USENIX Association

Proceedings of BSDCon '’ 03

San Mateo, CA, USA
September 8-12, 2003

USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Enhancements to the Fast Filesystem To Support Multi-Terabyte
Storage Systems

Marshall Kirk McKusick

Author and Consultant

Abstract

This paper describes a new version of the fast filesystem, UFS2, designed to run on multi-terabyte storage systems.
It gives the motivation behind coming up with a new on-disk format rather than trying to continue enhancing the
existing fast-filesystem format. It describes the new features and capabilities in UFS2 including extended attributes,
new and higher resolution time stamps, dynamically allocated inodes, and an expanded boot block area. It also
describes the features and capabilities that were considered but rejected giving the reasons for their rejection. Next it
covers changes that were made to the soft update code to support the new capabilities and to enable it to work more
smoothly with existing filesystems. The paper covers enhancements made to support live dumps and changes made
to filesystem snapshots needed to avoid deadlocks and to enable them to work efficiently with multi-terabyte filesys-
tems. Similarly, it describes changes that needed to be made to the filesystem check program to work with large
filesystems. The paper gives some comments about performance, and decribes areas for future work including an
extent-based allocation mechanism and indexed directory structures. The paper concludes with current status and

availability of UFS2.

1. Background and Introduction

Traditionally, the BSD fast filesystem (which we shall
refer to in this paper as UFS1) [McKusick et al, 1996;
McKusick, Joy et al, 1984] and its derivatives have
used 32-bit pointers to reference the blocks used by a
file on the disk. The UFSI filesystem was designed in
the early 1980°s when the largest disks were 330
megabytes. There was debate at the time whether it
was worth squandering 32-bits per block pointer
rather than using the 24-bit block pointers of the
filesystem that it replaced. Luckily the futurist view
prevailed and the design used 32-bit block pointers.
Over the twenty years that it has been deployed, stor-
age systems have grown to hold over a terabyte of
data. Depending on the block size configuration, the
32-bit block pointers of UFS1 run out of space in the 1
to 4 terabyte range. While some stop-gap measures
can be used to extend the maximum size storage sys-
tems supported by UFS1, by 2002 it became clear that
the only long-term solution was to use 64-bit block
pointers. Thus, we decided to build a new filesystem,
UFS2, that would use 64-bit block pointers.

We considered the alternatives between trying
to make incremental changes to the existing UFS1
filesystem versus importing another existing filesys-
tem such as XFS [Sweeney et al, 1996], or ReiserFS
[Reiser, 2001]. We also considered writing a new
filesystem from scratch so that we could take advan-
tage of recent filesystem research and experience. We
chose to extend the UFS1 filesystem as this approach
allowed us to reuse most of the existing UFS1 code
base. The benefits of this decision were that UFS2
was developed and deployed quickly, it became stable
and reliable rapidly, and the same code base could be
used to support both UFS1 and UFS2 filesystem for-
mats. Over 90 percent of the code base is shared, thus
bug fixes and feature or performance enhancements
usually apply to both filesystem formats.

Sections 2, 3, and 4 discuss the UFS2 filesystem
itself. Sections 5 and 6 discuss enhancements that
were made during the development of UFS2 but which
transfer over to UFS1 as well. Sections 7 and 8
describe how we overcame problems of scale brought
on by the enormous size of filesystems supported by
UFS2. The last three sections conclude with discus-
sions of performance, future work, and current status.

2. The UFS2 Filesystem

The on-disk inodes used by UFS1 are 128-bytes in
size and have only two unused 32-bit fields. It would
not be possible to convert to 64-bit block pointers
without reducing the number of direct block pointers
from twelve to five. Doing so would dramatically
increase the amount of wasted space as only direct
block pointers can reference fragments. So, the only
viable alternative is to increase the size of the on-disk
inode to 256 bytes.

Once one is committed to changing to a new
on-disk format for the inodes, it is possible to include
other inode-related changes that were not possible
within the constraints of the old inodes. While it is
tempting to throw in everything that has ever been
suggested over the last twenty years, we feel that it is
best to limit the addition of new capabilities to those
that are likely to have a clear benefit. Every new addi-
tion adds complexity which has a cost both in main-
tainability and performance. Obscure or little used
features may add conditional checks in frequently
executed code paths such as read and write slowing
down the overall performance of the filesystem even if
they are not used.

Although we decided to come up with a new
on-disk inode format, we chose not to change the for-
mat of the superblock, the cylinder group maps, or the
directories. Additional information needed for the
UFS2 superblock and cylinder groups is stored in
spare fields of the UFS1 superblock and cylinder
groups. Maintaining the same format for these data
structures allows a single code base to be used for
both UFS1 and UFS2. Because the only difference
between the two filesystems is in the format of their
inodes, code can dereference pointers to superblocks,
cylinder groups, and directory entries without need of
checking what type of filesystem is being accessed.
To minimize conditional checking of code that refer-
ences inodes, the on-disk inode is converted to a com-
mon in-core format when the inode is first read in
from the disk, and converted back to its on-disk for-
mat when it is written back. The effect of this deci-
sion is that there are only nine out of several hundred
routines that are specific to UFS1 versus UFS2. The
benefit of having a single code base for both filesys-
tems is that it dramatically reduces the maintenance
cost. Outside of the nine filesystem format specific
functions, fixing a bug in the code fixes it for both
filesystem types. A common code base also means
that as the symmetric multiprocessing support gets
added, it only needs to be done once for the UFS fam-
ily of filesystems.

