
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Tagging Data In The Network Stack:mbuf tags

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Abstract

We describe thembuf tagAPI, a mechanism for tagging
data as they flow through the network stack. Originally
introduced in OpenBSD,mbuf tags were initially in-
tended for use by the IPsec stack. The API has matured
enough to be used by several other kernel components,
and formed the basis for the FreeBSDmbuf tags. We
present the API, discuss its various uses in the OpenBSD
network stack, and describe some plans for future work.
Our goal is to demonstrate the flexibility of this rela-
tively simple mechanism and expose it to other kernel
developers.

1 Introduction

The OpenBSD [1]mbuf tagsframework allows the ker-
nel to attach arbitrary information to data packets as they
flow through the network stack. This information is gen-
erally of two types:(i) a record of processing that has
already been applied to the packet,e.g., the fact that a
packet was encrypted under a particular IPsec [5] secu-
rity association, or(ii) a “reminder” to perform some
operation to the packet in the future,e.g.,apply an en-
cryption algorithm in software prior to transmitting the
packet, if the outgoing interface does not provide inte-
grated cryptographic facilities.

In the former case, the information is intended for con-
sumption by the kernel itself (e.g.,detecting whether a
processing loop has occurred, to avoid resource exhaus-
tion) or by a user-level process (e.g.,exposing to a net-
work daemon some IPsec-related information, indicat-
ing that a packet was protected by a particular security
association). In the latter case (“reminders”), the infor-
mation is intended for use by the lower levels of the net-
work stack,e.g.,device drivers that offer specific func-
tionality, such as outgoing packet checksumming.

Although originally developed for use by the IPsec
stack,mbuf tagshave been in use by several other net-
work components, such as various pseudo-devices, the

packet filtering (PF) engine, and some device drivers.
The use ofmbuf tagsby such diverse elements demon-
strates their effectiveness and usefulness as tools for the
kernel developer. This is underlined by their adoption in
the FreeBSD kernel for use in the recently revised IPsec
stack.

The purpose of this paper is to expose thembuf tags
mechanism to the general kernel developer community,
both to encourage wider use and to solicit improvements
to its functionality. We believe thatmbuf tags offer a
flexible and simple mechanism that enables several types
of processing that were previously difficult or impossi-
ble to perform in the BSD network stack.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the design rationale and presents the API
itself in some detail. Section 3 discusses the various uses
of the mbuf tags in the OpenBSD network stack, and
Section 4 discusses some of our future work plans. Sec-
tion 5 concludes the paper.

2 The OpenBSDmbuf tags

In this section, we describe the design rationale and the
API for mbuf tags.

2.1 Design Rationale

Thembuf tagswere originally developed for use in con-
junction with the OpenBSD IPsec stack [6]. Their pri-
mary purpose, described in more detail in Section 3, was
to record how “securely” each packet was received,i.e.,
under what IPsec security association(s) was a packet re-
ceived. Practically immediately, however, a second use
was established: to detect loops in outgoing IPsec pack-
ets. For this, we needed to record the same information
as in the incoming packet case. However, we (correctly,
as it turns out) foresaw the need for adding tags with dif-
ferent types of information in the future. Thus, we chose
an approach similar in some respects to the BSDstruct
sockaddrfor recording network address information.



struct m_tag {
SLIST_ENTRY(m_tag) m_tag_link;
u_int16_t m_tag_id;
u_int16_t m_tag_len;

};

struct m_tag *m_tag_get(int type, int len, int flags);
struct m_tag *m_tag_find(struct mbuf *m, int type, struct m_tag *tag);
struct m_tag *m_tag_first(struct mbuf *m);
struct m_tag *m_tag_next(struct mbuf *m, struct m_tag *tag);
struct m_tag *m_tag_copy(struct m_tag *tag);

void m_tag_free(struct m_tag *tag);
void m_tag_prepend(struct mbuf *m, struct m_tag *tag);
void m_tag_unlink(struct mbuf *m, struct m_tag *tag);
void m_tag_delete(struct mbuf *m, struct m_tag *tag);
void m_tag_delete_chain(struct mbuf *m, struct m_tag *tag);
void m_tag_init(struct mbuf *m);

int m_tag_copy_chain(struct mbuf *from, struct mbuf *to);

Figure 1:The mbuf tagsAPI.

mbuf tags consist of two parts: a fixed-size header,
which contains the length and type of the tag as well as
a pointer to other tags attached to the same packet, fol-
lowed by type-dependent data. These tags can be com-
bined together in a chain, and attached to the firstmbuf
of a packet. Anmbuf is a data structured used by the
BSD networking stack to contain packets and other in-
formation. A chain ofmbufscan be used to store large
packets, with the firstmbufcontaining additional infor-
mation about the packet as a whole.

