

Stanford University Libraries

Stanford, CA 94305

http://www.lockss.org

Abstract

The LOCKSS program has developed and deployed
in a world-wide test a system for preserving access
to academic journals published on the Web. The
fundamental problem for any digital preservation
system is that it must be affordable for the long
term. To reduce the cost of ownership, the LOCKSS
system uses generic PC hardware, open source soft-
ware, and peer-to-peer technology. It is packaged as
a “network appliance”, a single-function box that
can be connected to the Internet, configured and
left alone to do its job with minimal monitoring or
administration. The first version of this system was
based on a Linux boot floppy. After three years of
testing it was replaced by a second version, based
on OpenBSD and booting from CD-ROM.

We focus in this paper on the design, implementa-
tion and deployment of a network appliance based
on an open source operating system. We provide
an overview of the LOCKSS application and de-
scribe the experience of deploying and supporting
its first version. We list the requirements we took
from this to drive the design of the second version,
describe how we satisfied them in the OpenBSD en-
vironment, and report on the initial deployment of
this second version of the appliance.

1 Introduction

The LOCKSS1 (Lots Of Copies Keep Stuff Safe)
program has developed and deployed test versions of
a system for preserving access to academic journals
published on the Web. The fundamental problem
for any digital preservation system is that it must
be affordable for the long term. To reduce the cost

1LOCKSS is a trademark of Stanford University.

of ownership, the LOCKSS system uses generic PC
hardware, open source software, and peer-to-peer
technology. It is packaged as a “network appliance”,
a single-function box that can be connected to the
Internet, configured and left alone to do its job with
minimal monitoring or administration. The appli-
ance has to operate, exposed to the Internet, in
environments lacking skilled system administrators,
without imposing large administrative costs to in-
stall, maintain or upgrade it.

The first version was based on a boot-floppy dis-
tribution of Linux. After three years of testing at
over 50 libraries world-wide, this appliance level of
the system was replaced by a second version, based
on a modified version of the OpenBSD install CD-
ROM. It was deployed to the test systems around
the world in January 2003. The application levels
of the system have also been redesigned and reim-
plemented from scratch; deployment of this new im-
plementation started in May 2003.

We focus in this paper on the design, implementa-
tion and deployment of a network appliance based
on an open source operating system. The goals and
overall architecture of the LOCKSS system [18], the
redesign of the protocol by which the peers commu-
nicate [12] and its economic underpinnings [19] are
covered elsewhere.

We provide an overview of the application the net-
work appliance is designed to support. We describe
the experience of deploying and supporting its first
version. We list the requirements we took from this
as a basis for the design of the second version, de-
scribe how we satisfied them in the OpenBSD en-
vironment, and report on the initial deployment of
this second version of the appliance.



2 The LOCKSS Program

Scientific communication has transitioned to the
Web. In particular, much peer-reviewed science now
appears only in e-journal form [10]. Academic jour-
nals are funded by university and other librarians
paying institutional subscription rates. These li-
brarians consider it part of their job to preserve
access to the record of science for future genera-
tions. The transition to the Web has meant a transi-
tion from a purchase model, in which librarians buy
and own a copy of the journal, to a rental model,
in which librarians rent access to the publisher’s
copy. Year-by-year rental provides no guarantee of
future access, and librarians fear the worst. Publish-
ers are motivated to allay these fears and persuade
libraries to switch to electronic-only subscriptions,
which save the publishers money.

The LOCKSS program is implementing the pur-
chase model for the Web, providing tools librarians
can use to take custody of, and preserve access to,
web-published journals. The tools allow libraries to
run persistent web caches that:

• collect material by crawling the e-journal Web
sites,

• distribute material by acting like a proxy cache
to make it seem to a library’s readers that web
pages are still available at their original URL,
even if they are no longer available there from
the original publisher [21].

• preserve material by cooperating with other li-
brary’s caches in a peer-to-peer network to de-
tect and repair damage.

The LOCKSS cache is implemented as a single dae-
mon process written in Java. It includes a special-
ized web crawler, the Jetty [6] web server to provide
both a Web proxy and an administration user inter-
face, and the peer communication protocol.

We believe that the major threats to digital preser-
vation are economic rather than technological; li-
brary budgets, especially for preservation, are never
adequate [4]. If LOCKSS is to succeed in preserv-
ing access for future generations, libraries must be
able to afford the system in the long term, through
the inevitable ups and downs of their budgets. The
goal of the LOCKSS program is to reduce the eco-

nomic risks by spreading the total cost of preserva-
tion across many independent budgets, minimizing
the impact on each individual budget, and lowering
the economic barrier to entry.

