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A Short Story: Sleepless in Seattle

• A desktop machine

– Workdays: often used, sometimes idle

– Nights, holidays, weekends: often idle

• sometimes accessed remotely by user

• more often accessed by IT
(patches, updates, scans)

• But always powered on

2



A Short Story: Sleepless in Seattle

• Why?  

• B/c its user and the IT dept want

– continuous remote availability

– seamless access                                                        
(no fiddling w/ manual tools to wake machine)
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This Story is Typical

• Enterprise machines rarely sleep

– 2/3rds of office PCs are left on after hours*

– Or is it 95%?  Power management disabled**

– 600+ desktops always left on (of total 700+ )***

– Almost all desktop at MSR left on after hours

– [Your own stat or anecdote here]
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*Robertson et. al.: After-hour power status of office equipment and energy usage of plug-load devices.  

LBNL report #53729

**Nordman, http://www.lbl.gov/today/2004/Aug/20-Fri/r8comm2.lo.pdf

***Agarwal et. al: Somniloquy, Augmenting network Interfaces to reduce PC energy usage (NSDI 2009)



Wasteful Resource Consumption
• Not a story with a happy ending

• Unless we change things

• This talk is about making one such change,
focusing on practicality and economic feasibility5
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• Findings

• Related Work and Next Steps
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Back of Envelope Energy Waste

• If machine 

– Draws 100W when awake

– Actually being used 50% of the time. 

• Then 400-500 kWh are wasted per year.

• For Microsoft this is something like 40 GWh.

• Over the entire US, on the order of 20 TWh!* 

*Wolfram Alpha, 112.6 million service industry workers, let’s assume roughly 1/3rd have desktop machines for 
total of 40M enterprise desktops
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Sleep Proxies Can Help

• A Sleep Proxy allows a machine to be

– network available 

– while physically asleep
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Reaction Policy

• When machine sleeps, sleep proxy takes over, 
examines traffic, following a Reaction Policy

– Respond (e.g., ARP)

– Wake the sleep machine (e.g., remote login)

– Ignore (e.g., ICMP)

• Reaction Policy choices determine

– Amount of potential sleep actually saved

– Co$t and complexity of sleep-proxying system
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How a Network Sleep Proxy Works
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Sleep Proxy Economics
The Type of Green Companie$ Really Care About

• Single machine savings: only $60-$70 per year
(though rising)

• Now multiply by 40M enterprise desktops      
=> $1-3 Billion* yearly savings, just in USA.

• But for a single company – a couple of 
100,000 to a couple of million $’s per year

*In line w/ Nordman report’s $0.8 – 2.7 Billion estimated savings.
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The Bottom Line

• Savings

– Very substantial in aggregate

– Relatively small for individual companies.

• => Sleep-proxying systems need to be cheap

– Low hardware cost

– Good consolidation ratio
(#sleep proxies : #desktops)

– Low admin / setup cost
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Sleep-Proxying Isn’t a New Idea

• First suggested over a decade ago
– Christensen & Gulledge, 1998

• Taken up again recently
– Allman, et al., Hotnets, 2007

– Agarwal, et al., NSDI, 2009

– Nedevschi, et al., NSDI, 2009

• Two other great papers here at USENIX ATC
– LiteGreen, Das, et al. (Virtualization)

– SleepServer, Agarwal, et al., (Custom App Stubs)
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Our Contributions

• A design geared towards cheap hardware

– One dedicated machine per subnet (or less)

– Proxy can be run on a low power box

• Atom processor machine? No prob.

• Probably even wall-plug, Open/DDWRT style as well

• And little work for IT

– Simple, lightweight client side install

– No client-side configuration or hardware changes

– Little admin or setup needed on proxy side
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Our Contributions (cont.)