These tags can serve multiple roles, as we shall see in
Section 3. They can indicate processing that has already
occurred to the packet (e.g., IPsec SA under which a
packet was received), or it may represent a “reminder”
for processing that must be applied to the packet in the
future (e.g.,cryptographic processing that must be done
to the packet by a combined network+cryptographic ac-
celerator card).

A similar approach was taken by NetBSD, in the form of
aux mbufs. These arembufsthat are attached to anmbuf
header in a way similar tombuf tagschains. Because
they use unmodifiedmbufs,the former enable the use
of all thembuf-manipulating routines and, perhaps more
importantly, allow space to be allocated in chunks with-
out resorting to the kernel memory allocator with every
allocation, as is the case with the use ofmalloc(9)in the
mbuf tag approach. Thus, the processing cost of adding
new tags to a packet is a step function withaux mbufs,
whereas it increases linearly with the number of tags at-
tached to a packet in our scheme. However, thembuf tag

approach does not place more pressure on thembufallo-
cator, which can run out of space on a busy router or fire-
wall, sincembufsare allocated from a reserved area of
memory, which is typically fixed to a certain percentage
of kernel memory at kernel-configuration time. Further-
more, we intend to use memory pool, as we discuss in
Section 4, to reduce to overhead of the kernel memory
allocator. Finally,mbuf tagsare better-integrated with
the mbuf subsystem, allowing for seamless replication
and de-allocation when the respectivembufsare dupli-
cated or released.

Linux uses a 48-byte array in theskbuffstructure, which
the “owner” of a packet (the protocol or socket that
queued the packet) can use to store private information.
Apart from its limited size, the ownership semantics of
this array make it unsuitable for use in certain scenarios
(e.g.,when the producer and the consumer of a tag are
separated by code that performs its own processing that
requires use of the array).

FreeBSD recently adoptedmbuf tags, adding acookie
field in the tag header. This allows for private, module-
specific definition of new tags without requiring coor-
dinated allocation among different modules/developers.
We intend to include this change in the OpenBSD tag
implementation.

2.2 Tags API

The mbuf tag API is shown in Figure 1. The
code implementing the API is contained in the file



sys/kern/uipcmbuf2.cof the OpenBSD distribution.

m tag get() allocates a new tag of type type withlen
bytes of space following the tag header itself. The flag
argument is passed directly to the kernelmalloc(9). If
successful,m tag get() returns a memory buffer of (len
+ sizeof (struct mtag)) bytes. The firstsizeof (struct
m tag) bytes will contain a tag header, the definition of
which is also given in Figure 1. The first field contains a
pointer to other tags on the same mbuf. The length field
contains the size, in bytes, of the array following the tag
header itself. There are several types defined, and we
describe their use in Section 3.m tag free()de-allocates
a tag.

m tag find() finds an instance of a tag of the given type.
The caller can specify that the search start from an ar-
bitrary point in the tag list (as indicated by the third ar-
gument). This allows the caller to examine all tags of
a given type that are attached to a packet, by repeatedly
callingm tag find(), as shown in Figure 2.

/*
* This code can be written
* better, but this fits in
* the two-column format :-)
*/

tag = m_tag_find(m, type, NULL);
while (tag != NULL) {

... code examining the tag ...
tag = m_tag_find(m, type, tag);

}

Figure 2:Using m tag find().

For clarity, them tag first() and m tag next() pair of
calls can be used to the same effect.

m tag prepend() links a new tag to the head of the
list. Tags are typically attached in a manner that re-
flects the order in which the operations they represent
were applied to the packet. For example, a packet
that is processed (e.g., decrypted) by IPsec twice will
have two attached tags, the first of which (as returned
by m tag find()) will represent the second decryption.
m tag unlink() detaches a tag from the packet, with-
out deallocating the memory.m tag delete()combines
m tag unlink() and m tag free(). m tag deletechain()
unlinks and frees all tags attached to a packet, starting
from a caller-specified tag. If the last argument is left
NULL, all attached flags will be deleted.

m tag copy() creates an identical copy of a tag.
m tag copychain()creates a copy of the tag list attached
to a packet and attaches it to another packet.

Finally, m tag init() is called by kernel components that

manually initializembufs. There are only a handful of
such locations, practically all of them in device drivers
that perform their own buffer management (e.g.,main-
taining a cache ofmbufs).

