
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Automated Binary Security Update System for FreeBSD

Colin Percival
Computing Lab, Oxford University

colin.percival@comlab.ox.ac.uk

Abstract

With the present trend towards increased reliance upon
computer systems, the provision and prompt application
of security patches is becoming vital. Developers of all
operating systems must generally be applauded for their
success in this area; systems administrators, however,
are often found lacking.

Anecdotal evidence suggests that for FreeBSD much of
the difficulty arises out of the need to recompile from the
source code after applying security patches. Many peo-
ple, after spending years using closed-source point-and-
click operating systems, find the concept of recompiling
software to be entirely foreign, and even veteran users
of open source software are often less than prompt about
applying updates. Providing these people with a binary
option should significantly improve the rate at which se-
curity updates are applied.

This paper describes an automated system for building
and distributing binary security updates for FreeBSD,
and describes the challenges encountered. I also de-
scribe some of the limitations of this system, and discuss
some possibilities for future work.

1 Introduction

Over the past few years, there has been a trend towards a
much more rapid exploitation of security holes. It has
been shown with honeypots that insecure systems are
often compromised within days or hours of being con-
nected to the internet [An02, Ho02]; it has even been
suggested that a significant proportion of systems con-
nected to the internet could be compromised by a so-
phisticated worm within 30 seconds [SPW02].

At the same time, there is a constant influx of new users
into the FreeBSD community; even with detailed in-
structions, traffic on the FreeBSD mailing lists indicates

that a large number of people find the task of applying
security patches and rebuilding affected programs to be
difficult and/or confusing. Given that releases are on av-
erage several months – and several security holes – old
by the time they are installed, the possibility arises that
a new user will find his system compromised before he
has a chance to bring it up to date.

Furthermore, there are some circumstances where build-
ing from source is undesirable. Some embedded sys-
tems might lack sufficient disk space to store the entire
source and object trees; some system administrators re-
move part or all of the build toolchain in an (arguably
misguided) attempt to thwart any attempt to build a
rootkit; and the purveyors of application-specific ‘toast-
ers’ might very likely wish to keep the complexity of
building from source entirely hidden from their users.

For these reasons, we believe that the provision of a sys-
tem of binary security updates is absolutely critical.

2 Previous work

A large number of binary update systems have been
created for various applications and operating systems,
for both security updates and more general software up-
dates. We first consider systems specific to security up-
dates.

Between June 2001 and May 2002, many FreeBSD se-
curity advisories were accompanied by ‘experimental bi-
nary upgrade’ packages [SA02]. These were built by
hand based on (human) consideration of which bina-
ries should have been modified by a given source patch,
and distributed in the standard FreeBSD package format.
When a large number of binaries were affected (for ex-
ample, if a library was modified) binary upgrade pack-
ages were not provided.

A similarly experimental, but rather more limited, sys-
tem has been created for OpenBSD [Ga03]. Here, por-

tions of the ‘world’ are rebuilt according to instructions
accompanying the official source patches, and a (hand-
picked) subset of the files built are packaged into a com-
pressed ‘tar’ archive, which is installed simply by ex-
tracting the new files over the old. Again, it does not ap-
pear that any attempt was made to handle patches affect-
ing large numbers of binaries spread across the ‘world’.

A more sophisticated approach was taken by a commer-
cial service which currently provides binary updates for
NetBSD [PST03]. Based on the MD5 [Ri92] digests of
binaries pre- and post-patching, a list of potential dis-
tribuends is compiled. This list is then inspected by hand
to remove files which are “modified but not related”; we
will describe later how some binaries end up being mod-
ified even without any changes in the source tree. This
hand-pruned set of binaries is then packaged into a shell
script which provides the options of installing the new
binaries, reverting to the previous binaries, et cetera.

Because these systems are specific to security updates,
they all attempt to minimize the number of files updated,
and they all include human participation in this effort.
This raises a significant danger of error; even under the
best of conditions, humans make mistakes, and the task
of determining which files out of a given list had been
affected by a given source code patch requires detailed
knowledge of how the files are built. A good example of
this is the SunRPC XDR library bug from March 2003
[CE03] – few, if any, people would have expected to find
vulnerable XDR code in /bin/mv or /bin/rm. We
argue therefore that building updates automatically has
an advantage of correctness as well as an advantage of
economy.