Cost reduction has, therefore, been a major focus of
the program from its inception. Both the LOCKSS
daemon and its operating system platform are free
and open source, and use generic PC hardware to
reduce hard costs as much as possible.

Soft costs, especially support and system adminis-
tration, can easily dominate the hard costs. Main-
taining availability of Internet services over the long
term is very difficult. Even at sites with expensive,
skilled professional system adminstrators between
20-50% of outages are caused by operator error [15].

Although it would be possible to include the
LOCKSS daemon among a variety of services on
a large server, the very long time horizons and slow
operation of the system are unlike the other services
that it might be running.

Machine boundaries can provide effective fault iso-
lation. This encourages our belief that the overall
reliability and cost of the system can be improved
by packaging the daemon, its system infrastructure,
and the hardware it needs into a network appliance.
By reducing the economic barrier to entry as far as
possible we hope to broaden the base of libraries en-
gaged in digital preservation activities. On the other
hand, we expect many larger libraries will run the
LOCKSS daemon without its appliance platform.

Our network appliance design is intended to reduce
both the cost and the risk of system administration
by identifying the expensive and risky operations in-
volved, and either eliminating or automating them.
Our top candidates are installation, upgrade, and
recovery from compromise. We have succeeded in
almost completely eliminating system administrator
involvement in all three. We believe our ideas and
experience in this area could be helpful to others.

3 Lessons

The first version of the LOCKSS appliance [18] was
based on the Linux Router Project (LRP) plat-
form [16], a boot floppy containing a minimal but
functional Linux system in a RAMdisk. For our



application, it was capable of downloading and in-
stalling into a temporary file system the LOCKSS
daemon and the software on which it depended, such
as the Java Virtual Machine (JVM), that would not
fit on the floppy,

To begin running the appliance, the host institution
downloaded and ran a Windows program that for-
matted, wrote and checked a generic version of the
floppy. When a generic PC was booted from this
floppy, it asked the operator for the necessary con-
figuration information then personalized the floppy,
partitioned the disk and created the necessary file
systems on it.

Booting the personalized floppy ran the normal
LRP boot sequence then downloaded the necessary
LOCKSS software, installed it in a temporary file
system, and finally invoked the JVM to run the dae-
mon.

The system evolved over about 3 years of testing to
run at over 50 libraries worldwide and was generally
sucessful in requiring neither great skill nor much
attention from the host institution. This taught us
many valuable lessons. The most important of these
was that running the system exclusively from write-
locked media (and from software verified against
hashes on write-locked media) greatly simplifies two
critical tasks: installing and configuring a new sys-
tem, and recovering from a compromise.

In unskilled hands the process of installing and con-
figuring a Unix system to be adequately secure is a
daunting and error-prone task. Running an almost
completely pre-configured system from write-locked
media obviates almost all the effort and risk.

Restoring a compromised system is a daunting and
error-prone task even in skilled hands. A simple
reboot is all that is needed to restore the LOCKSS
appliance to a known state. If the compromise dam-
aged or even completely destroyed the stored con-
tent, the normal peer-to-peer communication will
compare the damaged content with the content at
other peers and repair it from them or the publisher.

It may take many weeks to completely recover a de-
stroyed peer. However, once the damage has been
detected any potentially damaged and not yet re-
paired content actually requested by readers can be
obtained from other peers. Old academic papers
are infrequently accessed [3], so the load of these
requests is not significant.

Other important lessons we learned included:

• The floppy disks, used only during boot, were
remarkably reliable. We had very few media
problems.

• Operators did not always pay attention to in-
structions to write-lock their floppy disks.

• Squeezing the software we needed into the
limited confines of even a 1.68MB-formatted
floppy, and working with non-standard floppy
formats, was too time-consuming and error-
prone for our small team.

• In the interests of security, MD5 hashes of the
downloaded platform software were stored on
the floppy. It was thus necessary to persuade
each test site to create a new boot floppy be-
fore it could run a newly-released version of the
platform software, for example to patch a vul-
nerability. This had its bright side, in that we
were sure their configuration was consistent,
but it was an operations nightmare and very
time-consuming.

• Partly because of this inefficient upgrade path,
the small number of security vulnerabilities dis-
covered in our environment during the test con-
sumed a totally disproportionate amount of the
team’s efforts. This was compounded by the
way they tended to occur during holidays.

• A second reason for the difficulty in responding
to security vulnerabilities was the need to re-
build the distribution after patching it. LRP’s
build process was never very robust and our
modifications were so extensive that building it
became too fragile a process to manage under
the time pressure of a security incident.

