
Peter R. Pietzuch

prp@doc.ic.ac.uk

DEFCon: High-Performance
Event Processing with
Information Security

Matteo Migliavacca, Ioannis Papagiannis, Peter Pietzuch
Imperial College London

David M. Eyers, Jean Bacon
Cambridge Computer Laboratory

Brian Shand
National Health Service, UK

migliava@doc.ic.ac.uk

Event Stream Processing Needs Strong Security

• Event processing
–  Stream of messages transformed

in near real-time by processing units
–  Confidential information:

healthcare, social networks, finance

• Problem: incorrect event flows
–  Lead to security violations
–  Within application , with the environment
–  Possible causes: bugs, security attacks, third party

code, malicious code
1

log

access
control

1

2

1 2

Financial Processing: Security and Latency

• market data processing and local brokering

• Security is important
–  Data is valuable: banks fined for exploiting client information

• Performance constraints
–  Latency, Throughput

• Shared Platform
–  Processing near stock exchanges costly:

share resources, reduce entry costs for small firms
–  Local brokering to avoid transaction fees and trade anonymously 2

Bank Investor Monitor

monitor

match

order

Broker deal Stock Ticker

tick

Client Investor Monitor

1

log 2

Security Approach: Information Flow Control

• Protect data end-to-end: Information Flow Control (IFC):
–  Don’t try to eliminate all bugs and (hard!)
–  Track and control information flows in application
–  Previously applied to operating systems and programming languages

Goal: apply IFC to current high-performance event processing systems

3

Stock Ticker

Bank Investor

Client Investor

Monitor

Monitor

Broker

monitor

match

tick order

deal 1

log 2

2 1

Contributions and Overview

• Decentralized Event Flow Control (DEFC) model
–  IFC applied to event processing

• DEFCon high-performance implementation
–  Safe and efficient event flows in Java

• Practical isolation methodology
–  Secure production-level language runtimes with low effort (OpenJDK 6)

• Evaluation
–  Throughput and latency overhead

4

DEFCon

Event Processing in DEFC

5

Bank Investor Client Monitor Client Investor 77

name data S (confidentiality)

… … {client77}

… … {client77}

S:{client77} S:{}

Event

parts

name data

command monitor

stock IBM

name data S (confidentiality)
command monitor { }

stock IBM {client77}

1
?

2

log

S:{client77}

unit can output part iff

€

S(unit)⊆ S(part)

unit can input part iff

€

S(part)⊆ S(unit)

DEFC Privileges

Clearance privilege: receiving confidential information
–  Allows units to add tag to its label

Declassification privilege: making confidential data public :
–  Allows units to remove tag from its label

6

Bank Investor Client Monitor Client Investor 77

S:{client77} S:{} S:{client77}

can receive
confidential information

cannot receive
confidential information

client77+

client77+

client77+

client77-

client77+, client77-

cannot make confidential
information public

can make confidential
information public

An Example of Leaks to Avoid

• Untainted unit tries to read tainted part
–  First try: return access denied

7

… Client Monitor

name data S (confidentiality)
… … {client77}

S:{client77}

Access Denied

S:{}

An Example of Leaks to Avoid

• Untainted unit tries to read tainted part
–  First try: return access denied

•  Leaks name of secret parts

8

… Client Monitor

name data S (confidentiality)
… … {client77}

S:{client77}

name data S (confidentiality)
FirstLetterIsI … {client77}

Access Denied

FirstLetter = I ?

stock=IBM

Bank Investor
S:{}

FirstLetterIsI

S:{}

An Example of Leaks to Avoid

• Untainted unit tries to read tainted part
–  First try: return access denied

•  Leaks name of secret parts
–  Second try: update unit label to part label

9

… Client Monitor

name data S (confidentiality)
… … {client77}

S:{client77}

name data S (confidentiality)
FirstLetterIsI … {client77}

Access Denied

FirstLetter = I ?

stock=IBM

Bank Investor
S:{}

FirstLetterIsI

Ok, label change

S:{} S:{client77}

An Example of Leaks to Avoid

• Untainted unit tries to read tainted part
–  First try: return access denied

•  Leaks name of secret parts
–  Second try: update unit label to part label

•  Secret inferred by absence of communication

10

… Client Monitor

name data S (confidentiality)
… … {client77}

S:{client77}

name data S (confidentiality)
FirstLetterIsI … {client77}

Access Denied

FirstLetter = I ?

stock=IBM

Bank Investor
S:{}

FirstLetterIsI

Ok, label change

FirstLetter = J ?