3 Usingmbuf tags

We now describe the various uses of the tags in the
OpenBSD network stack. The tags currently in use can
be classified into four categories: IPsec, loop-detection,
PF (packet filter), and miscellaneous. We describe each
of these categories in turn.

3.1 IPsec-related Tags

This category includes tags that are used internally by
the IPsec stack [6] to detect processing loops and propa-
gate information to high-level protocols.

• IPSECIN DONErecords the fact that the packet was
received under a particular IPsec Security Associ-
ation (SA). If the packet has been encrypted under
several SAs, there will be one such tag for each SA,
with the most recently processed SA located closer
to the head of the list. The tag contains enough
information to locate the SA data structure in the
relevant kernel database. This is used for two pur-
poses:

1. Determine whether a packet has been pro-
cessed by an SA that satisfied the IPsec pol-
icy requirements,e.g.,“all TCP packets from
host A must arrive encrypted”. There are vari-
ous locations in the network stack where such
checks are performed.

2. Propagate the information to the socket layer,
whereby it is made available to applications
via thegetsockopt()call. Thus, applications
can determine whether a connection is pro-
tected, the relevant parameters, the peer’s
identity (e.g.,public-key certificate),etc.

This is one of the few tags that is used both inside
and outside the kernel component where it is cre-
ated (IPsec stack). The fact that tag processing (in
particular freeing) is integrated withmbufprocess-
ing (freeing) helped in limiting the amount of sup-
porting code that needed to be added throughout the
stack.



• IPSECOUT DONE records IPsec SAs that have
been applied to an outgoing packet. This is primar-
ily used to catch processing loops in the network
stack, which could cause repeated processing (en-
cryption) of a packet under the same set of SAs.
This is necessary because the IPsec standards [5]
require support for nested SA processing. Consider
the following legitimate policy: “all packets to sub-
net 10.1.2.0/24 must be encrypted to the security
gateway 10.1.2.1”. Notice that the security gate-
way’s address lies within the destination subnet’s
address space. A packet that matched this rule once
would thus repeatedly match it every time it was
re-evaluated by the IPsec policy database, causing
a loop. Using the IPSECOUT DONE tag, we can
detect this cycle (or any cycle, of arbitrary length)
and transmit the packet without further IPsec pro-
cessing.

• IPSECIN CRYPTO DONE is issued by device
drivers to indicate that an incoming IPsec packet
has been successfully processed by a network card
that has integrated support for IPsec, indicating
the SA(s) processed. Incoming packets undergo
regular IPsec processing; just prior to decryp-
tion/verification, the kernel checks for the presence
of this tag for the specific SA. If this is present, de-
cryption is skipped and processing continues as if it
were successful. This allowed us to integrate IPsec-
offloading support with less than 10 lines of kernel
code.

• IPSECOUT CRYPTO NEEDED is used for the out-
going case of using a network card with integrated
cryptographic processing. If the kernel is aware
that the outgoing network interface offers such ca-
pabilities it simply attaches this tag to the packet,
again indicating which SA it should be processed
under. The device driver is then responsible for
loading the SA parameters to the network card (if
necessary), and for indicating to the hardware that
IPsec processing under that SA is needed.

• IPSECIN COULD DO CRYPTO is issued by de-
vice drivers that detect incoming IPsec packets for
which they do not have the SA. The IPsec stack can
use this tag as a signal that cryptographic process-
ing can be off-loaded to the network interface. Al-
though the device driver could silently load the rele-
vant SA for end-systems, the situation is more com-
plicated for gateways and firewalls that allow IPsec
traffic to traverse them: in that case, the driver may
not know which SAs are “local” and which refer to
hosts behind the firewall. Since such knowledge is
implicitly available to the network stack (different

code will be executed), we made that code respon-
sible for SA loading.

Furthermore, the IPsec stack is (or can be) more
aware about usage patterns across multiple SAs and
can make better-informed decisions as to how best
to use the limited resources available in the net-
work card (such cards can typically support a lim-
ited number of SAs in their internal RAM).

• IPSECPENDING TDB is used by the network stack
to indicate that IPsec processing should occur to
the packet before it is transmitted to the network.
One tag for each SA that needs to be applied to
the packet is attached, in the order in which they
must be applied. This tag is necessary because of
the requirement for SA-bundle processing (i.e.,pol-
icy may require that a packet be processed by a se-
ries, or “bundle”, or SAs — not just one SA) and
the fact that in OpenBSD cryptographic processing
uses continuations [8].

3.2 Loop-Detection Tags

These tags are issued and consumed entirely by the
bridge [7], gif interface, andgre interface subsystems
respectively. Their main purpose is to detect processing
cycles that would cause endless encapsulation or layer-2
packet forwarding. In all cases, the packet is dropped (in
contrast to the IPsec loop-detection recovery, discussed
in the previous section).