Although we still use the same data structure to
describe cylinder groups, the practical definition of
them has changed. In the era of UFSI, the filesystem
could get an accurate view of the disk geometry
including the cylinder and track boundaries and could
accurately compute the rotational location of every
sector. Modern disks hide this information providing
fictitious numbers of blocks per track, tracks per
cylinder, and cylinders per disk. Indeed, in modern
RAID arrays, the “disk™ that is presented to the
filesystem may really be composed from a collection
of disks in the RAID array. While some research has
been done to figure out the true geometry of a disk
[Griffin et al, 2002; Lumb et al, 2002; Schindler et al,
2002], the complexity of using such information
effectively is quite high. Modern disks have greater
numbers of sectors per track on the outer part of the
disk than the inner part which makes calculation of
the rotational position of any given sector quite com-
plex to calculate. So, for UFS2, we decided to get rid
of all the rotational layout code found in UFSI1 and
simply assume that laying out files with numerically
close block numbers (sequential being viewed as opti-
mal) would give the best performance. Thus, the
cylinder group structure is retained in UFS2, but it is
used only as a convenient way to manage logically
close groups of blocks. The rotational layout code
had been disabled in UFS1 since the late 1980s, so as
part of the code base cleanup it was removed entirely.

The UFS1 filesystem uses 32-bit inode numbers.
While it is very tempting to increase these inode num-
bers to 64 bits in UFS2, doing so would require that
the directory format be changed. There is a lot of
code that works directly on directory entries. Chang-
ing directory formats would entail creating many
more filesystem specific functions which would
increase the complexity and maintainability issues
with the code. Furthermore, the current APIs for ref-
erencing directory entries use 32-bit inode numbers.
So, even if the underlying filesystem supported 64-bit
inode numbers, they could not currently be made visi-
ble to user applications. In the short term, applica-
tions are not running into the four billion files-per-
filesystem limit that 32-bit inode numbers impose. If
we assume that the growth rate in the number of files
per filesystem over the last twenty years will continue
at the same rate, we estimate that the 32-bit inode
number should be sufficient for another ten to twenty
years. However, the limit will be reached before the
64-bit block limit of UFS2 is reached. So, the UFS2
filesystem has reserved a flag in the superblock to
indicate that it is a filesystem with 64-bit inode num-
bers. When the time comes to begin using 64-bit

inode numbers, the flag can be turned on and the new
directory format can be used. Kernels that predate the
introduction of 64-bit inode numbers check this flag
and will know that they cannot mount such filesys-
tems.

Another change that was contemplated was
changing to a more complex directory structure such
as one that uses B-trees to speed up access for large
directories. This technique is used in many modern
filesystems such as XFS [Sweeney et al, 1996], JFS
[Best & Kleikamp, 2003], ReiserFS [Reiser, 2001],
and in later versions of Ext2 [Phillips, 2001]. We
decided not to make the change at this time for several
reasons. First, we had limited time and resources and
we wanted to get something working and stable that
could be used in the time frame of FreeBSD 5.0. By
keeping the same directory format, we were able to
reuse all the directory code from UFS1, did not have to
change numerous filesystem utilities to understand
and maintain a new directory format, and were able to
produce a stable and reliable filesystem in the time
frame available to us. The other reason that we felt
that we could retain the existing directory structure is
because of the dynamic directory hashing that was
added to FreeBSD [Dowse & Malone, 2002]. The
dynamic directory hashing retrofits a directory index-
ing system to UFS. To avoid repeated linear searches
of large directories, the dynamic directory hashing
builds a hash table of directory entries on the fly when
the directory is first accessed. This table avoids direc-
tory scans on subsequent lookups, creates, and
deletes. Unlike filesystems originally designed with
large directories in mind, these indices are not saved
on disk and so the system is backwards compatible.
The effect of the dynamic directory hashing is that
large directories in UFS cause minimal performance
problems.

Borrowing the technique used by the Ext2
filesystem a flag was also added to indicate that an on-
disk indexing structure is supported for directories
[Phillips, 2001]. This flag is unconditionally turned
off by the existing implementation of UFS. In the
future, if an implementation of an on-disk directory-
indexing structure is added, the implementations that
support it will not turn the flag off. Index-supporting
kernels will maintain the indices and leave the flag on.
If an old non-index-supporting kernel is run, it will
turn off the flag so that when the filesystem is once
again run under a new kernel, the new kernel will dis-
cover that the indexing flag has been turned off and
will know that the indices may be out date and have to
be rebuilt before being used. The only constraint on
an implementation of the indices is that they have to

be an auxiliary data structure that references the old
linear directory format.

3. Extended Attributes

A major addition in UFS2 is support for extended
attributes. Extended attributes are a piece of auxiliary
data storage associated with an inode that can be used
to store auxiliary data that is separate from the con-
tents of the file. The idea is similar to the concept of
data forks used in the Apple filesystem [Apple, 2003].
By integrating the extended attributes into the inode
itself, it is possible to provide the same integrity guar-
antees as are made for the contents of the file itself.
Specifically, the successful completion of an “fsync”
system call ensures that the file data, the extended
attributes, and all names and paths leading to the
names of the file are in stable store.

The current implementation has space in the
inode to store up to two blocks of extended attributes.
The new UFS2 inode format had room for up to five
additional 64-bit pointers. Thus, the number of
extended attribute blocks could have been in the range
of one to five blocks. We chose to allocate two blocks
to the extended attributes and to leave the other three
as spares for future use. By having two, all the code
had to be prepared to deal with an array of pointers,
thus if the number got expanded into the remaining
spares in the future the existing implementation will
work without change. By saving three spares, we pro-
vided a reasonable amount of space for future needs.
And, if the decision to allow only two blocks proves
to be too little space, one or more of the spares can be
used to expand the size of the extended attributes in
the future. If vastly more extended attribute space is
needed, one of the spares could be used as an indirect
pointer to extended attribute data blocks.

name | content name

space | pad len | length name <contents>

length

Figure 1: Format of Extended Attributes

Figure 1 shows the format used for the extended
attributes. The header of each attribute has a 4-byte
length, 1-byte name space class, 1-byte content pad
length, 1-byte name length, and name. The name is
padded so that the contents start on an 8-byte bound-
ary. The contents are padded to the size shown by the
“content pad length” field. Applications that do not
understand the name space or name can simply skip
over the unknown attribute by adding the length to
their current position to get to the next attribute.
Thus, many different applications can share the usage

of the extended attribute space, even if they do not
understand each other’s data types.