• First operational enterprise deployment

– Likely where the biggest bang for the buck

– Home users tending to low power devices anyway

– Smaller # of desktops in academic-style networks

• Provide insight on what sleep-proxied enterprise 
might actually look like

– Why machines are woken

– Why they stay awake

– Where our approach works well and falls short
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Sleep-Proxying System Design Goals
• Given normal workload,                              

choose architecture and reaction policy

– No change to network applications

– Minimal client-side/network change, configuration

– Sleep proxies that

• Can be deployed on cheap, low power hardware (maybe 
even run on peers themselves)

• Can cover all clients in a subnet

• Close to zero-configuration /administration

• Provide reasonable opportunity for sleep
18



Our Sleep-Proxying Design Principle

90 / 10
First 90% savings w/ 10% of the cost

*Tom Cargill, Bell Labs.  Popularized by Jon Bentley in 

Communications of the ACM, Programming Pearls, 1985 19



Our Sleep-Proxying Design Principle

10 / 90
Leave final 10% savings, avoiding the other 90% of the cost

*Tom Cargill, Bell Labs.  Popularized by Jon Bentley in 

Communications of the ACM, Programming Pearls, 1985 20



Our Sleep-Proxying System Design

• Client side service (daemon)

– Sends sleep notifications

– Informs sleep proxy about all LISTENING ports

– Almost no resource consumption

– Uses native OS sleep policies

– User self-install from standard MSI (two clicks)

– No client-side configuration work for IT 
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Our Sleep-Proxying System Design

• Sleep proxy reaction policy

– Respond: to IP address resolution traffic                  
(e.g., ARP, Neighbor-Discovery)

– Wake: client on incoming TCP connection
attempts (recognized by presence of SYN flag)

– Ignore: all other traffic
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• No need to define policies determining               
for which applications clients should be woken

• Great consolidation ratios

• Low cost, low power, potentially peered, proxies

• Practically no IT management/config req’d.

Design Benefits
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How Our Sleep Proxy Works
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Sample Wakeup Timeline

Step Time From  To Packet Type Note

1 0 RU->(CM) SP SYN

2 0.04 RU->CM Magic packet

3 3 RU->(CM) SP SYN Retransmit

4 5.6 CM->Bcast ARP Probe CM awake

5 9 RU->CM SYN Retransmit

6 9.01 CM->RU SYN ACK

Remote User RU Client Machine CM Sleep Proxy SP
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Save by having sleep proxy replay most recent TCP SYN
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Deployment Architecture
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Sleep-Proxying Subsystem
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All Sleep Proxies Log Data to DB
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Joulemeter: 
Software-only power monitor Assess Source of Sleep Problems
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Why Machines Lose Sleep

• Crying baby syndrome:                          

– Sleeping machine (parent) woken often                     
by remote clients (crying babies)

• Identify by measuring 

– How quickly machines wake after sleeping

– What traffic is waking them up and from whom

– What processes run immediately after wakeup

– Who places stay-awake requests with OS*

31*POWERCFG /REQUESTS



Why Machines Lose Sleep
• Application induced insomnia

– Machine won’t sleep b/c app requests

– e.g., media server, virus scanner

• How does insomnia happen?
– WinAPI SetThreadExecutionState*

• ES_CONTINUOUS 

• ES_SYSTEM_REQUIRED

– Have remote user hold file open on machine

• Identify by measuring 

– Who places stay-awake requests with OS
32*http://msdn.microsoft.com/en-us/library/aa373208(VS.85).aspx



Deployment Stats

• Sleep Proxies on 6 subnets in MSR Redmond

• Sleep Clients running on 50+ machines

– Installed by users (two clicks)

– Most primary user workstations

– IT recommended

• System in operation almost one year

• ~ 10 MWh saved
(not bad for a research prototype)
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Sleep Savings
• Most machines sleep most of the time

• ~20% machines sleep very poorly
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Energy Savings

•Substantial power savings for many machines

• Note: Saved Power is lower bound estimate.
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Why Machines Lose Sleep

• Crying baby syndrome

– Sleeping machine (parent) woken often                 
by remote clients (crying babies)

• Application induced insomnia

– Machine won’t sleep b/c app requests

– e.g., media server, virus scanner
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Impact of Crying Babies
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~10% of lost sleep



Who are the Crying Babies?

1. Small subset of remote machines (requesters)                   
that cause lots of wake events
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Who are the Crying Babies?