On the side of general binary updates, the field is
more varied. Perhaps the best known of these is Mi-
crosoft’s Windows Update, which distributes security
updates, service packs, driver updates, and new versions
of Microsoft ‘middleware’; these are installed in the
same manner as application software. Some application
packaging tools also provide binary patch mechanisms;
for example, InstallShield has an update service [IS03]
which, depending upon the tool purchased, can replace
an application entirely, distribute only modified files, or
distribute only patches to the modified files.

The RedHat and Debian distributions of Linux both have
binary update systems, up2date and apt-get respectively.
Similar to these are portupgrade (which, as the name in-
dicates, only upgrades software from the ports tree), and
the FreeBSD binup project [Bi02], which aims to pro-
vide a general mechanism for all binary updates, but has
unfortunately stalled due to a lack of developer time. All

these tools work on the same general principle – every-
thing is ‘packagized’, and the updating process consists
simply of removing the old package and installing a new
package.

3 Automated update building

In order to build binary updates without human inter-
vention, we start with a very simple approach: Build
the ‘RELEASE’ world in one directory, build the world
based on the latest security patches in another directory,
and compare. Any files which need to be included in the
published update will have changed. Unfortunately, as
noted earlier, the converse is not true: Some files will
change every time they are built, even if they are built
from the same source files; in FreeBSD 4.7, there are
160 such files, of which 128 are library archives.

Carefully examining the regions where these files dif-
fer shows the cause: They contain human-readable time
and date stamps (hereafter we refer to these, along with
user and host stamps, as ‘build stamps’). Some of these
are well known and serve obvious purposes: The ker-
nel and boot loader, for example, display at startup the
user, hostname, date, and time when they were built, and
the library archives need to record timestamps so that
their constituent object files can be accurately recreated;
but other executables, such as those associated with perl,
NTP, PPP, and ISDN, have build stamps without any ap-
parent purpose.

In order to eliminate false positives introduced by these
build stamps, we change our process as follows: We start
by building the ‘RELEASE’ world twice, adjusting the
clock to ensure that the date is different (some files con-
tain the date, but not the time they were built), and then
compare these two worlds in order to locate the build
stamps. For binary files, we consider a build stamp to
consist of a byte which differs between the two versions
of the file and up to 128 ‘string’ characters in either di-
rection; for text files, we consider a build stamp to be
a complete line which differs between the two versions
of the file. Once we have located the build stamps, we
build the new world and compare it to the release, ex-
cluding the regions previously marked as build stamps;
any variation outside of those regions indicates that the
relevant file needs to be distributed as part of a binary
update. Finally, we rebuild the new world again and lo-
cate the new build stamps (this final step is necessary be-
cause any change to a binary is likely to move the build
stamps.)

4 A few more complications

While the above procedure works for almost all files,
a few need special treatment – usually in the form of
cosmetic patches to the source tree. For some reason,
fortune data files are randomized during the build pro-
cess, even though fortune(6) already selects a fortune
randomly. This causes the fortune data files to build dif-
ferently every time; removing the randomization from
the build process eliminates the variability without any
noticeable effect.

On a related note, the compiler used for FreeBSD 4.x
(gcc 2.95), in the rare case where it cannot find a pro-
grammer written global name in a given file, introduces
a random string for this purpose. (In the FreeBSD 4.7
world, this only occurs when compiling the libobjc li-
brary.) Changing this behaviour to instead generate a
global name by hashing the current path and the input
filename removes the variability without affecting other
functionality. [Si03]

When security patches are made to FreeBSD, it is stan-
dard practice to update a version string contained in the
kernel. This has the advantage of making it apparent that
the changes have been made; but it has the side-effect of
causing the kernel to change when userland-only secu-
rity fixes are applied. We override these changes.

Some of the documentation for groff uses the current
date in examples; this would be handled properly as a
timestamp, except that “March” is shorter than “Febru-
ary”, and causes cascading differences in the line breaks.
Modifying the examples avoids this problem.

Finally, some files are not entirely replaced during the
build process: The directory used by info(1) and perl’s
perllocal.pod both have entries appended to them dur-
ing the build process, but are never cleaned; the kernel
building code keeps a count of how many times the ker-
nel has been compiled; and some files (the kernel, mod-
ules, boot loader, and init) are backed up. Removing the
info directory, perllocal.pod, the kernel compile counter,
and the backup files eliminates the spurious variability
which they introduce.