• LOCKSS caches need static, globally routable
IP addresses and communicate via UDP. They
can be run behind firewalls or network address
translation (NAT) boxes but doing so involves
negotiation with the host institution’s network
administrators. If they are run outside the
firewall, a different negotiation with the net-
work administrators may be required. Some
sites insist on security audits before installa-
tion. The LOCKSS appliance needs a simple,
easy-to-explain, and convincing security story.



4 Requirements

From this experience we developed requirements for
the second version of the system:

• Use only generic PC hardware.

• Install the operating system, application and all
other software afresh in a newly-created evanes-
cent filesystem on every boot.

• Even if the system is compromised, there must
be no place a Trojan horse could be hidden.
All file systems that persist across reboots must
be mounted with noexec, nosuid and nodev op-
tions.

• All software, including the daemon, must either
run directly from read-only media or from pack-
ages whose signatures are verified by software
running directly from read-only media before
being installed into evanescent file systems.

• The public keys used to verify the signatures,
and thus permitted to sign software, must be
stored on write-locked media.

• Each package should carry multiple signatures.
It must be impossible for revocation of a single
key to cause the system to fail.

• The set of keys trusted to sign packages must
be under the control of the appliance operator.

• Media containing system configuration data or
keys must be write-locked while the network is
up.

• Non-writability of media must be tested, not
assumed.

• No process sending or receiving network data
may run as root.

• The system must walk the user through the
configuration process and test that the supplied
values work before accepting them.

• Upgrading the system should require only a re-
boot.

• The response to a newly-discovered vulnerabil-
ity should be simple and rapid, both to remove
the vulnerability and repair any damage to a
compromised appliance’s state.

• The system must be easy for a small team to
support. Our criteria for this were:

– Use a major OS distribution with security
as its primary focus; don’t use a minor
distribution with a limited base of support
such as LRP.

– Don’t use a floppy-based distribution such
as PicoBSD [5]; squeezing GnuPG and
other things we need onto a floppy is not
feasible, and the industry is phasing out
floppy disks.

– Don’t change the OS build-from-source
process.

– Maintain a minimal footprint in the OS
source.

– Build the entire environment from scratch
automatically every night.

5 Trust Model

We assume that libraries are capable of maintaining
the physical security of their LOCKSS appliances.
This leads us to trust to some extent the content
of write-locked media in the machine’s drives; an
attacker capable of replacing the CD from which the
machine boots can obviously damage the machine’s
content.

We limit this trust to the boot image and a few other
files on the CD that wouldn’t fit into it (Section 6).
All other software must carry a valid signature from
at least one of a set of keys which are trusted by
the system’s administrator and not known to be re-
voked. The trusted software consists of the kernel
and the utilities needed to perform the key revoca-
tion check, signature validation and software instal-
lation.

This technique has similarities to the Trusted Com-
puting Platform Architecture (TCPA) [2]. Our
goals, however are quite different. TCPA is intended
to enable programs which do not trust the admin-
istrator of the system on which they are running to
verify that the system’s integrity is attested to by
keys that the program does trust. LOCKSS peers
do not trust each other and do not run third-party
software; the integrity of the software on a LOCKSS
cache is of purely local interest. Thus our, much
weaker, goal is to assure the administrator of the



system that, at least immediately after a reboot, it
is running only software whose integrity is attested
to by keys that the adminstrator trusts.

Lacking the hardware and BIOS support of TCPA,
we cannot fully achieve this goal. A remote root
compromise could in some circumstances allow the
attacker to modify the system’s BIOS and thereby
disable the signature verification process. This in
turn might allow spurious software to persist across
reboots. To minimize this and other risks of a re-
mote root compromise, we run with OpenBSD’s
kern.securelevel variable set to 2, the most restric-
tive possible, and we remove the debugger from our
kernel.

6 Background

These requirements led us to a design based on
adapting the OpenBSD install CD. The design of
this bootable CD is a series of layers, which we de-
scribe from the outside in:

• Booting a PC from a CD requires that the im-
age of a 2.88MB “boot floppy” be present on
the CD.

• In the case of OpenBSD, this “boot floppy”
contains an FFS file system and the biosboot
program, which the PC’s BIOS locates and
starts.

• The file system contains a compressed kernel
image, which biosboot loads into memory and
executes.

• Part of the kernel’s data space is a RAMdisk
image containing an FFS file system 1.7MB big,
which is mounted as the root file system.

• This file system contains skeletal system direc-
tories such as etc and /dev. It also contains
a single crunched binary which implements all
the commands needed for the installation.

