
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Building a High-performance Computing Cluster Using FreeBSD

Brooks Davis, Michael AuYeung, Gary Green, Craig Lee
The Aerospace Corporation

El Segundo, CA
{brooks,lee,mauyeung}@aero.org, Gary.B.Green@notes.aero.org

Abstract

In this paper we discuss the design and implementa-
tion of Fellowship, a 300+ CPU, general use comput-
ing cluster based on FreeBSD. We address the design
features including configuration management, net-
work booting of nodes, and scheduling which make
this cluster unique and how FreeBSD helped (and
hindered) our efforts to make this design a reality.

1 Introduction

For most of the last decade the primary thrust
of high performance computing (HPC) develop-
ment has been in the direction of commodity clus-
ters, commonly known as Beowulf clusters [Becker].
These clusters combine commercial off-the-shelf
hardware to create systems which rival or exceed the
performance of traditional supercomputers in many
applications while costing as much as a factor of ten
less. Not all applications are suitable for clusters,
but a signification portion of interesting scientific
applications can be adapted to them.

In 2001, driven by a number of separate users with
supercomputing needs, The Aerospace Corporation
(a non-profit, federally funded research and devel-
opment center) decided to build a corporate com-
puting cluster (eventually named Fellowship 1) as
an alternative to continuing to buy small clusters
and SMP systems on an ad-hoc basis. This deci-
sion was motivated by a desire to use computing

1Originally, it was suggested that we name the cluster
Frodo, but the need for a name which would provide us with
multiple names for core equipment drove us to use Fellowship
as the name of the cluster.

c©2003 The Aerospace Corporation.

resources more efficiently as well as reducing admin-
istrative costs. The diverse set of user requirements
in our environment led us to a design which differs
significantly from most clusters we have seen else-
where. This is especially true in the areas of op-
erating system choice (FreeBSD) and configuration
management (fully network booted nodes).

Fellowship is operational and being used to solve sig-
nificant real world problems. Our best benchmark
run so far has achieved 183 GFlops of floating point
performance which would place us in the top 100 on
the 2002 TOP500 clusters list.

In this paper, we first give an overview of the clus-
ter’s configuration. We cover the basic hardware and
software, the physical and logical layout of the sys-
tems, and basic operations. Second, we discuss in
detail the major design issues we faced when de-
signing the cluster, how we chose to resolve them,
and discuss the results of these choices. In this sec-
tion, we focus particularly on issues related to our
use of FreeBSD. Third, we discuss lessons learned as
well as lessons we wish the wider parallel comput-
ing community would learn. Fourth, we talk about
future directions for the community to explore ei-
ther in incremental improvements or researching new
paradigms in cluster computing. Finally, we sum up
where we are and where we are going. Table 2 con-
tains a listing of URLs for many of the projects or
products we mention.

2 Fellowship Overview

The basic logical and physical layout of Fellow-
ship is similar to many clusters. There are three
core systems, 151 dual-processor nodes, a network
switch, and assorted remote management hardware.
All nodes and servers run FreeBSD, currently 4.8-
STABLE. The core systems and remote manage-

Figure 1: Fellowship Circa April 2003

ment hardware sit on the Aerospace corporate net-
work. The nodes and core systems share a pri-
vate, non-routed network (10.5/16). This equip-
ment is mounted in a row of seven-foot tall, two-
post racks residing in the underground data center
at Aerospace headquarters in El Segundo, Califor-
nia. Figure 1 shows Fellowship in April 2003. The
layout of the node racks is shown in Figure 2.

The core systems are a user or shell server, a data
server which serves NFS shared scratch space and
does backups, and a management server which runs
the scheduler, serves NIS, and manages the nodes.
The user server, fellowship, is the gateway through
which users access the cluster. Users log into it and
launch jobs from there. Home directories are stored
on fellowship and exported via NFS to the nodes.
The data server, gamgee, hosts 271 GB of shared
scratch space for use by users during computations.
It also runs a MySQL database for results storage
and AMANDA for backups of key cluster systems.
The management server, frodo, performs a wide va-
riety of tasks. These include exporting account in-
formation via NIS, network booting the nodes, and
scheduling user jobs.

The nodes are dual CPU x86 systems ranging from

CPU Type Nodes CPUs
Pentium III 1GHz 8 16
Pentium III 1.26GHz 40 80
Pentium III 1.4GHz 39 78
Xeon (P4) 2.4GHz 64 128
Total 151 302

Table 1: CPUs in Fellowship nodes.

1 GHz Pentium IIIs to 2.4GHz Xeons with 1GB of
RAM installed. Table 1 gives a complete breakdown
of CPU types used in Fellowship. All Pentium III
nodes were purchased with 40GB IDE disks. The
Xeon nodes were purchased with 80GB disks and
Pentium III disks are being replaced with 80GB
disks as they fail. The nodes are connected via
Gigabit Ethernet through a Cisco Catalyst 6513
switch. The Pentium III systems are Tyan Thun-
der LE (1GHz systems) and Tyan Thunder LE-T
with 3Com Gigabit Ethernet adapters installed in
their expansion slots. They are mounted in 14” deep
rackmount cases and were integrated by iXsystems.
The Xeon systems are Intel 1U server platforms with
dual on board Gigabit Ethernet interfaces. We pur-
chased them from Iron Systems.