One additional complication is introduced by crypto-
graphic export laws. Some files exist in multiple ver-
sions: Non-cryptographic, cryptographic, kerberos 4,
and kerberos 5. We handle this by building the afflicted
files, in all applicable forms, in separate directories.

Out of the patches necessary to work around these com-

plications, only the one relating to fortune files has been
incorporated into the main FreeBSD tree. Gcc and groff
are ‘contributed’ code, and consequently local modifica-
tions are discouraged (we note, however, that the issue
with gcc is likely to be corrected in a future version); and
the question of kernel labelling resulted in a very lengthy
debate when the current practice was first adopted and it
seems unlikely to change now.

5 Distribution

Based on our generated list of which files need to be
distributed, we generate an update index containing lines
of the form

/path/to/file$oldhash$newhash

where /path/to/file is the full path to the file be-
ing updated, oldhash is the MD5 hash [Ri92] of the
old version being replaced, and newhash is the MD5
hash of the new version being installed. Note that up-
dating one file could result in several associated lines,
one for each ‘old version’; to handle this, we keep a list
of all ‘valid’ old hashes by starting with the hash values
from the published binary release and adding the hashes
of any new files we distribute.

Along with the update index is distributed a 2048 bit
public RSA key, the MD5 hash of the update index
signed with the private part of the RSA key, the new ver-
sions of the files, identified by their MD5 hashes, and
binary diffs generated with BSDiff [Pe03], identified by
the MD5 hashes of the old and new versions. Note that
these files, once created, are entirely static.

Given that the update index contains file hashes and the
update index is signed, the only step which needs to be
performed securely is the publication of the public key.
This is done by verifying the MD5 hash of the public
key; at present, a configuration file is distributed with the
client software which includes the hash of a key belong-
ing to the author (the mechanics of securely distributing
application software is a bootstrapping issue and outside
the scope of this paper); anyone else using this code to
publish their own binary updates would naturally have
to distribute their own key.

Everything else can be done insecurely: The update files
can be distributed over insecure HTTP, can be mirrored
easily, and can be transported via sneakernet to update
a system which has no internet connection at all. This

also has the advantage of allowing updates to be built on
a system which is physically disconnected from the out-
side world, with source patches carried in and published
updates carried out manually.

6 Installation

Machines attempting to update themselves first down-
load the RSA public key and verify that it has the correct
MD5 hash; the update index is then downloaded, and the
signature is verified. For each line in the update index,
the MD5 hash of the currently installed file is then com-
puted; if it matches the oldhash value contained in the
update index, the binary diff is downloaded and the new
version of the file is generated; as a backup method, if
the file generated from the binary diff does not have the
correct hash, the entire new file is downloaded (and ver-
ified to have the correct hash).

This use of binary diffs provides a remarkable reduction
in bandwidth usage. Updating a typical installation of
FreeBSD 4.7 (specifically, one which includes cryptog-
raphy, but does not include either version of Kerberos)
to include all the applicable security fixes as of mid-
June 2003 involves replacing 97 files which total 36MB.
The binary diffs for these total 621kB, a reduction by a
factor of 58. Even if all the HTTP/TCP/IP overhead is
added, the total bandwidth required for updating such a
system is under 1.6MB – less than half of the 3.6MB
used by cvsup [Po02] when performing the same update
on the source tree. Indeed, based on an estimate from
Netcraft that there are between 50 and 60 thousand pub-
licly accessible web servers running FreeBSD world-
wide [Pr03], and data from FreshPorts [La03] which
suggests that web servers constitute slightly less than
half of the machines running FreeBSD around the world,
we believe that it would be possible for a single low-end
server to provide binary updates to every FreeBSD sys-
tem in the world within a single day.

After the updated files have been fetched and/or gen-
erated via patches, the updates are installed by back-
ing up the old files and moving the new files over the
old (subject to maintaining permissions, ownership, and
file flags). Any supplemental tasks necessary for the
updates to take effect (restarting daemons, recompiling
staticly linked application software which uses modified
libraries, and/or rebooting) is left to the system adminis-
trator.

It is important to note that this process is entirely state-

less; no database is kept of which updates have been in-
stalled – instead, at each point, the currently installed
files are examined to determine if they are ‘old’. There is
no mechanism for installing some, but not all, available
updates – we assume that nobody would wish to patch
some, but not all, security holes; indeed, there is no con-
cept of an individual ‘update’. Since the updates are
produced by comparing the results of builds at various
points along a security branch, there is no mechanism
for identifying which particular security advisory corre-
sponds to particular binary changes (unless, of course,
there has only been one advisory in the applicable time
window). Any administrator wishing to verify that he
has not forgotten to update a system must simply run the
client software; indeed, we encourage all potential users
(i.e. people who started from a binary install and have
not recompiled any part of the world) to set a cron job to
run the update client.