The first of two initial uses for extended
attributes is to support access control lists, generally
referred to as ACLs. An ACL replaces the group per-
missions for a file with a more specific list of the users
that are permitted to access the files along with a list
of the permissions that they are granted. These per-
missions include the traditional read, write, and
execute permissions along with other properties such
as the right to rename or delete the file [Rhodes,
2003].

Earlier implementations of ACLs were done
with a single auxiliary file per filesystem that was
indexed by the inode number and had a small and
fixed sized area to store the ACL permissions. The
size was small to keep the size of the auxiliary file
reasonable since it had to have space for every possi-
ble inode in the filesystem. There were two problems
with this implementation. The fixed size of the space
per inode to store the ACL information meant that it
was not possible to give access to long lists of users.
The second problem was that it was difficult to atomi-
cally commit changes to the ACL list for a file since
an update requires that both the file inode and the ACL
file be written to have the update take effect [Watson,
2000].

Both problems with the auxiliary file implemen-
tation of ACLs are fixed by storing the ACL informa-
tion directly in the extended-attribute data area of the
inode. Because of the large size of the extended
attribute data area (a minimum of 8 kilobytes and typ-
ically 32 kilobytes), long lists of ACL information can
be easily stored. Space used to store extended
attribute information is proportional to the number of
inodes with extended attributes and the size of the
ACL lists that they use. Atomic update of the infor-
mation is much easier since writing the inode will
update the inode attributes and the set of data that it
references including the extended attributes in one
disk operation. While it would be possible to update
the old auxiliary file on every “fsync” system call
done on the filesystem, the cost of doing so would be
prohibitive. Here, the kernel knows if the extended
attribute data block for an inode is dirty and can write
just that data block during an “fsync” call on the
inode.

The second use for extended attributes is for
data labeling. Data labels are used to provide permis-
sions for mandatory access controls (MACs). The ker-
nel provides a MAC framework that permits dynami-
cally introduced system-security modules to modify

system security functionality. This framework can be
used to support a variety of new security services,
including traditional labeled mandatory access control
models. The framework provides a series of entry
points which is called by code supporting various ker-
nel services, especially with respects to access control
points and object creation. The framework then calls
out to security modules to offer them the opportunity
to modify security behavior at those MAC entry
points. Thus, the filesystem does not codify how the
labels are used or enforced. It simply stores the labels
associated with the inode and produces them when a
security modules needs to query them to make a per-
mission check [Watson, 2001; Watson et al, 2003].

We considered storing symbolic links in the
extended attribute area. We chose not to do this for
three reasons. First, the time to access an extended
storage block is the same as the time to access a regu-
lar data block. Second, since symbolic links rarely
have any extended attributes, there would be no sav-
ings in storage since a filesystem fragment would be
needed whether it was stored in a regular data block
or in an extended storage block. Third, if it were
stored in the extended storage area, it would take
more time to traverse down the attribute list to find it.

4. New Filesystem Capabilities

Several other improvements were made when the
enlarged inode format was created. We decided to get
an early jump on the year 2038 problem (specifically,
Tue Jan 19 03:14:08 2038 GMT which could be a
really ugly way to usher in my 84th birthday). We
expanded the time fields (which hold seconds-
since-1970) for access, modification, and inode-modi-
fication times from 32-bits to 64-bits. At plus or
minus 136 billion years that should carry us from well
before the universe was created until long after our
Sun has burned itself out. We left the nanoseconds
fields for these times at 32-bits as we did not feel that
added resolution was going to be useful in the fore-
seeable future. We considered expanding the time to
only 48-bits. We chose to go to 64-bits as 64-bits is a
native size that can be easily manipulated with exist-
ing and likely future architectures. Using 48-bits
would have required an extra unpacking or packing
step each time the field was read or written. Also,
going to 64-bits ensures enough bits for all likely
measured time so will not have to be enlarged.

At the same time we also added a new time
field (also 64-bit) to hold the birth time (also com-
monly called the creation time) of the file. The birth
time is set when the inode is first allocated and is not
changed thereafter. It has been added to the structure

returned by the “stat” system call so that applications
can determine its value and so that archiving programs
such as dump, tar, and pax can save this value along
with the other file times. The birth time was added to
a previously spare field in the “stat” system call
structure so that the size of the structure did not
change. Thus, old versions of programs that use the
“stat” call continue to work.

To date, only the dump program has been
changed to save the birth time value. This new ver-
sion of dump which can dump both UFS1 and UFS2
filesystems, creates a new dump format which is not
readable by older versions of restore. The updated
version of restore can identify and restore from both
old and new dump formats. The birth times are only
available and setable from the new dump format.

The ‘“utimes™ system call sets the access and
modification times of a file to a specified set of values.
It is used primarily by archive retrieval programs to
set newly extracted files times back to those associ-
ated with the file in the archive. With the addition of
birth time, we added a new system call that allows the
setting of access, modification, and birth times. How-
ever, we realized that many existing applications will
not be changed to use the new ‘““utimes” system call.
The result will be that the files that they retrieved from
archives will have a newer birth time than access or
modification times.

To provide a sensible birth time for applications
that are unaware of the birth time attribute, we
changed the semantics of the “utimes” system call so
that if the birth time was newer than the value of the
modification time that it was setting, it sets the birth
time to the same time as the modification time. An
application that is aware of the birth time attribute can
set both the birth time and the modification time by
doing two calls to “utimes”. First it calls “utimes”
with a modification time equal to the saved birth time,
then it calls “utimes” a second time with a modifica-
tion time equal to the (presumably newer) saved mod-
ification time. For filesystems that do not store birth
times, the second call will overwrite the first call
resulting in the same values for access and modifica-
tion times as they would have previously gotten. For
filesystems that support birth time, it will be properly
set. And most happily for the application writers,
they will not have to conditionally compile the name
of “utimes” for BSD and non-BSD systems. They just
write their applications to call the standard interface
twice knowing that the right thing will happen on all
systems and filesystems. For those applications that
value speed of execution over portability can use the
new version of the “utimes” system call that allows

all time values to be set with one call.