Unit Contents
45 filler panel (empty)
44 filler panel (empty)
43 filler panel (empty)
42 48-port terminal server (r01ts: 10.5.1.0)
41 Cable management
40
39 node (r01n32: 10.5.1.32)
38 node (r01n31: 10.5.1.31)
37 node (r01n30: 10.5.1.30)
36 node (r01n29: 10.5.1.29)
35 node (r01n28: 10.5.1.28)
34 node (r01n27: 10.5.1.27)
33 node (r01n26: 10.5.1.26)
32 node (r01n25: 10.5.1.25)
31 Baytech RPC4 8-port power controller
30 Baytech RPC4 8-port power controller
29 node (r01n24: 10.5.1.24)
28 node (r01n23: 10.5.1.23)
27 node (r01n22: 10.5.1.22)
26 node (r01n21: 10.5.1.21)
25 node (r01n20: 10.5.1.20)
24 node (r01n19: 10.5.1.19)
23 node (r01n18: 10.5.1.18)
22 node (r01n17: 10.5.1.17)
21 node (r01n16: 10.5.1.16)
20 node (r01n15: 10.5.1.15)
19 node (r01n14: 10.5.1.14)
18 node (r01n13: 10.5.1.13)
17 node (r01n12: 10.5.1.12)
16 node (r01n11: 10.5.1.11)
15 node (r01n10: 10.5.1.10)
14 node (r01n09: 10.5.1.9)
13 Baytech RPC4 8-port power controller
12 Baytech RPC4 8-port power controller
11 node (r01n08: 10.5.1.8)
10 node (r01n07: 10.5.1.7)
9 node (r01n06: 10.5.1.6)
8 node (r01n05: 10.5.1.5)
7 node (r01n04: 10.5.1.4)
6 node (r01n03: 10.5.1.3)
5 node (r01n02: 10.5.1.2)
4 node (r01n01: 10.5.1.1)
3
2 5 110V 20A Circuits
1

Figure 2: Layout of Node Rack 1

Although the nodes have disks, we network boot
them using PXE support on their network interfaces
with frodo providing DHCP, TFTP, NFS root disk,
and NIS user accounts. On boot, the disks are au-
tomatically checked to verify that they are properly
partitioned for our environment. If they are not,
they are automatically repartitioned. This means
no manual configuration of nodes is required beyond

determining their MAC address when they are in-
stalled.

Local control of cluster machines is made possible
through a KVM-switch connected to a 1U rack-
mount LCD keyboard, monitor, and track pad. Re-
mote access is available through Cyclades TS-series
terminal servers. All nodes and servers as well
as networking gear are connected to these termi-
nal servers and console redirection is enabled on all
FreeBSD machines. We have BIOS console redirec-
tion enabled on the Xeon systems, but not on the
Pentium III systems as a bug tends to cause them
to hang, even at very low baud rates. In addition
to console access, everything except the terminal
servers and the switch are connected to BayTech
RPC4-15 serial remote power controllers. This al-
lows us to remotely reboot virtually any part of the
system by connecting to the power controller via the
appropriate terminal server.

On top of this infrastructure, access to nodes is con-
trolled by Sun Grid Engine (SGE), a scheduler im-
plementing a superset of the POSIX Batch Envi-
ronment Services specification. SGE allows users to
submit both interactive and batch job scripts to be
run on one or more processors. Users are free to use
the processors they are allocated in any reasonable
manner. They can run multiple unrelated processes
or single massively parallel jobs.

To facilitate use of Fellowship, we provide a basic
Unix programming environment, plus the parallel
programming toolkits, and commercial parallel ap-
plications. For parallel programming toolkits we
provide Parallel Virtual Machine and the MPICH
and LAM implementations of the Message Passing
Interface [MPI]. Currently, our sole commercial par-
allel application is Grid Mathematica for which we
were the launch customer.

3 Design Issues

One of the biggest challenges in building Fellow-
ship was our diverse user base. Among the users
at the initial meetings to discuss cluster architec-
ture, we had users with loosely coupled and tightly
coupled applications, data intensive and non-data
intensive applications, and users doing work rang-
ing from daily production runs to high performance
computing research. This diversity of users and ap-
plications led to the compromise that is our current

Resource URL
Big Sister http://bigsister.graeff.com/
BProc http://bproc.sourceforge.net/
Diskmark http://people.freebsd.org/~brooks/diskmark/
Diskprep (enhanced) http://people.freebsd.org/~brooks/diskprep/
Diskprep (original) http://people.freebsd.org/~imp/diskprep.pl
DQS http://www.scri.fsu.edu/~pasko/dqs.html
EmuLab http://www.emulab.net/
FreeBSD http://www.FreeBSD.org/
Ganglia Cluster Monitor http://ganglia.sourceforge.net/
GEOM Overview http://phk.freebsd.dk/geom/overview.txt
Global File System (GFS) http://www.sistina.com/products_gfs.htm
Grid Mathematica http://www.wolfram.com/products/gridmathematica/
LAM-MPI http://www.lam-mpi.org/
LinuxBIOS http://www.linuxbios.org/
LSF http://www.platform.com/products/wm/LSF/
Maui Scheduler http://www.supercluster.org/maui/
Myrinet http://www.myri.com/myrinet/
MPICH http://www-unix.mcs.anl.gov/mpi/mpich/
Nagios http://www.nagios.org/
OpenPBS http://www.openpbs.org/
Parallel Virtual Machine http://www.csm.ornl.gov/pvm/
Rocks Cluster Distribution http://www.rocksclusters.org/
Scalable OpenPBS http://www.supercluster.org/projects/pbs/
Sun Grid Engine (SGE) http://gridengine.sunsource.net/
Clusters @ TOP500 http://clusters.top500.org/

Table 2: Resources for Clusters

design. In this section we highlight the major design
decisions we made while building Fellowship.

