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Abstract
In finance and healthcare, event processing systems han-
dle sensitive data on behalf of many clients. Guarantee-
ing information security in such systems is challenging
because of their strict performance requirements in terms
of high event throughput and low processing latency.

We describe DEFCON, an event processing system
that enforces constraints on event flows between event
processing units. DEFCON uses a combination of static
and runtime techniques for achieving light-weight isola-
tion of event flows, while supporting efficient sharing of
events. Our experimental evaluation in a financial data
processing scenario shows that DEFCON can provide in-
formation security with significantly lower processing la-
tency compared to a traditional approach.

1 Introduction

Applications in finance, healthcare, systems monitoring
and pervasive sensing that handle personal or confiden-
tial data must provide both strong security guarantees and
high performance. Such applications are often imple-
mented as event processing systems, in which flows of
event messages are transformed by processing units [37].
Preserving information security in event processing with-
out sacrificing performance is an open problem.

For example, financial data processing systems must
support high message throughput and low processing la-
tency. Trading applications handle message volumes
peaking in the tens of thousands of events per second dur-
ing the closing periods on major stock exchanges, and
this is expected to grow in the future [1]. Low process-
ing latency is crucial for statistical arbitrage and high fre-
quency trading; latencies above a few milliseconds risk
losing the trading initiative to competitors [12].

At the same time, information security is a major con-
cern in financial applications. Internal proprietary traders
have to shield their buy/sell message flows and trading
strategies from each other, and be shielded themselves

from the client buy/sell flows within a bank. Informa-
tion leakage about other buy/sell activities is extremely
valuable to clients, as it may lead to financial gain, mo-
tivating them to look for leaks. Leakage of client data
to other clients may damage a bank’s reputation; leak-
age of such data to a bank’s internal traders is illegal in
most jurisdictions, violating rules regarding conflicts of
interest [8]. The UK Financial Service Authority (FSA)
repeatedly fines major banks for trading on their own be-
half based on information obtained from clients [15].

Traditional approaches for isolating information flows
have limitations when applied to high-performance event
processing. Achieving isolation between client flows by
allocating them to separate physical hosts is impractical
due to the large number of clients that use a single event
processing system. In addition, physical rack space in
data centres close to exchanges, a prerequisite for low la-
tency processing, is expensive and limited [23]. Isolation
using OS-level processes or virtual machines incurs a per-
formance penalty due to inter-process or inter-machine
communication, when processing units must receive mul-
tiple client flows. This is a common requirement when
matching buy/sell orders, performing legal auditing or
carrying out fraud detection. The focus on performance
means that current systems do not guarantee end-to-end
information security, instead leaving it to applications to
provide their own, ad hoc mechanisms.

We enforce information security in event processing
using a uniform mechanism. The event processing sys-
tem prevents incorrect message flows between process-
ing units but permits desirable communication with low
latency and high throughput. We describe DEFCON, an
event processing system that supports decentralised event
flow control (DEFC). The DEFC model applies infor-
mation flow control principles [27] to high-performance
event processing: parts of event messages are annotated
with appropriate security labels. DEFCON tracks the
“taint” caused by messages as they flow through process-
ing units and prevents information leakage when units
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lack appropriate privileges by controlling the external
visibility of labelled messages. It also avoids the infer-
ence of information through implicit information flows—
the absence of a unit’s messages after that unit becomes
tainted would otherwise be observable by other units.

To enforce event flow control, DEFCON uses appli-
cation-level virtualisation to separate processing units.
DEFCON isolates processing units within the same ad-
dress space using a modified Java language runtime. This
lightweight approach allows efficient communication be-
tween isolation domains (or isolates). To separate iso-
lates, we first statically determine potential storage chan-
nels in Java, white-listing safe ones. After that, we add
run-time checks by weaving interceptors into potentially
dangerous code paths. Our methodology is easily repro-
ducible; it only took us a few days to add isolation to
OpenJDK 6.

Our evaluation using a financial trading application
demonstrates a secure means of aggregating clients’
buy/sell orders on a single machine that enables them to
trade at low latency. Our results show that this approach
gives low processing latencies of 2 ms, at the cost of a
20% median decrease in message throughput. This is an
acceptable trade-off, given that isolation using separate
processes results in latencies that are almost four times
higher, as shown in §6.

In summary, the main contributions of the paper are:

• a model for decentralised event flow control in event
processing systems;

• Java isolation with low overhead for inter-isolate
communication using static and runtime techniques;

• a prototype DEFCON implementation and its evalu-
ation in a financial processing scenario.

The next section provides background information on
event processing, security requirements and related work
on information flow control. In §3, we describe our model
for decentralised event flow control. Our approach for
achieving lightweight isolation in the Java runtime is pre-
sented in §4. In §5, we give details of the DEFCON pro-
totype system, followed by evaluation results in §6. The
paper finishes with conclusions (§7).

2 Background
2.1 Event processing
Event processing performs analysis and transformation
of flows of event messages, as found in financial, mon-
itoring and pervasive applications [24]. Since events are
caused by real-world phenomena, such as buy/sell orders
submitted by financial traders, event processing must oc-
cur in near real-time to keep up with a continuous flow
of events. Popular uses of event processing systems are

in fraud detection, Internet betting exchanges [7] and, in
the corporate setting, for enterprise application integra-
tion and business process management [5]. While we fo-
cus on centralised event processing in this paper, event
processing also finds applicability in-the-large to inte-
grate “systems of systems” by inter-connecting applica-
tions without tightly coupling them [26].

Event processing systems, such as Oracle CEP [38],
Esper [14] and Progress Apama [2], use a message-driven
programming paradigm. Event messages (or events) are
exchanged between processing units. Processing units
implement the “business logic” of an event processing
application and may be contributed by clients or other
third-parties. They are usually reactive in design—events
are dispatched to processing units that may emit further
events in response. There is no single data format for
event messages, but they often have a fixed structure,
such as key/value pairs.

Financial event processing. In modern stock trading,
low processing latency is key to success. As financial
traders use automated algorithmic trading, response time
becomes a crucial factor for taking advantage of opportu-
nities before the competition do [20]. To support algorith-
mic trading, stock exchanges provide appropriate inter-
faces and event flows. To achieve low latency, they charge
for the service of having machines physically co-located
in the same data centre as parts of the exchange [16].

It was recently suggested that reducing latency by 6 ms
may cost a firm $1.5 million [9]. The advantage that they
get from reacting faster to the market than their compe-
tition may translate to increased earnings of $0.01 per
share, even for trades generated by other traders [12].
However, even with co-location within the same data cen-
tre rack, there is a minimum latency penalty due to inter-
machine network communication.

Therefore having multiple traders acting for competing
institutions share a single, co-located machine has several
benefits. First, trading latency is reduced since client pro-
cessing may be placed on the same physical machine as
the order matching itself [34]. Second, the traders can
share the financial burden of co-location within the ex-
change. Third, they can carry out local brokering by
matching buy/sell orders among themselves—a practice
known as a “dark pool”—thus avoiding the commission
costs and trading exposure when the stock exchange is
involved [44].

Hosting competing traders on the same machine has
significant security implications. To avoid disclosing pro-
prietary trading strategies, each trader’s stock subscrip-
tions and buy/sell order feeds must be kept isolated. The
co-location provider must respect clients’ privacy; bugs
must never result in information leakage.

2.2 Security in event processing
Today’s event processing systems face challenging secu-
rity requirements as they are complex, process sensitive
data and support the integration of third-party code. This
increases the likelihood of software defects exposing in-
formation. Information leaks have serious consequences
because of the sensitive nature of data in domains such as
finance or healthcare. As in the stock-trading platform
example, the organisation providing the event process-
ing service is frequently not the owner of the processed
data. Processing code may also be contributed by multi-
ple parties, for example, when trading strategies are im-
plemented by the clients of a trading platform.

Event processing systems should operate according to
data security policies that specify system-wide, end-to-
end confidentiality and integrity guarantees. For exam-
ple, traders on a trading platform require their trading
strategies not to be exposed to other traders (confiden-
tiality). The input data to a trading strategy should only
be stock tick events provided by the stock exchange (in-
tegrity). This cannot be satisfied by simple access con-
trol schemes, such as access control lists or capabilities,
because they alone cannot give end-to-end guarantees:
any processing unit able to access traders’ orders may
cause a leak to other traders due to bugs or malicious be-
haviour. Anecdotal evidence from the (rather secretive)
financial industry, and existing open source projects [35],
suggest that current proprietary trading systems indeed
lack mechanisms to enforce end-to-end information secu-
rity. Instead, they rely on the correctness (and compliant
behaviour) of processing units.
Threat model. We aim to improve information secu-
rity in event processing by addressing the threat that in-
formation in events may be perceived or influenced by
unauthorised parties. Our threat model is that processing
units may contain unintentional bugs or perform inten-
tional information leakage. We do not target systems that
run arbitrary code of unknown provenance: event pro-
cessing systems are important assets of organisations and
are thus carefully guarded. Only accountable parties are
granted access to them. As a consequence, we are not
concerned about denial-of-service attacks from timing-
related attacks or misuse of resources—we leave protec-
tion against them for future work. However, we do want
protection from parties that may otherwise be tempted not
to play by the rules, e.g. by trying to acquire information
that they should not access or leak information that they
agreed to keep private. We assume that the operating sys-
tem, the language runtime and our event processing plat-
form can be trusted.

2.3 Information flow control
We found that information flow control, which provides
fine-grained control over the sharing of data in a system,

is a natural way to realise the aforementioned kind of se-
curity that event processing systems require.

Information flow control is a form of mandatory ac-
cess control: a principal that is granted access to infor-
mation stored in an object cannot make this information
available to other principals, for example, by storing the
information in an unprotected object (no-write-down or
*-property) [6]. It was initially proposed in the context of
military multi-level security [11]: principals and objects
are assigned security labels denoting levels, and access
decisions are governed by a “can-flow-to” partial order.
For example, a principal operating at level “secret” can
read a “confidential” object but cannot read a “top-secret”
or write to a “confidential” object. Through this model, a
system can enforce confinement of “secret” information
to principals with “secret” (or higher) clearance.

Equivalently, IFC-protected objects may be thought of
as having a contaminating or tainting effect on the princi-
pals that process them—a principal that reads a “secret”
document must be contaminated with the “secret” label,
and will contaminate all objects it subsequently modifies.

Compartments created by labels are fairly coarse-
grained and declassification of information is performed
outside of the model by a highly-trusted component. My-
ers and Liskov [27] introduce decentralised information
flow control (DIFC) that permits applications to parti-
tion their rights by creating fresh labels and controlling
declassification privileges for them. Jif [28] applies the
DIFC model to variables in Java. Labels are assigned and
checked statically by a compiler that infers label informa-
tion for expressions and rejects invalid programs. In con-
trast, event-processing applications require fresh labels at
runtime, for example, when new clients join the system.
Trishul [29] and Laminar [32] use dynamic label checks
at the JVM level. However, tracking flows between vari-
ables at runtime considerably reduces performance.

Myers and Liskov’s model also resulted in a new
breed of DIFC-compliant operating systems that use la-
bels at the granularity of OS processes [13, 43, 22]. As-
bestos [13] enables processes to protect data and enforces
flow constraints at runtime. Processes’ labels are dy-
namic, which requires extra care to avoid implicit infor-
mation leakage, and Asbestos suffers from covert storage
channels. HiStar [43] is a complete OS redesign based
on DIFC to avoid covert channels. Flume [22] brings
DIFC to Linux by intercepting system calls and augment-
ing them with labels. All of the above projects isolate
processes in separate address spaces and provide IPC ab-
stractions for communication. For event processing, this
would require dispatching events to processing units by
copying them between isolates, resulting in lower perfor-
mance (cf. §6).

The approach closest to ours is Resin [41], which dis-
covers security vulnerabilities in applications by modify-
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ing the language runtime to attach data flow policies to
data. These policies are checked when data flows cross
guarded boundaries, such as method invocations. Resin
only tracks the policy when data is explicitly copied or al-
tered, making it unsuitable to discover deliberate, implicit
leakage of information, as it may be found in financial ap-
plications.

3 DEFCON Design

This section describes the design of our event processing
system in terms of our approach for controlling the flow
of events. We believe that it is natural to apply informa-
tion flow constraints at the granularity of events because
they constitute explicit data flow in the system. This is
in contrast to applying constraints with operating system
objects or through programming language syntax exten-
sions, as seen in related research [13, 43, 22, 27].

3.1 DEFC model
We first describe our model of decentralised event flow
control (DEFC). The DEFC model uses information flow
control to constrain the flow of events in an event pro-
cessing system. In this paper, we focus on aspects of the
model related to operation within a single machine as op-
posed to a distributed system.

The DEFC model has a number of novel features,
which are specifically aimed at event processing: (1) mul-
tiple labels are associated with parts of event messages
for fine-grained information security (§3.1.2); (2) privi-
leges are separated from privilege delegation privileges—
this lets event flows be constrained to pass through par-
ticular processing units (§3.1.3); (3) privileges can be
dynamically propagated using privilege-carrying events,
thus avoiding implicit, covert channels (§3.1.5); and
(4) events can be partially processed by units without
tainting all event parts (§3.1.6).

3.1.1 Security labels

Event flow is monitored and enforced through the use of
security labels (or labels), which are similar to labels in
Flume [22]. Labels are the smallest structure on which
event flow checking operates, and protect confidentiality
and integrity of events. For example, labels can act to en-
force isolation between traders in a financial application,
or to ensure that particularly sensitive aspects of patient
healthcare data are not leaked to all users.

As illustrated in Figure 1, security labels are pairs,
(S, I), consisting of a confidentiality component S and
an integrity component I . S and I are each sets of tags.
Each tag is used to represent an individual, indivisible
concern either about the privacy, placed in S, or the in-
tegrity, placed in I , of data. Tags are opaque values,

Ev
en

t confidentiality tagsname data
∅type bid

{dark-pool}body ...

{dark-pool,s-trader-77}trader_id trader-77

integrity tags
{i-trader-77}

{i-trader-77}

{i-trader-77}

security label

event
parts

Figure 1: An event message with multiple named parts, each
containing data protected by integrity and confidentiality tags.

implemented as unique, random bit-strings. We refer to
them using a symbolic name, such as i-trader-77 (an in-
tegrity tag in this case).

Tags in confidentiality components are “sticky”: once
a tag has been inserted into a label component, data pro-
tected by that label cannot flow to processing units with-
out that tag, unless privilege over the tag is exercised. In
contrast, tags in integrity components are “fragile”: they
are destroyed when information with such tags is mixed
with information not containing the tag, again unless a
privilege is exercised.

For example, if a processing unit in a trading applica-
tion receives data from two other units with confidential-
ity components {s-trading, s-client-2402} and {s-trading,
s-trader-77} respectively, then any resulting data will in-
clude all of the tags {s-trading, s-client-2402, s-trader-
77}. This reflects the sensitivity with respect to both
sources of the data. Similarly, if data from a stock ticker
with an integrity component {i-stockticker} is combined
with client data with integrity {i-trader-77}, the produced
data will have integrity {}. This shows that the data can-
not be identified as originating directly from the stock
ticker any more.

Labels form a lattice: for the confidentiality compo-
nent (S), information labelled Sa can flow to places hold-
ing component Sb if and only if Sa ⊆ Sb; here ⊆ is the
“can flow to” ordering relation [42]. For integrity labels
(I), “can flow to” order is the superset relation ⊇. Thus
we define the “can flow to” relationship La ≺ Lb for la-
bels as: La ≺ Lb iff Sa ⊆ Sb and Ia ⊇ Ib

where La = (Sa, Ia) and Lb = (Sb, Ib)

3.1.2 Anatomy of events

A key aspect of our model is the use of information flow
control at the granularity of events. An event consists of a
number of event parts. Each part has a name, associated
data and a security label. Using parts within an event
allows it to be processed by the system as a single, con-
nected entity, but yet to carry data items within its parts
that have different security labels. Dispatching a single
event with secured parts supports the principle of least
privilege—processing units only obtain access to parts of
the event that they require.

Figure 1 shows a bid event in a financial trading ap-
plication with three parts. The event is tagged with the

trader’s integrity tag. The information contained in the
bid has different sensitivity levels: the type part of the
event is public, while the body part is confined to match
within the dark pool by the dark-pool tag. The identity
part of the trader is further protected by a trader-private
confidentiality tag.

Access to event parts is controlled by the system that
implements DEFC. When units want to retrieve or mod-
ify event parts, or to create new events, they must use an
API such as the one described in §5.

3.1.3 Constraining tags and labels

Each processing unit can store state—its data can per-
sist between event deliveries. Rather than associate la-
bels with each piece of state in that unit, a single label
(Su, Iu) is maintained with the overall confidentiality and
integrity of the unit’s state. (We also refer to this as the
unit’s contamination level.) This avoids the need for spe-
cific programming language support for information flow
control, as most enforcement can be done at the API level.

The ability of a unit to add or remove a tag to/from
its label is a privilege. A unit u’s run-time privileges are
represented using two sets: O+

u and O−
u . If a tag appears

in O+
u , then u can add it to Su or Iu. Likewise, u can

remove any tag in O−
u from any of its components.

If unit u adds tag t ∈ O+
u to Su, then t is used as a

confidentiality tag, moving u to a higher level of secrecy.
This lets u “read down” no less (and probably more) data
than before. If t is used as an integrity tag, then adding
it to Iu would be exercising an endorsement privilege.
Conversely, removing a confidentiality tag t ∈ O−

u from
Su involves unit u exercising a declassification privilege,
while removing an integrity tag t from Iu is a transition
to operation at lower integrity.

For dynamic privilege management, privileges over tag
privileges themselves are represented in two further sets
per unit: O−auth

u and O+auth
u . We define their semantics

with a short-hand notation: t+u means that t ∈ O+
u ; t−u

means t ∈ O−
u ; t+auth

u means t ∈ O+auth
u ; t−auth

u means
t∈O−auth

u for tag t and unit u. We will omit the u sub-
script when the context is clear.

t−auth
u lets u delegate the corresponding privilege over

tag t to a target unit v. After delegation, t−v holds. Like-
wise for t+auth

u . If t−auth
u , u can also delegate to v the

ability to delegate privilege, yielding t−auth
v (likewise for

t+auth
u ). Delegation is done by passing privilege-carrying

events between units (cf. §3.1.5), ensuring that the DEFC
model is enforced without creating a covert channel.

