Vytautas Valancius, Nick Feamster, Akihiro Nakao, and Jennifer Rexford

Wide-Area Route Control for Distributed Services
Cloud Computing

- Cloud computing is on the rise

- Provides computing resources and storage in cloud data centers

- Hosting on the steroids for Internet services
Cloud Data Center

Interactive Service

Bulk transfer

Hosted services have different requirements
- Too slow for interactive service, or
- Too costly for bulk transfer!

Internet

ISP1

ISP2

Routing updates

Packets
Multiple upstream ISPs
- Amazon EC2 has at least 58 routing peers in Virginia data center

Data center router picks **one** route to a destination for all hosted services
- Packets from all hosted applications use the same path
Route Control: “Cloudless” Solution

- Obtain connectivity to upstream ISPs
 - Physical connectivity
 - Contracts and routing sessions

- Obtain the Internet numbered resources from authorities

- Expensive and time-consuming!
Routing with Transit Portal (TP)

Cloud Data Center

Interactive Service

Virtual Router A

Virtual Router B

Bulk transfer

Transit Portal

Internet

ISP1

ISP2

Full Internet route control to hosted cloud services!

Routes

Packets
Outline

- Motivation and Overview
- Connecting to the Transit Portal
- Advanced Transit Portal Applications
- Scaling the Transit Portal
- Future Work & Summary
Connecting to the TP

- Separate Internet router for each service
 - Virtual or physical routers

- Links between service router and TP
 - Each link emulates connection to upstream ISP

- Routing sessions to upstream ISPs
 - TP exposes standard BGP route control interface
Basic Internet Routing with TP

- Cloud client with two upstream ISPs
 - ISP 1 is preferred
 - ISP 1 exhibits excessive jitter
- Cloud client reroutes through ISP 2
Current TP Deployment

- Server with custom routing software
 - 4GB RAM, 2x2.66GHz Xeon cores
- Three active sites with upstream ISPs
 - Atlanta, Madison, and Princeton
- A number of active experiments
 - BGP poisoning (University of Washington)
 - IP Anycast (Princeton University)
 - Advanced Networking class (Georgia Tech)
TP Applications: Fast DNS

- Internet services require fast name resolution

- IP anycast for name resolution
 - DNS servers with the same IP address
 - IP address announced to ISPs in multiple locations
 - Internet routing converges to the closest server

- Available only to large organizations
TP Applications: Fast DNS

- TP allows hosted applications use IP anycast
TP Applications: Service Migration

- Internet services in geographically diverse data centers
- Operators migrate Internet user’s connections

- Two conventional methods:
 - DNS name re-mapping
 - Slow
 - Virtual machine migration with local re-routing
 - Requires globally routed network
TP Applications: Service Migration

Asia

ISP1

ISP2

Internet

Transit Portal

Tunneled Sessions

Transit Portal

North America

ISP3

ISP4

Active Game Service
Scaling the Transit Portal

- Scale to dozens of sessions to ISPs and hundreds of sessions to hosted services
- At the same time:
 - Present each client with sessions that have an appearance of direct connectivity to an ISP
 - Prevented clients from abusing Internet routing protocols
Conventional BGP Routing

- **Conventional BGP router:**
 - Receives routing updates from peers
 - Propagates routing update about one path only
 - Selects one path to forward packets

- **Scalable but not transparent or flexible**
Scaling BGP Memory Use

- Store and propagate all BGP routes from ISPs
 - Separate routing tables
- Reduce memory consumption
 - Single routing process - shared data structures
 - Reduce memory use from 90MB/ISP to 60MB/ISP
Scaling BGP CPU Use

- Hundreds of routing sessions to clients
 - High CPU load

- Schedule and send routing updates in bundles
 - Reduces CPU from 18% to 6% for 500 client sessions
- Connecting clients
 - Tunneling and VLANs

- Curbing memory usage
 - Separate virtual routing tables with default to upstream
 - 50MB/ISP -> ~0.1MB/ISP memory use in forwarding table
Future Work

- Future work:
 - More deployment sites
 - Making TP accessible for network research test-beds (e.g., GENI, CoreLab)
 - Faster forwarding (NetFPGA, OpenFlow)
 - Lightweight interface to route control
Conclusion

- Limited routing control for hosted services
- Transit Portal gives wide-area route control
 - Advanced applications with many TPs
- Open source implementation
 - Scales to hundreds of client sessions
- The deployment is real
 - Can be used today for research and education
 - More information http://valas.gtnoise.net/tp

Questions?