3.1 Operating System

The first major design decision any cluster faces is
usually the choice of operating system. By far, the
most popular choice is some Linux distribution. Cer-
tainly Linux is the path of least resistance and most
people assume that, if it is a cluster, it runs Linux.
In fact a cluster can run almost any operating sys-
tem. Clusters exist running Solaris [SciClone], HP-
UX, AIX, MacOS X, FreeBSD [Jeong, Schweitzer],
and even Windows. ASCI Blue Mountain is actu-
ally a cluster of 48 128-CPU SGI systems running
Irix [SGI].

For an organization with no operating system bias
and straight-forward computing requirements, run-
ning Linux is the path of least resistance due to
free clustering toolkits such as NPACI’s Rocks Clus-
ter Distribution. In other situations, operating sys-
tem choice is more complicated. Important factors

to consider include chosen hardware platform, ex-
istence of experienced local system administration
staff, availability of needed applications, easy of
maintenance, system performance, and the impor-
tance of the ability to modify the operating system.

For a variety of reasons, we chose FreeBSD for Fel-
lowship. The most pragmatic reason for doing so
is the excellent out of the box support for diskless
systems which was easily modifiable to support our
nodes network booting model. This part has worked
out very well.

Additionally, the chief Fellowship architect uses
FreeBSD almost exclusively and is a FreeBSD com-
mitter. This meant we had more FreeBSD experi-
ence than Linux experience and that we could push
some of our more general changes back into FreeBSD
to simplify operating system upgrades. In practice,
our attempts to push changes back into the base op-
erating system have met with mixed success. We
have merged a few small changes, but the generally
applicable portion of our diskless boot script changes
have not been merged due to lack of time to sort out

conflicting changes to the main source tree.

The ports collection was also a major advantage of
using FreeBSD. It has allowed us to install and main-
tain user-requested software quickly and easily. In
some cases, existing ports were not flexible enough
for our needs, but for most applications, it works
well. The availability of Linux emulation meant we
did not give up much in the way of application com-
patibility. We have successfully run Grid Mathemat-
ica on the cluster after following the Mathematica
installation documentation in the FreeBSD Hand-
book.

The disadvantages of FreeBSD for our purposes
are immature SMP and threading support, and an
widely held view within the high performance com-
puting community that if it isn’t a commercial su-
percomputer, it must be a Linux system. SMP sup-
port has not been a major issue for our users to
date. Most of our jobs are compute-bound so the
poor SMP performance under heavy IO is a moot
problem. Threading has been more of an issue. We
have users who would like to use threading for SMP
scaling. We expect this situation to improve when
we migrate to FreeBSD 5.x.

The Linux focus of the HPC community has caused
us some problems. In particular, many pieces of
software either lack a FreeBSD port, or only have
a poorly tested one which does not actually work.
Additionally, there is a distinct shortage of compiler
support for modern versions of FORTRAN.

3.2 Hardware Architecture

The choice of hardware architecture is generally
made in conjunction with the operating system as
the two interact with each other. Today, most clus-
ters are based on Intel or AMD x86 CPUs, but
many other choices are available. 64-bit SPARC
and Alpha clusters are fairly common, and clusters
based on Apple’s XServe platform are popular in
Macintosh shops. The major issues to consider are
price, performance, power consumption, and oper-
ating system compatibility. For instance, Intel’s Ita-
nium2 has excellent performance, but is expensive
and power hungry as well as suffering from immature
operating system support. In general, x86 based sys-
tems are currently the path of least resistance given
the lack of a conflicting operating system require-
ment.

When we were selecting a hardware architecture
in 2001, the major contenders were Alpha and In-
tel or AMD based x86 systems. We quickly dis-
carded Alpha from consideration because of previous
experiences with overheating problems on a small
Aerospace Alpha cluster. Alphas also no longer have
the kind of performance lead they enjoyed in the late
1990’s. We looked at both Pentium III and Athlon-
based systems, but decided that while the perfor-
mance characteristics and prices did not vary signif-
icantly, power consumption was too problematic on
the Athlon systems.

Over the life of Fellowship, we have investigated
other types of nodes including newer Athlon based
systems, the Xeon systems we purchased in this
year’s expansion, Apple XServes, and now AMD
Opteron systems. Athlons have failed to match the
power/performance ratios of Intel systems. Simi-
larly, XServes are attractive, but offer sub-par per-
formance and little improvement in power consump-
tion in addition to being an incompatible architec-
ture. We will not make a decision until we know
what the hardware market landscape looks like late
this year, but preliminary reports seem to indicate
that the amd64 port of FreeBSD will allow us to ex-
plore using systems with much larger system memo-
ries while retaining x86 compatibility for users who
do not want to think about which machines they are
running on.