The kernel starts up in the normal way, but it
runs a special /etc/rc script that walks the user
through the installation process. The shell and all
the other commands needed to run this script are
in the crunched binary.

The crunched binary is constructed from the regu-
lar source tree by a pair of tools called crunchgen
and crunchide. Crunchgen works from a list of com-
mands by locating the Makefile for each command
in the source tree, and writing a new Makefile, a set
of stub programs and a top-level main() that calls
the stub chosen by argv[0]. The new Makefile builds
the appropriate set of object files from the command
sources, then links each command and its stub into
an intermediate file that is processed by crunchide
to hide all its global symbols except those of the
stub. Finally, the intermediate files are linked with
the generated main() into the crunched binary.

7 Design

Our approach was to replace the /etc/rc script run
by the minimal “boot floppy” environment on the
install CD with a slightly augmented regular sys-
tem’s /etc/rc which:

• Establishes swap space.

• Confirms that the configuration floppy is not
writable.

• Creates an evanescent file system in the swap
space; redirecting the system directories into it
via symlinks.

• Validates the signatures on the necessary soft-
ware packages.

• Installs the packages into the evanescent file
system (via the symlinks).

• Installs the network configuration information
from the floppy.

• Runs only the essential services:

– The SSH daemon [22] for remote adminis-
tration, with privilege separation [17]

– The LOCKSS daemon inside the JVM run
as an unprivileged user.

– The appliance does not run sendmail.
Outbound mail is sent by ssmtp, a min-
imal SMTP client. Inbound mail is not
accepted.

• Installs a crontab entry that implements the
automatic package update mechanism.



The package update mechanism at intervals chooses
at random from a list of download servers. As an un-
privileged user it checks that server for new packages
and signatures and downloads any found. It caches
them on the hard disk. They will be used at the
next reboot if their signatures are valid. Although
a compromise could allow these cached packages to
be modified, doing so would invalidate their signa-
tures. An invalid signature causes the boot process
to ignore that version of the package and revert to
an earlier version, probably the one on the CD.

8 Build Process

The implementation resides entirely in directory hi-
erarchies below /usr/src/distrib/i386/lockss/. ex-
cept for:

• The LOCKSS kernel config file.

• Three directories in /usr/src/distrib/special/ :

– A skeleton implementation of host, to
avoid the full glory of the BIND imple-
mentation.

– A skeleton implementation of sudo, capa-
ble only of being used by root to give up
privileges. This allows us to avoid root
processes accessing the network during the
boot sequence.

– An altered Makefile for init, needed to get
it to go multi-user by default.

• An additional entry in
/usr/src/distrib/i386/Makefile that builds
the LOCKSS CD.

Our goal of maintaining a small footprint in the dis-
tribution source has been met.

Our build script starts by checking the patch branch
out from OpenBSD’s AnonCVS [7] service into a
temporary build tree, updating our copy of the
ports tree, then checking the implementation of
the LOCKSS appliance platform out from our CVS
server and copying it into place in the build tree.

The build process then patches the kernel source
to install one additional driver, for swdt, a kernel-
based software watchdog that reboots the system if

a user-level daemon fails to reset the watchdog at
least every 30 seconds. It can sometimes recover a
system that has locked up.

The build process is essentially the OpenBSD install
CD build process. It results in a bootable CD very
similar to OpenBSD’s, but containing in addition to
the basic OpenBSD packages a set of packages from
the ports tree, including the JVM, the Red Hat emu-
lator needed to run it, ssmtp and some libraries they
depend on. It also contains a set of LOCKSS pack-
ages containing the daemon and its environment.
Installed on the CD itself is GnuPG [9], and the
shared libraries it needs to run.

Distributing new CD images, having administrators
burn them and use them to reboot their systems
is too time-consuming and expensive to fix security
vulnerabilities or for routine upgrades to the ap-
plication. The crontab entry described above can
download packages and cache them on the disk for
use at the next reboot. To avoid mistakes, there is
no separate build process for packages distributed in
this way. An upgrade package is built by building
an entire CD image, extracting the package from it
and signing it. The package and its signature are
placed on the download servers, and mail is sent to
the sites asking them to:

• log in as root

• execute a script that checks for new packages

• reboot

9 Implementation

The implementation consists almost entirely of
three shell scripts, residing in the RAMdisk image in
the CD’s ”boot floppy”, which are executed during
the system boot process. The work they do means
that our appliance takes a rather long time to boot,
but in the field of digital preservation speed is not
a requirement (see 10). The scripts are:

• /etc/rc.0.lockss, which is executed very early in
/etc/rc, before swap is enabled;

• /etc/rc.1.lockss, which is executed later in
/etc/rc, once the file systems are mounted;



• and /etc/lockss.start, which is executed at the
end of /etc/rc.local.