The separation of O+
u and O+auth

u , in contrast to As-
bestos/HiStar or Flume, allows our model to enforce spe-
cific processing topologies. For example, a Broker unit
can send data to the Stock Exchange unit only through a
Regulator unit, by preventing the Regulator from delegat-

ing to the Broker the right to communicate with the Stock
Exchange directly.

Units can request that tags be created for them at run-
time by the system. Although opaque to the units, tags
and tag privilege delegations are transmittable objects.
When a tag t is successfully created for a unit u, then
t−auth
u and t+auth

u . In many cases, u will apply these priv-
ileges to itself to obtain t−u or t+u .

A unit can have both t−u and t+u ; then u has complete
privilege over t. Note that the privilege alone does not let
u transfer its privileges to other units.

3.1.4 Input/Output labels

Processing units need a convenient way to express their
intention to use privileges when receiving or sending
events. A unit u applies privileges by controlling an input
label (Sin

u , I in
u ), which is equivalent to its contamination

level (Su, Iu), and an output label (Sout
u , Iout

u ). Changes
to these labels cause the system automatically to exercise
privileges on behalf of the unit when it receives or sends
events, in order to reach a desired level. Input/output
labels increase convenience for unit programmers: they
avoid repeated API calls to add and remove tags from
labels when outputting events, or to change a unit’s con-
tamination label temporarily in order to be able to receive
a given event.

For example, a Broker unit can add an integrity tag i to
Iout
u but not to I in

u . This enables it to vouch for the in-
tegrity of the stock trades that it publishes without having
to add tag i explicitly each time. Similarly, adding tag t
temporarily to Sin

u but not to Sout
u allows a Broker to re-

ceive and declassify t-protected orders without changing
the code that handles individual events. In both cases, the
use of privileges is only required when changing the in-
put and output labels and not every time when handling
an event.

Note that systems that allow for implicit contamination
risk leaking information. For example, one could posit a
model in which a unit’s input and output labels rose auto-
matically if that unit read an event part that included tags
that were not within the unit’s labels. The problem with
this is that if unit u observes that it can no longer commu-
nicate with unit v that has been implicitly contaminated,
then information has leaked to u. Therefore we require
explicit requests for all changes to the input/output labels.

3.1.5 Dynamic privilege propagation

We use privilege-carrying events as an in-band mecha-
nism to delegate privileges between processing units. A
request to read a privilege-carrying part will bestow priv-
ileges on the requesting unit—but only if the unit already
has a sufficient input label to read the data in that part.



6 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 7

An example of this is a Regulator unit trying to learn
the identity of a trader mentioned in a trade event.
The trader’s identity is protected against disclosure by a
unique tag t, but t+ and t− are included in another part
visible to the Regulator unit only. This means that the
Regulator can read this part, thus gaining t+ and t−, and
then use these privileges to learn the trader’s identity.

Although the bestowing of privileges is implicit, the
privileges relate to a particular tag t, and the receiving
unit cannot invoke the privileges without a reference to
tag t itself. This reference is carried in the data part of
an event: units, by design, will know in advance when to
expect tags to be transferred to them, and when accessing
a part will result in a privilege delegation. In the previous
example, the tag t itself has to be in the data part that the
Regulator accesses.

3.1.6 Partial event processing

Event processing frequently involves units transforming
events along a main dataflow path, augmenting events
as they flow through the system. To allow units to up-
date only some parts of an event, we distinguish event
processing on the main path from events generated by
units themselves. In the former case, a unit that adds a
part does not cause the labels of all parts of that event to
change to the unit’s output label. In the latter case, all
parts’ labels match the unit’s output label.

For example, partial event processing enables a Broker
unit to operate on orders without knowing the identity
of the originating trader. The Broker can have access to
some parts, such as the bid/ask price, and subsequently
add new parts, such as a reason why an order was re-
jected, without being aware of or affecting a protected
part with the trader identity.

When an event is dispatched to a unit, the unit may read
and/or modify some parts but not others. The unit must
then invoke a release API call, after which the event
dispatcher may deliver the event to other units. Unaltered
event parts do not need to have their labels changed. A re-
leased event must not cause additional deliveries to units
with lower input labels. When multiple units make con-
flicting modifications to a part, the resulting event will
have to contain both versions of the affected part.

3.2 DEFCON architecture
Our DEFCON architecture, that implements the DEFC
model, is illustrated in Figure 2. The DEFCON system
provides a runtime environment for a set of event process-
ing units that implement the business logic of an event
processing application. Units interact with the DEFCON
system through API calls. As shown in the figure, the
DEFCON system carries out the following tasks:

DEFCon System

Event

Event Dispatcher

Event Event

Unit 1
Processing

Logic

Input label Output label

privilegesendorsement
declassification

Unit 2
Processing

Logic

Input label Output label

privilegesendorsement
declassification

Unit 3
Processing

Logic

Input label Output label

privilegesendorsement
declassification

Figure 2: Overview of the DEFCON architecture.

Label/tag management. DEFCON maintains the set of
defined tags in the tag store. It also keeps track of the
input and output labels and privileges for each unit. The
tags that make up labels are opaque to units. Units ac-
cess tags by reference but cannot modify them directly.

Inter-unit communication. DEFCON provides units
with a publish/subscribe API to send/receive events. To
receive call-backs that provide event references, units
register their interests by making subscriptions. An
event dispatcher sends events to units that have ex-
pressed interest previously. This decoupled communi-
cation means that the fact that a publish call has suc-
ceeded does not convey any information that might vio-
late DEFC (e.g. which units were actually notified).

Unit life-cycle management. DEFCON instantiates and
terminates event processing units. Having DEFCON
manage units allows it to apply restrictions to the oper-
ations that units can do, as described in the next section.

To enforce event flow control, DEFCON must prevent
units from communicating directly except through the
event dispatcher that can check DEFC constraints. Oth-
erwise a unit with clearance to receive confidential events
could avoid the confinement imposed by its label by using
a communication channel that is not protected by labels.
Therefore each unit must execute within its own isolate
that prevents it from interacting with other units or com-
ponents outside of the DEFCON system.

4 Practical, Light-weight Java Isolation

As described in §2.1, a requirement for DEFCON is
to prevent unauthorised processing units from commu-
nicating with each other, while supporting low latency,
high throughput event communication between permitted
units. Making units separate OS-level processes achieves
isolation but comes at the cost of increased communica-
tion latency due to inter-process communication, serial-
isation of potentially complex event message data and
context switching overhead. In §6, we show that this re-
sults in higher processing latencies. Therefore, we isolate
units executing within the same OS process through the
introduction of new mechanisms within the programming
language runtime.

We chose Java for our implementation because it is a
mature, strongly-typed language that is representative of
the languages used to build industrial-strength event pro-
cessing applications. Processing units are implemented
as Java classes, which means that they can communicate
efficiently using a shared address space.

We assume that we have access to the Java bytecode of
processing units and that they are implemented using the
DEFCON API (cf. §5). As a consequence, we can prevent
them from using any JDK libraries (e.g. for I/O calls) or
Java features (e.g. reflection) that are not strictly neces-
sary for event processing. However, units may still con-
tain bugs that cause them to expose confidential events to
other units during regular processing, or they may explic-
itly try to use events with confidential data as part of their
own processing to gain an illicit advantage.

Enforcing isolation between Java objects is not a triv-
ial task because Java was not designed with this need in
mind. Even if two Java objects never explicitly shared an
object reference, they can exploit a wide range of covert
channels to exchange information and violate isolation.
Covert channels can be classified into storage and timing
channels. Storage channels involve objects using unpro-
tected, shared state to exchange data. Therefore we must
close storage channels in Java. Since timing channels,
which are caused by the modulation of system resources,
such as CPU utilisation, are harder to exploit in practice,
we ignore them in this work.

There is a large number of existing storage channels in
Java, which can be exploited in three fundamental ways:
(1) There are about 4,000 static fields in the Java De-
velopment Kit (JDK) libraries (in OpenJDK 6). For ex-
ample, a static integer Thread.threadSeqNum identi-
fies threads, which can be altered to act as a channel be-
tween two classes; (2) Java contains more than 2,000 na-
tive methods, which may expose global state of the Java
virtual machine (JVM) itself. Native methods of stan-
dard classes such as String and Object retrieve data
from global, internal data structures of the JVM; and (3)
Java has synchronisation primitives that enable classes to
exchange one bit of information at a time.

Several proposals have been made for achieving iso-
lation in Java. As we explain below, they do not satisfy
both of our two main requirements:

Low manual effort. It should be easy to add isolation
support to any production JVM, with a minimal number
of manual code changes. Many projects have been dis-
continued due in part to the difficulty of keeping them
synchronised with JDK updates;

Efficient inter-isolate communication. The communi-
cation mechanism between isolated processing units
should allow message passing with low latency and high
throughout.

4.1 Existing approaches

Isolation of shared state. Existing approaches to achiev-
ing Java isolation involve a great deal of manual work.
Modifying production JDKs is a daunting task, while, in
comparison, the overall performance of research JDKs is
lacking. Certifying a JVM to be free of storage channels
would require an exhaustive inspection.

J-Kernel [19] and Joe-E [25] prevent access to global
state in an ad hoc way: they restrict user code from defin-
ing new classes that contain mutable static fields. For the
JDK libraries, they prevent access to classes or methods
that are found to expose global state. They achieve this
by providing custom proxies to System, File and other
classes.

KaffeOS [4] reports to have manually assessed all of
the JDK classes with static fields. Classes were rewritten
to remove static fields, re-engineered to be aware of iso-
lates or “reloaded”. Reloading unsafe classes in the JVM
results in per-isolate instances of static fields. However,
this reloading mechanism cannot be applied to classes
that are transitively referenced by a shared class, such
as Object, requiring the manual assessment of a large
number of classes.

Sun’s MVM [10] and I-JVM [17] avoid manual exam-
ination of static fields by transparently replicating all of
them per isolate. The JVM is modified to keep replicated
copies of static fields per isolate. It also tracks which iso-
late is currently executing, making corresponding repli-
cas visible to that isolate. MVM is the only project that
reports to have attempted a complete assessment of the
native methods that can expose global state. The cost of
repeating this process for each new JVM release is con-
siderable and, since MVM was completed only on So-
laris/SPARC and is no longer maintained, reproducing it
without detailed knowledge of JVM internals is hard.

Inter-isolate communication. MVM (similar to .NET

AppDomains [33]) uses a separate heap space per iso-
late, which requires serialisation of objects exchanged be-
tween isolates. Incommunicado [30] improves MVM’s
inter-isolate communication by using deep-copying in
place of serialisation. These approaches limit the per-
formance of event processing applications because they
require message passing to copy data. As we show in
§6, this nullifies many of the performance advantages of
sharing an address space between isolates.

Efficient inter-isolate communication is supported by
KaffeOS and I-JVM, which allow objects to be shared
between isolates. However, this is not appropriate for
enforcing event flow control because once two isolates
have established a shared object, the system can no longer
separate them when their labels change. J-Kernel and
JX [18] provide an approach better suited to DEFC: they
use indirection through a proxy for objects created in dif-
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Figure 3: Illustrating our isolation enforcement between units using a combination of static white-listing and dynamic intercepts.

ferent isolates. However, their synchronous invocation
model is at odds with decoupled event processing, which
requires fast unidirectional communication.

4.2 Our isolation methodology
We describe a practical methodology for achieving Java
isolation that provides fast, safe inter-isolate communica-
tion, while being easy to apply to new JDK versions. It
does not require changes to the JVM or exhaustive code
analysis.

We achieve efficient communication between isolates
using message passing. Units do not have references to
each other, only to objects controlled by DEFCON. For
objects exchanged through events, we want to provide
the semantics of passing objects by value, and exploit the
single address space to avoid data copying. Our perfor-
mance requirements preclude deep-copying of messages.
Additionally, shared state is unacceptable because it vi-
olates isolation. Thus, we only allow units to exchange
immutable objects, leaving it to units to perform copying
only when needed.

We developed tools that help in the analysis of danger-
ous JDK targets: static fields, native methods and syn-
chronisation primitives that could be used by units to
communicate covertly. We were able to secure Open-
JDK 6 in four days by manually inspecting only 52 tar-
gets (15 native methods, 27 static fields, and 10 synchro-
nisation targets), without any modifications to the JVM.

As we illustrate in Figure 3, we divide potentially dan-
gerous targets into three sets, TDEFCon, Tunits and TJDK:
a set of targets in the JDK only used by the DEFCON
implementation (TDEFCon), targets used by processing
units (Tunits), and targets used by neither (TJDK). Tunits

was based on the event processing units that form the im-
plementation of our trading platform described in §6.

Static dependency analysis. Targets not used at all
(TJDK), such as AWT/Swing classes, can be eliminated
from the JDK without further impact. As a first step, we
trim any classes that are not used by the DEFCON imple-
mentation or the event processing units of our financial

scenario. This resulted in a subset of the JDK contain-
ing more than 2,000 used targets (TDEFCon ∪ Tunits)—
approximately 20% of the full JDK.

A significant proportion of these targets are only
accessed by the DEFCON system (TDEFCon) because
they are not useful to units for processing events.
Typically, (non-malicious) units use classes from the
java.lang and java.util packages and have little
reason to directly access classes from packages, such as
java.lang.reflect or java.security. Thus we
define a custom class loader that constrains the JDK
classes that units can access to a white-list—e.g. preclud-
ing calls such as the one labelled ‘A’ in Figure 3.

However, restricting the set of classes alone does not
prevent transitive access to dangerous targets. When the
custom class loader permits the resolution of a white-
listed JDK class, the loading of the class is delegated to
the JVM bootstrap class loader. If the class contains ref-
erences to other JDK classes, they are directly resolved
by the JVM bootstrap classloader and therefore cannot
be controlled.
Reachability analysis. In order to address the problem
discussed above, a static analysis tool computes all tar-
gets that are transitively reachable from classes specified
in the custom class loader white-list, i.e. Tunits targets.
This analysis enumerates possible method-to-method ex-
ecution paths. The reachability analysis must cover code
paths that involve dynamic method dispatch; a call to a
given signature in the bytecode could execute code from
any compatible subtype. Although the previous depen-
dency analysis reduces the number of false positives in
this phase, Tunits still has 1,200 dangerous targets reach-
able from java.lang—approximately 320 native meth-
ods and 900 static fields.
Heuristic-based white-listing. Some of the targets in
Tunits can be declared safe using simple heuristics:

• We can white-list the 66 static fields and 20 native
methods from the Unsafe class. This class provides
direct access to JVM memory and is guarded by the
Java Security Framework. Any access to it from user
code would be a critical JVM bug.

• Some final static fields classified as immutable, such
as strings or boxed primitive types, can be shared
because they are constants.

• The use of some private static fields can be deter-
mined to be safe: vectors of constants and primitive
fields that are not declared “final” but are only writ-
ten once.

Another tool white-lists according to the above heuris-
tics, reducing the number of dangerous targets to approx-
imately 500 static fields and 300 native methods. Such
cases are represented in Figure 3 by the call labelled ‘B’.
Automatic runtime injection. To secure targets in Tunits

left after the preceding static analysis stage, we would
have to duplicate unsafe static fields and manually as-
sess native methods for covert communication channels,
as done by other JVM isolation projects. In contrast to
these projects, we wanted to avoid any JVM source code
modification and to minimise the number of native JDK
methods that needed to be checked.

For this reason, we employ aspect-oriented program-
ming (AOP) [21]: by modifying JDK code in a pro-
grammatic way, we can duplicate static fields without
changing the JVM and inject access checks to protect
the execution of native methods. We employ the MA-
JOR/FERRARI framework [40] because it can manipu-
late JDK bytecode, as well as our own code, using the
AspectJ language. We specify pointcuts to intercept all
targets left after our static analysis, as follows:

Native methods: When access to a native target is as
part of a call to the DEFCON API (described in §5),
we can consider it safe by assuming the API is correctly
designed (call ‘D’ in Figure 3). Otherwise we raise a
security exception (call ‘C’).

Static fields: When a static field can be cloned without
creating references that are shared with the original, we
do an on-demand deep copy and create a per-unit refer-
ence. This occurs on a get access for most types, but
can be deferred to the time of a set method for prim-
itive or constant types. If field copying is not possible,
we raise a security exception.

Manual white-listing. In this way, we automatically
close JDK covert storage channels without changes to the
JVM. However, before running the units in our financial
scenario, we had to manually check 15 native methods
and 27 static fields, which were intercepted and raised se-
curity exceptions. Below are a few examples of manually
white-listed targets with a brief justification:
java.lang.Object.hashCode: This effect of this

method is equivalent to reading a constant field.
java.lang.Object.getClass: Since Class objects

are unique and constant, this method essentially re-
trieves a constant static field.

java.lang.Double.longBitsToDouble: This
method does not access any JVM state.
java.lang.System.security: This target is safe be-

cause the reference to the security manager is protected
from modification by units.

While the above methodology results in safe isolation,
intercepting targets adds an overhead. We therefore pro-
file the execution paths of units to identify frequently en-
countered targets that may be white-listed manually. Dur-
ing this profiling, we discovered 15 additional frequently-
accessed targets (6 static fields and 9 native methods) that
we were able to white-list.

4.3 Restricting synchronisation channels
As explained in §3.2, the DEFCON system must ensure
that references held by one unit cannot escape to another
unit. To avoid serialisation or deep-copying and to pre-
vent the establishment of unrestricted shared state, units
are limited to exchanging immutable objects whose refer-
ences can be shared safely. However, every Java object,
even if it is immutable, has a piece of modifiable infor-
mation: its synchronisation lock. The lock is modified by
synchronized blocks and by wait and notify calls.

This need to control synchronisation on shared objects
also closes a further Java-specific channel due to the “in-
terning” of strings. A string that has been interned is
guaranteed to have a unique reference, common with all
other strings of the same value in the JVM. This lets
reference comparison (==) replace the more expensive
equals method.

Previous proposals [10, 17] to avoid synchronisation
on shared objects such as interned Strings and Classes
provide a copy per isolate. This would defeat the purpose
of our message passing scheme that uses shared objects
with the intent of avoiding copying them.

Automatic runtime injection. Instead we allow units to
synchronise only on types that are guaranteed to never be
shared with other units. This is indicated by the type in
question implementing our NeverShared tagging inter-
face. A type T can implement NeverShared as long as
(a) the DEFCON system prevents instances of T being
put into events, (b) no (white-listed) native method can
return the same instance of T to two different units, and
(c) no static field of type T is white-listed as being safe.
Neither Class nor String objects satisfy these require-
ments and thus units cannot synchronise on them.