Systems withoutmbuf tagshave addressed the problem
of loop detection/avoidance through ad-hoc and unsafe
methods. In most cases, processing is assumed to be
single-threaded; loops are detected through the use of
locks or global variables. Not only is this approach is in-
feasible in multi-threaded and SMP kernels, it will also
not work in certain configurations. For example, con-
sider the case of two or more virtual bridges sharing two
Ethernet interfaces: a packet scheduled for transmission
in one interface of one bridge will be also scheduled for
transmission on the other interface of the same bridge,
also “jumping” to the second virtual bridge, where-
upon it will be scheduled for transmission on the orig-
inal Ethernet interface, whereupon the cycle will restart.
The previous method cannot detect this failure, because
bridge processing occurs at a software interrupt, making
it impossible to keep packet state independently of the
packet. Other similar cases arise then two or more of
GRE, IP-in-IP, and bridging are combined in particular
ways.

Furthermore, use of locks or global variables for de-
tecting re-entry would make it difficult to implement



some legitimate configurations,e.g.,hierarchical bridges
(whereby traffic propagated through one set of interfaces
is also sent through a second set, but not vice versa). Ad-
mittedly, these uses are rather arcane and error-prone —
they are mentioned only as an example of the flexibility
of using tags for loop detection.

• BRIDGE is used by the bridge subsystem [7] to de-
tect loops. The tag contains a pointer to the bridge
interface that already forwarded the frame, allow-
ing multi-bridge packet processing.

• GIF is used bygif, a network pseudo-interface that
implements IP-in-IP encapsulation [9], to detect
loops. Such loops are possible when the outer IP
header, which is attached duringgif processing, has
a destination address that will cause the routing ta-
ble to transmit the packet through the samegif in-
terface again. The tag contains a pointer to thegif
interface that processed the packet.

• Finally, GRE is used by the GRE encapsulation [3]
code to detect cycles. The details are the same as
with theGIF case; here, IP packets are encapsulated
within GRE (and then IP) frames, and the tag con-
tains a pointer to thegre interface that processed
the packet.

3.3 PF-related Tags

These tags are used exclusively by PF, the OpenBSD
packet filtering engine [4]. Unless indicated otherwise,
these tags do not carry any additional data.

• PF GENERATED is used to mark packets that are
generatedby PF itself,e.g., ICMP messages indi-
cating a dropped packet, or firewall-generated TCP
RST packets. Such packets should not be subjected
to the PF filtering rules, thus PF unconditionally ac-
cepts packets that carry this tag.

• PF ROUTED is used to mark packets that arerouted
by the packet filtering engine,e.g., using therdr
rule. Such packets are not tested by PF more than
once, to prevent loops caused by subsequent match-
ing routing rules.

• PF FRAGCACHE is used to mark fragmented pack-
ets cached by PF. PF may cache such fragments as
directed by its configuration, for traffic normaliza-
tion purposes,e.g., to avoid overlapping-fragment
attacks. Packets with this tag have been cached by
the fragment cache already and will short-circuit it

if processed again. If they were to re-enter the frag-
ment cache, they would be indistinguishable from
a duplicate packet, and would be dropped.

• PF QID is used by PF to indicate to the network
traffic-shaping discipline, ALTQ, which queue the
packet should go to. The tag contains the identifier
of the queue.

• PF TAG is used by PF to tag packets with user-
defined information, and filter on those later on.
Effectively, the tag is an internal marker that can
be used to identify these packets. For example,
such tags can be used to propagate information be-
tween input and output filtering rules on different
interfaces, or to determine if packets have been
processed by address-translation rules. These tags
aresticky,meaning that the packet will be tagged
even if the rule that attaches the tag is not the last
matching rule. Further matching PF rules can re-
place that tag with a new one, but will not remove
a previously-applied tag. A packet is only ever as-
signed one tag at a time.

3.4 Miscellaneous Tags

• IN PACKET CHECKSUM is used by network cards
that can compute complete packet checksums to
pass that information to higher-level protocols.
That tag contains the 2-byte checksum of the com-
plete packet. A protocol such as TCP needs to
“subtract” the non-relevant parts of the packet from
the checksum. This type of support was added for
some of the older Intel cards, that did not com-
pute protocol-specific checksums as newer hard-
ware does.