The implementation also uses GnuPG which (to-
gether with the libraries it needs) is accessed directly
from a directory on the CD, to ensure that its tes-
timony as to the trustworthiness of the packages to
be installed can be trusted. The keys used in this
process are on the write-locked floppy and are thus
under the control of the appliance operator, who can
add or delete keys, and also add signatures to the
floppy. This is an important point; forcing our users
to trust our keys would allow us to shut the system
down if we chose.

The remaining part of the implementation consists
of some changes to the list of files to be ”crunched”
together to form the command binary in the mini-
mal system in the CD’s ”boot floppy”.

9.1 /etc/rc.0.lockss

This script is run just before swap is turned on to
ensure that there is swap space available. It exam-
ines the available hard disks and, if they have not
yet been partitioned appropriately, asks permission
then does so.

The first hard disk is partitioned with about a gi-
gabyte of swap space; the remainder and all other
disks are used as file systems to contain preserved
content. It creates an appropriate /etc/fstab de-
scribing them and the MFS [20] file system that will
be created later in the swap space.

9.2 /etc/rc.1.lockss

This script implements the bulk of the LOCKSS
”platform”. We describe it in narrative form. The
file name space as the script starts is defined by the
/etc/fstab written by /etc/rc.0.lockss. It is shown
in Figure 1.

It attempts to mount the CD the system was booted
from and, if it cannot, calls for help. It is not un-
known to find that the kernel autoconfiguration pro-
cess has failed to recognize the CD from which it was
booted.

It then mounts the MFS file system on /dist. At

RAMfs
/

dist usr cachetmp

FFS

Figure 1: The file name space as /etc/rc.1.lockss
starts.

this point the /tmp directory is still where it was on
boot, in the RAMdisk, and it is about to run out
of space. The script relocates /tmp into the newly-
created MFS by copying its content to /dist/tmp
and replacing it with a symlink there.

It checks to see if there is a floppy in the drive.
If not, it runs the configuration process described
below. If there is one but it is write-enabled, the
script refuses to proceed until it is write-locked. If
there is a write-locked floppy, any configuration in-
formation it contains supercedes any configuration
information on the CD. The GnuPG public keyring
is initialized from the floppy.

It then checks all the packages it can find on the
package path and writes a script that, when later
executed, will for each necessary package install
the latest available version which has at least one
valid signature. The package path consists of the
floppy, specific directories on the CD, and the cache
of downloaded packages on the hard disk. Note
that during this process the entire running environ-
ment consists of the RAMdisk image from the CD,
GnuPG (being run directly from the CD), and con-
figuration data from a floppy that is known to be
write-locked. The checking process is as follows:

• The network is bought up using the configu-
ration information but without any daemons
running.

• GnuPG is invoked as an unprivileged user to
do a key revocation check on its keyring.

• The network is shut down.

• All detached signatures for any MD5 files found
in the package path are checked. If at least one
valid signature by a key that is not known to



be revoked is found, that file’s list of MD5s is
added to the valid-MD5 list.

• The package path is searched for versions of
the necessary packages. The MD5 of each ver-
sion found is computed and compared against
the valid-MD5 list. If a match is found, and a
lower version number of the package is already
in the install-package script, it is deleted. Then
a command to install this version is added to
the script.

• If no unrevoked signature validates the MD5 of
a package that must be installed, the boot pro-
cess is aborted and the system enters “hunker-
down” mode. It, and its preserved content, are
inaccessible from the network and thus should
be safe for some time. The administrator will
need to add new signatures to the floppy before
resuming normal operation.

The script next prepares for package installation by
creating copies of the system directories under /dist
and replacing the originals with symlinks pointing
to the copies.

The system then executes the install-package script
it wrote. This first installs the OpenBSD base
”packages” into directories in the MFS under /dist,
then replaces the “boot-floppy” system directories
with symlinks to the installed versions in /dist.
Now the file name space approximates a properly
installed OpenBSD system, and the install script
continues to install a chosen set of real packages
from the ports tree, and a small number of LOCKSS
packages. Although any of these packages may come
from any of the directories in the package path, each
is known to have had its MD5 signed by at least one
unrevoked key trusted by the system’s administra-
tor.

Finally, the script unmounts everything it mounted
and returns to the /etc/rc script. The file name
space at this point is shown in Figure 2.