3.3 Node Architecture

Most of the decisions about node hardware will de-
rive from the selection of hardware architecture,
cluster form factor, and network interface. The
biggest of the remaining choices is single or multi-
processor systems. Single processor systems have
better CPU utilization due to a lack of contention
for RAM, disk, and network access. Multi-processor
systems can allow hybrid applications to share data
directly, decreasing their communication overhead.
Additionally, multi-processor systems tend to have
higher performance external interfaces then single
processor system.

Other choices are processor speed, RAM, and disk
space. We have found that aiming for the knee
of the price curve has served us well, since no sin-
gle user dominates our decisions. In other environ-
ments, top of the line processors, very large disks, or
large amounts of RAM may be justified despite the
exponential increase in cost.

CPU 2 x Pentium III 1GHz
Network Interface 3Com 3C996B-T
RAM 1GB
Disk 40GB 7200RPM IDE

Table 3: Configuration of first Fellowship nodes.

CPU 2 x Xeon 2.4GHz
Network Interface On board gigabit
RAM 2GB
Disk 80GB 7200RPM IDE

Table 4: Configuration of latest Fellowship nodes.

For Fellowship, we chose dual CPU systems. We
were motivated by a desire to do research on code
that takes advantage of SMP systems in a cluster,
higher density than single processor systems, and the
fact that the 64-bit PCI slots we needed for Gigabit
Ethernet were not available on single CPU systems.
As a result of our focus on the knee of the price curve,
we have bought slightly below the performance peak
on processor speed, with 2-4 sticks of smaller then
maximum RAM, and disks in the same size range
as mid-range desktops. This resulted in the initial
configuration shown in Table 3. The most recent
node configuration is shown in Table 4.

3.4 Network Interconnects

Like hardware architecture, the selection of network
interfaces is a matter of choosing the appropriate
point in the trade space between price and perfor-
mance. Performance is generally characterized by
bandwidth and latency. The right interface for a
given cluster depends significantly on the jobs it will
run. For loosely coupled jobs with small input and
output datasets, little bandwidth is required and
100Mbps Ethernet is the obvious choice. For other,
tightly coupled jobs, Myrinet with its low latency
and 2 Gbps+2 Gbps bandwidth is the right solu-
tion. Other interfaces, such as upcoming InfiniBand
products, provide alternatives for high speed inter-
faces.

The choice of Gigabit Ethernet for Fellowship’s in-
terconnect represents a compromise between the
cheaper 100 Mbps Ethernet our loosely coupled ap-
plications would prefer (allowing us to buy more
nodes) and Myrinet. We plan to improve the ef-
ficiently of our network by upgrading to use Jum-
boFrames (9000 byte MTUs) in the near future.

When we started building Fellowship, Gigabit Eth-
ernet was about one-third of the cost of each node
whereas Myrinet would have more than doubled our
costs. Looking to our expansion next year, Gigabit
Ethernet is standard on the motherboard, and with
the large switches our cluster requires, the cost per
port is less then 20% higher then 100Mbps Ethernet.
We are considering the idea of creating sub-clusters
within Fellowship with faster network interfaces such
as Myrinet.

3.5 Addressing and Naming Schemes

There are three basic approaches to allocating IP
addresses in a cluster. For small clusters, many ar-
chitects simply put all the machines on an existing
network. This has the advantage that no additional
routing is needed for the nodes to talk to arbitrary
external data sources. The disadvantage is that it
typically means the IP-addresses do not correspond
to physical objects so it is hard to distinguish ma-
chines. Additionally, not subnetting the cluster can
make it too easy for inter-node communication to
impact the rest of the network. The other two ap-
proaches involve placing nodes on their own subnet,
either with public or private [RFC1918] addresses.
Using public addresses has the advantage that with
appropriate routers, cluster nodes can exchange data
with arbitrary external data sources. On a subnet,
IP-addresses can be mnemonic to help administra-
tors remember which machine a particular address
belongs to. The main disadvantage of using pub-
lic addresses is that address space is becoming in-
creasingly scarce and large allocations are difficult
or expensive to obtain. The use of private addresses
eliminates this pressure by allowing the use of 224

addresses in the 10/8 address space. This allows
useful mnemonic naming schemes without any pres-
sures to use addresses efficiently. The disadvantage
is that nodes cannot reach external data sources di-
rectly. If all they need to do is access HTTP or FTP
servers, a proxy can be used, but many grid comput-
ing tools assume that all machines in a computation
are on fully routed networks.

On Fellowship we chose to use the 10.5/16 private
network. We chose this approach because we needed
our own subnet to avoid consuming other networks
resources and we would have needed at least a /23
allocation, which was not available at the time.
Within our network 10.5.0/24 is reserved for core
equipment. 10.5.255/24 is available for temporary

DHCP allocation to allow devices to acquire a net-
work address before they have their MAC address
recorded in the DHCP config file. The 10.5.X/24
blocks are allocated to node racks numbered from 1.
Originally, 10.5.X.0 was the terminal server for that
rack and 10.5.X.Y (0 < Y < 255) corresponds to
node Y within that rack. We have since moved the
terminal servers onto the corporate network because
they will not support JumboFrames. This allocation
scheme would not be possible with public addresses
due to address allocation authority requirements.

Choosing host names within a cluster is another is-
sue faced by a cluster architect. The usual rules
of host naming [RFC1178] apply to naming core
servers. However, unless the cluster is very small
and likely to remain so, a numerical naming scheme
such as node00, node01, etc. is likely to be a better
idea then trying to come up with a naming scheme
that can handle hundreds of unique machines.