4 Future Directions

There are several improvements we intend to make to
the current API. More specifically:

• Use of memory pools (see thepool(9)manual page)
and tag-specific deallocation routines, to improve
performance. The limitation of using memory
pools is that it supports fixed-size allocations which
can lead to either inefficient use of memory or to
a large numbers of pools. Fortunately, it appears
that all the tags that have been defined to date fall
in one of three categories with respect to memory
allocation: they require no additional memory (be-
yond the tag header itself) — as was the case with



most of the PF tags, see Section 3.3, one extra word
(the loop-detection tags, Section 3.2), or an IPsec
SA identification payload (Section 3.1). Thus, we
could simply have three different memory pools,
one for each size. This change is fairly simple and
does not require any changes in the API itself, so
we intend to integrate it fairly soon.

• Tag-triggers, which will invoke specific packet-
processing at various points in the network stack,
depending on existing tags. One example is cal-
culating the TCP or IP checksum of a packet that
is about to be encapsulated inside another proto-
col. In the extreme case, these tags will carry a
pointer to a protocol-specific function and enough
data to indicate the location where the desired oper-
ation should take place. This is particularly useful
when used in conjunction with network cards that
support some type of functionality offloading and
IPsec: if only some packets are IPsec-processed,
we need a way to defer expensive processing (such
as checksum computations) as late as possible, un-
der the assumption that the packet will not be en-
crypted and thus the expensive operation can be of-
floaded to the NIC. When that assumption is vio-
lated (i.e., the packet does need to be encrypted),
we need to detect and apply the deferred operation.
Such deferred processing is already done for TCP
and UDP checksum computation, but the approach
is tailored for that application. We intend to create
a more general framework for deferred processing
usingmbuf tags.

• An API for application-defined tags. This will be
used either directly by applications or throughset-
sockopt()calls to attach information to packets that
will cause deferred processing. We have an appli-
cation of this, for accelerating TLS [2] and SSH
in the presence of network cards with integrated
cryptographic functionality. In that scenario, the
tags are used by crypto-aware network interfaces to
provide application-layer protocol encryption. We
intend to investigate this approach further in fu-
ture work. Naturally, the type of tags that can
be attached by applications must be carefully con-
trolled, since these tags can affect network process-
ing in ways that may not have been intended or al-
lowed by the system administrator (e.g.,bypassing
PF rules). Fortunately, doing so should be fairly
straightforward, since the relevant interface to the
kernel (setsockopt()) is “narrow” enough that we
can perform the necessary checks.

5 Conclusions

We have presented the OpenBSDmbuf tags,a mecha-
nism for tagging packets as they flow through the net-
work stack. These tags are used by many different ker-
nel components such as the IPsec stack, various pseudo-
interfaces, the packet filtering engine (PF),etc. We dis-
cussed the design rationale, the API, and the uses of the
tags in OpenBSD, as well as some future improvements
we intend to make. Thembuf tagshave been in use in
OpenBSD for several years, and were recently ported to
FreeBSD.mbuf tags represent a powerful and flexible
mechanism for allowing kernel developers to perform
certain types of processing on packets in different parts
of the network stack.

References

[1] T. de Raadt, N. Hallqvist, A. Grabowski, A. D.
Keromytis, and N. Provos. Cryptography in
OpenBSD: An Overview. InProceedings of the
USENIX Annual Technical Conference, Freenix
Track, pages 93 – 101, June 1999.

[2] T. Dierks and C. Allen. The TLS protocol version
1.0. Request for Comments (Proposed Standard)
2246, January 1999.

[3] D. Farinacci, T. Li, S. Hanks, D. Meyer, and
P. Traina. Generic routing encapsulation (GRE).
Request for Comments 2784, Internet Engineering
Task Force, March 2000.

[4] Daniel Hartmeier. Design and Performance of the
OpenBSD Stateful Packet Filter (pf). InProceed-
ings of the USENIX Annual Technical Conference,
Freenix Track, pages 171–180, June 2002.

[5] S. Kent and R. Atkinson. Security Architecture for
the Internet Protocol. RFC 2401, November 1998.

[6] A. D. Keromytis, J. Ioannidis, and J. M. Smith. Im-
plementing IPsec. InProceedings of Global Internet
(GlobeCom), pages 1948–1952, November 1997.

[7] A. D. Keromytis and J. L. Wright. Transparent Net-
work Security Policy Enforcement. InProceedings
of the USENIX Technical Conference, pages 201–
214, June 2000.

[8] A. D. Keromytis, J. L. Wright, and T. de Raadt. The
design of the openbsd cryptographic framework. In
Proceedings of the USENIX Technical Conference,
pages 181–196, June 2003.



[9] C. Perkins. IP encapsulation within IP. Request for
Comments 2003, Internet Engineering Task Force,
October 1996.