Units can instead make their own types for synchroni-
sation that implement NeverShared. If a type is stati-
cally known to implement NeverShared, then synchro-
nisation happens with no runtime overhead. Otherwise
AOP will be used to inject a runtime type check: if this
check fails and the attempt to synchronise comes from a
unit, a security exception is raised.
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DEFCON API call Description
createEvent() → e Creates a new event e.
addPart(e, S, I , name, data) Adds to event e a new part name containing data with label (S, I).
delPart(e, S, I , name) Removes from event e part name with label (S, I)
readPart(e, name) → (label, data)* Returns the data in part name of event e. If there are multiple visible parts with the

same name, all are returned. Sp ⊆ Sin
u and Ip ⊆ Iin

u must hold for every part
returned to the unit.

attachPrivilegeToPart(e, name, S, I , t, p) Attaches a privilege p over a tag t to part name with label (S,I) to create a privilege-
carrying event for delegation (cf. §3.1.5). The call succeeds if the caller has tpauth.

cloneEvent(e, S, I) → e′ Creates a new instance e′ of an existing event e. All the tags in the caller’s output con-
fidentiality label are attached to each part’s label and only the caller’s output integrity
tags are maintained on each cloned part. This precludes DEFC violations based on
observing the number of received events.

publish(e) Publishes a new event e. Events without parts are dropped.
release(e) Releases an event e (cf. §3.1.6).
subscribe(filter) → s Subscribes to events with a non-empty filter, creating a subscription s. The filter is an

expression over the name and data of event parts. For an event to match, Sp ⊆ Sin
u

and Ip ⊆ Iin
u must hold for each part in the filter at the time of matching.

subscribeManaged(handler, filter)→s Declares a managed subscription s that enables a unit to process multiple tags with-
out contaminating its state permanently. DEFCON then creates and reuses separate
unit instances with contaminations appropriate for the processing of incoming events.
Units with managed subscriptions are similar to Asbestos’ event processes [13].

getEvent() → (e, s) Blocks the caller until an incoming event e matches one of the unit’s subscriptions s.
instantiateUnit(u′, S, I , Op

u′ , Opauth
u′ ) Instantiates a new unit u′ at a given label (S, I), as long as it can delegate privileges

to the new unit. The new unit inherits the caller’s contamination.
changeOutLabel(〈S|I〉, 〈add|del〉, t) Adds/removes tag t to/from a unit’s output label (Sout

u , Iout
u ) independently of the in-

put label (Sin
u , I in

u ). The unit can then declassify/endorse parts with tag t (cf. §3.1.4).
changeInOutLabel(〈S|I〉, 〈add|del〉, t) Adds/removes tag t to/from a unit’s input label and output label.

Table 1: Description of the DEFCON API available to event processing units. Note that due to contamination independence
S and I in API calls may be transparently changed by the system: S′ = S ∪ Sout

u and I ′ = I ∩ Iout
u

Manual inspection. JDK methods that synchro-
nise on locks cannot safely be accessed from units.
For example, Classloader.loadClass() and many
StringBuffer methods are synchronised. However,
both are types that are never shared, i.e. they satisfy the
above three requirements. Instead of modifying them in
the JDK source-code, we transformed them to implement
NeverShared through an aspect that is applied before
the interception aspect.

5 DEFCON API

We built a DEFCON prototype system in Java that im-
plements the DEFC model and enforces isolation as de-
scribed in §4. The API calls that units may use to interact
with the DEFCON system are described in Table 1.

Contamination independence. Most of the calls do not
impose restrictions on the caller, yet they are safe because
of a unit’s contamination. Calls such as addPart(),
which adds a new part to an event (cf. Table 1), should
not fail if a unit is unable to write at the requested con-
tamination level because units may not be aware of their
initial contamination. Instead DEFCON guarantees that
any tags present in the unit’s current output label are at-

tached transparently to generated parts. For example, a
unit with a label Sout

u = {d} that invokes addPart with
label S = {t} causes that part to be labelled S′ = {d, t}.
This highlights an important property of the API: contam-
ination independence. It allows a unit to be sandboxed
by instantiating it at a higher contamination level that it
is unaware of. All of its input and output will be affected
by this initial contamination.
Freezing shared objects. Most of the API calls receive
or return potentially mutable objects. References to these
objects may not be communicated to other units since
changes to their state cannot be controlled. In particular,
this applies to objects representing event parts and labels.

The addPart() call allows a unit to include objects
of various types in a part. For immutable types, making
shared references is safe. However, this is not true for
mutable types (e.g. Date) or collection types that support
adding multiple objects to a part (e.g. HashMap<Date>).
To avoid the cost of serialising and copying such types
during event dispatching, DEFCON limits contents of
event parts to a subset of types. These types must be ei-
ther immutable or extend a package-private Freezable

base class.

For Freezable objects, mutating operations are dis-
allowed after a call to freeze() has been made. This
incurs the overhead of checking an isFrozen flag on
each mutating operation. For collection classes, a call to
freeze() must efficiently freeze all contained objects.
To avoid iterating through collections, each Freezable

object that is attached to a Freezable collection has a
reference to the collection’s isFrozen flag. This makes
freeze() a constant time operation. The overhead of
mutating operations on a Freezable object is linear with
the number of collections the object is part of. A similar
approach is used to make the Label type immutable.

6 Evaluation

The goal of our experimental evaluation is to demonstrate
the practicality of the DEFC model in high-performance
event processing. We describe the implementation and
evaluation of a simple financial stock trading platform
built using DEFCON. We compare our implementation
to Marketcetera [3], a popular open source trading plat-
form written in Java. Although only one of few open
source offerings in a space dominated by proprietary so-
lutions, Marketcetera is gaining momentum by provid-
ing performance comparable to proprietary systems [35]
and features such as rapid strategy development, complex
event processing and interaction with various exchanges.

We quantify event processing performance using two
metrics: event throughput, the number of events pro-
cessed per unit time, and event latency, the delay that
events experience when being processed. We also mea-
sure the overhead of our DEFC approach on event-
driven applications in terms of processing performance
and memory consumption.

DEFCON isolates the trading strategies of traders, thus
allowing multiple strategies to be hosted on the same ma-
chine as the stock market feed. Instead, Marketcetera
uses multiple JVMs, one per client, to isolate trading
strategies, limiting the scalability of a similar deployment
to a smaller number of traders. DEFCON achieves low
event processing latency and high throughput, while scal-
ing to 10 times the number of traders compared to Mar-
ketcetera. As explained in §2.1, this makes co-location
affordable to more traders because a single machine can
securely serve a larger number of trading strategies.

6.1 Financial trading scenario
We adopt a classic trading algorithm called pairs
trade [39]. It is based on the observation that changes
in the stock prices of established companies in the same
industry are frequently correlated. Traders use this to pre-
dict the stock price for the immediate future and gain a
return. The performance of the pairs trade algorithm de-

pends heavily on the latency of trades: co-located traders’
orders will increase the price of the cheapest stock and
decrease the most expensive one, thus limiting the profit
margins for remote traders.
Marketcetera implementation. We implemented the
pairs trading strategy as a Strategy Agent in Mar-
ketcetera 1.5.0. Strategy Agents host one or more strate-
gies of the same client. For isolation, a separate JVM
is created for each client’s Strategy Agent. Since third-
party libraries may leak client data that they receive, each
client must vouch for their strategy’s implementation or
fully trust its developer. To use brokering services, Strat-
egy Agents communicate with an Order Routing Ser-
vice (ORS) that forwards requests to an exchange. We ex-
tended the ORS to provide local brokering facilities and
a corresponding market data feed to the Strategy Agents.
DEFCON implementation. DEFCON allows compet-
ing traders to execute latency-sensitive operations in the
same JVM. The confidentiality guarantees provided by
the DEFC model enable concurrent execution of propri-
etary trading algorithms without fear of disclosure. As
illustrated in Figure 4, our trading platform has the fol-
lowing processing units:

Trader units encapsulate traders’ strategies for buying
and selling stocks using pairs trading.

Pair Monitor units provide pairs trading as a service
since it is used by all traders in our system. Based on
a stock pair and an investment threshold, it sends events
to traders when the expected price difference occurs.

A Local Broker unit enables traders to clear their orders
locally, without the need to involve the stock exchange,
by matching traders’ bid/ask orders.

A Stock Exchange unit is responsible for the commu-
nication with the stock exchange. In its simplest form, it
is the source of events regarding trades that occur there.

A Regulator unit samples a subset of local trades on be-
half of a regulatory body. It may verify that the volume
of a trader’s trades has not exceeded a given quota.

DEFCON operation. We describe the operation of our
trading platform using steps 1–9 in Figure 4.
Step 1: A Trader unit declares its interest in a given pair
of stocks. The published event is protected by a unique
trader tag t1, owned by Trader 1. Since the selection of
stocks and the parameters of the pairs trade are sensi-
tive information that must be protected from disclosure,
Trader 1 delegates the t+1 privilege only to the correspond-
ing Pair Monitor unit. This Pair Monitor uses this privilege
to learn about the pair of symbols to monitor. All its out-
put will only be visible to the Trader 1 that owns t1.
Step 2: The Pair Monitor issues two tick event subscrip-
tions: one for each of the two symbols that it has to mon-
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Figure 4: Workflow of the implementation of our stock trading platform in DEFCON, highlighting the DEFC aspects.

itor. Pair Monitor units are always instantiated with read
integrity s and are thus only able to perceive events pub-
lished by the Stock Exchange unit that owns s.
Step 3: Once a tick event is published with an adequate
price, the Pair Monitor sends an event to the Trader. This
event is tagged with t1 and Trader 1 is the only unit with
the necessary confidentiality read label to receive it.
Step 4: Trader 1 may decide to sell stocks using the lo-
cal brokering facilities. A bid order is generated with the
offered price and the issuing Trader’s details. The issu-
ing Trader has three different security requirements for
a published order: (1) it must convey the details of the
order to the Broker to be matched against other orders;
(2) no other unit, apart from the Broker, should be able
to associate the order with the issuing Trader; (3) no unit
should be able to correlate two orders by the same Trader.
A competing Trader correlating orders may learn the un-
derlying trading strategy. In addition, a Trader does not
trust the Broker not to reveal information about trades. To
capture these security requirements, the first part of the
bid, price/symbol, is protected by a broker tag b while the
second, name, is protected both by b and by a randomly-
generated tag tr used only for this order. The Broker has
b+ and b−. The first part also carries the privilege t+r , al-
lowing only the Broker to see the Trader’s name as long
as it accepts the additional contamination.
Step 5: The Broker can read the first part and declassify
it. It has to use a managed subscription (cf. §5) to learn
the Trader’s identity. Once a corresponding ask order is
received, the Broker matches it and completes a trade.
Step 6: The first part of the trade event is declassified and

visible publicly. The two additional parts with the sensi-
tive identities of the Traders are protected individually by
unique tags. Each Trader can identify its own trades while
DEFCON guarantees that no other unit can do the same.
Step 7: A Regulator may intercept trades to verify that
they are compliant with trading rules. If it observes a sus-
picious trade, it uses a managed subscription to receive t+r
over the unique tag tr that protects the Trader’s identity.
Since this privilege is only needed for suspicious trades,
the Regulator receives it from the Broker on-demand. The
delegation event is only possible as long as t+auth

r was in-
cluded in the second part of the bid order in step 4.
Steps 8+9: With this privilege, the Regulator can com-
municate a warning to the Trader. The Regulator owns
the integrity tag s and is able to republish the local trade
as a valid stock tick perceivable by the Pair Monitors.

6.2 Experimental results
We evaluated our system with a synthetic workload of
stock tick events that was derived from traces of trades
made on the London Stock Exchange. In our workload,
we selected the tick prices so that they triggered the pairs
trading algorithm for each pair once every 10 ticks. This
approach both generated a significant order load and also
allowed us to avoid the issue of choosing suitably corre-
lated pairs from real market data. Since the main bottle-
neck was the filtering that occurred between the Stock Ex-
change and the Pair Monitor units, the tick rate achieved
only caused transient queuing in the system.

We varied the number of Traders on the platform. Each
Trader monitors a single symbol pair that was chosen ac-
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Figure 5: Maximum supported event rate in DEFCON as a
function of the number of traders.
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Figure 6: Event processing latency in DEFCON as a function
of the number of traders.

cording to a Zipf distribution. This emulated the fact that
some symbol pairs are well known to be correlated and,
as a result, the majority of Traders monitor their prices.
All tests were run on a dual processor Intel Xeon E5540
2.53 GHz machine with a maximum of 1 GiB heap mem-
ory using Sun’s Hotspot JVM, version 1.6.0 16.

DEFCON performance. To explore the limits of our
DEFCON deployment, we had the Stock Exchange unit
replay tick event traces as quickly as possible, while
measuring the achieved throughput every 100 ms. Fig-
ure 5 shows the median throughput when increasing the
number of Traders in the system. In the simplest case
without security (no security), the system performance
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down into individual contributions.

ranges from 220,000 events per second with 200 Traders
to 75,000 events with 2,000 Traders. (Note that the
Stock Exchange unit in our implementation is single-
threaded.) The overhead of introducing labels and freez-
able objects (labels+freeze) is within the error margin,
while the overhead of cloning (labels+clone) is around
30%, even with the simple data structures of our finan-
cial application. The overhead of adding isolation (la-
bels+freeze+isolation) is around 20%, staying constant
with the number of Traders.

Next we measured latency as the time difference be-
tween when a trade event is produced by the Broker and
the time when the originating tick event occurred. This
includes the processing time of the Stock Exchange, Pair
Monitor, Trader and Broker units. In Figure 6, we plot the
70th percentile of latencies, again increasing the number
of Traders. We ignore higher latency percentiles because
they are affected by the characteristics of the workload
and the operation of the Java garbage collector. Spikes
in trading activity, as commonly found when markets
open, result in transient congestion in the Broker and
thus queueing of events. Short periodic activations of the
garbage collector preempt processing threads for about
20 ms and increase the latency of individual events.

Figure 6, shows that the latency without security (no
security) is about 0.5 ms independently of the number of
Traders. Introducing label checks into the system sees la-
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tencies rise to approximately 1 ms without and 2 ms with
isolation. This behaviour continues up to 1,500 Traders
after which the system becomes overloaded.

In Figure 7, we measured the memory consumption in
the above experiment. Of the total memory consumed,
about 300 MiB is used to cache tick events. We ob-
serve that while the overhead of (labels+freeze) is min-
imal compared to the base case, the weaving framework
incurs an overhead of 50 MiB for 200 Traders, and up to
200 MiB for 2,000 Traders.
Marketcetera performance. We compare the results
from DEFCON with the performance of Marketcetera.
The median throughput of Marketcetera is shown in Fig-
ure 8. Although the event rate for only 2 Traders is high,
the system does not scale well. (Note the lower num-
ber of Traders compared to Figure 5.) With just 10 ac-
tive Traders, the throughput falls below 10,000 events per
second. This is mostly due to Strategy Agents filtering
market data individually as the platform does not sup-
port centralised market data filtering. Memory consump-
tion is also significantly higher in Marketcetera. Starting
from 2 GiB for 20 Traders, the used memory across all
JVMs reaches 6 GiB for 100 Traders. Without multiple
JVMs allocating memory, DEFCON manages to support
1,500 Traders using less than 1 GiB of heap space.

For measuring latency in Marketcetera, we chose a
low rate of 1,000 events per second in the stock feed
with a small number of Traders. This reduces the CPU
load and allows us to draw conclusions about latency
while not being affected by scheduling phenomena. In
Figure 9, we show the 70th percentile of trades’ laten-
cies in Marketcetera, measured at the broker, when in-
creasing the number of Traders. (Figure 6 shows the
corresponding result for DEFCON but again note the
lower number of Marketcetera Traders.) Latency in
Marketcetera is around 8 ms. The plot breaks this to-
tal latency down into its individual contributions: the
time to filter unwanted events and execute the pairs
trading algorithm (processing), the time for tick prop-
agation from the Market Feed to the Strategy Agents
(ticks+processing) and order propagation from Strategy
Agents to the ORS (ticks+orders+processing). When we
introduced 100 Traders, the increasing cost of communi-
cation across JVMs surpassed the actual processing la-
tency. In contrast, DEFCON is able to provide latency
at around 1 ms for significantly more Traders. We be-
lieve that this is because DEFCON tick propagation uses
our event dispatching mechanism, which does not involve
communication across JVMs.
Security comparison. In DEFCON, the pairs trading al-
gorithm is a service that each Trader may decide to use.
DEFC guarantees that the unit that implements the algo-
rithm does not have the ability to leak traders’ choices.
Marketcetera requires that each Strategy implementation

be fully-trusted. As a result, it does not support third-
party services that Strategies may use. Moreover, DEF-
CON enables the efficient reuse of a single trading strat-
egy across multiple users; Marketcetera instead requires
a new JVM each time. Code reuse is particularly benefi-
cial when traders belong to the same organisation such
as a small hedge fund. The Marketcetera Broker can,
deliberately or involuntarily, leak a user’s trades or or-
ders to other parties. In contrast, the DEFCON Broker is
prevented by DEFC from correlating two clients’ orders.
The Broker’s developers can guarantee that no bugs may
result in data leaks that violate the Traders’ confidential-
ity. In addition, a regulatory service can only reliably be
integrated into Marketcetera by its original developers.
Instead, DEFCON can support a Regulator unit without
concern that the additional code may damage the security
properties of the system.

7 Conclusions

High-performance event processing applications, for ex-
ample as found in algorithmic stock trading, need strong
information security without sacrificing performance.
We presented DEFCON: an event processing system that
enforces decentralised event flow control (DEFC). This
model meets the particular security needs of event pro-
cessing by providing mandatory protection of event data
from bugs and intentional leaks. DEFCON relies on iso-
lation at the programming language level and we de-
scribed a practical methodology for achieving isolation
in Java with low manual effort. By isolating process-
ing units running in the same address space, we tried to
strike an optimal balance between the need for isolation
and efficient inter-isolate communication. Our evaluation
shows the practicality of our solution when compared to
an open source trading platform.

In future work, we plan to investigate issues in a dis-
tributed system build from a set of DEFCON nodes. We
also want to explore additional techniques for isolation in
Java, such as dynamic recompilation of classes, and ap-
proaches that facilitate provably secure hand-off of Java
references, such as Kilim [36]. Although we do not ad-
dress denial-of-service attacks in this work, we believe
that thanks to our message passing paradigm it is pos-
sible to use common profiling techniques from aspect-
oriented programming for resource accounting [40]. In
related work, we have begun to investigate how the DEFC
model can be applied to functional languages such as Er-
lang that naturally support isolation between components
through message-passing [31].
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ABSTRACT

Many distributed services would benefit from control over

the flow of traffic to and from their users, to offer better

performance and higher reliability at a reasonable cost.

