An Evaluation of Per-Chip Non-Uniform Frequency Scaling on Multicores

Xiao Zhang
Kai Shen
Sandhya Dwarkadas
Rongrong Zhong

UNIVERSITY OF ROCHESTER

USENIX ATC 2010 06/25/2010
Dynamic Voltage/Frequency Scaling (DVFS) on Multicore Chips

• Efficient for memory intensive applications
 – Significant CPU power savings with no (or little) performance loss

• Current constraint: a single voltage setting applies to all sibling cores
 – E.g., Intel and AMD processors
 – Limits power savings opportunities if memory intensive and non-intensive applications run on the same chip
Targeted Multicore Platforms

• Multichip machines have opportunities for per-chip non-uniform voltage/frequency settings
• Symmetric Multiprocessing (SMP) based multi-chip multicore machines
Outline

• A smart scheduling to facilitate per-chip frequency scaling for power savings (with competitive/better performance)

• Frequency-to-performance model for flexible power management
Similarity Grouping Scheduling

• Group applications with similar cache miss ratio on the same chip
 – Separate high and low miss ratio applications on different chips
 – High-miss-ratio chip running at low frequency while low-miss-ratio chip running at high frequency

• Additional benefits on addressing resource contention
 – Mitigate cache thrashing effect
 – Avoid over-saturating memory bandwidth
Evaluation Setup

• Platform
 – 2-chip Intel 3GHz WoodCrest processor (two cores per chip, sharing 4MB L2 cache) SMP running Linux-2.6.18
 – Frequency at 3 / 2.67 / 2.33 / 2 GHz via writing Intel-specific IA32_PERF_CTL registers

• Overall performance = \(\sqrt[n]{P_1 \times P_2 \times \cdots \times P_n} \)
 (geometric mean of running applications’ performance)
Evaluation Setup

• Benchmarks
 – 12 SPECCPU 2000 applications and 2 server-style applications divided into 5 test sets

<table>
<thead>
<tr>
<th>Similarity Grouping</th>
<th>Chip-0 (high miss ratio)</th>
<th>Chip-1 (low miss ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test #1</td>
<td>{equake, swim}</td>
<td>{parser, bzip}</td>
</tr>
<tr>
<td>Test #2</td>
<td>{mcf, applu}</td>
<td>{art, twolf}</td>
</tr>
<tr>
<td>Test #3</td>
<td>{wupwise, mgrid}</td>
<td>{mesa, gzip}</td>
</tr>
<tr>
<td>Test #4</td>
<td>{mcf, swim, equake, applu, wupwise, mgrid}</td>
<td>{parser, gzip, bzip, mesa, twolf, art}</td>
</tr>
<tr>
<td>Test #5</td>
<td>Two SPECjbb threads</td>
<td>Two TPC-H threads</td>
</tr>
</tbody>
</table>
Static Frequency Scaling

(A) Performance comparison

Normalized performance

Test-1 Test-2 Test-3 Test-4 Test-5 Average

(B) Power consumption comparison

Power in Watts

Test-1 Test-2 Test-3 Test-4 Test-5 Average

Avg. 25% reduction in cache misses
Power Efficiency (Performance per Watt)

(A) Whole system power efficiency comparison

(B) Active power efficiency comparison
Frequency-to-Performance Model

- **Objective**: explore power savings with bounded performance loss

- **Assumptions**
 - An application’s performance is linearly determined by cache and memory access latencies
 - Frequency scaling only affects on-chip accesses
 - Miss ratio does not vary across frequencies

\[
T(f) \approx \frac{F}{f} \times HitRatio \times L_{CacheHit} + MissRatio \times L_{CacheMiss}
\]

Normalized performance at frequency \(f = \frac{T(F)}{T(f)} \)
Model Accuracy

Model prediction error at throttled CPU frequencies
Model-based Dynamic Frequency Setting

(A) Performance of most degraded application in each test

(B) System power consumption comparison
Thermal Reduction over Default System
Summary

• Similarity grouping Improves performance due to reduced resource contention and facilitates per-chip frequency scaling for power savings

• Guided by a simple frequency-performance model, we achieve ~20 watts power savings and ~3 Celsius degrees CPU thermal reduction with bounded performance loss