For Fellowship, we choose to name our core ma-
chines after members of The Fellowship of the
Ring [Tolkien]. At some point we may run out of
names and need to start using other characters from
The Lord of the Rings, but the theme should easily
hold for the core systems. We choose to name nodes
after their host rack and their position within that
rack. Nodes are numbered from the bottom (be-
cause we fill the racks from the bottom). Thus each
node’s name looks like r##n## with the first node
in rack 1 being r01n01. Terminal servers were orig-
inally named r##ts, but have since been changed
to gimli-r## with gimli being the terminal server
for the core systems. The nice things about naming
devices in the node racks this way is that conver-
sion between IP-addresses and host names can be
accomplished with a simple regular expression.

Domain names add a slight complication to the nam-
ing process. It is often useful to make the cluster into
its own DNS zone. With Fellowship, all external
systems reside within the aero.org zone and nodes
reside within an internal use only fellow.aero.org
zone. The disadvantage of this is that some software
prefers that hosts are within the same zone.

3.6 Core Servers and Services

On Fellowship, we refer to all the equipment other
then the nodes and the remote administration hard-
ware as core servers. On many clusters, a single
core server suffices to provide all necessary core ser-

vices. In fact, some clusters simply pick a node to be
the nominal head of the cluster. Some large clusters
provide multiple front ends, with load balancing and
failover support to improve uptime.

Core services are those services which need to be
available for users to utilize the cluster. At a min-
imum, users need accounts and home directories.
They also need a way to configure their jobs and
get them to the nodes. The usual way to provide
these services is to provide shared home and applica-
tion directories, usually via NFS and use a directory
service such as NIS to distribute account informa-
tion. Other core services a cluster architect might
choose to include are batch schedulers, databases
for results storage, and access to archival storage re-
sources. The number of ways to allocate core servers
to core services is practically unlimited.

Fellowship has three core servers: the data server,
the user server, and the management server. All of
these servers are currently 1GHz Pentium III sys-
tems with SCSI RAID5 arrays. The data server,
gamgee, serves a 250GB shared scratch volume via
NFS, runs a MySQL database for users to store re-
sults in, and does nightly backups to a 20 tape li-
brary using AMANDA. We are in the process of up-
grading the scratch portion of the data server to
a dual Xeon box containing 2.8TB of IDE RAID.
Backups and databases will remain on gamgee. The
user server, fellowship, serves NFS home directo-
ries and gives the users a place to log in to com-
pile and run applications. The management server,
frodo, hosts the scheduler, NIS, and our shared ap-
plication hierarchy mounted at /usr/aero. Addi-
tionally, the management server uses DHCP, TFTP,
and NFS to netboot the nodes. We are in the pro-
cess of upgrading fellowship and frodo to dual
2.4GHz Xeons with 285GB of SCSI RAID5 storage
each, doubling their previous capacity.

These services were isolated from each other for per-
formance reasons. In our model, hitting the shared
scratch space does not slow down ordinary compiles
and compiling does not slow down scratch space ac-
cess. We discovered that, separation of services does
work, but it comes at the cost of increased fragility
because the systems are interdependent, and when
one fails, they all have problems. We have de-
vised solutions to these problems, but this sort of
division of services should be carefully planned and
would generally benefit from redundancy when fea-
sible. Given unlimited funds, we would probably
move most NFS service to an appliance type device

such as a NetApp file server.

3.7 Node Configuration Management

Since nodes generally outnumber everything else on
the system, efficient configuration management is es-
sential. Many systems install an operating system
on each node and configure the node-specific por-
tion of the installation manually. Other systems net-
work boot the nodes using Etherboot, PXE or Lin-
uxBIOS. The key is good use of centralization and
automation. We have seen many clusters where the
nodes are never updated without dire need because
the architect made poor choices that made upgrad-
ing nodes impractical.

Node configuration management is probably the
most unique part of Fellowship’s architecture. We
start with the basic FreeBSD diskless boot pro-
cess [Perlstein]. We then use the diskless remount
support to mount /etc as /conf/base/etc and
override ssh keys on the nodes. For many appli-
cations, this configuration would be sufficient. How-
ever, we have applications which require significant
amounts of local scratch space. As such, each node
contains a disk. The usual way of handling such
disks would be to manually create appropriate di-
rectory structures on the disk when the system was
first installed and then let the nodes mount and fsck
the disks each time they were booted. We deemed
this impractical because nodes are usually installed
in large groups. Additionally, we wanted the abil-
ity to reconfigure the disk along with the operating
system. Instead of manual disk configuration, we
created a program (diskmark) which uses an invalid
entry in the MBR partition table to store a magic
number and version representing the current parti-
tioning scheme. At boot we use a script which exe-
cutes before the body of rc.diskless2 to examine
this entry to see if the current layout of the disk is
the required one. If it is not, the diskless scripts
automatically use Warner Losh’s diskprep script to
initialize the disk according to our requirements.

With this configuration, adding nodes is very easy.
The basic procedure is to bolt them into the rack,
hook them up, and turn them on. We then obtain
their MAC address from the switch’s management
console and add it to the DHCP configuration so
each node is assigned a well-known IP address. After
running a script to tell the scheduler about the nodes
and rebooting them, they are ready for use.