Unfortunately, although today’s cloud-computing plat-

forms offer elastic computing and bandwidth resources,

they do not give services control over wide-area routing.

We propose replacing the data center’s border router with

a Transit Portal (TP) that gives each service the illusion

of direct connectivity to upstream ISPs, without requir-

ing each service to deploy hardware, acquire IP address

space, or negotiate contracts with ISPs. Our TP proto-

type supports many layer-two connectivity mechanisms,

amortizes memory and message overhead over multiple

services, and protects the rest of the Internet from mis-

configured and malicious applications. Our implementa-

tion extends and synthesizes open-source software com-

ponents such as the Linux kernel and the Quagga routing

daemon. We also implement a management plane based

on the GENI control framework and couple this with our

four-site TP deployment and Amazon EC2 facilities. Ex-

periments with an anycast DNS application demonstrate

the benefits the TP offers to distributed services.

1. Introduction

Cloud-based hosting platforms make computational re-

sources a basic utility that can be expanded and con-

tracted as needed [10, 26]. However, some distributed

services need more than just computing and bandwidth

resources—they need control over the network, particu-

larly over the wide-area routes to and from their users.

More flexible route control helps improve performance [7,

8,12] and reduce operating costs [17]. For example, inter-

active applications like online gaming want to select low-

latency paths to users, even if cheaper or higher-bandwidth

paths are available. As another example, a service repli-

cated in multiple locations may want to use IP anycast to

receive traffic from clients and adjust where the address

block is announced in response to server failures or shifts

in load.

Although flexible route control is commonplace for both

content providers and transit networks, today’s cloud-

based services do not enjoy the same level of control over

routing. Today, the people offering these kinds of dis-

tributed services have two equally unappealing options.

On the one hand, they could build their own network foot-









 









Figure 1: Connecting services though the Transit Portal.

print, including acquiring address space, negotiating con-

tracts with ISPs, and installing and configuring routers.

That is, they could essentially become network operators,

at great expense and with little ability to expand their foot-

print on demand. On the other hand, they could contract

with a hosting company and settle for whatever “one size

fits all” routing decisions this company’s routers make.

This missed opportunity is not for a lack of routing

diversity at the data centers: for example, RouteViews

shows that Amazon’s Elastic Cloud Computing (EC2) has

at least 58 upstream BGP peers for its Virginia data center

and at least 17 peers at its Seattle data center [20]. Rather,

cloud services are stuck with a “one size fits all” model

because cloud providers select a single best route for all

services, preventing cloud-based applications from having

any control over wide-area routing.

To give hosted services control over wide-area rout-

ing, we propose the Transit Portal (TP), as shown in Fig-

ure 1. Each data center has a TP that gives each service

the appearance of direct connectivity to the ISPs of its

choice. Each service has a dedicated virtual router that

acts as a gateway for the traffic flowing to and from its

servers. The service configures its virtual router with its

own policies for selecting paths to its clients and announc-

ing routes that influence inbound traffic from its clients.

By offering the abstraction of BGP sessions with each up-

stream ISP, the TP allows each service to capitalize on

existing open-source software routers (including simple

lightweight BGP daemons) without modifying its appli-

cation software. That said, we believe extending TP to

offer new, programmatic interfaces to distributed services

is a promising avenue for future work.
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Using the TP to control routing provides a hosted ser-

vice significantly more control over the flow of its traf-

fic than in today’s data centers. In addition, the services

enjoy these benefits without building their own network

footprint, acquiring address space and AS numbers, and

negotiating with ISPs. These are hurdles that we ourselves

faced in deploying TPs at several locations; the TP obvi-

ates the need for the services that it hosts to do the same.

In addition, the TP simplifies operations for the ISPs by

offloading the separate connections and relationships with

each application and by applying packet and route filters

to protect them (and the rest of the Internet) from miscon-

figured or malicious services.

The design and implementation of the TP introduces

several challenges. In the control plane, the TP must pro-

vide each virtual router the appearance of direct BGP ses-

sions to its upstream ISPs. The TP must also forward out-

going packets to the right ISP and demultiplex incoming

packets to the right virtual router. Our solutions to these

problems must scale as the number of services increases.

To solve these problems, we introduce a variety of tech-

niques for providing layer-two connectivity, amortizing

memory and message overhead, and filtering packets and

routes. Our prototype implementation composes and ex-

tends open-source routing software—the Quagga software

router for the control plane and the Linux kernel for the

data plane—resulting in a system that is easy to deploy,

maintain, and evolve. We also built a management system

based on the GENI control framework [16] that automates

the provisioning of new customers. The TP is deployed

and operational at several locations.

This paper makes the following contributions:

• We explain how flexible wide-area route control can

extend the capabilities of existing hosting platforms.

• We present the design and implementation of Tran-

sit Portal and demonstrate that the system scales to

many ISPs and clients.

• We quantify the benefits of TP by evaluating a DNS

service that uses IP anycast and inbound traffic engi-

neering on our existing TP deployment.

• We present the design and implementation of a man-

agement framework that allows hosted services to

dynamically establish wide-area connectivity.

• We describe how to extend the TP to provide better

forwarding performance and support a wider variety

of applications (e.g., virtual machine migration).

The remainder of the paper is organized as follows. Sec-

tion 2 explains how distributed services can make use of

wide-area route control. Section 3 presents the design and

implementation of the Transit Portal. Section 4 evaluates

our three-site deployment supporting an example service,

and Section 5 evaluates the scalability and performance of

our prototype. Section 6 presents our management frame-

work, and Section 7 describes possible extensions to the

 











Figure 2: Reliable, low-latency distributed services: A service
provider that hosts authoritative DNS for some domain may wish

to provision both hosting and anycast connectivity in locations that

are close to the clients for that domain.

TP. Section 8 compares TP to related work; we conclude

in Section 9.

2. A Case for Wide-Area Route Control

We aim to give each hosted service the same level of

routing control that existing networks have. Each ser-

vice has its own virtual router that connects to the Inter-

net through the Transit Portal, as shown in Figure 1. The

Transit Portal allows each service to make a different deci-

sion about the best way to exchange traffic with its users.

The Transit Portal also allows each service to announce

prefixes selectively to different ISPs or send different an-

nouncements for the same IP prefix to control how in-

bound traffic reaches downstream networks.

2.1 How Route Control Helps Applications

This section describes three services that can benefit

from having more control over wide-area routing and the

ability to rapidly provision connectivity. Section 4 evalu-

ates the first service we discuss—improving the reliability,

latency, and load balacing traffic for distributed services—

through a real deployment on Amazon’s EC2. We do not

evaluate the remaining applications with a deployment,

but we explain how they might be deployed in practice.

Reliable, low-latency distributed services. The Domain

Name System (DNS) directs users to wide-area services

by mapping a domain name to the appropriate IP address

for that service. Service providers often use DNS for

tasks like load balancing. Previous studies have shown

that DNS lookup latency is a significant contributor to the

overall latency for short sessions (e.g., short HTTP re-

quests). Thus, achieving reliability and low latency for

DNS lookups is important. One approach to reducing

DNS lookup latency is to move the authoritative DNS

servers for a domain closer to clients using anycast. Any-

cast is a method where multiple distinct networks adver-

tise the same IP prefix; client traffic then goes to one of

these networks. Hosting authoritative name servers on

an anycasted IP prefix can reduce the round-trip time to

an authoritative name server for a domain, thus reducing

overall name lookup time.

Although anycast is a common practice for DNS root

servers, setting up anycast is a tall order for an individ-
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Figure 3: Using routing to migrate services: A service provider mi-

grates a service from a data center in North America to one in Asia,

to cope with fluctuations in demand. Today, service providers must

use DNS for such migration, which can hurt user performance and
does not permit the migration of a running service. A provider can

use route control to migrate a service and re-route traffic on the fly,

taking DNS out of the loop and enable migration of running services.

ual domain: each domain that wants to host its own au-

thoritative servers would need to establish colocation and

BGP peering at multiple sites and make arrangements.

Although a DNS hosting provider (e.g., GoDaddy) could

host the authoritative DNS for many domains and anycast

prefixes for those servers, the domains would still not be

able directly control their own DNS load-balancing and

replication. Wide-area route control allows a domain to

establish DNS-server replicas and peering in multiple lo-

cations and to change those locations and peering arrange-

ments when load changes. Figure 2 shows such a deploy-

ment. We have deployed this service [24] and will evaluate

it in Section 4.

Using routing to migrate services. Service providers

such as Google commonly balance client requests across

multiple locations and data centers to keep the latency for

their services as low as possible. To do so, they commonly

use the DNS to re-map a service name to a new IP address.

Unfortunately, relying on DNS to migrate client requests

requires the service provider to set low time-to-live (TTL)

values on DNS replies. These low TTL values help a

service provider quickly re-map a DNS name to a new

IP address, but they also prevent the client from caching

these records and can introduce significant additional la-

tency; this latency is especially troublesome for short-

lived sessions like Web search, where the DNS lookup

comprises a large fraction of overall response time. Sec-

ond, DNS-based re-mapping cannot migrate ongoing con-

nections, which is important for certain services that main-

tain long-lived connections with clients (e.g., VPN-based

services). Direct wide-area route control allows the ap-

plication provider to instead migrate services using rout-

ing: providers can migrate their services without chang-

ing server IP addresses by dynamically acquiring wide-

area connections and announcing the associated IP prefix

at the new data center while withdrawing it at the old one.

Figure 3 shows how this type of migration can be imple-

mented. This approach improves user-perceived perfor-

mance by allowing the use of larger DNS TTL values and

supporting live migration of long-lived connections.

Figure 4: Flexible peering and hosting for interactive applications:
Direct control over routing allows services to expand hosting and up-
stream connectivity in response to changing demands. In this exam-

ple, a service experiences an increase in users in a single geographic

area. In response, it adds hosting and peering at that location to
allow customers at that location to easily reach the service.

Flexible peering & hosting for interactive applications.

To minimize round-trip times, providers of interactive ap-

plications like gaming [2] and video conferencing [3, 4]

aim to place servers close to their customers to users and,

when possible, selecting the route corresponding to the

lowest-latency path. When traffic patterns change due to

flash-crowds, diurnal fluctuations, or other effects, the ap-

plication provider may need to rapidly reprovision both

the locations of servers and the connectivity between those

servers and its clients. Figure 4 shows an example of an in-

teractive service that suddenly experiences a surge in users

in a particular region. In this case, the hosting facility will

not only need to provision additional servers for the inter-

active service provider, but it will also need to provision

additional connectivity at that location to ensure that traf-

fic to local clients enter and leave at that facility.

2.2 Deployment Scenarios

Cloud providers can provide direct control over rout-

ing and traffic to hosted applications. A cloud service

such as Amazon’s EC2 can use direct wide-area route con-

trol to allow each application provider to control inbound

and outbound traffic according to its specific requirements.

Suppose that two applications are hosted in the same data

center. One application may be focused on maintaining

low-cost connectivity, while the other may want to achieve

low latency and good performance at any cost. Today’s

cloud services offer only “one size fits all” transit and do

not provide routing control to each hosted service or appli-

cation; the Transit Portal provides this additional control.

An enterprise can re-provision resources and peer-

ing as demands change. Web service providers such

as Google and Microsoft share a common infrastructure

across multiple applications (e.g., search, calendar, mail,

video) and continually re-provision these resources as

client demand shifts. Today, making application-specific

routing decisions in a data center (as shown in Figure 1) is

challenging, and re-routing clients to services in different

data centers when demands change is even more difficult.

3
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The Transit Portal can provide each application in a data

center control over routing and peering, allowing it to es-

tablish connectivity and select paths independently of the

other properties. This function also makes service migra-

tion easier, as we describe in further detail below.

A researcher can perform experiments using wide-area

routing. Although existing testbeds such as Emulab [14]

allow researchers to operate their ownwide-area networks,

they generally do not offer flexible control over connectiv-

ity to the rest of the Internet. Different experiments will,

of course, have different requirements for the nature of

their connectivity and routing, and researchers may even

want to experiment with the effects of different peering

arrangements on experimental services. As part of the

GENI project, we are building facilities for this level of

route control by connecting Transit Portal to downstream

virtual networks to allow researchers to design and eval-

uate networked services that require greater control over

wide-area routing.

3. Design and Implementation

This section describes the design and implementation

of a Transit Portal (TP); Section 6 completes the picture

by describing the management framework for a network

of TPs. The TP extends and synthesizes existing soft-

ware systems—specifically, the Linux kernel for the data

plane and theQuagga routing protocol suite for the control

plane. The rest of this section describes how our design

helps the TP achieve three goals: (1) transparent connec-

tivity between hosted services and upstream ISPs; (2) scal-

ability to many hosted services and upstream ISPs; and

(3) the ability to protect the rest of the Internet from acci-

dental or malicious disruptions. Table 1 summarizes our

design and implementation decisions and how they allow

us to achieve the goals of transparent connectivity, scala-

bility, and protection.

3.1 Transparent Connectivity

The TP gives client networks the appearance of direct

data- and control-plane connectivity to one or more up-

stream ISPs. This transparency requires each client net-

work to have a layer-two link and a BGP session for each

upstream ISP that it connects to, even though the link and

session for that client network actually terminate at the

TP. The client’s virtual routers are configured exactly as

they would be if they connected directly to the upstream

ISPs without traversing the Transit Portal. The TP has

one layer-two connection and BGP session to each up-

stream ISP; this connection multiplexes both data packets

and BGP messages for the client networks.

Different layer-two connections for different clients.

Connecting to an upstream ISP normally requires the

client to have a direct layer-two link to the ISP for car-

rying both BGP messages and data traffic. To support this









 

























Figure 5: Forwarding incoming traffic: When a packet arrives at

the Transit Portal (Step 1), the TP uses the source MAC address (S-
MAC) to demultiplex the packet to the appropriate IP forwarding

table (Step 2). The lookup in that table (Step 3) determines the ap-

propriate tunnel to the client network (Step 4).

1 # arp -a

2 r o u t e r 1 . i s p . com ( 1 . 1 . 1 . 1 ) a t 0 : 0 : 0 : 0 : 0 : 1 1 on

e t h0

3 # iptables -A PREROUTING -t mangle -i eth0 -m

mac --mac-source 0:0:0:0:0:11 -j MARK

--set-mark 1

4 # ip rule add fwmark 1 table 1

Figure 6: Linux policy routing de-multiplexes traffic into the appro-

priate forwarding table based on the packet’s source MAC address.

In this example, source address 0:0:0:0:0:11 de-multiplexes the
packet into forwarding table 1.

abstraction, the TP forms a separate layer-two connection

to the client for each upstream ISP. Our implementation

uses the Linux 2.6 kernel support for IP-IP tunnels, GRE

tunnels, EGRE tunnels, and VLANs, as well as UDP tun-

nels through a user-space OpenVPN daemon.

Transparent forwarding between clients and ISPs. The

TP can use simple policy routing to direct traffic from each

client tunnel to the corresponding ISP. Forwarding traffic

from ISPs to clients, however, is more challenging. A con-

ventional router with a single forwarding table would di-

rect the traffic to the client prefix over a single link (or use

several links in a round robin fashion if multipath routing

is enabled.) As shown in Figure 5, though, the TPmust en-

sure the packets are directed to the appropriate layer-two

link—the one the client’s virtual router associates with the

upstream ISP. To allow this, the TP maintains a virtual for-

warding table for each upstream ISP. Our implementation

uses the Linux 2.6 kernel’s support for up to 252 such ta-

bles, allowing the TP to support up to 252 upstream ISPs.

The TP can connect to an upstream ISP over a point-

to-point link using a variety of physical media or tun-

neling technologies. We also intend to support deploy-

ment of Transit Portals at exchange points, where the TP

may connect with multiple ISPs over a local area net-

work via a single interface. Each ISP in such shared me-

dia setup sends layer-two frames using a distinct source

MAC address; the TP can use this address to correctly

identify the sending ISP. Figure 6 shows how such traffic

de-multiplexing is configured using policy routing rules.

The ISP router has an IP address 1.1.1.1 with a MAC

address 0:0:0:0:0:11 and a dedicated forwarding ta-

4

Requirement Decision Implementation
Transparent Connectivity (Section 3.1)

Different layer-two connections Tunnels between TP and virtual router Tunneling technologies supported by the Linux kernel
Transparent traffic forwarding Isolated forwarding tables for ISPs Virtual forwarding tables and policy routing in Linux

Scalability (Section 3.2)
Scalable routing with the # of ISPs Isolated routing tables for ISPs BGP views feature in Quagga bgpd daemon
Scalable updates with # of clients Shared route update computation Peer-group feature in Quagga bgpd daemon
Scalable forwarding with # of ISPs Policy/default routing Modifications to the Quagga bgpd daemon

Protection (Section 3.3)
Preventing IP address spoofing Packet filtering on source IP address Linux iptables
Preventing prefix hijacking Route filtering on IP prefix Quagga prefix filters
Limiting routing instability Rate-limiting of BGP update messages Route-flap damping in Quagga bgpd daemon
Controlling bandwidth usage Traffic shaping on virtual interfaces Linux tc

Table 1: Design and implementation decisions.

ble, 1. Line 1 shows the TP learning the MAC address of

an upstream ISP when a new session is established. Then,

lines 3–4 establish a policy-routing rule that redirects all

the packets with this MAC address to a virtual forwarding

table serving a new upstream ISP.

Transparency is another important goal for connec-

tivity between client networks and the Transit Portal.

In other words, a client network’s connection to the

TP should appear as though it were directly connected

to the respective upstream networks. In the control

plane, achieving this goal involves (1) removing the ap-

pearance of an extra AS hop along the AS path; and

(2) passing BGP updates between client networks and up-

streams as quickly as possible. The first task is achieved

with the remove-private-as rewrite configura-

tion (line 10 in Figure 7(a)), and the second task is

achieved by setting the advertisement interval to a low

value (line 18 in Figure 7(a)).

The Transit Portal supports clients regardless of whether

they have a public or private AS number. To ensure trans-

parency for the clients with a public AS number, the TP

forwards the updates from such clients unmodified. Up-

dates from clients with private AS numbers require rewrit-

ing.