S:{}

Not Found

FirstLetterIsNotJ S:{} S:{client77}

An Example of Leaks to Avoid

• Untainted unit tries to read tainted part
–  First try: return access denied

•  Leaks name of secret parts
–  Second try: update unit label to part label

•  Secret inferred by absence of communication

–  Solution: avoid implicit label changes, return part not found

• Result: all unit label changes must be explicit
–  First update label, then read part 11

… Client Monitor

name data S (confidentiality)
… … {client77}

S:{client77}

name data S (confidentiality)
FirstLetterIsI … {client77}

Access Denied

FirstLetter = I ?

stock=IBM

Bank Investor
S:{}

FirstLetterIsI

Ok, label change

FirstLetter = J ?

S:{}

Not Found

FirstLetterIsNotJ

Not Found

???
S:{} S:{client77}

Contributions and Overview

• Decentralized Event Flow Control (DEFC) model
–  IFC applied to event processing

• DEFCon high-performance implementation
–  Safe and efficient event flows in Java

• Practical isolation methodology
–  Secure production-level language runtimes with low effort (OpenJDK 6)

• Evaluation
–  Throughput and latency overhead

12

• DEFC assumes units communicate through labelled events
• How to control communication between units?

–  VM or OS processes: heavy, require copying of data
–  Use threads: sharing data in single address space
–  Java: mature, pervasive, good performance

•  How to control communication between Java threads?

DEFCon: Controlling Event Flows

DEFCon

Bank Investor
Client Monitor

Client Investor

DEFCon
label check

1

2

13

?

Communication: Threads Share Immutable Data

• Unit Threads create new objects to put in events
• Problem: how to deliver them to receiving units?

–  Copy objects in events
•  Slow

14
DEFCon

Stock:IBM

Bank Investor Client Monitor

Stock:IBM

S:{} S:{}

Communication: Threads Share Immutable Data

• Unit Threads create new objects to put in events
• Problem: how to deliver them to receiving units?

–  Copy objects in events
•  Slow

–  Transfer references to shared objects

15
DEFCon

Stock:IBM

Bank Investor Client Monitor

S:{} S:{}

Communication: Threads Share Immutable Data

• Unit Threads create new objects to put in events
• Problem: how to deliver them to receiving units?

–  Copy objects in events
•  Slow

–  Transfer references to shared objects
•  Problem if unit labels change

16
DEFCon

Stock:IBM

Bank Investor Client Monitor

S:{} S:{} S:{client77} ?

Communication: Threads Share Immutable Data

• Unit Threads create new objects to put in events
• Problem: how to deliver them to receiving units?

–  Copy objects in events
•  Slow

–  Transfer references to shared objects
•  Problem if unit labels change

• Shared state allows unrestricted communication
–  Solution: only allow immutable objects in event parts

17
DEFCon

Bank Investor Client Monitor

ImmutableStock:IBM

S:{} S:{}

Class Library

Communication: Shared State in Runtimes

18

JVM

Client Monitor Client Investor Bank Investor

DEFCon

static fields

native methods

Native
OS

~4000

~2000

OpenJDK 6

Isolation Methodology Overview

• Goal
–  Provide isolation between Java Threads
–  Secure potentially dangerous targets: static fields and native

methods

• Previous Java isolation approaches
–  Do not support fast message passing between isolates (MVM)
–  Use custom Class Libraries and/or JVMs (I-JVM)
–  Require extensive analysis of Class Library (KaffeOS, Joe-E)