Another incremental change to the inode format
was to split the flags field into two separate 32-bit
fields, one for flags that can be set by applications (as
in UFS1) and a new field for flags maintained strictly
by the kernel. An example of a kernel flag is the
SNAPSHOT flag used to label a file as being a snap-
shot. Another kernel-only flag is OPAQUE which is
used by the union filesystem to mark a directory
which should not make the layers below it visible. By
moving these kernel flags into a separate field, they
will not be accidentally set or cleared by a naive or
malicious application.

4.1. Dynamic Inodes

One of the common complaints about the UFS1
filesystem is that it preallocates all its inodes at the
time that the filesystem is created. For filesystems
with millions of files, the initialization of the filesys-
tem can take several hours. Additionally, the filesys-
tem creation program, newfs, had to assume that
every filesystem would be filled with many small files
and allocate a lot more inodes than were likely to ever
be used. If a UFSI filesystem uses up all its inodes,
the only way to get more is to dump, rebuild, and
restore the filesystem. The UFS2 filesystem resolves
these problems by dynamically allocating its inodes.
The usual implementation of dynamically allocated
inodes requires a separate filesystem data structure
(typically referred to as the inode file) that tracks the
current set of inodes. The management and mainte-
nance of this extra data structure adds overhead and
complexity and often degrades performance.

To avoid these costs, UFS2 preallocates a range
of inode numbers and a set of blocks for each cylinder
group. Initially each cylinder group has a single block
of inodes allocated (a typical block holds 32 or 64
inodes). When the block fills up, the next block of
inodes in the set is allocated and initialized. The set
of blocks that may be allocated to inodes is held as
part of the free-space reserve until all other space in
the filesystem is allocated. Only then can it be used
for file data.

In theory a filesystem could fill using up all the
blocks set aside for inodes. Later after large files had
been removed and many small files created to replace
them, the filesystem might find itself unable to allo-
cated the needed inodes because all the space set aside
for inodes was still in use. Here, it would be neces-
sary to reallocate existing files to move them to new
locations outside of the inode area. Such code has not
been written as we do not anticipate that this

condition will arise in practice as the free space
reserve used on most filesystems (8%) exceeds the
amount of space needed for inodes (typically 2-6%).
On these systems only a process running with root
privileges would ever be able to allocate the inode
blocks. Should the code prove necessary in actual
use, it can be written at that time. Until it is written,
filesystems hitting this condition will return an “out
of inodes™ error on attempts to create new files.

One of the side benefits of dynamically allocat-
ing inodes is that the time to create a new filesystem
in UFS2 is about 1 percent of the time that it takes in
UFS1. A filesystem that would take one hour to build
in a UFS1 format can be built in under a minute in the
UFS2 format. While filesystem creations are not a
common operation, having them build quickly does
matter to the system administrators that have to do
such tasks with some regularity.

The cost of dynamically allocating inodes is
one extra disk write for every 64 new inodes that are
created. Although this cost is quite low compared to
the other costs of creating 64 new files, some systems
administrators might want to preallocate more than
the minimal number of inodes. If such a demand
arises, it would be trivial to add a flag to the newfs
program to preallocate additional inodes at the time
that the filesystem is created.

4.2. Boot Blocks

The UFSI filesystem reserved an 8 kilobyte space at
the beginning of the filesystem in which to put a boot
block. While this space seemed huge compared to the
1 kilobyte book block that it replaced, over time it has
gotten increasingly difficult to cram the needed boot
code into this space. Consequently we decided to
revisit the boot block size in UFS2.

The boot code has a list of locations to check
for boot blocks. A boot block can be defined to start
at any 8 kilobyte boundary. We set up an initial list
with four possible boot block sizes: none, 8 kilobytes,
64 kilobytes, and 256 kilobytes. Each of these loca-
tions was selected for a particular purpose. Filesys-
tems other than the root filesystem do not need to be
bootable, so can use a boot block size of zero. Also,
filesystems on tiny media that need every block that
they can get such as floppy disks can use a zero size
boot block. For architectures with simple boot blocks,
the traditional UFS1 8 kilobyte boot block can be
used. More typically the 64 kilobyte boot block is
used (for example on the PC architecture with its need
to support booting from a myriad of busses and disk
drivers).

We added the 256 kilobyte boot block in case
some architecture or application needs to set aside a
particularly large boot area. While this was not
strictly necessary as new sizes can be added to the list
at any time, it can take a long time before the updated
list gets propagated to all the boot programs and load-
ers out on the existing systems. By adding the option
for a huge boot area now, we can ensure it will be
readily available should it be needed on short notice in
the future.

One of the unexpected side effects of using a 64
kilobyte boot block for UFS2 is that if the partition
had previously had a UFS1 filesystem on it, the
superblock for the former UFSI filesystem may not be
overwritten. If an old version of fsck that does not
first look for a UFS2 filesystem is run and finds the
UFS1 superblock, it can incorrectly try to rebuild the
UFS1 filesystem destroying the UFS2 filesystem in the
process. So, when building UFS2 filesystems, the
newfs utility looks for old UFSI superblocks and
zeros them out.

5. Changes and Enhancements to Soft
Updates

Traditionally, filesystem consistency has been main-
tained across system failures either by using syn-
chronous writes to sequence dependent metadata
updates or by using write-ahead logging to atomically
group them [Seltzer et al, 2000]. Soft updates, an
alternative to these approaches, is an implementation
mechanism that tracks and enforces metadata update
dependencies to ensure that the disk image is always
kept consistent. The use of soft updates obviates the
need for a separate log or for most synchronous writes
[McKusick & Ganger, 1999].