3.2 Scalability

The TP maintains many BGP sessions, stores and dis-

seminates many BGP routes, and forwards packets be-

tween many pairs of clients and ISPs. Scaling to a large

number of ISPs and clients is challenging because each

upstream ISP announces routes for many prefixes (i.e.,

300,000 routes); each client may receive routes frommany

(and possibly all) of these ISPs; and each client selects and

uses routes independently. We describe three design deci-

sions that we used to scale routing and forwarding at the

TP: BGP views, peer groups, and default routing.

Scalable routing tables using BGP views. Rather than

selecting a single best route for each destination prefix, the

TP allows each service to select from the routes learned

from all the upstream ISPs. This function requires the

Transit Portal to disseminate routes from each ISP to the

downstream clients, rather than selecting a single best

route and could be achieved by having the TP run a sep-

arate instance of BGP for each upstream ISP, with BGP

sessions with the ISP and each of the clients. Unfortu-

nately, running multiple instances of BGP, each with its

own process and associated state, would be expensive. In-

stead, the TP runs a single BGP instance with multiple

“BGP views”, each with its own routing table and decision

process, for each upstream ISP. Using BGP views pre-

vents the TP from comparing routes learned from differ-

ent ISPs, while still capitalizing on opportunities to store

redundant route information efficiently. Any downstream

client that wants to receive routing messages from a spe-

cific upstream ISP need only establish a BGP session to

the associated view. Our implementation uses the BGP

view feature in Quagga; in particular, Figure 7(a) shows

the configuration of a single “view” (starting in line 3) for

upstream ISP 1. Section 5.2 shows that using BGP views

in Quagga allows us to support approximately 30% more

upstream ISPs with the same memory resources compared

to the number of supported ISPs using conventional BGP

processes.

Scalable updates to clients with BGP peer groups.

Upon receiving a BGP update message from an upstream

ISP, the TP must send an update message to each client

that “connects” to that ISP. Rather than creating, storing,

and sending that message separately for each client, the

TP maintains a single BGP table and constructs a com-

mon message to send to all clients. Our implementation

achieves this goal by using the peer-group feature in

Quagga, as shown in Figure 7(a); in particular, line 14 as-

sociates Client A (CA) with the peer-group View1

for upstream ISP 1, as defined in lines 17–20. Note that al-

though this example shows only one peer-group member,

the real benefit of peer groups is achieved when multiple

clients belong to the same group. Section 5.3 shows that

peer-groups reduce CPU consumption threefold.

Smaller forwarding tables with default routes and pol-

icy routing. Despite storing and exchanging many BGP

routes in the control plane, the Transit Portal should try

to limit the amount of data-plane state for fast packet for-

warding. To minimize data-plane state, the TP does not in-

stall all of the BGP routes from each BGP view in the ker-

nel forwarding tables. Instead, the TP installs the smallest

5
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1 bgp mult ip le− ins tance

2 !
3 r o u t e r bgp 47065 view Upstream1

4 bgp rou t e r− i d 4 7 . 0 . 0 . 6 5

5 bgp fo rwa rd i ng− t a b l e 1

6 bgp dampening

7

8 ! Connection to Upstream ISP
9 ne i ghbo r 1 . 1 . 1 . 1 remote−as 1

10 ne i ghbo r 1 . 1 . 1 . 1 remove−private−AS r e w r i t e

11 ne i ghbo r 1 . 1 . 1 . 1 attr ibute−unchanged as−path
med

12

13 ! Connection to Downstream Cl ient
14 ne i ghbo r 2 . 2 . 2 . 2 peer−group View1
15 ne i ghbo r 2 . 2 . 2 . 2 remote−as 2

16 ne i ghbo r 2 . 2 . 2 . 2 route−map CA−IN i n

17 ne i ghbo r View1 peer−group

18 ne i ghbo r View1 adver t i s ement− in t erva l 2

19 ne i ghbo r View1 attr ibute−unchanged as−path med
20 ne i ghbo r View1 l oca l−as 1 no−prepend
21 !
22 i p pr e f i x− l i s t CA s eq 5 permit 2 . 2 . 2 . 0 / 2 4

23 !
24 route−map CA−IN permit 10

25 match i p a d d r e s s pr e f i x− l i s t CA
26 !

(a) Quagga configuration.


























(b) Control-plane setup.

Figure 7: Example control-plane configuration and setup: The TP

is a hacked version of Quagga that installs non-default routes into

Forwarding Table 1.

amount of state necessary for custom packet forwarding

to and from each client. On each virtual forwarding ta-

ble, the TP stores only a default route to an upstream ISP

associated with that table (to direct clients’ outbound traf-

fic through the ISP) and the BGP routes announced by the

clients themselves (to direct inbound traffic from the ISP

to the appropriate client). As shown in Section 5.2, this

arrangement allows us to save about one gigabyte of mem-

ory for every 20 upstream ISPs. To selectively install only

the routes learned from clients, rather than all routes in the

BGP view, we make modifications to Quagga.

3.3 Protection

The TPmust protect other networks on the Internet from

misbehavior such as IP address spoofing, route hijacking

or instability, or disproportionate bandwidth usage.

Preventing spoofing and hijacking with filters. The TP

should prevent clients from sending IP packets or BGP

route announcements for IP addresses they do not own.

The TP performs ingress packet filtering on the source IP

address and route filtering on the IP prefix, based on the

client’s address block(s). Our implementation filters pack-

ets using the standard iptables tool in Linux and filters

routes using the prefix-list feature, as shown in lines

16 and 22-26 of Figure 7(a). In addition to filtering pre-

fixes the clients do not own, the TP also prevents clients

from announcing smaller subnets (i.e., smaller than a /24)

of their address blocks. Smaller subnets are also filtered

by default by most of the Internet carriers. Section 7 de-

scribes how TP can overcome this limitation.

Limiting routing instability with route-flap damping.

The TP should also protect the upstream ISPs and the In-

ternet as a whole from unstable or poorly managed clients.

These clients may frequently reset their BGP sessions with

the TP, or repeatedly announce and withdraw their IP pre-

fixes. The TP uses route-flap damping to prevent such in-

stability from affecting other networks. Our implemen-

tation enables route-flap damping (as shown in line 6 of

Figure 7(a)) with the following parameters: a half-life of

15 minutes, a 500-point penalty, a 750-point reuse thresh-

old, and a maximum damping time of 60 minutes. These

settings allow client to send the original update, followed

by an extra withdrawal and an update, which will incur

penalty of 500 points. Additional withdrawals or updates

in a short timeframe will increase the penalty above reuse

threshold and the route will be suppressed until the penalty

shrinks to 750 points (the penalty halves every 15 min-

utes). There is no danger that one client’s flapping will

affect other clients, as route damping on the Internet oper-

ates separately for each announced route.

Controlling bandwidth usage with rate-limiting. The

TP should prevent clients from consuming excessive band-

width, to ensure that all clients have sufficient resources to

exchange traffic with each upstream ISP. The TP prevents

bandwidth hoarding by imposing rate limits on the traf-

fic on each client connection. In our implementation, we

use the standard tc (traffic control) features in Linux to

impose a maximum bit rate on each client link.

4. Deployment

We have deployed Transit Portals in five locations. Four

TPs are deployed in the United States, in Atlanta, Madi-

son, Princeton, and Seattle. We also have one Transit Por-

tal deployment in Tokyo, Japan. All Transit Portals are de-

ployed in universities and research labs, whose networks

act as a sole ISP in each location. Each ISP also provides

full transit for our prefix and AS number. We are actively

expanding this deployment: We are engaging with oper-

ators at two European research institutions and with one

commercial operator in the U.S. to deploy more Transit

Portals, and we are planning to expand our Seattle instal-

lation to connect to more ISPs.

The TPs advertise BGP routes using origin AS 47065

and IP prefix 168.62.16.0/21. Clients currently use a pri-
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Figure 8: IP anycast experiment setup.

vate AS number that the TP translates to the public AS

number, 47065, before forwarding an update. Clients can

also obtain their own AS number, in which case the TP

re-advertises the updates without modification.

This section presents the deployment of a distributed,

anycasted DNS service, as we described in Section 2, that

uses the TP for traffic control, similar to the service we

described in Section 2 (Figure 2). In our evaluation of

this deployment, we demonstrate two distinct functions:

(1) the ability to load balance inbound and outbound traf-

fic to and from the DNS service (including the ability to

control the number of clients that communicate with each

replica); and (2) the ability to reduce latency for specific

subsets of clients with direct route control.

4.1 DNS With IP Anycast

In this section, we show how the TP delivers control

and performance improvements for applications that can

support IP anycast, such as anycast DNS resolution. The

TP allows an IP anycast service to: (1) react to failures

more quickly than using DNS re-mapping mechanisms,

(2) load-balance inbound traffic, and (3) reduce the ser-

vice response time. We explain the experiment setup and

the measurements that show that adding IP anycast to ser-

vices running on Amazon EC2 servers can improve la-

tency, failover, and load-balance.

We deploy two DNS servers in Amazon EC2 data cen-

ters: one in the US-East region (Virginia) and another in

the US-West region (Northern California). The servers are

connected to two different TP sites and announce the same

IP prefix to enable IP anycast routing as shown in Figure 8.

The US-East region is connected to AS 2637 as an up-

stream provider, while the US-West region is connected to

AS 2381 as its upstream provider. We measure the reacha-

bility and delay to these DNS servers by observing the re-

sponse time to the IP anycast address from approximately

600 clients on different PlanetLab [21] nodes. Because

our goal is to evaluate the scenario where the TP is collo-

cated with a cloud computing facility, we adjust the mea-

surements to discount the round-trip delay between the TP

and the Amazon EC2 data centers.

Figure 9: AS-level paths to an EC2 service sitting behind the Transit

Portal (AS 47065), as seen in RouteViews.

Figure 10: Failover behavior with two IP anycast servers.

The main provider of both upstreams is Cogent

(AS 174), which by default prefers a downstream link to

AS 2381. Cogent publishes a set of rules that allows Co-

gent’s clients (e.g., AS 2381, AS 2637, and their respective

clients) to affect Cogent’s routing choices [13]. The DNS

service hosted on an Amazon host runs a virtual router

and thus can apply these rules and control how incoming

traffic ultimately reaches the service.

Figure 9 shows a capture from the BGPlay tool [1],

which shows the initial routing state with the original BGP

configuration. Most of the Internet paths to AS 47065 tra-

verse Cogent (AS 174), which in turn prefers AS 2381 to

forward the traffic to the client. Note that the client is con-

figured with private AS number, but the TPs rewrite the

updates before re-advertising them to the Internet. This

rewriting causes the routers on the Internet to observe pre-

fixes from as if they were announced by AS 47065.

Failover. Today’s Internet applications use DNS name re-

mapping to shift services to active data centers in the case

of a data center or network failure. DNS name re-mapping

is a relatively slow process because it requires the DNS

entries to expire in DNS caches across the Internet. Ap-

plications that support IP anycast can rely on the routing

infrastructure to route traffic to active data centers. In our

experiment, we fail the server deployed in the US-West re-

gion and observe how quickly the clients converge to the

US-East region.

Figure 10 shows how the load changes as we introduce

failure. After twelve seconds, we fail the US-West deploy-
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1 r o u t e r bgp 65000

2 ne i ghbo r 1 0 . 1 . 0 . 1 route−map OUT−2381 ou t

3 !
4 route−map OUT−2381 permit 10

5 match i p a d d r e s s pr e f i x− l i s t OUR

6 s e t community 174 :10

(a) Route map.

(b) Route convergence after applying the route map.

Figure 11: Load balance: Applying a route map to outbound adver-

tisements to affect incoming traffic.

ment and stop receiving requests at that site. After approx-

imately 30 seconds, the routing infrastructure reroutes the

traffic to the US-East site. The reaction to failure was auto-

matic, requiring no monitoring or intervention from either

the application or the TP operators.

Inbound traffic control. Assume that the DNS service

would prefer most of its traffic to be served via AS 2637,

rather than AS 2381. (The client network might prefer an

alternate route as a result of cost, security, reliability, de-

lay, or any other metric.) The Transit Portal clients can ap-

ply BGP communities to affect how upstream ISPs routes

to its customers. On August 14, we changed the client

configuration as shown in Figure 11(a) to add the BGP

community 174:10 to a route, which indicates to one of

the upstream providers, Cogent (AS 174), to prefer this

route less than other routes to the client network.

To see how quickly the Internet converges to a new

route, we analyze the route information provided by

RouteViews. Figure 11(b) shows the convergence of

the Internet routes to a new upstream. The dashed line

shows the number of networks on the Internet that use

the AS 2381 link, while the plain line shows the number

of networks that use the AS 2637 link to reach the client

hosted in the Amazon data center. (Note that the number

of routes corresponds only to the routes that we collected

from RouteViews.)

IP anycast application performance. We evaluate three

DNS service scenarios: (1) US-East only, (2) US-West

only, and (3) both servers using IP anycast routing. We

measure the delay the PlanetLab clients observe to the IP

anycast address in each of these scenarios. Using IP any-

Avg. Delay US-East US-West

US-East 102.09ms 100% 0%

US-West 98.62ms 0% 100%

Anycast 94.68ms 42% 58%

Table 2: DNS anycast deployment. Average round trip time to the

service and fraction of the load to each of the sites.

Figure 12: Outbound TE experiment setup.

cast should route each client to the closest active data cen-

ter.

Table 2 shows the results of these experiments. Serving

DNS using IP anycast improves response time by 4-8 mil-

liseconds compared to serving from either of the sites sep-

arately. The improvement is not significant in our setup,

since the Midwest and East Coast TP deployments are not

far from each other. We expect more improvement when

IP anycast is used from more diverse locations.

4.2 Outbound Traffic Control

We now show how two different services in a single

data center can apply different outbound routing policies

to choose different exit paths from the data center. Fig-

ure 12 shows the demonstration setup. DNS and FTP

services run virtual routers configured as AS 65001 and

AS 65002 respectively; both services and the Transit Por-

tal are hosted at the same site as the ISP with an AS 2637.

The ISP with an AS 2381 is in a different location and, for

the sake of this experiment, the TP routes connections to

it via a tunnel.

Without a special configuration, the services would

choose the upstream ISP based on the shortest AS path. In

our setup, we use the route-map command combined

with a set local-preference setting to configure

AS 65001 (DNS service) to prefer AS 2637 as an upstream

and AS 65002 (FTP service) to prefer AS 2381 as an up-

stream. Figure 13 shows how the traceroutes to a remote

host differ because of this configuration. The first hop in

AS 65001 is a local service provider and is less than one

millisecond away. The AS 65002 tunnels are transparently

switched through a local TP and terminated at the remote

AS 2381, which introduces additional delay.
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1 AS65001−node : ˜ # traceroute -n -q 1 -A

133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5

3 1 1 0 . 0 . 0 . 1 [∗ ] 0 ms

4 2 143 . 215 . 254 . 25 [ AS2637 ] 0 ms

5 [ s k i pp ed ]

6 8 203 . 181 . 248 . 110 [ AS7660 ] 187 ms

7 9 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 182 ms

(a) Traceroute from AS 65001 client.

1 AS65002−node : ˜ # traceroute -n -q 1 -A

133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5

3 1 1 0 . 1 . 0 . 1 [∗ ] 23 ms

4 2 2 1 6 . 5 6 . 6 0 . 1 69 [ AS2381 ] 23 ms

5 [ s k i pp ed ]

6 9 192 . 203 . 116 . 146 [∗ ] 200 ms

7 10 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 205 ms

(b) Traceroute from AS 65002 client.

Figure 13: Traceroute from services co-located with TP East and

AS 2637.

Figure 14: Average access speed from U.S. North East as packet loss

is introduced at Princeton site.

4.3 Performance Optimization

The TP can be used to optimize the Internet service ac-

cess performance. We simulate a video content provider

with video streaming services running in cloud sites at the

Princeton and the Atlanta locations. Bandwidth measure-

ments show that the Princeton site offers better speed for

clients in the northeast U.S., while the Atlanta site is pre-

ferred for the southeast U.S.

Assume that, due to periodic congestion, Princeton ex-

periences intermittent packet loss every day around noon.

Because the packet loss is intermittent, the application op-

erator may be reluctant to use DNS to re-map the clients.

Instead of DNS, the operator can use TP for rerouting

when packet loss is detected. Figure 14 shows the aver-

age service access speed from the clients in the northeast

as the loss at the Princeton site is increasing. As Prince-

ton reaches a 1.1% packet loss rate, the Atlanta site, with

its baseline speed of 1140 Kbps, becomes a better choice.

Application operators then can use the methods described

in Section 4.1 and 4.2 to reroute their applications when

they observe losses in Princeton higher than 1.1%.

AS Prefixes Updates Withdrawals

RCCN (1930) 291,996 267,207 15,917
Tinet (3257) 289,077 205,541 22,809
RIPE NCC (3333) 293,059 16,036,246 7,067
Global Crossing (3549) 288,096 883,290 68,185
APNIC NCC (4608) 298,508 589,234 9,147
APNIC NCC (4777) 294,387 127,240 12,233
NIX.CZ (6881) 290,480 150,304 11,247
AT&T (7018) 288,640 1,116,576 904,051
Hutchison (9304) 296,070 300,606 21,551
IP Group (16186) 288,384 273,410 47,776

Table 3: RIPE BGP data set for September 1, 2009.

5. Scalability Evaluation

This section performs micro-benchmarks to evaluate

how the Transit Portal scales with the number of upstream

ISPs and client networks. Our goal is to demonstrate the

feasibility of our design by showing that a TP that is imple-

mented in commodity hardware can support a large num-

ber of upstream ISPs and downstream clients. Our evalua-

tion quantifies the number of upstream and client sessions

that the TP can support and shows how various design de-

cisions from Section 3 help improve scalability. We first

describe our evaluation setup; we then explore how the

number of upstream ISPs and downstream client networks

affect the TP’s performance for realistic routing workload.

Our findings are unsurprising but comforting: A single TP

node can support tens of upstream ISPs and hundreds of

client networks using today’s commodity hardware, and

we do not observe any nonlinear scaling phenomena.

5.1 Setup

Data. To perform repeatable experiments, we constructed

a BGP update dataset, which we used for all of our sce-

narios. We used BGP route information provided by RIPE

Route Information Service (RIS) [23]. RIPE RIS provides

two types of BGP update data: 1) BGP table dumps, and

2) BGP update traces. Each BGP table dump represents a

full BGP route table snapshot. A BGP update trace rep-

resents a time-stamped arrival of BGP updates from BGP

neighbors. We combine the dumps with the updates: Each

combined trace starts with the stream of the updates that

fill in the BGP routing table to reflect a BGP dump. The

trace continues with the time-stamped updates as recorded

by the BGP update trace. When we replayed this trace, we

honored the inter-arrival intervals of the update trace.