7 Caveats

There are a few problems with the approach we take.
First, because we rely upon the MD5 hash of currently
installed files to determine which files need to be up-
dated (and, in the case of export differences, which new
version should be installed), any variation in the installed
files will result in updates not being performed. This
means that the set of potential users is restricted to those
who have performed a binary install and not recompiled
any FreeBSD files. We do not consider this to be a se-
rious limitation, considering that our stated target audi-
ence is those users who are unable or unwilling to re-
compile from source.

Another limitation arises from the fact that we only re-
place files, rather than adding or removing them. This
immediately means that this system is restricted to up-
dates within a single version – while the effect of a se-
curity patch will be to modify some files, upgrading to a
new version would require installing entirely new files.
Upgrading from one FreeBSD release to another can al-
ready be performed simply by performing a binary in-
stall from the published release images.

A more serious issue arises with the kernel: We can only
provide updates for the GENERIC kernel. While this
may be sufficient for some users, a very obvious class
exists for whom this is not sufficient – those with multi-
processor systems. We suggest therefore that it would
be a Good Thing if FreeBSD releases also included at
least a GENERIC-MP kernel, identical to the GENERIC

kernel except for the addition of multi-processor sup-
port; indeed, it might be adviseable to add ‘bloat’ to the
GENERIC kernel in the interest of reducing the proba-
bility that someone would be required to build a custom
kernel – noting, of course, that kernel modules can be
updated, so features which can be fully supported via
modules would not need to be compiled into the kernel.

Perhaps the most serious issue arises with configuration
files and metadata. There are circumstances where a se-
curity update might need to change an option in a (user-
serviceable) configuration file, or change the ownership,
permissions, or flags on a file. This could be handled by
transmitting patches for text files rather than simply dis-
tributing the new version, and recording which patches
have already been applied; changes in ownership, per-
missions, or flags could be handled in a similar manner.
However, such a mechanism would carry with it a con-
siderable risk of damaging a customized configuration;
consequently we feel that the principle of least astonish-
ment requires that such (rare) fixes be left up to a human
administrator.

A final issue arises from the use of the MD5 message
digest. Although no collisions have been found, there
is an ongoing attack [NP03]; indeed, it has been recom-
mended for many years that MD5 not be used for ap-
plications where collision resistance is required [Ro96].
We note that even given the ability to compute MD5 col-
lisions an attack would be very difficult, since it would
require that specially crafted source code be introduced
into the security branch; consequently, we consider the
risk introduced by using MD5 to be negligible, and jus-
tifiable in light of the lack of stronger hash programs in
the base FreeBSD distribution.

8 Future work

It seems very likely that the same approach, and much
or all of the same code, can be used for building binary
security updates to other BSD operating systems. There
would, almost certainly, be a different set of patches nec-
essary to remove spurious variabilities; but it would be
very surprising if those necessary patches could not eas-
ily be found.

On the other hand, for various reasons it seems unlikely
that this same approach could be applied to software
from the FreeBSD ports tree. First, while pre-built pack-
ages are available, most people build ports from source;
as noted earlier, this makes it impossible to provide up-

dates. Second, there is no “security branch” for the ports
tree; consequently, updating from one version to another
is quite likely to involve adding or removing files, which
is beyond the scope of this system. Third, the large num-
ber of ports, the time necessary for building them, and
the (quite common) cases where some ports cannot be
successfully built would all contribute to making such an
attempt a logistical nightmare. We note, in any case, that
portupgrade already makes the updating of ports quite
simple.

On the other hand, this tool is ideally suited to self-
contained “toasters”. Providing that a vendor can con-
struct an automated mechanism for building all installed
software (operating system and software), binary up-
dates can be built and distributed in exactly the same
manner as for an operating system alone.

One possible future modification would be to keep a
‘clean’ copy of configuration files, and use mergemas-
ter(8) to merge any changes if the configuration files
were changed (in the same manner as when recompil-
ing the entire world). This would not be automated –
merging any changes would require the intervention of
the system administrator – but it would at least be a step
in the right direction.