9.3 /etc/lockss.start

This script is run by /etc/rc.local just before the end
of the system boot process, after the few system
daemons we have not disabled have been started.
It enables the watchdog, checks for the required
LOCKSS daemon configuration files and, if it finds

RAMfs
/

dist usr cachetmp

FFS
usr tmp

MFS

Figure 2: The file name space as /etc/rc.1.lockss
ends.

them, invokes the JVM to run the LOCKSS dae-
mon.

9.4 Configuration

LOCKSS peers use their IP address as their long-
term identity and thus, at present, do not support
DHCP. If no configuration information is available,
early in /etc/rc.1.lockss a text dialog is used to ac-
quire an IP address, netmask, gateway, DNS servers,
root password etc.

The supplied values are validated by using them to
bring up the network interface temporarily and, as
an unprivileged user, perform some simple tests such
as a DNS lookup. If the tests work, the network
interface is shut down. The user is asked to write-
enable the floppy, and the configuration is written
to the floppy as a text file. New SSH host keys are
generated and stored on the floppy, together with
the initial GnuPG public keyring. The user is then
asked to write-lock the floppy. The system verifies
that it is write-locked before proceeding.

10 Performance

One performance issue that might make these tech-
niques unsuitable for other applications is that it
takes the system some time to boot. On a 400MHz
PC, somewhat slower than those our test sites typ-
ically use, with a 40X IDE CD drive, the boot se-
quence takes about 320s from reset to login prompt.
This includes about 30s checking signatures and
hashes, about 25s installing the OpenBSD base
packages, and about 180s installing about 96MB of
other packages.



If our caches reboot once every 60 days this would
represent about 0.006% downtime, a reasonable
price to pay for low administrative costs. Although
we don’t have accurate data, we believe our test
caches reboot significantly less often than this. Ob-
viously, reducing the size of the packages to be in-
stalled would reduce the impact of rebooting on
availability, and there is much scope for doing so.

Once the system is up, its performance is indistin-
guishable from a similar system running a more con-
ventional configuration of OpenBSD.

A more critical performance measure is the time
taken to respond to a security vulnerability. We
simulated this by involving our test sites in a
“firedrill”, in which we generated and distributed
a “patch” that simply sent us an e-mail confirming
that the system had downloaded and was using it.
The firedrill showed that building and distributing
a patch is now far more efficient than it was for the
Linux floppy version. With little effort on our or
their part we were able to get 96% of the deployed
systems upgraded within 48 hours of the start of the
firedrill.

11 Deployment

In general, the design, implementation and roll-
out of the new version to over 50 test sites went
smoothly. Almost all our test sites have been
trouble-free since their upgrade in January 2003
from the floppy version. This is a great tribute to
the quality of OpenBSD.

The LOCKSS appliance has survived security audits
by some fairly demanding sites (e.g. CERN and
LANL).

12 Problems

We did encounter a number of problems.

Our initial design involved union mounting the MFS
file system over the root directory. This didn’t work;
it seemed to cause deadlock in the kernel. We have
not verified that the problem is still present; working
around it seemed preferable to diagnosing problems

that early in the boot sequence.

OpenBSD appears to provide no way to check
whether a floppy is write-locked or write-enabled
without mounting it, and seeing whether an attempt
to write to it fails. If it does fail, the kernel gen-
erates alarming error messages which the operator
has to be told to ignore. OpenBSD currently lacks
FreeBSD’s mechanism for selectively disabling these
messages.

We orignally wanted to use the system itself to burn
the CDs. Again, the operator has to ignore some
alarming error messages, so we put the idea aside.

The kernel autoconfiguration sometimes fails to rec-
ognize the CD from which it was booted, causing the
attempt to mount the CD to fail, and preventing the
system installing the software on it. Power-cycling
the machine seems to be the only cure.

The native 1.3 JVM for OpenBSD wasn’t available,
so we run the Linux JVM under the RedHat emu-
lator. This works well but installing the emulator
and the RPM package slows the boot considerably
and makes us nervous.

The RPM-based package install for the JVM insists
on executing from a path in /usr ; we have to specifi-
cally turn off noexec during this install and re-enable
it afterwards.

We ask our test sites to download an image of each
new version of the CD as a .iso file, write a CD-
R of it using some other machine, and boot their
cache machine from it. The first time they tried
this, about 1 in 20 sites had problems of one kind
or another that required support from the team.
Examples are difficulty with Windows CD-writing
software, difficulty with boot device settings in the
BIOS, and bad CD-R media.