Table 3 shows our dataset, which has BGP updates from

10 ISPs. The initial BGP table dump is taken on Septem-

ber 1, 2009. The updates are recorded in 24-hour pe-

riod starting on midnight September 2 and ending at mid-

night September 3 (UTC). The average BGP table size is

291,869.1 prefixes. The average number of updates during

a 24-hour period is 1,894,474.3, and the average number

of withdrawals is 111,998.3. There are more announce-

ments than withdrawals (a withdrawal occurs only if there

is no alternate route to the prefix).
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Figure 15: Control plane memory use.

The data set contains two upstream ISPs with an un-

usually high number of updates: AS 3333 with more than

16 million updates, and AS 7018 with more than 900,000

withdrawals. It is likely that AS 3333 or its clients use re-

active BGP load-balancing. In AS 7018, the likely expla-

nation for a large number of withdrawals is a misconfig-

uration, or a flapping link. In any case, these outliers can

stress the Transit Portal against extreme load conditions.

Test environment. We replayed the BGP updates using

the bgp simple BGP player [11]. The bgp simple

player is implemented using Perl Net::BGP libraries.

We modified the player to honor the time intervals be-

tween the updates.

Unless otherwise noted, the test setup consists of five

nodes: Two nodes for emulating clients, two nodes for

emulating upstream ISPs, and one node under test, run-

ning the Transit Portal. The test node has two 1 Gbps Eth-

ernet interfaces, which are connected to two LANs: one

LAN hosts client-emulating nodes, the other LAN hosts

upstream-emulating nodes. Each node runs on a Dell Pow-

erEdge 2850, with a 3 Ghz dual-core 64-bit Xeon CPU and

2 GB of RAM. The machines run Fedora 8 Linux.

When we measured CPU usage for a specific process,

we used the statistics provided by /proc. Each process

has a jiffies counter, which records the number of sys-

tem ticks the process used so far. For each test, we col-

lect jiffies at five-second intervals over three minutes and

the compute average CPU usage in percent. The vmstat

utility provides the overall memory and CPU usage.

5.2 Memory Usage

Upstream sessions. Using a commodity platform with

2 GB of memory, TP scales to a few dozen of upstream

ISPs. Figure 15 shows how the memory increases as

we add more upstream ISPs. When TP utilizes sepa-

rate BGP processes, each upstream ISP utilizes approx-

imately 90MB of memory; using BGP views each up-

stream ISP utilizes approximately 60MB of memory. Data

plane memory usage, as shown in Figure 16, is insignifi-

cant when using our forwarding optimization.

Figure 16: Data plane memory use.

Figure 17: CPU usage over time (average taken every 3 seconds).

Downstream sessions. Each session to a downstream ap-

plication consumes approximately 10MB of memory. For

example, given 20 upstream ISPs, a client “subscribing”

to all of them will consume 200MB. Upgrading the TP

machine to 16GB of memory would easily support 20 up-

stream ISPs with more than a hundred clients subscribing

to an average of 10 ISPs. The clients use only a small

amount of memory in the data plane. The TP ensures for-

warding only to the prefixes clients own or lease.

5.3 CPU Usage and Propagation Time

The main users of TP CPU are a BGP scan process,

which scans the routes for the changes in reachability in-

formation, and BGP update parsing process, which parses

the updates which arrive intermittently at a rate of approx-

imately 2 million updates per day.

Figure 17 shows the timeseries of the CPU usage of two

BGP processes as they perform routine tasks. Routing up-

dates for both processes arrive from five different ISPs ac-

cording to their traces. The baseline uses a default Quagga

configuration with one routing table, and one client. The

Transit Portal configuration terminates each ISP at a dif-

ferent virtual routing table and connects 12 clients (which

amounts to a total of 60 client sessions). The TP configu-

ration, on average consumes 20% more CPU than a base-

line configuration; most of this load overhead comes from

10

Figure 18: CPU usage while adding client sessions.

Figure 19: Update propagation delay.

maintaining more client sessions. The spikes in both plots

correspond to a BGP scan that occurs every 60 seconds.

The TP can easily support hundreds of client BGP ses-

sions. Figure 18 shows CPU usage as more client sessions

are added. Two plots shows CPU usage using the default

client configuration and CPU usage using a client config-

uration with a peer-group feature enabled. While conduct-

ing this experiment, we add 50 client sessions at a time and

measure CPU load. We observe fluctuations in CPU use

since at each measurement the number of updates passing

the TP is slightly different. Nevertheless the trend is visi-

ble and each one hundred of client sessions increase CPU

utilization by approximately a half of a percent.

Figure 19 shows the update propagation delays though

the TP. The baseline configuration uses minimal configu-

ration of Quagga with advertisement interval set to 2 sec-

onds. Other configurations reflect the setup of five up-

stream providers with 10, 25, and 50 sessions. Approxi-

mately 40% of updates in the setup with 10 sessions are

delivered within 1.6 seconds, while the baseline config-

uration seems to start deliver updates only at around 1.7

seconds due to the grouping of updates at the TP. A single

upstream ISP sends updates in batches and each batch is

subject to the configured two-second advertisement inter-

val. When multiple upstream ISPs are configured, more

updates arrive at the middle of advertisement interval and

can be delivered as soon as it expires.

6. Framework for Provisioning Resources

The TP service provides an interface to the clients of

existing hosting facilities to provision wide-area connec-

tivity. In this section, we describe the design and imple-

mentation of this management plane. We first discuss the

1 <rspec t y p e =” adver t i s ement ” >

2

3 <node v i r t u a l i d =” tp1 ”>

4 <node type t ype name=” tp ”>

5 < f i e l d key=” encapsu l a t i on ” va l u e =” gre ” />

6 < f i e l d key=” encapsu l a t i on ” va l u e =” egre” />

7 < f i e l d key=”upstream as ” va l u e =”1” />

8 < f i e l d key=”upstream as ” va l u e =”2” />

9 < f i e l d key=” p r e f i x ” coun t=”3” l e n g t h =”24” />

10 </ node type>

11 </ node>

Figure 20: Resource advertisement: In Step 0 of resource allocation

(Figure 21), the TP’s component manager advertises available re-

sources. This example advertisement says that the TP supports both
GRE and EGRE encapsulation, has connections to two upstream

ASes, and has three /24 prefixes available to allocate.

available resources and how they are specified. Next, we

describe the process for clients to discover and request

resources. Then, we discuss how we have implemented

the management plane in the context of the GENI control

framework [16]. In the future, the management plane will

also control the hosting resources, and provide clients a

single interface for resource provisioning.

6.1 Resources and Their Specification

The current resource allocation framework tracks num-

bered and network resources. The numbered resources in-

clude the available IP address space, the IP prefixes as-

signed to each client network, the AS number (or num-

bers) that each client is using to connect to the TPs, and

which IP prefix will be advertised from each location.

The framework must also keep track of whether a client

network has its own IP prefix or AS number. Network

resources include the underlying physical bandwidth for

connecting to clients, and bandwidth available to and from

each upstream ISP. Management of hosting resources, at

this stage, is left for the client networks to handle.

The available resources should be specified in a consis-

tent, machine-readable format. Our implementation rep-

resents resources using XML. Figure 20 shows an exam-

ple advertisement, which denotes the resources available

at one TP that offers two upstream connections, as indi-

cated by lines 7–8 in the advertisement. The advertisement

also indicates that this TP has three prefixes available for

clients (line 9) and can support both GRE and EGRE tun-

neling (lines 5–6).

6.2 Discovering and Requesting Resources

Each Transit Portal runs a component manager (CM)

that tracks available resources on the node. To track

available capacity between TPs, or on links between vir-

tual hosting facilities, the service uses an aggregate man-

ager (AM). The aggregate manager maintains inventory

over global resources by aggregating the available re-

sources reported by the component managers. It also
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Figure 21: Resource allocation process.

brokers client requests by contacting individual CMs, as

shown in Figure 21.

Clients can discover and request resources using a sup-

plied command line tool en-client.py. The tool can

issue resource discovery and resource reservation requests

to a hard-coded AM address as shown in Section 4.2.

Before clients can request resources, the AMmust know

about resources in all TP installations. Each component

manager registers with the AM and provides the list of

the available resources, such as the list of upstream ISPs

and available IP prefixes (Step 0 in Figure 21). To request

resources, a client first issues a discovery call to an AM

(Step 1). The AM replies with advertisement, which de-

scribes resources available for reservation (Step 1), such as

the example in Figure 20. After receiving the resource ad-

vertisement, a client can issue a resource request (Step 3),

such as the example in Figure 22(b). If the resources are

available, the AM issues the reservation request to TP1

(Step 4) and responds with a manifest (Step 5), which is

annotated version of the request providing the missing in-

formation necessary to establish the requested topology,

as shown in Figure 22(c). The AM also provides sample

client configuration excerpts with the manifest to stream-

line client configuration setup. The client uses the mani-

fest to configure its end of the links and sessions, such as

the configuration of PC1 in Figure 22(a).

6.3 Implementation

We implement the provisioning framework in the spirit

of the Slice-based Facility Architecture (SFA) [5]. This

management plane approach is actively developed by

projects in the GENI [16] initiative, such as Proto-

GENI [22]. SFA is a natural choice because our inter-

mediate goal is to integrate the TP with testbeds like Pro-

toGENI [22] and VINI [25]. We use the Twisted event-

driven engine libraries written in Python to implement the

management plane components.

The primary components of the SFA are the Compo-

nent Manager (CM) and Aggregate Manager (AM) as in-

troduced before. The interface between the AM and CM is

implemented using XML-RPC calls. The client interacts

with the AM though a front-end, such as the Emulab or

PlanetLab Web site, which in turn contacts the AM using

XML-RPC or through the supplied client script.

Currently, access control to the AM is controlled with

static access rules that authenticate clients and authorize

 











 




 



 

(a) Topology resulting from the resource request.

1 <rspec t y p e=” r eque s t” >

2 <node v i r t u a l i d =” tp1 ”>

3 <node type t ype name=” tp ”>

4 <f i e l d key=” upstream as ” va l u e =”1” />

5 <f i e l d key=” p r e f i x ” coun t=”1”>

6 </ node type>

7 </ node>
8 < l i n k v i r t u a l i d =” l i nk0 ”>

9 < l i n k t y p e name=” egre”>

10 <f i e l d key=” t t l ” va l u e =”255”>

11 </ l i n k t y p e>

12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ” />

13 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1 ”

t u n n e l e n d p o i n t=” 1 0 . 0 . 0 . 1 ” />

14 </ l i n k>

15 </ rspec>

(b) The resource request specifies the client’s tunnel endpoint,
10.0.0.1, and asks for an EGRE tunnel, as well as an IP prefix
and upstream connectivity to AS 1.

1 <rspec t y p e =”mani fe s t ” >

2 <node v i r t u a l i d =” tp1 ”>

3 <node type t ype name=” tp ”>

4 < f i e l d key=”upstream as ” va l u e =”1” />

5 < f i e l d key=” p r e f i x ” coun t=”1” va l u e =”

2 . 2 . 2 . 0 / 2 4 ” />

6 </ node type>

7 </ node>
8 < l i n k v i r t u a l i d =” l i nk0 ”>

9 < l i n k t y p e name=” egre”>

10 < f i e l d key=” t t l ” va l u e =”255” />

11 </ l i n k t y p e>

12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ”\
13 t u n n e l e n d p o i n t=” 1 0 . 1 . 0 . 1 ”\
14 t u n n e l i p =” 2 . 2 . 2 . 2 / 3 0 ” />

15 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1”\
16 t u n n e l e n d p o i n t=” 1 0 . 0 . 0 . 1 ”\
17 t u n n e l i p =” 2 . 2 . 2 . 1 / 3 0 ” />

18 </ l i n k>
19 </ rspec>

(c) The manifest assigns an IP prefix to the network,
2.2.2.0/24, and specifies the parameters for the tunnel be-
tween PC1 and TP1.

Figure 22: The resource request (Step 3) and manifest (Step 5) of the
resource allocation process, for an example topology.

or prevent a client from instantiating resources. To support

more dynamic access control, we plan to expand the AM

and CM to support security credentials, which will enable

us to inter-operate with existing facilities (e.g., PlanetLab,

VINI, GENI) without using static access rules. We also

plan to extend the resource management to include slice-

based resource allocation and accounting.

7. Extensions to the Transit Portal

The TP is extensible. In the future, we plan to add sup-

port for lightweight clients who don’t want to run BGP,

support for smaller IP prefixes, support for backhaul be-
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tween different TP sites, extensions for better scalability

using hardware platforms for the data plane, and exten-

sions for better routing stability in the face of transient

client networks.

Support for lightweight clients. Some client networks

primarily need to control traffic but do not necessarily

need to run BGP between their own networks and the tran-

sit portal. In these cases, a client could use the existence or

absence of a tunnel to the TP to signal to the TP whether

it wanted traffic to enter over a particular ingress point.

When the client network brings up a tunnel, the TP could

announce the prefix over the appropriate ISP. When the

client brings the tunnel down, the TP withdraws the pre-

fix. As long as the tunnels are up, the client is free to

choose an outgoing tunnel to route its traffic.

Support for small IP prefixes. Many client networks

may not need IP addresses for more than a few hosts; un-

fortunately, these client networks would not be able to ad-

vertise their own IP prefix on the network, as ISPs typi-

cally filter IP prefixes that are longer than a /24 (i.e., sub-

networks with less than 256 addresses). The TP could

allow client networks with fewer hosts to have BGP-like

route control without having to advertise a complete /24

network. Clients for such networks would have full con-

trol of outgoing route selection and limited control for in-

fluencing incoming routes.

Better scalability. The scalability of the TP data plane

can be further improved in two ways: (1) running multiple

TPs in an Internet exchange, each serving subset of up-

stream ISPs, and (2) running the data and control plane of

a TP on separate platforms. The first approach is easier to

implement. The second approach offers the convenience

of a single IP address for BGP sessions from ISPs and

follows the best practices of data plane and control plane

separation in modern routers. A data plane running on a

separate platform could be implemented using OpenFlow

or NetFPGA technologies.

Better routing stability in the face of transient client

networks. The Transit Portal can support transient client

networks that need BGP-based route control but do not

need to use network resources all of the time. For exam-

ple, suppose that a client network is instantiated every day

for three hours to facilitate a video conference, or bulk

transfer for backups. In these cases, the TP can simply

leave the BGP prefix advertised to the global network,

even when the client network is “swapped out”. In this

way, TPs could support transient client networks without

introducing global routing instability.

Backhaul between sites. Today’s cloud applications in

different data centers, performing tasks such as backup

or synchronization, must traverse the public Internet. For

instance, Amazon EC2 platform offers sites in U.S. East

coast, U.S. West coast and in Ireland. Unfortunately, the

platform offers little transparency or flexibility for appli-

 
 

 
 


 

 

 
 

 
 

Figure 23: Transit Portals allow cloud providers to offer wide-area

route control to hosted services

cation operators seeking to connect the applications in dif-

ferent sites into a common network. TP platform, on the

other hand, is well suited to support sophisticated back-

haul between applications in different sites. Each TP site

can choose among multiple paths to other TP sites and

application operator could exercise control on what path

applications are routed to reach other sites. In addition,

TP could facilitate private networking between the appli-

cations in different sites by using tunnels between TPs.

The TP could also improve connectivity between the sites

through overlay routing, two TP sites exchange traffic

through a third intermediate TP site.

8. Related Work

The Transit Portal resembles several existing tech-

nologies, including content distribution networks, route

servers, cloud hosting providers, and even exchange point

operators. We describe how these existing technologies

differ from TP, with respect to their support for the appli-

cations from Section 2.

Content distribution networks and cloud hosting

providers do not provide control over inbound and out-

bound traffic. Content distribution networks like Aka-

mai [6] and Amazon Cloud Front host content across a

network of caching proxies, in an attempt to place con-

tent close to users to improve performance and save band-

width. Each of these caching proxies may be located in

some colocation facility with its own upstream connectiv-

ity. Some content providers may care more about through-

put, others may care about low delay, others may care

about reliability, and still others might care about mini-

mizing costs. In a CDN, however, the content provider has

no control over how traffic enters or leaves these coloca-

tion facilities; it is essentially at the mercy of the decisions

that the CDN providermakes about upstream connectivity.

The Transit Portal, on the other hand, allows each content

provider to control traffic independently.

Exchange points do not provide flexible hosting.

Providers like Equinix Direct [15] allow services to

change their upstream connectivity on short timescales

13
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and connect on demand with ISPs in an Internet exchange.

Equinix Direct operates only at the control plane and ex-

pects clients and ISPs to be able to share a common LAN.

Unlike Equinix Direct, the Transit Portal allows services

to establish connectivity to transit ISPs without renting

rack space in the exchange point, acquiring numbered re-

sources, or procuring dedicated routing equipment.

Route servers do not allow each downstream client net-

work to make independent routing decisions. Route

servers reduce the number of sessions between the peers

in an exchange point: instead of maintaining a clique of

connections, peers connect to a central route server. Route

servers aggregate the routes and select only the best route

to a destination to each of the peers [18]. This function

differs from the TP, which provides transparent access to

all of the routes from upstream ISPs.

DNS-based load balancing cannot migrate live connec-

tions. Hosting providers sometimes use DNS-based load

balancing to redirect clients to different servers—for ex-

ample, a content distribution network (e.g., Akamai [6]) or

service host (e.g., Google) can use DNS to re-map clients

to machines hosting the same service but which have a

different IP address. DNS-based load balancing, however,

does not allow the service provider to migrate a long-

running connection, and it requires the service provider

to use low DNS TTLs, which may also introduce longer

lookup times. The Transit Portal, on the other hand, can

move a service by re-routing the IP prefix or IP address

associated with that service, thereby allowing for longer

DNS TTLs or connection migration.

Overlay networks do not allow direct control over in-

bound or outbound traffic, and may not scale. Some

control over traffic might be possible with an overlay net-

work (e.g., RON [9], SOSR [19]). Unfortunately, overlay

networks can only indirectly control traffic, and they re-

quire traffic to be sent through overlay nodes, which can

result in longer paths.

9. Conclusion

This paper has presented the design, implementation,

evaluation, and deployment of the Transit Portal, which

offers flexible wide-area route control to for distributed

services. The TP prototype is operating at several ge-

ographically diverse locations with a /21 address block,

AS number, and BGP sessions to upstream providers.