Maintenance of the netboot image is handed by ch-
rooting to the root of the installation and following
standard procedures to upgrade the operating sys-
tem and ports as needed. For operating system up-
grades, we copy the entire root to a new location,
upgrade it, and test a few nodes before modifying
the DHCP configuration for all nodes and rebooting
them to use the new root. We install software avail-
able through the ports collection via the standard
process and manage it with portupgrade. Software
which is not available in the ports collection is in-
stalled in the separate /usr/aero hierarchy.

One part of network booting Fellowship’s nodes that
has not worked out as planned is BIOS support
for PXE. PXE is a standard feature on server-class
motherboards, but seems to be poorly tested by
manufacturers. More than once, our vendor had to
go back to the motherboard manufacture to have
them create a new BIOS to fix a PXE problem.
We have found PXE to be somewhat unreliable
on nearly all platforms, occasionally failing to boot
from the network for no apparent reason and then
falling back to the disk which is not configured to
boot. Some of these problems appear to be caused
by interactions with network switches, particularly
Cisco switches. Recently, we have been working on
an enhanced version of diskprep which will allow
us to create a FreeDOS partition that will automat-
ically reboot the machine, giving it infinite retries at
PXE booting.

3.8 Job Scheduling

Job scheduling is potentially one of the most com-
plex and contentious issues faced by a cluster ar-
chitect. The major scheduling options are running
without any scheduling, manual scheduling, batch
queuing, and domain specific scheduling.

In small environments with users who have compat-
ible goals, not having a scheduler and just letting
users run what they want when they want or com-
municating with each other out of band to reserve
resources as necessary can be a good solution. It
has very little administrative overhead, and in many
cases, it just works.

With large clusters, some form of scheduling is usu-
ally required. Even if users do not have conflicting
goals, it’s difficult to try to figure out which nodes
to run on when there are tens or hundreds available.
Additionally, many clusters have multiple purposes

Mountpoint Source
/ frodo:/nodedata/roots/freebsd/4.8-STABLE
/conf/base/etc frodo:/nodedata/roots/freebsd/4.8-STABLE/etc
/etc mfs
/usr/aero frodo:/nodedata/usr.aero
/tmp /dev/ad0s2a
/var /dev/ad0s2d
/home fellowship:/home
/scratch gamgee:/scratch
/db gamgee:/db
/dev mfs

Table 5: Sample node (r01n01 aka 10.5.1.1) mount structure

that must be balanced. In many environments, a
batch queuing system is the answer. A number ex-
ist, including OpenPBS, PBSPro, Sun Grid Engine
(SGE), LSF, NQS, and DQS. These systems typ-
ically include a scheduler, but many of them also
support running the Maui backfill scheduler on top
of them. OpenPBS and SGE are freely available
open source applications and are the most popular
options for cluster scheduling.

For some applications, batch queuing is not a good
answer. This is usually either because the appli-
cation requires that too many jobs for most batch
queuing systems to keep up or because the runtime
of jobs is too variable to be useful. For instance, we
have heard of one computational biology application
which runs through tens of thousands of test cases
a day where most take a few seconds, but some may
take minutes, hours, or days to complete. In these
situations, a domain specific scheduler is often nec-
essary. A common solution is to store cases in a
database and have applications on each node that
query the database for a work unit, process it, store
the result in the database, and repeat.

On Fellowship, we have a wide mix of applications
ranging from trivially scheduleable tasks to applica-
tions with unknown run times. Our current strategy
is to implement batch queuing with a long-term goal
of discovering a way to handle very long running ap-
plications. We initially intended to run the popular
OpenPBS scheduler because it already had a port to
FreeBSD and it is open source. Unfortunately, we
found that OpenPBS had major stability problems
under FreeBSD (and, by many accounts, most other
operating systems) 2. About the time we were ready
to give up on OpenPBS, Sun released SGE as open

2A recent fork called Scalable OpenPBS may eventually
remedy these issues.

source. FreeBSD was not supported initially, but we
were able to successfully complete a port based on
some patches posted to the mailing lists. We have
since contributed that port back to the main SGE
source tree.

3.9 Security Considerations

For most clusters, we feel that treating the cluster
as a single system is the most practical approach to
security. Thus for nodes which are not routed to
the Internet like those on Fellowship, all exploits on
nodes should be considered local. What this means
to a given cluster’s security policy is a local issue.
For systems with routed nodes, management gets
more complicated, since each node becomes a source
of potential remote vulnerability. In this case it may
be necessary to take action to protect successful at-
tacks on nodes from being leveraged into full system
access. In such situations, encouraging the use of
encrypted protocols within the cluster may be de-
sirable, but the performance impact should be kept
firmly in mind.

The major exception to this situation are clusters
that require multi-level security. We have some in-
terest in the issues in such a system, but at this point
have not done any serious investigation.

We have chosen to concentrate on protecting Fel-
lowship from the network at large. This primarily
consists of keeping the core systems up to date and
requiring that all communications be via encrypted
protocols such as SSH. Internally we encourage the
use of SSH for connecting to nodes, but do allow
RSH connections. Our Sun Grid Engine install uses
a PKI-based user authentication scheme. We discov-
ered this is necessary because SGE’s default privilege

model is actually worse than RSH in that it does not
even require the dubious protection of a lower port.
Inter-node communications are unencrypted for per-
formance reasons.