The most interesting possibility, however, is for hav-
ing several machines build updates and cross-sign. This
would be far from trivial, since each machine would (due
to the build stamps) produce different updates (the same
files would be modified, but the new values would be
different). However, it should be possible for each ma-
chine to fetch the updates built by each of the others and
remove the build stamps before comparing; in this man-
ner, they could each verify that each others’ builds were
identical up to (security-irrelevant) build stamps. Client
machines could then be configured with a list of trusted
keys, and could require that a certain quorum had signed
a set of updates before installing. Since, at present, com-
promising the security of the single machine which is
building the updates would allow an attacker to issue
trojaned “updates” to a large number of machines, dis-
tributing the building process would certainly be advan-
tageous.

Ideally, one would hope that some day the convoluted
methods used here will be unnecessary. Software in-
stalled from the ports tree, and some other operating
systems, have the advantage of being completely pack-
agized; this makes it easy to install or remove specific
packages, and consequently makes it trivial to update
everything on the system. If FreeBSD were split into
such independent packages, a wide range of problems

would be simplified; however, performing such a task
would most likely require reworking the entire build sys-
tem, and it seems likely that development will never stop
for long enough to make such an effort possible, even if
someone could be found with the necessary capability
and time to perform such a task.

9 Acknowledgements

The author would like to thank Chad David and Terry
Lambert for their assistance in explaining the FreeBSD
build process; Nathan Sidwell for his assistance with
gcc; and Graham Percival for replacing a dead hard
drive, repairing a broken filesystem on a working hard
drive, and otherwise helping to maintain the author’s
FreeBSD box while he was 4700 miles away.

The author would also like to acknowledge support from
the Commonwealth Scholarship Commission, which is
funding his studies at Oxford University.

10 Availability

The client (update installing) and server (update build-
ing) code is available under an open source license from

http://www.daemonology.net/freebsd-update/

The client code is also available in the FreeBSD ports
tree.

References

[An02] M. Anuzis, Incident Analysis of a Compro-
mised OpenBSD 3.0 Honeypot,
http://www.anuzisnetworking.com/

whitepapers/obsd30/ (2002).

[Bi02] FreeBSD Binary Updater Project (binup),
http://www.freebsd.org/

projects/updater.html (2002).

[CE03] CERT Advisory CA-2003-10 Integer overflow
in Sun RPC XDR library routines,
http://www.cert.org/

advisories/CA-2003-10.html (2003).

[Ga03] Gerardo Santana Gómez Garrido, Binary
patches for OpenBSD,
http://www.openbsd.org.mx/

∼santana/binpatch.html (2003).

[Ho02] S. Holcroft, Incident Analysis of a Compro-
mised RedHat Linux 6.2 Honeypot,
http://www.holcroft.org/honeypot/

Incident/sholcroft-4.1-2002.html

(2002).

[IS03] InstallShield, InstallShield - Update Service,
http://www.installshield.com/isus/

(2003).

[La03] D. Langille, Personal email (23 June 2003).

[NP03] The NEO Project,
http://www.theneoproject.com/

(2003).

[Pe03] C. Percival, Naive Differences of Executable
Code,
http://www.daemonology.net/bsdiff/

(2003).

[Po02] J. Polstra, CVSup,
http://www.cvsup.org/ (2002).

[Pr03] M. Prettejohn, Personal email (27 May 2003).

[PST03] Puget Sound Technology, Binary Updates for
NetBSD,
http://pugetsoundtechnology.com/

services/netbsd/updates/ (2003).

[Ri92] R. Rivest, The MD5 Message-Digest Algo-
rithm, RFC 1321 (1992).

[Ro96] M.J.B. Robshaw, On Recent Results for MD2,
MD4, and MD5, RSA Laboratories Bulletin,
November 1996.

[Si03] N. Sidwell, Personal email (14 Feb 2003).

[SPW02] S. Staniford, V. Paxson, and N. Weaver, How
to 0wn the Internet in Your Spare Time, Pro-
ceedings of the 11th USENIX Security Sym-
posium (2002).

[SA02] FreeBSD Security Advisories SA-01:40,
SA-01:42, SA-01:48, SA-01:49, SA-01:51,
SA-01:52, SA-01:53, SA-01:55, SA-01:56,
SA-01:57, SA-01:58, SA-01:59, SA-01:62,
SA-01:63, SA-02:08, SA-02:13, and SA-
02:25,
http://www.freebsd.org/security

(2002).