Requestors mostly IT servers          
(e.g., virus scanners, patch server)

2. Small subset of remote machines (requesters)                   
that wake lots of sleeping clients
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Impact of Insomnia
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~90% of lost sleep



Who Causes Insomnia?

• 5 of top 7 are IT apps

• Several caused by

• program bugs 

• legacy drivers

• Hard to improve via 
reaction policy w/o 
big expen$e

• Many amenable to 
better coordination 
of IT tasks 
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Persistent Cloud Applications

• Small minority used LiveMesh, LiveSync

• We refer to these as persistent cloud apps

• Designed primarily to overcome NAT/firewall

• Requires more sophisticated reaction policy

• But, not used much in the enterprise

Cloud 
Server

TCP

Persistent 

TCP

Remote Login, Sync Operation
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Findings Summary
• Relatively simple reaction policy can work well

– filter by port
– deal w/ tunneled packets, v4/v6, etc.

• Insomnia foremost cause of lost sleep
• IT main cause of both insomnia and crying baby

– Unclear cost effective reaction policy that can help
– But intelligent scheduling of IT tasks may help greatly

• Wake once, do everything, then sleep soundly

• Greater complexity can be useful
– Persistent cloud apps (non-enterprise systems)
– BitTorrent, Skype, etc. (non-enterprise systems)
– Additional sleep opportunities (if economical)
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Next Steps

• P2P Sleep-Proxying (in progress)

• Sleep-considerate IT app/server coordination

• Lightweight support for persistent cloud apps

• Change remote file access model
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Us: Quick Overview

• Reaction Policy: 

– Wake on incoming TCP connections

• Great consolidation ratio

– Unmodified server (1000’s)

– Low power box (100’s, maybe 1000’s)

– Peered proxy (100’s)

• Almost no client change                     

– Daemon to send notification packets

– Client OS agnostic

• Allows for lots of sleep in the enterprise 47



Comparison w/ SleepServer
• Reaction Policy: 

– Respond to stubbed apps

• Good consolidation ratio (100’s)

– Unmodified server

• Moderate client change                                         

– Code, test, install stub-aware apps

– Transfer state / data

– Credential transfer                                                                
(which can get complicated in enterprise)

• Some additional sleep in enterprise, 
potentially more in non-enterprise settings 48



Comparison w/ LiteGreen
• Reaction Policy:

– Respond to everything

– Except computational intense processes, local disk

• Middling consolidation ratio (10’s) 

– Powerful server + lots of RAM

• Huge client-side / network changes                                      

– Virtualize OS

– RDP even into local machine

– Move most locally stored data onto SAN/NAS

– Install Gigbit backbone (if you don’t have already)

• A good deal more additional sleep opportunity                       
(can deal w/ crying babies and even some IT apps)
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Questions & Answers
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Isn’t This Just Your Network?
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• Yes.  We only have empirical evidence from our 
own deployment at Microsoft Research

• But we believe other nets qualitatively similar

– Functionally similiar: security scans, patches, etc.

– Related work (e.g., Nedevschi 2009)

– Anecdotes from other researchers

• Of course, we are in the process of verifying

– Let us know if you’d be interested in testing on your 
network!



Isn’t This Too Simple?
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• No.                                                                          
Compared to other published approaches our is

– Less costly to deploy

– Easier to maintain

• We provide cost effective power savings

• The real question: why would you want to make 
things more complicated than necessary?



Why Not Built-In NIC Capabilities?
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• Generality

– Old machines may not support patterns

– Complex network may require too many patterns

– Setting up pattern support may require

• Fiddling w/ BIOS, other system settings

• Non-uniform APIs

• Extensibility

– Wake on swipe, GPS coordinates

• Monitoring

• Can discard dedicated hardware w/ P2P anyway



Hasn’t This Already Been Done?
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• (answer on next two slides)



What Isn’t Novel
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• Suggesting a sleep proxy (1998)

• Comparing reaction policies (2009)



What is Novel
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• Build on previous work

– Adopt policy Nedevschi 2009 predicted best

– Improved on it to support dynamic apps

• Focus on economic feasibility

• Deploy on operational corporate network

• Learn lessons

– Insomnia is actually biggest problem

– Economical solution isn’t better reaction policies


