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Event Stream Processing Needs Strong Security 

• Event processing 
–  Stream of messages transformed  

in near real-time by processing units 
–  Confidential information: 

healthcare, social networks, finance 

• Problem: incorrect event flows  
–  Lead to security violations 
–  Within application      , with the environment  
–  Possible causes: bugs, security attacks, third party 

code, malicious code 
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Financial Processing: Security and Latency 

• market data processing and local brokering 

• Security is important 
–  Data is valuable: banks fined for exploiting client information 

• Performance constraints 
–  Latency, Throughput 

• Shared Platform 
–  Processing near stock exchanges costly: 

share resources, reduce entry costs for small firms 
–  Local brokering to avoid transaction fees and trade anonymously 2 
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Security Approach: Information Flow Control 

• Protect data end-to-end: Information Flow Control (IFC): 
–  Don’t try to eliminate all bugs       and        (hard!) 
–  Track and control information flows in application 
–  Previously applied to operating systems and programming languages 

Goal: apply IFC to current high-performance event processing systems 
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Contributions and Overview 

• Decentralized Event Flow Control (DEFC) model 
–  IFC applied to event processing 

• DEFCon high-performance implementation 
–  Safe and efficient event flows in Java 

• Practical isolation methodology 
–  Secure production-level language runtimes with low effort (OpenJDK 6) 

• Evaluation 
–  Throughput and latency overhead 
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DEFCon 

Event Processing in DEFC 
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DEFC Privileges 

Clearance privilege: receiving confidential information 
–  Allows units to add tag to its label 

Declassification privilege: making confidential data public : 
–  Allows units to remove tag from its label 
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An Example of Leaks to Avoid 

• Untainted unit tries to read tainted part 
–  First try: return access denied 
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An Example of Leaks to Avoid 

• Untainted unit tries to read tainted part 
–  First try: return access denied 

•  Leaks name of secret parts 
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An Example of Leaks to Avoid 

• Untainted unit tries to read tainted part 
–  First try: return access denied 

•  Leaks name of secret parts 
–  Second try: update unit label to part label 
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An Example of Leaks to Avoid 

• Untainted unit tries to read tainted part 
–  First try: return access denied 

•  Leaks name of secret parts 
–  Second try: update unit label to part label 

•  Secret inferred by absence of communication 
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An Example of Leaks to Avoid 

• Untainted unit tries to read tainted part 
–  First try: return access denied 

•  Leaks name of secret parts 
–  Second try: update unit label to part label 

•  Secret inferred by absence of communication 

–  Solution: avoid implicit label changes, return part not found 

• Result: all unit label changes must be explicit 
–  First update label, then read part 11 
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Contributions and Overview 

• Decentralized Event Flow Control (DEFC) model 
–  IFC applied to event processing 

• DEFCon high-performance implementation 
–  Safe and efficient event flows in Java 

• Practical isolation methodology 
–  Secure production-level language runtimes with low effort (OpenJDK 6) 

• Evaluation 
–  Throughput and latency overhead 
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• DEFC assumes units communicate through labelled events 
• How to control communication between units? 

–  VM or OS processes: heavy, require copying of data 
–  Use threads: sharing data in single address space 
–  Java: mature, pervasive, good performance 

•  How to control communication between Java threads?  

DEFCon: Controlling Event Flows 
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Communication: Threads Share Immutable Data 

• Unit Threads create new objects to put in events 
• Problem: how to deliver them to receiving units? 

–  Copy objects in events 
•  Slow 
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Communication: Threads Share Immutable Data 

• Unit Threads create new objects to put in events 
• Problem: how to deliver them to receiving units? 

–  Copy objects in events 
•  Slow 

–  Transfer references to shared objects 
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Communication: Threads Share Immutable Data 

• Unit Threads create new objects to put in events 
• Problem: how to deliver them to receiving units? 

–  Copy objects in events 
•  Slow 

–  Transfer references to shared objects 
•  Problem if unit labels change 
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Communication: Threads Share Immutable Data 

• Unit Threads create new objects to put in events 
• Problem: how to deliver them to receiving units? 

–  Copy objects in events 
•  Slow 

–  Transfer references to shared objects 
•  Problem if unit labels change 

• Shared state allows unrestricted communication 
–  Solution: only allow immutable objects in event parts 
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Class Library 

Communication: Shared State in Runtimes 
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Isolation Methodology Overview 

• Goal 
–  Provide isolation between Java Threads 
–  Secure potentially dangerous targets: static fields and native 

methods 

• Previous Java isolation approaches 
–  Do not support fast message passing between isolates (MVM) 
–  Use custom Class Libraries and/or JVMs (I-JVM) 
–  Require extensive analysis of Class Library (KaffeOS, Joe-E) 

• Our approach 
1.  Identify potentially dangerous targets using static analysis 
2.  Modify runtime behaviour of targets using aspect oriented 

programming (AOP) 
3.  White-list safe targets 
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Class Library 

1. Static Analysis 
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Class Library 

1. Static Analysis 
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Class Library 

1. Static Analysis 
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Class Library 

2. AOP Runtime Injection 
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Class Library 

3. White-listing 
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Class Library 

3. White-listing 
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Isolation Summary 

• What we achieved 
–  Secured OpenJDK 6 for running financial scenario 
–  Required few days of manual work 
–  Easily applicable to new versions/different JDKs 

• Limitations 
–  Assumes knowledge of unit bytecode for static analysis 

• Might need additional effort for new units 

–  Manual code auditing subject to human errors 
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Contributions and Overview 

• Decentralized Event Flow Control (DEFC) model 
–  IFC applied to event processing 

• DEFCon high-performance implementation 
–  Safe and efficient event flows in Java 

• Practical isolation methodology 
–  Secure production-level language runtimes with low effort (OpenJDK 6) 

• Evaluation 
–  Throughput and latency overhead 
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Evaluation: Performance Overhead 

• Overhead of security (labels and isolation 
• Measure overhead 

–  Rate of processed ticks 
–  Latency of produced deals 

• Synthetic traces on 6k stock symbols 
–  Prices set to trigger a deal every 10 ticks 

• Experiments on dual Intel Xeon E5540 2.53GHz 
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Acceptable Reduction on Throughput 

• Label checks: marginal overhead 
• Isolation: ~20% overhead 
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Low Impact on Latency 

• Label checks: ~0.5 ms overhead 
• Isolation: ~1ms overhead 
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JVM2 

JVM1 

Isolation with Separate JVMs 

• Comparison with Marketcetera (Open Source trading platform) 
–  One JVM per investor 

•  Throughput: 
–  Comparable with DEFCon with few investors 
–  Does not scale 

•  Latency: around 8 ms  
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Future Work 

• Distribution 
–  Performance limited by number of cores 
–  Scale DEFCon to multiple engines 

• Usability 
–  Correctly assigning labels is hard 
–  Tools to help design and automatically check labelling 

• Performance isolation 
–  Units compete for resources 
–  Prevent uncooperative behaviours 
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Conclusion 

• Event processing requires security and low latency 

• DEFC model  
–  Provides strong and fine-grained security by 

 applying Information Flow Control to event processing 

• DEFCon implementation 
–  Processes events in single address space for performance 
–  Provides isolation on production-level language runtimes 

Tracking and enforcing security of event flows 
can be done with reasonable overhead 

• Thank You! … Questions? 
• (migliava@doc.ic.ac.uk) 
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END 

• END 
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