3.10 System Monitoring

The smooth operation of a cluster can be aided by
proper use of system monitoring tools. Most com-
mon monitoring tools such as Nagios and Big Sister
are applicable to cluster use. The one kind of mon-
itoring tool that does not work well with clusters is
the sort that sends regular e-mail reports for each
node. Even a few nodes will generate more reports
then most admins have time to read. In addition to
standard monitoring tools, there exist cluster spe-
cific tools such as the Ganglia Cluster Monitor. Most
schedulers also contain monitoring functionality.

On Fellowship we are currently running the Gan-
glia Cluster Monitoring system and the standard
FreeBSD periodic scripts on core systems. Ganglia
was ported to FreeBSD previously, but we have cre-
ated FreeBSD ports which make it easier to install
and make its installation more BSD-like. A major
advantage of Ganglia is that no configuration is re-
quired to add nodes. They are automatically discov-
ered via multicast. We have also considered using
Nagios to monitor nodes, but have not yet success-
fully deployed it. Monitoring is an area we need to
improve on Fellowship. We have had disks fail after a
reboot without anyone noticing, because the default
FreeBSD diskless behavior causes it to boot anyway.
It was nice that the nodes kept working, but we were
surprised to find some machines had small memory
based /tmp directories instead of 36GB+ disk based
ones.

3.11 Physical System Management

At some point in time, every system administrator
finds that they need to access the console of a ma-
chine or power cycle it. With just a few machines,
installing monitors on each machine or installing a
KVM switch for all machines and flipping power
switches manually is a reasonable option. For a large
cluster, installing serial terminal servers to allow re-
mote access to consoles and remote power controllers
may be advisable.

In Fellowship’s architecture, we place a strong em-

phasis on remote management. The cluster is housed
in our controlled access data center, which makes
physical access cumbersome. Additionally, the chief
architect and administrator lives 1000 miles from the
data center, making direct access even more difficult.
As a result, we have configured all computers to pro-
vide remote console access via terminal servers and
have provided their power through remote power
controllers. This allows us to reliably reboot sys-
tems at will, which greatly aids recovery and remote
diagnosis of faults. Not all problems can be solved
this way, but many can. We were able to diagnose a
reboot caused by running out of network resources,
but not a crash caused by a RAID controller that
died. We have had mixed results with BIOS console
access. On the Intel Xeon systems it works well, but
the Tyan Pentium III motherboards tend to hang on
boot if BIOS console redirection is enabled. In both
cases we are able to access FreeBSD’s console, which
has proven useful.

3.12 Form Factor

The choice of system form factor is generally a
choice between desktop systems on shelves versus
rack mounted servers. Shelves of desktops are com-
mon for small clusters as they are usually cheaper
and less likely to have cooling problems. Their dis-
advantages include the fact that they take up more
space, the lack of cable management leading to more
difficult maintenance, and generally poor aesthet-
ics. Additionally, most such systems violate seismic
safety regulations.

Rack mounted systems are typically more expen-
sive due to components which are produced in much
lower volumes as well as higher margins in the
server market. Additionally, racks or cabinets cost
more then cheap metal shelves. In return for this
added expense, rackmount systems deliver higher
density, integrated cable management, and, usually,
improved aesthetics.

Higher density is a two-edged sword. Low-end cases
are often poorly designed and inadequately tested,
resulting in overheating due to cramped quarters
and badly routed cables. Additionally, a single rack
can generate an amazing amount of heat. We esti-
mate there is a 20-30 degree (F) difference between
the front and back of Fellowship’s racks of Xeons
despite being in a well air conditioned underground
data center. Those racks have a peak power con-
sumption of over 6000W each.

A minor sub-issue related to rackmount systems
is cabinets vs. open, telco style racks. Cabinets
look more polished and can theoretically be moved
around. Their disadvantages are increased cost, lack
of space making them hard to work in, and being
prone to overheating due to restricted airflow. Telco
racks do not look as neat and are generally bolted
to the floor, but they allow easy access to cables and
unrestricted airflow. In our case, we use vertical ca-
ble management with doors which makes Fellowship
look fairly neat without requiring cabinets.

The projected size of Fellowship drove us to a rack-
mount configuration immediately. We planned from
the start to eventually have at least 300 CPUs, which
is pushing reasonable bounds with shelves. The only
thing that has not gone well with our racks is that
we chose six inch wide vertical cable management,
which gets cramped at times. We plan to use ten
inch wide vertical cable management when we ex-
pand to a second row of racks next fiscal year.

4 Lessons Learned

The biggest lesson we have learned is that hardware
attrition is a real issue. While we have not seen
many hard-to-track instability problems, we have
lost at least one machine nearly every time we have
had a building-wide power outage, scheduled or un-
scheduled. As a result, we have learned that it is
important to have a vendor who will repair failed
or failing systems quickly. The fact that nodes fail
more frequently then we had initially expected also
means that neat cabling is more crucial then we first
thought. To save money in the initial deployment,
we ran cables directly from the switch to the nodes.
This means we have a lot of slack cable in the ca-
ble management, which makes removing and rein-
stalling nodes difficult. When we expand the cluster
to a second row of racks next year, we plan to switch
to having patch panels at the top of each rack con-
necting to panels beside the switch.

We have also learned that while most HPC software
works fine on FreeBSD, the high performance com-
puting community strongly believes the world is a
Linux box. It is often difficult to determine if a
problem is due to inadequate testing of the code
under FreeBSD or something else. We hope that
more FreeBSD users will consider clustering with
FreeBSD.