We have used Transit Portal in both our research and in

projects for a graduate course [?], and we plan to de-

ploy and evaluate additional services, including offering

our platform to other researchers, and to offer new, more

lightweight interfaces to the Transit Portal.
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Abstract

To reduce energy wastage by idle desktop comput-
ers in enterprise environments, the typical approach is
to put a computer to sleep during long idle periods (e.g.,
overnight), with a proxy employed to reduce user disrup-
tion by maintaining the computer’s network presence at
some minimal level. However, the Achilles’ heel of the
proxy-based approach is the inherent trade-off between
the functionality of maintaining network presence and
the complexity of application-specific customization.

We present LiteGreen, a system to save desktop en-
ergy by virtualizing the user’s desktop computing envi-
ronment as a virtual machine (VM) and then migrating it
between the user’s physical desktop machine and a VM
server, depending on whether the desktop computing en-
vironment is being actively used or is idle. Thus, the
user’s desktop environment is “always on”, maintaining
its network presence fully even when the user’s phys-
ical desktop machine is switched off and thereby sav-
ing energy. This seamless operation allows LiteGreen
to save energy during short idle periods as well (e.g.,
coffee breaks), which is shown to be significant accord-
ing to our analysis of over 65,000 hours of data gath-
ered from 120 desktop machines. We have prototyped
LiteGreen on the Microsoft Hyper-V hypervisor. Our
findings from a small-scale deployment comprising over
3200 user-hours of the system as well as from laboratory
experiments and simulation analysis are very promising,
with energy savings of 72-74% with LiteGreen compared
to 32% with existing Windows and manual power man-
agement.

1 Introduction
The energy consumed by the burgeoning computing in-
frastructure worldwide has recently drawn significant at-
tention. While the focus of energy management has been
on the data-center setting [20, 29, 32], attention has also
been directed recently to the significant amounts of en-
ergy consumed by desktop computers in homes and en-
terprises [17, 31]. A recent U.S. study [33] estimates that
PCs and their monitors consume about 100 TWh/year,
constituting 3% of the annual electricity consumed in the

∗The author was an intern at MSR India during the course of this
work.

U.S. Of this, 65 TWh/year is consumed by PCs in en-
terprises, which constitutes 5% of the commercial build-
ing electricity consumption in the U.S. Moreover, market
projections suggest that PCs will continue to be the dom-
inant desktop computing platform, with over 125 million
units shipping each year from 2009 through 2013 [15].

The usual approach to reducing PC energy wastage
is to put computers to sleep when they are idle. How-
ever, the presence of the user makes this particularly
challenging in a desktop computing environment. Users
care about preserving long-running network connections
(e.g., login sessions, IM presence, file sharing), back-
ground computation (e.g., syncing and automatic filing
of new emails), and keeping their machine reachable
even while it is idle. Putting a desktop PC to sleep
is likely to cause disruption (e.g., broken connections),
thereby having a negative impact on the user, who might
then choose to disable the energy savings mechanism al-
together.

To reduce user disruption while still allowing ma-
chines to sleep, one approach has been to have a proxy
on the network for a machine that is asleep [33]. How-
ever, this approach suffers from an inherent tradeoff be-
tween functionality and complexity because of the need
for application-specific customization.

In this paper, we present LiteGreen, a system to save
desktop energy by employing a novel approach to min-
imizing user disruption and avoiding the complexity of
application-specific customization. The basic idea is to
virtualize the user’s desktop computing environment, by
encapsulating it in a virtual machine (VM), and then mi-
grating it between the user’s physical desktop machine
and a VM server, depending on whether the desktop
computing environment is actively used or idle. When
the desktop becomes idle, say when the user steps away
for several minutes (e.g., for a coffee break), the desktop
VM is migrated to the VM server and the physical desk-
top machine is put to sleep. When the desktop becomes
active again (e.g., when the user returns), the desktop
VM is migrated back to the physical desktop machine.
Thus, even when it has been migrated to the VM server,
the user’s desktop environment remains alive (i.e., it is
“always on”), so ongoing network connections and other
activity (e.g., background downloads) are not disturbed,
regardless of the application involved.



32 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 33

The “always on” feature of LiteGreen allows energy
savings whenever the opportunity arises, without hav-
ing to worry about disrupting the user. Besides long idle
periods (e.g., nights and weekends), energy can also be
saved by putting the physical desktop computer to sleep
even during short idle periods, such as when a user goes
to a meeting or steps out for coffee. Indeed, our mea-
surements indicate that the potential energy savings from
exploiting short idle periods are significant (Section 3).

While the virtualization-based approach allows keep-
ing the desktop environment “always on”, two key chal-
lenges need to be addressed for it to be useful for sav-
ing energy on desktop computers. First, how do we pro-
vide a normal (undisrupted) desktop experience to users,
masking the effect of VMs and their migration? Sec-
ond, how do we decide when and which VMs to migrate
to/from the server in order to maximize energy savings
while minimizing disruption to users?
To address the first challenge, LiteGreen uses the live

migration feature supported by modern hypervisors [21]
coupled with the idea of always presenting the desktop
environment through a level of indirection (Section 4).
Thus, whether the VM is at the server or desktop, users
always access their desktop VM through a remote desk-
top (RD) session. So, in a typical scenario, when a user
returns to their machine that has been put to sleep, the
machine is woken up from sleep and the user is able
to immediately access their desktop environment (whose
state is fully up-to-date, because it has been “always on”)
through an RD connection to the desktop VM running
on the VM server. Subsequently, the desktop VM is mi-
grated back to the user’s physical desktop machine with-
out the user even noticing.

To address the second challenge, LiteGreen uses an
energy-saving algorithm that runs on the server and care-
fully balances migrations based on two continuously-
updated lists: 1) VMs in the mandatory to push list must
be migrated to the desktop machine to minimize user dis-
ruption, and 2) VMs in the eligible to pull list may be
migrated to server for energy savings, subject to server
capacity constraints (Section 5).

We have prototyped LiteGreen on the Microsoft
Hyper-V hypervisor (Section 6). We have a small-scale
deployment running on the desktop machines of ten
users, comprising three administrative staff and seven
researchers, including three authors of this paper. A
demonstration video of LiteGreen is available at [4].
Separately, we have conducted laboratory experiments
using both the Hyper-V and Xen hypervisors to evaluate
various aspects of LiteGreen. We have also developed a
simulator to analyze the data we gathered and to under-
stand the finer aspects of our algorithms.
We have analyzed (a) over 65,000 user-hours of data

gathered by us from 120 desktop computers at Microsoft

Research India (MSRI), and (b) 3200 user-hours of data
from a deployment of our prototype on ten user desktops
over a span of 28 days. Based on this analysis, LiteGreen
is able to put desktop machines to sleep for 86-88% of
the time, resulting in an estimated energy savings of 72-
74%. In comparison, through a combination of manual
user action and the automatic Windows power manage-
ment, desktop machines are put to sleep for 35% of time,
delivering estimated energy savings of only 32%.

The main contributions of this paper are as follows:

1. A novel system that leverages virtualization to con-
solidate idle desktops on a VM server, thereby sav-
ing energy, while avoiding user disruption.

2. Automated mechanisms to drive the migration of
the desktop computing environment between the
physical desktop machines and the VM server.

3. A prototype implementation and the evaluation of
LiteGreen through a small-scale deployment on the
desktops of ten users, spaning 3200 user-hours over
28 days, yielding energy savings of 74%.

4. Trace-driven analysis of over 65,000 user-hours of
resource usage data gathered from 120 desktops,
yielding energy savings of 72%, with short idle pe-
riods (< 3 hours) contributing 20% or more.

2 Problem Background and Related Work
In this section, we provide some background on the prob-
lem setting and discuss related work.

2.1 PC Energy Consumption
Researchers have measured and characterized the energy
consumed by desktop computers [17]. The typical desk-
top PC consumes 80-110 W when active and 60-80 W
when idle, excluding the monitor, which adds another
35-80 W. The relatively small difference between active
and idle modes is significant and arises because the pro-
cessor itself only accounts for a small portion of the total
energy. In view of this, multiple S (“sleep”) states have
been defined as part of the ACPI standard [13]. In par-
ticular, the S3 state (“standby”) suspends the machine’s
state to RAM, thereby cutting energy consumption to 2-3
W. S3 has the advantage of being much quicker to transi-
tion in and out of than S4 (“hibernate”), which involves
suspending the machine’s state to disk.

2.2 Proxy-based Approach
As discussed above, the only way of cutting down the
energy consumed by a PC is to put it to sleep. How-
ever, when a PC it put to sleep, it loses its network
presence, resulting in disruption of ongoing connections
(e.g., remote-login or file-download sessions) and the
machine even becoming inaccessible over the network.
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The resulting disruption has been recognized as a key
reason why users are often reluctant to put their machines
to sleep [17]. Researchers have found that roughly 60%
of office desktop PCs are left on continuously [33].

The general approach to allowing a PC to sleep while
maintaining some network presence is to have a network
proxy operate on its behalf while it is asleep [33]. The
functionality of the proxy could span a wide range:

• WoL Proxy: The simplest proxy allows the ma-
chine to be woken up using the Wake-on-LAN
(WoL) mechanism [12] supported by most Ethernet
NICs. To be able to send the “magic” WoL packet,
the proxy must be on the same subnet as the tar-
get machine and needs to know the MAC address of
the machine. Typically, machine wakeup is initiated
manually.

• Protocol Proxy: A more sophisticated proxy per-
forms automatic wakeup, triggered by a filtered sub-
set of the incoming traffic [31, 34]. The filters could
be configured based on user input and also the list
of network ports that the target machine was listen-
ing on before it went to sleep. Other traffic is ei-
ther responded to by the proxy itself without wak-
ing up the target machine (e.g., ARP for the target
machine) or ignored (e.g., ARP for other hosts).

• Application Proxy: An even more sophisticated
proxy incorporates application-specific stubs that
allow it to engage in network communication on be-
half of applications running on the machine that is
now asleep [31]. Such a proxy could even be inte-
grated into an augmented NIC [17].

Enhanced functionality of a proxy comes at the cost of
greater complexity, for instance, the need to create stubs
for each application that the user wishes to keep alive.
LiteGreen sidesteps this complexity by keeping the entire
desktop computing environment alive, by consolidating
it on the server along with other idle desktops. On the
flip side, however, LiteGreen is more heavyweight than
the proxy approach, as we discuss in Section 9.2.

2.3 Saving Energy through Consolidation
Consolidation to save energy has been employed in other
computing settings—data centers and thin clients.

In the data-center setting, server consolidation is used
to approximate energy proportionality by migrating com-
putation, typically using virtualization, from several
lightly-loaded servers onto fewer servers, and then turn-
ing off the servers that are freed up [20, 37, 38]. Doing
so saves not only the energy consumed directly by the
servers but also the significant amount of energy con-
sumed indirectly for cooling [29, 30].

Thin client based computing, an idea that is making a
reappearance [23, 11] despite failures in the past, repre-
sents an extreme form of consolidation, with all of the
computing resources being centralized. While the cost,
management, and energy savings might make the model
attractive in some environments, there remain questions
regarding the up-front hardware investment needed to
migrate to thin clients. Also, thin clients represent a
trade-off and may not be suitable in settings where power
users want the flexibility of a PC or insulation from even
transient dips in performance due to consolidation. In-
deed, market projections suggest that PCs will continue
to be the dominant desktop computing platform, with
over 125 million units shipping each year from 2009
through 2013 [15], and with thin clients replacing only
15% of PCs by 2014 [14]. Thus, there will continue to be
a sizeable and growing installed base of PCs for the fore-
seeable future, possibly as part of mixed environments
comprising both PCs and thin clients, so addressing the
problem of energy consumed by desktop PCs remains
important.

While LiteGreen’s use of consolidation is inspired by
the above work, a key difference arises from the presence
of users in a desktop computing environment. Unlike in
a data center setting, where machines tend to run server
workloads and hence are substitutable to a large extent,
a desktop machine is a user’s personal computer. Users
expect to have access to their computing environment.
Furthermore, unlike in a thin client setting, users expect
to have good interactive performance and the flexibility
of attaching specialized hardware and peripherals (e.g., a
high-end graphics card). Progress on virtualizing high-
end hardware, such as GPUs [24, 28], facilitates Lite-
Green’s approach of running the desktop in a VM.

Central to the design of LiteGreen is preserving this
PC model and minimizing both user disruption and new
hardware cost, by only consolidating idle desktops.

2.4 Virtualization and Live Migration
A key enabler of consolidation is virtualization. Several
hypervisors are available commercially [2, 5, 8]. These
leverage the hardware support that modern processors in-
clude for virtualization [3, 1].
Virtualization has simplified the task of moving com-

putation from one physical machine to another [40] com-
pared to process migration [36]. Efficient live migration
over a high-speed LAN is performed by iteratively copy-
ing memory pages while the VM continues execution,
before finally pausing the VM briefly (for as short as 60
ms [21]) to copy the remaining pages and resume execu-
tion on the destination machine. Live migration has been
extended to wide-area networks as well [27].

3
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2.5 Page Sharing and Memory Ballooning
Consolidation of multiple VMs on the same physical
server can put pressure on the server’s memory re-
sources. Page sharing is a technique to decrease the
memory footprint of VMs by sharing pages that are in
common across multiple VMs [39]. Recent work [26]
has advanced the state of the art to also include sub-page
level sharing, yielding memory savings of up to 90%
with homogeneous VMs and up to 65% otherwise.

Even with page sharing, memory can become a bottle-
neck depending on the number of VMs that are consol-
idated on the server. Memory ballooning is a technique
to dynamically shrink or grow the memory available to
a VM with minimal overhead relative to statically provi-
sioning the VM with the desired amount of memory [39].

2.6 Virtualization in LiteGreen Prototype
For our LiteGreen prototype, we use the Microsoft
Hyper-V hypervisor. While this is a server hypervisor,
the ten users in our deployment were able to use it with-
out difficulty for desktop computing. Since Hyper-V cur-
rently does not support page sharing or memory balloon-
ing, we conducted a separate set of experiments with the
Xen hypervisor to evaluate memory ballooning. Finally,
since Hyper-V only supports live migration with shared
storage, we set up a shared storage server connected to
the same GigE switch as the desktop machines and the
server (see Section 9 for a discussion of shared storage).

3 Motivation Based on Measurement
To provide concrete motivation for our work beyond the
prior work discussed above, we conducted a measure-
ment study on the usage of PCs. Our study was set in
the MSR India lab during the summer of 2009, at which
time the lab’s population peaked at around 130 users. Of
these, 120 users at the peak volunteered to run our mea-
surement tool, which gathered information on the PC re-
source usage (in terms of the CPU, network, disk, and
memory) and also monitored user interaction (UI). In
view of the sensitivity involved in monitoring keyboard
activity on the volunteers’ machines, we only monitored
mouse activity to detect UI.

We have collected over 65,000 hours worth of data
from these users. We placed the data gathered from each
machine into 1-minute buckets, each of which was then
annotated with the level of resource usage and whether
there was UI activity. We classify a machine as being idle
(as opposed to being active) during a 1-minute bucket us-
ing one of the two policies discussed later in Section 5.2:
the default policy, which only looks for the absence of
UI activity in the last 10 minutes, and a more conserva-
tive policy, which additionally checks whether the CPU
usage was below 10%.

Based on this data, we seek to answer the following
questions:

Q1. How (under)utilized are desktop PCs?
To help answer this question, Figure 1a plots the dis-

tribution of CPU usage and UI activity, binned into 1-
minute buckets and aggregated across all of the PCs in
our study. To allow plotting both CPU usage and UI
activity in the same graph, we adopt the convention of
treating the presence of UI activity in a bucket as 100%
CPU usage. The “CPU only” curve in the figure shows
that CPU usage is low, remaining under 10% for 90% of
the time. The “CPU + UI” curve shows that UI activity is
present, on average, only in 10% of the 1-minute buck-
ets, or about 2.4 hours in a day. However, since even an
active user might have 1-minute buckets with no UI ac-
tivity (e.g., they might just be reading from the screen),
the total UI activity is very likely larger than 10%.1

While both CPU usage and UI activity are low, it still
does not mean that the PC can be simply put to sleep, as
we discuss below.

Q2. How are the idle periods distributed?
Given that there is much idleness in PCs, the next

question is how the idle periods are distributed. We de-
fine an idle period as a contiguous sequence of 1-minute
buckets, each of which is classified as being idle. The
conventional wisdom is that idle periods are long, e.g.,
overnight periods and weekends. Figure 1c shows the
distribution of idle periods based on the default (UI only)
and conservative (UI and CPU usage) definitions of idle-
ness noted above. Each data point shows the aggregate
idle time (shown on the y axis on a log scale) spent in
idle periods of the corresponding length (shown on the x
axis). The x axis extends to 72 hours, or 3 days, which
encompasses idle periods stretching over an entire week-
end.

The default curve shows distinctive peaks at around
15 hours (overnight periods) and 63 hours (weekends).
It also shows a peak for short idle periods, under about 3
hours in length. In the conservative curve, the peak at the
short idle periods dominates by far. The overnight and
weekend peaks are no longer distinctive since, based on
the conservative definition of idleness, these long periods
tend to be interrupted, and hence broken up, by interven-
ing bursts of background CPU activity.
Figure 1d shows that with the default definition of

idleness, idle periods shorter than 3 hours add up to
about 20% of the total duration of idle periods longer
than 3 hours. With the conservative policy, the short idle

1It is possible that we may have missed periods when there was
keyboard activity but no mouse activity. However, we ran a test with
a small set of 3 volunteers, for whom we monitored keyboard activity
as well as mouse activity, and found it rare to have instances, where
there was keyboard activity but no mouse activity in the following 10
minutes.
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Figure 1: Analysis of PC usage data at MSR India

Category Example Applications Sleep Proxy-based On-demand Wakeup LiteGreen

Incoming requests incoming RDP fails works but with initial delay/timeout works
file share works but requires disk

Idle connections outgoing RDP broken connection works
IM user shown as offline user shown as away

Background tasks large file download download stalled ⇒ delay works
software patching patch download delay ⇒ patches downloaded but

(e.g., Windows update) larger window of vulnerability need disk for application

Table 1: Impact of various energy saving strategies on applications

periods add up to over 80% of the total duration of the
long idle periods. Thus, the short idle periods, which
correspond to lunch breaks, meetings, etc., during a
work day, represent a significant opportunity for energy
savings over and above the savings from the long idle
periods considered in prior work.

