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Synchronization = Waiting

• Concurrent programs require synchronization

• Synchronization requires some threads to wait on others

• Concurrent programs spend a lot of time waiting



Locking

• One thread accesses shared data

• The rest wait for the lock

• Straightforward to get right

• Minimal concurrency
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• Use different locks for different data

• Disjoint-access parallelism

• Reduce waiting, allow multiple threads to proceed

• Many expensive synchronization instructions

• Wait on memory

• Wait on the bus

• Wait on cache coherence
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Reader-writer locking

• Don’t make readers wait on other readers

• Readers still wait on writers and vice versa

• Same expensive synchronization instructions

• Dwarfs the actual reader critical section

• No actual reader parallelism; readers get serialized
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Non-blocking synchronization

• Right there in the name: non-blocking

• So, no waiting, right?

• Expensive synchronization instructions

• All but one thread must retry

• Useless parallelism: waiting while doing busywork

• At best equivalent to fine-grained locking
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Transactional memory

• Non-blocking synchronization made easy

• (Often implemented using locks for performance)

• Theoretically equivalent performance to NBS

• In practice, somewhat more expensive

• Fancy generic abstraction wrappers around waiting
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How do we stop waiting?

• Reader-writer locking had the right idea

• But readers needed synchronization to wait on writers

• Some waiting required to check for potential writers

• Can readers avoid synchronization entirely?

• Readers should not wait at all

• Joint-access parallelism: Can we allow concurrent readers and
writers on the same data at the same time?

• What does “at the same time” mean, anyway?
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Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Relativistic Programming

• By analogy with relativity: no absolute reference frame

• No global order for non-causally-related events

• Readers do no waiting at all, for readers or writers

• Minimize expensive communication and synchronization

• Writers do all the waiting, when necessary

• Reads linearly scalable



What if readers see partial writes?

• Writers must not disrupt concurrent readers

• Data structures must stay consistent after every write

• Writers order their writes by waiting

• No impact to concurrent readers



Outline

• Synchronization = Waiting

• Introduction to Relativistic Programming

• Relativistic synchronization primitives

• Relativistic data structures

• Hash-table algorithm

• Results

• Future work



Relativistic synchronization primitives

• Delimited readers
• No waiting: Notification, not permission

• Pointer publication
• Ensures ordering between initialization and publication

• Updaters can wait for readers
• Existing readers only, not new readers
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Example: Relativistic linked list insertion

a

b

c

Potential readers

• Initial state of the list; writer wants to insert b.

• Initialize b’s next pointer to point to c

• The writer can then “publish” b to node a’s next pointer

• Readers can immediately begin observing the new node
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Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Relativistic data structures

• Linked lists

• Radix trees

• Tries

• Balanced trees

• Hash tables



Relativistic hash tables

• Open chaining with relativistic linked lists

• Insertion and removal supported

• Atomic move operation (see previous work)

• What about resizing?

• Necessary to maintain constant-time performance and
reasonable memory usage

• Must keep the table consistent at all times
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Existing approaches to resizing

• Don’t: allocate a fixed-size table and never resize it
• Poor performance or wasted memory

• “Dynamic Dynamic Data Structures” (DDDS)
• Readers must check old and new data structures
• Readers have to wait until no concurrent resizes
• Slows down the common case
• Significantly slows lookups while resizing

• Herbert Xu’s resizable relativistic hash tables
• Extra linked-list pointers in every node
• High memory usage
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Defining “consistent”

• A reader traversing a hash bucket must always observe all
elements in that bucket

• . . . but if it observes more, no harm done

• Imprecise hash buckets contain elements from other buckets
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Shrinking: Initial state
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Shrinking: Wait for readers
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Expanding: Publish new buckets
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Expanding: Wait for readers
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Expanding: Unzip one step
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Expanding: Unzip again
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Expanding: Final state
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Benchmarking methodology

• Implemented a microbenchmark as a Linux kernel module

• Used Linux’s Read-Copy Update (RCU) implementation

• Relativistic Programming primitives map to RCU operations

• Lookups with no resize as a baseline

• Lookups with continuous resizing as a worst-case scenario

• Compared: our algorithm, DDDS, rwlock
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Results: fixed-size table baseline
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Results - continuous resizing
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Results - our resize versus fixed
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Results - DDDS resize versus fixed

1 2 4 8 16
0

50

100

150

200

8k

16k

resize

Reader threads

L
o

ok
u

p
s/

se
co

n
d

(m
ill

io
n

s)



Hang on a minute. . .

• This is USENIX!

• We don’t settle for microbenchmarks here

• We care about real-world implementations



memcached

• Network-accessible key-value store

• Used for caching

• Performance-critical

• . . . and it uses a global table lock
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memcached with relativistic hash tables

• Uses the userspace RCU implementation, urcu

• Adds a fast path for GET requests using relativistic lookups

• Copies value while still in a relativistic reader

• Falls back to the slow path for expiry, eviction

• Writers use safe relativistic memory reclamation



memcached results
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Future work: Relativistic data structures

• New relativistic algorithms currently require careful
construction

• We have a general methodology for algorithm construction
• Write an algorithm assuming our memory model
• Use this methodology to mechanically place barriers and

wait-for-readers operations



Summary

• Relativistic programming allows linearly scalable readers

• Relativistic hash tables support resizing now
• Now suitable for general-purpose usage

• Real-world code scales better with relativistic programming

Questions?