Despite our suggestion that they use second-hand
machines, our enthusiastic test sites often buy
brand-new hardware. This frequently has moth-
erboard Ethernet chips which are too new for the
OpenBSD drivers to use. We have accumulated a
reserve of really old Ethernet cards to mail out in
such cases.

The security vulnerability firedrill demonstrated a
need to improve our process for making a patch
available. In particular, we need to focus on mak-
ing our test sites aware that when we say “you need



to reboot your system right now” they need to pay
attention. We hope that exercising this process reg-
ularly will make it go more smoothly when it is
needed “for real”; the 96% success in 48 hours of
the first drill is not good enough.

13 Related Work

Our work has similarities with KNOPPIX[11] and
other bootable Linux CDs used as demo and rescue
systems. They typically run directly from the CD
rather than, as we do, installing system packages
into an evanescent file system. We take a lot longer
to boot while we do the installation, but we can
validate the signatures on the packages, and thus use
downloaded signed packages to upgrade the system
on the CD.

Sun’s Cobalt product line [13] is an excellent ex-
ample of packaging Linux into an network appli-
ance that works well with limited administration.
Our automatic software upgrade mechanism was in-
spired by Cobalt’s, which has automatic notification
of availability but manual installation.

14 Future Work

Work on the platform is on hold for a while; while we
focus on using it to deploy a completely re-written
version of the daemon. When we get back to it, our
to-do list includes in descending order of priority:

• supporting DHCP, NAT, and machines behind
firewalls,

• using native Java,

• supporting USB storage devices for configura-
tion,

• building a KNOPPIX-like LOCKSS demo
mode,

• burning CDs from the system itself to allow
packages and configuration data to be stored
on the CD,

• revisiting the idea of union mounting MFS over
the root.

There is also the possibility of extending this work
to interesting and useful areas that aren’t directly
related to the mission of LOCKSS. Extensions to
the stackable Open Source BIOS [1], which is based
on LinuxBIOS [14], could provide a trusted boot se-
quence on which we could base our verification of the
higher levels of the system. Combining this with a
physically write-protected USB “dongle” containing
the keys could provide almost all the capabilities of
TCPA except tamper-resistance and secret key pro-
tection for Open Source systems.

15 Conclusion

In many ways, OpenBSD has proven an excellent
basis for our network appliance. It was easy to
adapt the install CD to our purposes. The care-
fully created default configuration is an excellent
starting point for further restrictions. The use of
privilege separation in the SSH daemon reduces the
risk of allowing adminstrative access via the net-
work. OpenBSD 3.3’s addition of Stack Smashing
Protection [8] adds further protection. AnonCVS
access to the patch branch and the ports tree has
allowed us to build from scratch every night, ma-
terially reducing the load on a small support team,
especially when responding to new vulnerabilities.
The OpenBSD build process is well-structured and
allowed us to add a new CD image with little effort,
both initially and as the base distribution evolved
from 3.1 to 3.3.

We have added to OpenBSD a set of capabili-
ties that allow it to serve quite satisfactorily as a
network appliance with unskilled administrators, if
only for an application that can tolerate extended
reboot times. These include:

• Running the system entirely from evanescent
file systems re-created from write-locked media
at boot time, with no ability to execute code
from a persistent file system.

• Verifying the signatures on all software during
the boot process.

• Implementing a semi-automatic patch distribu-
tion mechanism for packages and their signa-
tures.

There are, however some deficiencies in OpenBSD



that still cause significant problems as we deploy it
as an appliance. Those causing the most support
load are:

• The kernel produces many scary-looking error
messages in non-error situations.

• The kernel does not reliably recognize low-cost
IDE CD drives.

• The NIC drivers are sometimes unable to rec-
ognize or use leading-edge hardware.

There is never a perfect choice of platform for an
application; all choices have advantages and disad-
vantages. OpenBSD has served us as well as we
expected, and we hope that others implementing
network appliances will find our experiences useful,
whether they agree with our choice or not.

16 Acknowledgements

This material is based upon work supported by
the National Science Foundation under Grant No.
9907296, however any opinions, findings, and con-
clusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily
reflect the views of the National Science Foundation.

The LOCKSS program is grateful for support from
the National Science Foundation, the Andrew W.
Mellon Foundation, Sun Microsystems Laborato-
ries, and Stanford Libraries.

Special thanks are due to Mark Seiden, who made
major contributions to both versions of the plat-
form and especially to the signature verification pro-
cess. Thanks are due also to our long-suffering beta
sites, and to the LOCKSS engineering team of Tom
Robertson, Tom Lipkis, Claire Griffin, and Emil
Aalto. Our web crawler is adapted from an orig-
inal by James Gosling.