The addition of extended attribute data to the
inode required that the soft updates code be extended
so that it could ensure the integrity of these new data
blocks. As with the file data blocks, it ensures that the
extended data blocks and the bitmaps that show that
they are in use are written to disk before they are
claimed by the inode. Soft updates also ensure that
any updated extended attribute data is committed to
disk as part of an “fsync” of the file.

Two important enhancements were made to the
existing soft updates implementation. These enhance-
ments were initially made for UFS2 but because of the
shared code base with UFS1 were trivially integrated
to work with UFSI filesystems as well.

When a file is removed on a filesystem running
with soft updates, the removal appears to happen very
quickly, but the process of removing the file and

returning its blocks to the free list may take up to sev-
eral minutes. Prior to UFS2, the space held by the file
did not show up in the filesystem statistics until the
removal of the file had been completed. Thus, appli-
cations that clean up disk space such as the news expi-
ration program would often vastly overshoot their
goal. They work by removing files and then checking
to see if enough free space has showed up. Because
of the time lag in having the free space recorded, they
would remove far too many files. To resolve problems
of this sort, the soft updates code now maintains a
counter that keeps track of the amount of space that is
held by the files that it is in the process of removing.
This counter of pending space is added to the actual
amount of free space as reported by the kernel (and
thus by utilities like df). The result of this change is
that free space appears immediately after the
“unlink” system call returns or the rm utility finishes.

The second and related change to soft updates
has to do with avoiding false out-of-space errors.
When running with soft updates on a nearly full
filesystem with high turnover rate (for example when
installing a whole new set of binaries on a root parti-
tion), the filesystem can return a filesystem full error
even though it reports that it has plenty of free space.
The filesystem full message happens because soft
updates has not managed to free the space from the
old binaries in time for it to be available for the new
binaries.

The initial attempt to correct this problem was
to simply have the process that wished to allocate
space wait for the free space to show up. The prob-
lem with this approach is that it often had to wait for
up to a minute. In addition to making the application
seem intolerably slow, it usually held a locked vnode
which could cause other applications to get blocked
waiting for it to become available (often referred to as
a lock race to the root of the filesystem). Although
the condition would clear in a minute or two, users
often assumed that their system had hung and would
reboot.

To remedy this problem, the solution devised
for UFS2 is to co-opt the process that would otherwise
be blocked and put it to work helping soft updates
process the files to be freed. The more processes try-
ing to allocate space, the more help that is available to
soft updates and the faster free blocks begin to appear.
Usually in under one second enough space shows up
that the processes can return to their original task and
proceed to completion. The effect of this change is
that soft updates can now be used on small nearly full
filesystems with high turnover.

6. Enhancements for Live Dumps

A filesystem snapshot is a frozen image of a filesys-
tem at a given instant in time. Snapshots support sev-
eral important features: the ability to provide back-ups
of the filesystem at several times during the day, the
ability to do reliable dumps of live filesystems, and
the ability to run a filesystem check program on a
active system to reclaim lost blocks and inodes
[McKusick, 2002].

With the advent of filesystem snapshots, the
dump program has been enhanced to safely dump live
filesystems. When given the -L flag, dump verifies
that it is being asked to dump a mounted filesystem,
then takes a snapshot of the filesystem and dumps the
snapshot instead of on the live filesystem. When
dump completes, it releases the snapshot.

The initial implementation of live dumps had
the dump program do the “mount” system call itself
to take the snapshot. However, most systems require
root privilege to use the “mount” system call. Since
dumps are often done by the operator user rather than
root, an attempt to take a snapshot will fail.

To get around this problem, a new set-user-
identifier root program was written called
mksnap_ffs. The mksnap_ffs command creates a
snapshot with a given name on a specified filesystem.
The snapshot file must be contained within the filesys-
tem being snapshotted. The group ownership of the
file is set to operator; the owner of the file remains
root. The mode of the snapshot is set to be readable
by the owner or members of the operator group.

The dump program now invokes mksnap_ffs
to create the snapshot rather than trying to create it
directly. The result is that anyone with operator privi-
leges can now reliably take live dumps. Allowing
operator group access to the snapshot does not open
any new security holes since the raw disk is also read-
able by members of the operator group (for the bene-
fit of traditional dump). Thus, the information that is
available in the snapshot can also be accessed directly
through the disk device.

7. Large Filesystem Snapshots

Creating and using a snapshot requires random access
to the snapshot file. The creation of a snapshot
requires the inspection and copying of all the cylinder
group maps. Once in operation, every write operation
to the filesystem must check whether the block being
written needs to be copied. The information on
whether a blocks needs to be copied is contained in
the snapshot file metadata (its indirect blocks).

Ideally, this metadata would be resident in the kernel
memory throughout the lifetime of the snapshot. In
FreeBSD, the entire physical memory on the machine
can be used to cache file data pages if the memory is
not needed for other purposes. Unfortunately, data
pages associated with disks can only be cached in
pages mapped into the kernel physical memory. Only
about 10 megabytes of kernel memory is dedicated to
such purposes. Assuming that we allow up to half of
this space to be used for any single snapshot, the
largest snapshot whose metadata that we can hold in
memory is 11 megabytes. Without help, such a tiny
cache would be hopeless in trying to support a multi-
terabyte snapshot.

In an effort to support multi-terabyte snapshots
with the tiny metadata cache available, it is necessary
to observe the access patterns on typical filesystems.
The snapshot is only consulted for files that are being
written. The filesystem is organized around cylinder
groups which maps small contiguous areas of the
disk. Within a directory, the filesystem tries to allo-
cate all the inodes and files in the same cylinder
group. When moving between directories different
cylinder groups are usually inspected. Thus, the
widely random behavior occurs from movement
between cylinder groups. Once file writing activity
settles down into a cylinder group, only a small
amount of snapshot metadata needs to be consulted.
That metadata will easily fit in even the tiny kernel
metadata cache. So, the need is to find a way to avoid
thrashing the cache when moving between cylinder
groups.