System automation is even more important then we
first assumed. For example, shutting down the sys-
tem for a power outage can be done remotely, but
currently it requires logging in to all 20 remote power
controllers. We are currently working on automating
this as well as adding automatic shutdown of nodes
in the event of external power loss.

5 Future Directions & Conclusions

Currently Fellowship is working well, but there are
still improvements to be made, particularly in the
areas of automation and scheduling.

We have planned for an evolving system, but we
have not actually got to the stage of replacing old
hardware so we do not know how that is going to
work in practice. Clearly, at some point, nodes will
be wasting more power then they are worth, but
we do not know what that point is. A measure
of FLOPS/Watt will be helpful in determining this.
We also do not know if systems will start failing en
masse in the future or if they will die slowly over a
long period of time.

Other directions we need to pursue are in the area
of scheduling. We need to better handle job models
that do not fit well within the batch paradigm where
users have a good idea how long their jobs will run.
Some of our users have jobs that will run for weeks
or months at a time, so this is a pressing concern.
We are currently pursuing internal research funding
to explore this issue further.

Another area of interest is some sort of cluster-on-
demand [Moore] scheme to allow use of nodes in dif-
ferent ways at different times. One suggestion has
been to create an Emulab [White] sub-cluster which
can be used for computation when not being used
for network simulation.

Distributed file systems like GFS and distributed
process models like BProc are an area we would like
to see explored further on FreeBSD. Currently there
is significant work on Linux, but little on FreeBSD.

We are working to develop new higher level par-
allel programming toolkits to support specific ap-
plications such as mesh generation for computa-
tional fluid dynamics models. We are currently in
the process of deploying the Globus Toolkit on the
Aerospace network which will potentially allow users

to run applications which span multiple comput-
ing resources including Fellowship, other Aerospace
clusters, and SMP systems such SGI Origins. Such
applications could be built using programming tools
such as GridRPC [Seymour] being developed by the
GridRPC Working Group of the Global Grid Forum.

In the mid-term we are looking toward a migration
to FreeBSD 5.x for improved SMP performance and
threading support. For improved threading alone,
this will be an important step for us. There are
some significant challenges we need to overcome, the
most significant one being the need to upgrade our
network-boot infrastructure to the NetBSD derived
rc.d boot scripts [Mewburn] and the GEOM disk
subsystem [Kamp].

Fellowship currently runs a wide mix of jobs which
are used being used to make significant decisions re-
garding space systems. We feel that FreeBSD has
served us well in providing a solid foundation for our
work and is generally well supported for HPC. We
encourage others to consider FreeBSD as the basis
for their HPC clusters.

Acknowledgments

We would like to acknowledge the support of the
GPS and STSS program offices. Additional support
was provided by the Aerospace Computer Systems
Division. Without their funding of administrative
costs, Fellowship would not be what it is today.

References

[Becker] Donald J. Becker, Thomas Sterling,
Daniel Savarese, John E. Dorband, Udaya
A. Ranawak, Charles V. Packer, Beowulf: A
Parallel Workstation for Scientific Computa-
tion Proceedings, International Conference on
Parallel Processing, 1995.

[Moore] Justin Moore, David Irwin, Laura Grit,
Sara Sprenkle, and Jeff Chase. Managing
Mixed-Use Clusters with Cluster-on-Demand.
Department of Computer Science. Duke Uni-
versity.
http://issg.cs.duke.edu/cod-arch.pdf

[Kamp] Kamp, Poul-Henning. geom(4). GEOM
- modular disk I/O request transformation
framework. FreeBSD Kernel Interfaces Manual
FreeBSD 5.1.

[Perlstein] Perlstein, Alfred. FreeBSD Jumpstart
Guide.
http://www.freebsd.org/doc/en_US.
ISO8859-1/articles/pxe/

[Mewburn] Mewburn, Luke. The Design and Im-
plemenation of the NetBSD rc.d system.
http://www.mewburn.net/luke/papers/rc.
d.pdf

[MPI] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-11.
ps

[SGI] Silicon Graphics, Inc. Energy Department’s
Blue Mountain Supercomputer Achieves
Record-Breaking Run.
http://www.sgi.com/newsroom/press_
releases/2000/may/blue_mountain.html

[Jeong] Garrett Jeong, David Moffett. Welcome to
ACME - The Advanced Computer Matrix for
Engineering.
http://acme.ecn.purdue.edu/

[Schweitzer] A. Schweitzer. The Klingon bird of Prey
PC cluster.
http://phoenix.physast.uga.edu/klingon/

[SciClone] The College of William and Mary. Sci-
Clone Cluster Project.
http://www.compsci.wm.edu/SciClone/

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karren-
berg, G. J. de Groot, E. Lear. Address Alloca-
tion for Private Internets.

[RFC1178] D. Libes. Choosing a Name for Your
Computer.

[Tolkien] J.R.R. Tolkien. The Lord of the Rings
1955.

[White] B. White et al. An Integrated Experimental
Environment for Distributed Systems and Net-
works. In 5th Symposium on Operating Systems
Design and Implementation, December 2002.

[Seymour] Seymour, K., Nakada, H., Matsuoka, S.,
Dongarra, J., Lee, C., Casanova, H., An
Overview of GridRPC: A Remote Procedure
Call API for Grid Computing. 3rd Interna-
tional Workshop on Grid Computing, Novem-
ber, 2002.