• Our approach
1.  Identify potentially dangerous targets using static analysis
2.  Modify runtime behaviour of targets using aspect oriented

programming (AOP)
3.  White-list safe targets

19

Class Library

1. Static Analysis

20

Client Monitor Client Investor Bank Investor

DEFCon

JVM
Native

OS

static fields

native methods

~4000

~2000

OpenJDK 6

Class Library

1. Static Analysis

21

Client Monitor Client Investor Bank Investor

DEFCon

JVM
Native

OS

removed

static fields

native methods

~4000

~2000

~2000

~1000

OpenJDK 6

Class Library

1. Static Analysis

22

Client Monitor Client Investor Bank Investor

DEFCon

reachable

JVM
Native

OS

removed

static fields

native methods

~4000

~2000

~2000
~900

~1000
~300

OpenJDK 6

Class Library

2. AOP Runtime Injection

23

Client Monitor Client Investor Bank Investor

DEFCon

removed

reachable

JVM
Native

OS

static fields

native methods

~4000

~2000

~2000
~900

~1000
~300

transparent
duplication

security
checks

OpenJDK 6

Class Library

3. White-listing

24

Client Monitor Client Investor Bank Investor

DEFCon

removed

reachable

JVM
Native

OS

static fields

native methods

~4000

~2000

~2000
~900

~1000
~300

transparent
duplication

security
checks

white-listing

OpenJDK 6

Class Library

3. White-listing

25

Client Monitor Client Investor Bank Investor

DEFCon

removed

reachable

JVM
Native

OS

static fields

native methods

~4000

~2000

~2000
~900

~1000
~300

transparent
duplication

security
checks

white-listing

Target type

Manually
white-listed

for unit execution for performance

static fields 27 6

native methods 15 9
OpenJDK 6

Isolation Summary

• What we achieved
–  Secured OpenJDK 6 for running financial scenario
–  Required few days of manual work
–  Easily applicable to new versions/different JDKs

• Limitations
–  Assumes knowledge of unit bytecode for static analysis

• Might need additional effort for new units

–  Manual code auditing subject to human errors

26

Contributions and Overview

• Decentralized Event Flow Control (DEFC) model
–  IFC applied to event processing

• DEFCon high-performance implementation
–  Safe and efficient event flows in Java

• Practical isolation methodology
–  Secure production-level language runtimes with low effort (OpenJDK 6)

• Evaluation
–  Throughput and latency overhead

27

Evaluation: Performance Overhead

• Overhead of security (labels and isolation
• Measure overhead

–  Rate of processed ticks
–  Latency of produced deals

• Synthetic traces on 6k stock symbols
–  Prices set to trigger a deal every 10 ticks

• Experiments on dual Intel Xeon E5540 2.53GHz

28

DEFCon

Stock Ticker

Client Investor

Bank Investor

Monitor

Monitor

Broker

monitor

match

tick order

deal

Acceptable Reduction on Throughput

• Label checks: marginal overhead
• Isolation: ~20% overhead

29

Low Impact on Latency

• Label checks: ~0.5 ms overhead
• Isolation: ~1ms overhead

30

JVM2

JVM1

Isolation with Separate JVMs

• Comparison with Marketcetera (Open Source trading platform)
–  One JVM per investor

•  Throughput:
–  Comparable with DEFCon with few investors
–  Does not scale

•  Latency: around 8 ms
31

Stock Ticker

Client Investor

Bank Investor

Monitor

Monitor

Broker

monitor

match

tick order

deal

Future Work

• Distribution
–  Performance limited by number of cores
–  Scale DEFCon to multiple engines

• Usability
–  Correctly assigning labels is hard
–  Tools to help design and automatically check labelling

• Performance isolation
–  Units compete for resources
–  Prevent uncooperative behaviours

32

Conclusion

• Event processing requires security and low latency

• DEFC model
–  Provides strong and fine-grained security by

 applying Information Flow Control to event processing

• DEFCon implementation
–  Processes events in single address space for performance
–  Provides isolation on production-level language runtimes

Tracking and enforcing security of event flows
can be done with reasonable overhead

• Thank You! … Questions?
• (migliava@doc.ic.ac.uk)

33

END

• END
34