Vicky Reich has made the LOCKSS program possi-
ble.

The anonymous BSDcon reviewers and Todd Miller,
the paper shepherd, provided many pertinent and
helpful comments.

Finally, the thanks of the entire LOCKSS team
go to everyone who has contributed to OpenBSD,
GnuPG, the JVMs, and the Jetty web server.

17 Availability

The source for the entire LOCKSS system, includ-
ing the appliance platform described above, car-
ries BSD-style Open Source licenses and is available
from the LOCKSS project at SourceForge.

References

[1] Adam Agnew, Adam Sulmicki, Ronald Min-
nich, and William Arbaugh. Flexibility in
ROM: A Stackable Open Source BIOS. In Pro-
ceedings of the Freenix Track: 2003 Usenix An-
nual Technical Conference, San Antonio, TX,
USA, June 2003.

[2] Trusted Computing Platform Alliance. TCPA.
http://www.trustedcomputing.org.

[3] Kent Anderson, John Sack, Lisa Krauss, and
Lori O’Keefe. Publishing online-only peer-
reviewed biomedical literature: Three years of
citation, author perception, and usage expe-
rience. The Journal of Electronic Publishing,
6(3), March 2001.

[4] Assoc. Research Libraries. ARL Statis-
tics 2000-01. http://www.arl.org/stats/

arlstat/01pub/intro.html, 2001.

[5] Andrzej Bialecki. PicoBSD. http://people.

freebsd.org/~picobsd/picobsd.html.

[6] Mort Bay Consulting. Java http server
and servlet container. http://http://jetty.
mortbay.org/jetty/.

[7] Charles D. Cranor and Theo de Raadt. Open-
ing The Source Repository With Anonymous
CVS. In Proceedings of the Usenix Annual
Technical Conference, Monterey, CA, USA,
1999.

[8] Hiroaki Etoh and Kunikazu Yoda. Pro-
tecting from stack-smashing attacks.
http://www.trl.ibm.com/projects/

security/ssp/main.html, June 2000.



[9] GnuPG. http://www.gnupg.org.

[10] Michael Keller, Victoria Reich, and An-
drew Herkovic. What is a Library Any-
more, Anyway? First Monday, 8(5),
May 2003. http://www.firstmonday.org/

issues/issue8_5/keller/index.html.

[11] Klaus Knopper. Building a self-contained auto-
configuring linux system on an iso9660 filesys-
tem. In Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, GA, USA,
October 2000.

[12] Petros Maniatis, Mema Roussopoulos,
TJ Giuli, David S. H. Rosenthal, Mary
Baker, and Yanto Muliadi. Preserving Peer
Replicas By Rate-Limited Sampled Voting.
Technical Report cs.CR/0303026, Stanford
University, March 2003. Submitted for
publication.

[13] Sun Microsystems. http://www.sun.com/

hardware/serverappliances/.

[14] Ronald Minnich, James Hendricks, and Dale
Webster. The Linux BIOS. In Proceedings of
the Fourth Annual Linux Showcase and Con-
ference, October 2000.

[15] D. Oppenheimer, A. Ganapathi, and D. Pat-
terson. Why do Internet Services Fail, and
What Can Be Done About It? In Proc. 4th
Usenix Symp.on Internet Technologies and Sys-
tems, March 2003.

[16] Linux Router Project. http://http://www.

linuxrouter.org.

[17] Niels Provos. Preventing Privilege Escala-
tion. Technical Report 02-2, CITI, University
of Michigan, August 2002.

[18] David S. H. Rosenthal and Vicky Reich. Per-
manent Web Publishing. In Proceedings of
the USENIX Annual Technical Conference,
Freenix Track (Freenix 2000), pages 129–140,
San Diego, CA, USA, June 2000.

[19] David S. H. Rosenthal, Mema Roussopoulos,
Petros Maniatis, and Mary Baker. Economic
Measures to Resist Attacks on a Peer-to-Peer
Network. In Proceedings of Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, CA,
USA, June 2003.

[20] Peter Snyder. tmpfs: A Virtual Memory
File System. In Proceedings of the Autumn

1990 EUUG Conference, pages 241–248, Nice,
France, 1990.

[21] Diomidis Spinellis. The Decay and Failures of
Web References. Communications of the ACM,
46(1):71–77, January 2003.

[22] Tatu Ylonen. SSH – Secure Login Connec-
tions over the Internet. In Proceedings of the
6th USENIX Security Symposium, pages 37–
42, San Jose, CA, USA, July 1996.