The technique used to avoid thrashing when
moving between cylinder groups is to build a look
aside table of all the blocks that were copied during
the time that the snapshot was made. This table lists
the blocks associated with all the snapshot metadata
blocks, the cylinder groups maps, the super block, and
blocks that contain active inodes. When a copy-on-
write fault occurs for a block, the first step is to con-
sult this table. If the block is found in the table, then
no further searching needs to be done in any of the
snapshots. If the block is not found, then the metadata
of each active snapshot on the filesystem must be con-
sulted to see if a copy is needed. This table lookup
saves time as it not only avoids faulting in metadata
for widely scattered blocks, but it also avoids the need
to consult potentially many snapshots.

Another problem with snapshots on large
filesystems is that they aggravated existing deadlock
problems. When there are multiple snapshots associ-
ated with a filesystem, they are kept in a list ordered
from oldest to youngest. When a copy-on-write fault

snapl snap2

locked by process A
waiting for snap2 lock
to check write

locked by process B
waiting for snap1 lock
to check write

Figure 2: Snapshot deadlock scenario

occurs, the list is traversed letting each snapshot
decide if it needs to make a copy of the block that is
about to be written. Originally, each snapshot inode
had its own lock. A deadlock could occur between
two processes each trying to do a write. Consider the
example in Fig. 2. It shows a filesystem with two
snapshots, snapl and snap2. Process A holds snap-
shot 1 locked and process B holds snapshot 2 locked.
Both snapl and snap2 have decided that they need to
allocate a new block in which to hold a copy of the
block being written by the process that holds them
locked. The writing of the new block in snapshot 1
will cause the kernel running in the context of process
A to scan the list of snapshots which will get blocked
at snapshot 2 because it is held locked by process B.
Meanwhile, the writing of the new block in snapshot 2
will cause the kernel running in the context of process
B to scan the list of snapshots which will get blocked
at snapshot 1 because it is held locked by process A.

The resolution to the deadlock problem is to
allocate a single lock that is used for all the snapshots
on a filesystem. When a new snapshot is created, the
kernel checks whether there are any other snapshots
on the filesystem. If there are, the per-file lock associ-
ated with the new snapshot inode is released and
replaced with the lock used for the other snapshots.
With only a single lock, the access to the snapshots as
a whole are serialized. Thus, in Fig. 2, process B will
hold the lock for all the snapshots and will be able to
make the necessary checks and updates while process
A will be held waiting. Once process B completes its
scan, process A will be able to get access to all the
snapshots and will be able to run successfully to com-
pletion. Because of the added serialization of the
snapshot lookups, the look-aside table described ear-
lier is important to ensure reasonable performance of
snapshots. In gathering statistics on our running sys-
tems, we found that the look-aside table resolves
nearly half of the snapshot copy-on-write lookups.
Thus, we found that the look-aside table keeps the
contention for the snapshot lock to a reasonable level.

8. Running Fsck on Large Filesystems

Traditionally, after an unclean system shutdown, the
filesystem check program, fsck, has had to be run over
all inodes in a filesystem to ascertain which inodes
and blocks are in use and to correct the bitmaps. The
current implementation of soft updates guarantees the
consistency of all filesystem resources, including the
inode and block bitmaps. With soft updates, the only
inconsistency that can arise in the filesystem (barring
software bugs and media failures) is that some unref-
erenced blocks may not appear in the bitmaps and
some inodes may have to have overly high link counts
reduced. Thus, it is completely safe to begin using the
filesystem after a crash without first running fsck.
However, some filesystem space may be lost after
each crash. Thus, there is a version of fsck that can
run in the background on an active filesystem to find
and recover any lost blocks and adjust inodes with
overly high link counts. A special case of the overly
high link count is one that should be zero. Such an
inode will be freed as part of reducing its link count to
zero. This garbage collection task is less difficult than
it might at first appear, since this version of fsck only
needs to identify resources that are not in use and can-
not be allocated or accessed by the running system
[McKusick & Ganger, 1999].

With the addition of snapshots, the task
becomes simple, requiring only minor modifications
to the standard fsck. When run in background
cleanup mode, fsck starts by taking a snapshot of the
filesystem to be checked. Fsck then runs over the
snapshot filesystem image doing its usual calculations
just as in its normal operation. The only other change
comes at the end of its run, when it wants to write out
the updated versions of the bitmaps. Here, the modi-
fied fsck takes the set of blocks that it finds were in
use at the time of the snapshot and removes this set
from the set marked as in use at the time of the snap-
shot—the difference is the set of lost blocks. It also
constructs the list of inodes whose counts need to be
adjusted. Fsck then uses a new system call to notify
the filesystem of the identified lost blocks so that it
can replace them in its bitmaps. It also gives the set
of inodes whose link counts need to be adjusted; those
inodes whose link count is reduced to zero are trun-
cated to zero length and freed. When fsck completes,
it releases its snapshot [McKusick, 2002].

As filesystems have gotten bigger the time to
run either a foreground or a background fsck has
increased to multiple hours. Being able to run fsck in
background has largely mitigated the running time
issue because it allows normal system operation to
proceed in parallel.

Another problem with running fsck on large
filesystems is that the memory that it consumes grows
in proportional to the size of the filesystem being
checked. The main consumption of memory is four
bytes per regular inode, 40 to 50 bytes per directory
inode, and one bit per filesystem data block. On a
typical UFS2 filesystem with 16 kilobyte blocks and 2
kilobyte fragments, the data-block map requires 64
megabytes of memory per terabyte of filesystem.
Because UFS2 does not preallocate inodes, but rather
allocates the inodes as they are needed, the memory
required is dependent on the number of files that are
created in the filesystem.

fsck maximum

Files Dirs memory checkable

Filesystem perTb perTb per Tb filesystem
/usr 93M I5SM 1200K 3Tb
/jukebox 243K 18K 66K 60Tb

Table 1: Maximum filesystem sizes checkable by fsck
on a 32-bit architecture

The number of files and directories in a filesys-
tem make a huge difference in the amount of memory
required by fsck. Table 1 shows the two ends of the
spectrum. At one end is a typical FreeBSD /usr
filesystem assuming that it grew at its current file and
directory mix to fill a 1 terabyte disk. The memory
footprint of fsck is dominated by the memory to man-
age the inodes and would require the entire address
space of a 32-bit processor for a filesystem of about 3
terabytes. At the other extreme is the author’s /juke-
box filesystem assuming that it grew at its current file
and directory mix to fill a 1 terabyte disk. The mem-
ory footprint of fsck is dominated by the memory to
manage the data blocks and would require the entire
address space of a 32-bit processor for a filesystem of
about 60 terabytes. My expectation is that as disks
get larger, they will tend to be filled with larger files
of audio and video. Thus, in practice fsck will run out
of space on 32-bit architectures at about 30 terabyte
filesystems. Hopefully by the time that such filesys-
tems are common, they will be running on 64-bit
architectures.

In the event that fsck hits the memory limit of
32-bit architectures, Julian Elischer has suggested that
one solution is to implement an ‘offline, non-in-
place” version of fsck using all those techniques we
learned in CS101 relating to mag-tape merge sorts.
Fsck would have to have a small (20 gigabyte) disk
partition set aside to hold working files, to which it
would write files of records detailing block numbers,

etc. Then it would do merge or block sorts on those
files to get them in various orders (depending on fields
in the records). Fsck would then recombine them to
find such things as multiple referenced blocks and
other file inconsistencies. It would be slow, but at
least it could be used to check a 100 terabyte array,
where the in-memory version would need a process
VM space of 13 Gigabytes which is clearly impossi-
ble on the 32-bit PC.

Journalling filesystems provide a much faster
state recovery than fsck. For this reason, there is
ongoing work to provide a journalling option for
UFS2. However, even journalling filesystems need to
have a filesystem recovery program such as fsck. In
the event of media or software failure, the filesystem
can be damaged in ways that the journal cannot fix.
Thus, the size of the recovery program is an issue for
all filesystems. Indeed, the fact that UFS needs to use
fsck in its general operation ensures that fsck is kept
in good working order and is known to work even on
very large filesystems.

9. Performance

The performance of UFS2 is nearly identical to that of
UFS1. This similarity in performance is hardly sur-
prising since the two filesystem share most of the
same code base and use the same allocation algo-
rithms. The purpose of UFS2 was not to try and
improve on the performance of UFS1 which is already
within 80-95% of the bandwidth of the disk. Rather it
was to support multi-terabyte filesystems and to pro-
vide new capabilities such as extended attributes with-
out losing performance. It has been successful in that
goal.

10. Future Work

12] 13 14] 15]24] 25] 26] 27] 32] 33] 34| 35] 36] 37] 38] 39

(a) — traditional encoding

4112 4124[87132

(b) — traditional <size, block> extent encoding
(c) — hybrid extent encoding

Figure 3: Alternative file metadata representations

With the addition of dynamic block reallocation in the
early 1990s [Seltzer & Smith, 1996], the UFSI filesys-
tem has had the ability to allocate most files

contiguously on the disk. The metadata describing a
large file consists of indirect blocks with long runs of
sequential block numbers, see Fig. 3-(a). For quick
access while a file is active, the kernel tries to keep all
of a file’s metadata in memory. With UFS2 the space
required to hold the metadata for a file is doubled as
every block pointer grows from 32-bits to 64-bits. To
provide a more compact representation, many filesys-
tems use an extent-based representation. A typical
extent-based representation uses pairs of block num-
bers and lengths. Figure 3-(b) represents the same set
of block number as Fig. 3-(a) in an extent-based for-
mat. Provided that the file can be laid out nearly con-
tiguously, this representation provides a very compact
description. However, randomly or slowly written
files can end up with many non-contiguous block allo-
cations which will produce a representation that
requires more space than the one used by UFS1. This
representation also has the drawback that it can
require a lot of computation to do random access to
the file since the block number needs to be computed
by adding up the sizes starting from the beginning of
the file until the desired seek offset is reached.

To gain most of the efficiencies of extends with-
out the random access inefficiencies, UFS2 has added
a field to the inode that will allow that inode to use a
larger block size. Small, slowly growing, or sparse
files set this value to the regular filesystem block size
and represent their data in the traditional way show in
Fig. 3-(a). However, when the filesystem detects a
large dense file, it can set this inode-block-size field to
a value two to sixteen times the filesystem block size.
Figure 3-(c) represents the same set of block number
as Fig. 3-(a) with the inode-block-size field set to four
times the filesystem block size. Each block pointer
references a piece of disk storage that is four times
larger which reduces the metadata storage require-
ment by 75 percent. Since every block pointer other
than possibly the last one references an equal sized
block, computation of random access offsets is just as
fast as in the traditional metadata representation. It
also cannot degrade to a larger representation than the
traditional metadata representation.

The drawback to this approach is that once a
file has committed to using a larger block size, it can
only utilize blocks of that size. If the filesystem runs
out of big blocks then the file can no longer grow and
either the application will get an “out-of-space” error,
or the filesystem has to recreate the metadata with the
standard filesystem block size. My current plan is to
write the code to recreate the metadata. While recre-
ating the metadata usually will cause a long pause, We
expect that condition to be quite rare and not a

noticeable problem in actual use.

11. Current Status

The UFS2 filesystem was developed for the FreeBSD
Project by the author under contract to Network Asso-
ciates Laboratories, the Security Research Division of
Network Associates, Inc. under DARPA/SPAWAR
contract N66001-01-C-8035 ("CBOSS"), as part of
the DARPA CHATS research program. Under the
terms of that contract, the software must be released
under a Berkeley-style copyright. The UFS2 filesys-
tem was written in 2002 and first released in FreeBSD
5.0. Extensive user feedback in that release has been
helpful in shaking out latent short-comings particu-
larly in the ability of UFS2 to smoothly handle the
really big filesystems for which it was designed. The
biggest current limitation is that the disk labels used
in FreeBSD 5.0 can only describe 2 terabyte disks.
We are hoping that the new larger disk labels will be
available by the time FreeBSD 5.1 is released.

12. References
Apple, 2003.

Apple, “Mac OS X Essentials, Chapter 9
Filesystem, Section 12 Resource Forks,”
http:/ldeveloper.apple.com/techpubs/macosx/
Essentials/SystemOverview/FileSystem/chapter
_9 section_12.html (2003).

Best & Kleikamp, 2003.
S. Best & D. Kleikamp, “How the Journaled
File System handles the on-disk layout,”

http://www-106.ibm.com/developerworks/linux/
library/l-jfslayout/ (2003).

Dowse & Malone, 2002.
I. Dowse & D. Malone, “Recent Filesystem
Optimizations on FreeBSD,” Proceedings of the
Freenix Track at the 2002 Usenix Annual Tech-
nical Conference, p. 245-258 (June 2002).

Griffin et al, 2002.
J. L. Griffin, J. Schindler, S. W. Schlosser, J. S.
Bucy, & G. R. Ganger, “Timing-accurate Stor-
age Emulation,” Proceedings of the Usenix

Conference on File and Storage Technologies,
p. 75-88 (January 2002).

Lumb et al, 2002.
C. R. Lumb, J. Schindler, & G. R. Ganger,
“Freeblock Scheduling Outside of Disk
Firmware,” Proceedings of the Usenix Confer-

ence on File and Storage Technologies, p.
275-288 (January 2002).

McKusick, 2002.
M. McKusick, “Running Fsck in the Back-
ground,” Proceedings of the BSDCon 2002
Conference, p. 55—64 (February 2002).

McKausick et al, 1996.
M. McKusick, K. Bostic, M. Karels, & J. Quar-
terman,, The Design and Implementation of the
4.4BSD Operating System, p. 269-271, Addi-
son Wesley Publishing Company, Reading, MA
(1996).

McKusick & Ganger, 1999.
M. McKusick & G. Ganger, “Soft Updates: A
Technique for Eliminating Most Synchronous
Writes in the Fast Filesystem,” Proceedings of
the Freenix Track at the 1999 Usenix Annual
Technical Conference, p. 1-17 (June 1999).

McKausick et al, 1984.
M. McKusick, W. Joy, S. Leffler, & R. Fabry,
“A Fast File System for UNIX,” ACM Transac-
tions on Computer Systems, 2, 3, p. 181-197
(August 1984).

Phillips, 2001.
D. Phillips, “A Directory Index for Ext2,” Pro-
ceedings of the Usenix Fifth Annual Linux
Showcase and Conference (November 2001).

Reiser, 2001.
H. Reiser, “The Reiser File System,’

http://www.namesys.com/res_whol.shtml (Jan-
uary 2001).

Rhodes, 2003.
T. Rhodes, “FreeBSD Handbook, Chapter 3,
Section 3.3 File System Access Control Lists,”
http://www.FreeBSD.org/doc/en_US.ISO8859-1/
books/handbook/fs-acl.html (2003).

Schindler et al, 2002.
J. Schindler, J. L. Griffin, C. R. Lumb, & G. R.
Ganger, “Track-aligned Extents: Matching
Access Patterns to Disk Drive Characteristics,”
Proceedings of the Usenix Conference on File
and Storage Technologies, p. 259-274 (January
2002).

Seltzer et al, 2000.
M. Seltzer, G. Ganger, M. McKusick, K. Smith,
C. Soules, & C. Stein, “Journaling versus Soft
Updates: Asynchronous Meta-data Protection in
File Systems,” Proceedings of the San Diego
Usenix Conference, p. 71-84 (June 2000).

Seltzer & Smith, 1996.
M. Seltzer & K. Smith, “A Comparison of FFS
Disk Allocation Algorithms,” Winter USENIX
Conference, p. 15-25 (January 1996).

Sweeney et al, 1996.
A. Sweeney, D. Doucette, C. Anderson, W. Hu,
M. Nishimoto, & G. Peck, “Scalability in the
XFS File System,” Proceedings of the 1996
Usenix Annual Technical Conference, p. 1-14
(January 1996).

Watson, 2000.
R. Watson, “Introducing Supporting Infrastruc-
ture for Trusted Operating System Support in
FreeBSD,” Proceedings of the BSDCon 2000
Conference (September 2000).

Watson, 2001.
R. Watson, “TrustedBSD: Adding Trusted
Operating System Features to FreeBSD,” Pro-
ceedings of the Freenix Track at the 2001
Usenix Annual Technical Conference (June
2001).

Watson et al, 2003.
R. Watson, W. Morrison, C. Vance, & B. Feld-
man, “The TrustedBSD MAC Framework:
Extensible Kernel Access Control for FreeBSD
5.0, Proceedings of the Freenix Track at the
2003 Usenix Annual Technical Conference
(June 2003).

13. Biography

Dr. Marshall Kirk McKusick writes books and articles,
consults, and teaches classes on UNIX- and BSD-
related subjects. While at the University of California
at Berkeley, he implemented the 4.2BSD fast filesys-
tem, and was the Research Computer Scientist at the
Berkeley Computer Systems Research Group (CSRG)
overseeing the development and release of 4.3BSD
and 4.4BSD. His particular areas of interest are the
virtual-memory system and the filesystem. One day,
he hopes to see them merged seamlessly. He earned
his undergraduate degree in Electrical Engineering
from Cornell University, and did his graduate work at
the University of California at Berkeley, where he
received Masters degrees in Computer Science and
Business Administration, and a doctoral degree in
Computer Science. He is president of the Usenix
Association, and is a member of ACM and IEEE.

In his spare time, he enjoys swimming, scuba
diving, and wine collecting. The wine is stored in a
specially constructed wine cellar (accessible from the
web at http://www.mckusick.com/"mckusick/) in the
basement of the house that he shares with Eric All-
man, his domestic partner of 24-and-some-odd years.
You can contact him via email at <mcku-
sick@mckusick.com>.