Q3. Why not just sleep during idle periods?
Even when the machine is mostly idle (i.e., has low

CPU utilization), it could be engaged in network activity,
as depicted in Figure 1b. A closer look at this machine
(with the owner’s permission) revealed that the processes
that showed sporadic activity were (a) InoRT.exe,
a virus scanner, (b) DfrgNtfs.exe, a disk defrag-
menter, (c) TrustedInstaller.exe, which checks
for Windows software updates, and (d) Svchost.exe,
which encapsulates miscellaneous services. Putting the

machine to sleep would delay or disrupt these tasks, pos-
sibly incoveniencing the user.

Privacy considerations prevented us, in general, from
gathering detailed information such as process names,
which would have revealed the identities of the applica-
tions running on a user’s machine. Hence, we use indi-
rect means to understand how sleep might be disruptive.

Through informal conversations at MSR India, we
compiled a list of typical applications that users run. Ta-
ble 1 categorizes these and reports on the impact of sleep
on these applications. We find that the applications suf-
fer disruption to varying degrees. In some cases, sleep
causes a hard failure, e.g., a broken connection. In other
cases, it causes a soft failure. For example, if a user steps
out for a meeting and their (idle) machine goes to sleep,
IM might show them, somewhat misleadingly, as being
“offline” when “away” would be more appropriate.

5
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Figure 2: LiteGreen architecture: Desktops are in ac-
tive (switched on) or idle (sleep) state. Server hosts idle
desktops running in VMs

The ability to do on-demand wakeup, as provided by
a proxy, helps when there is new inbound communi-
cation, e.g., an incoming remote desktop (RDP) con-
nection. Such communication would work, although it
might suffer from an initial delay or timeout owing to
the time it takes to wake up from sleep. However, with
applications where there is an ongoing connection, the
proxy approach is unable to prevent disruption. In fact,
the only way of avoiding disruption is to not go to sleep,
which means giving up on energy savings.

Avoiding disruption requires that the applications con-
tinue to run and maintain their network presence even
while the machine is (mostly) idle. Doing so while still
saving energy motivates a solution such as LiteGreen. In
some cases, however, LiteGreen would require access to
the local disk, either immediately (e.g., file sharing) or
eventually (e.g., software patching). While our current
implementation does not migrate the disk, we believe
that such migration is feasible, as discussed in Section 9.

In summary, we make two key observations from our
analysis. First, desktop PCs are often idle, and there is
significant opportunity to exploit short idle periods. Sec-
ond, it is important to maintain network presence even
during the idle periods to avoid user disruption.

4 System Architecture
Figure 2 shows the high-level architecture of LiteGreen.
The desktop computing infrastructure is augmented with
a VM server and a shared storage node. In general, there
could be more than one VM server and/or shared storage
node. All of these elements are connected via a high-
speed LAN such as Gigabit Ethernet.

Each desktop machine as well as the server run a hy-
pervisor. The hypervisor on the desktop machine hosts a
VM in which the client OS runs. This VM is migrated to

the server when the user is not active and the desktop is
put to sleep. When the user returns, the desktop is woken
up and the VM is “live migrated” back to the desktop.
To insulate the user from such migrations, the desktop
hypervisor also runs a remote desktop (RD) client [7],
which is used by the user to connect to, and remain con-
nected to, their VM, regardless of where it is running.
Although our current prototype does not leverage it, the
advent of GPU virtualization [24, 28] allows improving
the user experience by bypassing remote desktop when
the VM is running locally on the desktop machine.

The user’s desktop VM uses, in lieu of a local disk, the
shared storage node, which is also shared with the server.
This aspect of the architecture arises from the limitations
of live migration in hypervisors currently in production
and can be done away with once live migration with local
VHDs is supported (Section 9).

The hypervisor on the server hosts the guest VMs that
have been migrated to it from (idle) desktop machines.
The server also includes a controller, which is the brain
of LiteGreen. The controller receives periodic updates
from stubs on the desktop hypervisors on the level of user
and computing activity on the desktops. The controller
also tracks resource usage on the server. Using all of
this information, the controller orchestrates the migration
of VMs to the server and back to the desktop machines,
and manages the allocation of resources on the server.
We have chosen a centralized design for the controller
because it is simple, efficient, and also enables optimal
migration decisions to be made based on full knowledge
(e.g., the bin-packing optimization noted in Section 5.3).

5 Design
Having provided an overview of the architecture, we now
detail the design of LiteGreen. The design of LiteGreen
has to deal with two somewhat conflicting goals: max-
imizing energy savings from putting machines to sleep
while minimizing disruption to users. When faced with a
choice, LiteGreen errs on the side of being conservative,
i.e., avoiding user disruption even if it means reduced en-
ergy savings.

The operation of LiteGreen can be described in terms
of a control loop effected by the controller based on local
information at the server as well as information reported
by the desktop stubs. We discuss the individual elements
before putting together the whole control loop.

5.1 Which VMs to Migrate?
The controller maintains two lists of VMs:

• Eligible for Pull: list of (idle) VMs that currently re-
side on the desktop machines but could be migrated
(i.e., “pulled”) to the server, thereby saving energy
without user disruption.

6

• Mandatory to Push: list of (now active) VMs that
had previously been migrated to the server but must
now be migrated (i.e., “pushed”) back to the desk-
top machines at the earliest to minimize user disrup-
tion.

In general, the classification of a VM as active or idle
is made based on both UI activity initiated by the user
and computing activity, as discussed next.

5.2 Determining If Idle or Active
The presence of any UI activity initiated by the user,
through the mouse or the keyboard (e.g., mouse move-
ment, mouse clicks, key presses), in the recent past
(actvityWindow, set to 10 minutes by default) is taken as
an indicator that the machine is active. Even though the
load imposed on the machine might be rather minimal,
we make this conservative choice to reflect our emphasis
on minimizing the impact on the interactive performance
perceived by the user.

In the default policy, the presence of UI activity is
taken as the only indicator of whether the machine is ac-
tive. So, the absence of recent UI activity is taken as an
indication that the machine is idle.

A more conservative policy, however, also considers
the actual computational load on the machine. Specif-
ically, if the CPU usage is above a threshold, the ma-
chine is deemed to be active. So, for the machine to be
deemed idle, both the absence of recent UI activity and
CPU usage being below the threshold are necessary con-
ditions. To avoid too much bouncing between the active
and idle states, we introduce hysteresis in the process by
(a) measuring the CPU usage as the average over an in-
terval (e.g., 1 minute) rather than instantaneously, and (b)
having a higher threshold, cpush, for the push list (i.e.,
idle→active transition of a VM currently on the server)
than the threshold, cpull, for the pull list (i.e., for a VM
currently on a desktop machine).

5.3 Server Capacity Constraint
A second factor that the controller considers while mak-
ing migration decisions is the availability of resources on
the server. If the server’s resources are saturated or close
to saturation, the controller migrates some VMs back
to the desktop machines to relieve the pressure. Thus,
an idle VM is merely eligible for being consolidated on
the server and, in fact, might not be if the server does
not have the capacity. On the other hand, an active VM
must be migrated back to the desktop machine even if the
server has the capacity. This design reflects the choice to
err on the side of being conservative, as noted above.

There are two server resource constraints that we focus
on. The first is memory availability. Given a total server
memory, M , and the allocation, m, made to each VM,
the number of VMs that can be hosted on the server is

bounded by nRAM =
M
m

. Note that m is the memory
allocated to a VM after ballooning and would typically
be some minimal value such as 384 MB that allows an
idle VM to still function (Section 7.4).

The second resource constraint arises from CPU us-
age. Basically, the aggregate CPU usage of all the VMs
on the server should be below a threshold. As with the
conservative client-side policy discussed in Section 5.2,
we introduce hysteresis by (a) measuring the CPU us-
age as the average over a time interval (e.g., 1 minute),
and (b) having a higher threshold, spush, for pushing
out VMs, than the threshold, spull, for pulling in VMs.
The server tries to pull in VMs (assuming the pull list is
non-empty) so long as the aggregate CPU usage is un-
der spull. Then, if the CPU usage rises above spush, the
server pushes back VMs. Thus, there is a bound, nCPU ,
on the number of VMs that can be accommodated such
that

∑i=nCP U

i=1
xi ≤ spush, where xi is the CPU usage of

the ith VM.
The total number of VMs that can be consolidated on

the server is bounded by min(nRAM , nCPU ). While one
could extend this mechanism to other resources such as
network and disk, our evaluation in Section 8 indicates
that enforcing CPU constraints also ends up limiting the
usage of other resources.

Instead of simply pulling in VMs until the capacity
limit is reached, more sophisticated optimizations are
possible. In general, the problem of consolidating VMs
within the constraints of the server’s resources can be
viewed as a bin-packing problem [25] since consolidat-
ing the multiple new VMs in place of the one that is
evicted would likely help save energy. Details of our
greedy bin packing algorithm for managing consolida-
tion are described in [22].

5.4 Measuring & Normalizing CPU Usage
Given the heterogeneity of desktop and server physical
machines, one question is how CPU usage is measured
and how it is normalized across the machines. All mea-
surement of CPU usage in LiteGreen, both on the server
and on the desktop machines, is made at the hypervi-
sor level, where the controller and stubs run, rather than
within the guest VMs. Besides leaving the VMs un-
touched and also accounting for CPU usage by the hy-
pervisor itself, measurement at the hypervisor level has
the advantage of being unaffected by the configuration
of the virtual processors. The hypervisor also provides
uniform interface to interact with multiple operating sys-
tems.
Another issue is normalizing measurements made on

the desktop machines with respect to those made on the
server. For instance, when a decision to pull a VM is
made based on its CPU usage while running on the desk-
top machine, the question is what its CPU usage would

7
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be once it has been migrated to the server. In our current
design, we only normalize at the level of cores, treating
cores as equivalent regardless of the physical machine.
So, for example, a CPU usage of x% on a 2-core desktop
machine would translate to a CPU usage of x

4
% on an

8-core server machine. One could consider refining this
design by using the CPU benchmark numbers for each
processor to perform normalization.

5.5 Putting It All Together: LiteGreen
Control Loop

To summarize, LiteGreen’s control loop operates as fol-
lows. Based on information gathered from the stubs,
the controller determines which VMs, if any, have be-
come idle, and adds them to the pull list. Furthermore,
based both on information gathered from the stubs and
from local monitoring on the server, the controller deter-
mines which VMs, if any, have become active again and
adds these to the push list. If the push list is non-empty,
the newly active VMs are migrated back to the desktop
right away. If the pull list is non-empty and the server
has the capacity, additional idle VMs are migrated to the
server. If at any point, the server runs out of capacity, the
controller looks for opportunities to push out the most
expensive VMs in terms of CPU usage and pull in the
least expensive VMs from the pull list. Pseudocode for
the control loop employed by the LiteGreen controller is
available at [22].

6 Implementation and Deployment
We have built a prototype of LiteGreen based on the
Hyper-V hypervisor, which is available as part of the
Microsoft Hyper-V Server 2008 R2 [5]. The Hyper-V
server can host Windows, Linux, and other guest OSes
and also supports live migration based on shared storage.

Our implementation comprises the controller, which
runs on the server, and the stubs, which run on the in-
dividual desktop machines. The controller and stubs are
written in C# and add up to 1600 and 600 lines of code,
respectively. The stubs use WMI (Windows Manage-
ment Instrumentation) [10] and Powershell to perform
the monitoring and migration. The controller also in-
cludes a GUI, which shows the state of all of the VMs
in the system.

In our implementation, we ran into a few issues from
bugs in the BIOS to limitations of Hyper-V and had to
work around them. Here we discuss a couple of these.

Lack of support for sleep in hypervisor: Since
Hyper-V is intended for use on servers, it does not sup-
port sleep once the hypervisor service has been started.
Also, once started, the hypervisor service cannot be
turned off without a reboot. Other hypervisors such as
Xen also lack support for sleep.

We worked around this as follows: when the desktop
VM has been migrated to the server and the desktop ma-
chine is to be put to sleep, we set a registry key to disable
the hypervisor and then reboot the machine. When the
machine boots up again, the hypervisor is no longer run-
ning, so the desktop machine can be put to sleep. Later,
when the user returns and the machine is woken up, the
hypervisor service is restarted, without requiring a re-
boot. Since a reboot is needed only when the machine
is put to sleep but not when it is woken up, the user does
not perceive any delay or disruption due to the reboot.

BIOS bug: On one model of desktop (Dell Optiplex
755), we found that the latest version of BIOS avail-
able does not restore prior-enabled Intel VT-x support
(needed by the hypervisor) after resuming from sleep.
We are currently pursuing a fix to this issue with the man-
ufacturer; until then, we are unable to use this model of
desktop as a LiteGreen client.

6.1 Deployment
We have deployed LiteGreen to ten users at MSR In-
dia, comprising three administrative staff and seven re-
searchers, three of whom are authors of this paper. As of
this writing, the system has been in use for 28 days that
includes 10 weekend days and holidays. Accounting for
the ramp-up and ramp-down of users in the LiteGreen
system, total usage was approximately 3200 user-hours.

Each user is given a separate LiteGreen desktop ma-
chine that is running a hypervisor (Hyper-V Server 2008)
along with the LiteGreen client stub. The desktop envi-
ronment runs in a Windows 7 VM that is allocated 2GB
of memory. The users’ existing desktop is left untouched
in order to preserve the users’ existing desktop configu-
ration and local data. Different users use their LiteGreen
desktop in different ways. Most users use the LiteGreen
desktop as their primary access to computing, relying on
remote desktop to connect to their existing desktop. A
couple of users used it only for specific tasks, such as
browsing or checking email, so that the LiteGreen desk-
top only sees a subset of their activity.
Our findings are reported in Section 7.3. While our

deployment is very small in size and moreover, has not
entirely replaced the users’ existing desktop machines,
we believe it is a valuable first step that we plan to build
on in the coming months. A video clip of LiteGreen in
action on one of the desktop machines is available at [4].

7 Experimental Evaluation
We begin by presenting experimental results based on
our prototype. These results are drawn both from con-
trolled experiments in the lab and from our deployment.
The results are, however, limited by the small scale of
our testbed and deployment, so in Section 8 we present a
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Component Make/Model Hardware Software
Desktops (10) HP WS xw4600 Intel E8200 Core 2 Duo @2.66GHz Hyper-V + Win7 guest

Server HP Proliant ML350 Intel Xeon E5440 DualProc 4Core 2.83GHz, 32GB RAM Hyper-V
Storage Dell Optiplex 755 Intel E6850 Core 2 Duo 3.00 GHz Win 2008 + iSCSI
Switch DLink DGS-1016D NA NA

Table 2: Testbed details

larger scale trace-driven evaluation using the traces gath-
ered from the 120 machines at our lab.

7.1 Testbed
Our testbed mirrors the architecture depicted in Figure 2.
It comprises ten desktop machines, a server, and a stor-
age node, all connected to a GigE switch. The hardware
and software details are listed in Table 2.
We first used the testbed for controlled experiments in

the lab (Section 7.2). We then used the same setup but
with the desktop machines installed in the offices of the
participating users, for our deployment (Section 7.3).

7.2 Results from Laboratory Experiments
We start by walking through a migration scenario simi-
lar to that shown in the LiteGreen video clip [4], before
presenting detailed measurements.

7.2.1 Migration Timeline
The scenario, shown in Figure 3a, starts with the user
stepping away from his/her machine (Event A), caus-
ing the machine to become idle. After actvityWindow
amount of time elapses, the user’s VM is marked as idle
and the server initiates the VM pull (Event B). After the
VM migration is complete (Event C), the physical desk-
top machine goes to sleep (Event D). Note that, if the
user returns to their desktop between events B and C, the
migration is simply canceled without any perceivable la-
tency to the user. This is because, during live migration,
the (desktop) VM continues to remain fully operational,
except during the final switchover phase that typically
lasts only tens of milliseconds.

Figure 3b shows the timeline for waking up. When
the user returns to his/her desktop, the physical machine
wakes up (Event A) and immediately establishes a re-
mote desktop (RD) session to the user’s VM (Event B).
At this point, the user can start working even though
his/her VM is still on the server. A VM push is initiated
(Event C) and the VM is migrated back to the physical
desktop machine (Event D), in the background using live
migration feature.

Figures 3a and 3b also show the power consumed by
the desktop machine and the server over time, measured
using Wattsup power meters [9]. While the timeline
shows the measurements from one run, we also made
more detailed measurements of the individual compo-
nents and operations, which we present next.

7.2.2 Timing of Individual Operations
We made measurements of the time taken for the indi-
vidual steps involved in migration. In Table 3, we report
the results derived from ten repetitions of each step.

Step Sub-step Time (sec)
[mean (sd)]

Going to 840.5 (27)
Sleep

Pull Initiation 638.8 (20)
Migration 68.5 (5)

Sleep 133.2 (5)
Resuming 164.6 (16)
from sleep

Wakeup 5.5
RD connection 14
Push Initiation 85.1 (17)

Migration 60 (6)

Table 3: Timing of individual steps in migration

7.2.3 Power Measurements
Table 4 shows the power consumption of a desktop ma-
chine, the server, and the switch in different modes, mea-
sured using a Wattsup power meter.

Component Mode Power (W)
Desktop idle 60-65W
Desktop 100% CPU 95W
Desktop sleep 2.3-2.5W
Server idle 230-240W
Server 100% CPU 270W
Switch idle 8.7 - 8.8W
Switch during migration 8.7-8.8W

Table 4: Power measurements

The main observation is that power consumption of
the desktop and the servers is largely unaffected by the
amount of CPU load. It is only when the machine is put
to sleep that the power drops significantly. We also see
that the power consumption of the network switch is low
and is unaffected by any active data transfers. Thus, the
energy cost of the migration itself is negligible (the small
bump between events B and C in Figure 3a), and can be
ignored, as long as one accounts for the time/energy of
the powered on desktop until the migration is completed.

Finally, the power consumption curves in Figures 3a
and 3b show the marked difference in the impact of mi-
gration on the power consumed by the desktop machine

9
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(b) Wakeup timeline

Figure 3: Migration timelines

and the server. When a pull happens, the power con-
sumed by the desktop machine goes down from about
60W in idle mode to 2.5W in sleep mode (with a tran-
sient surge to 75W during the migration process). On the
other hand, the power consumption of the server barely
changes. This difference underlies the significant net en-
ergy gain to be had from moving idle desktops to the
server.

7.2.4 Compression to Reduce Migration Time
The time to migrate the VM — either push or pull —
is determined by the memory size (2GB) of the VM and
the network throughput. The transfer size can be greater
than memory size when application activity during the
time of migration results in dirty memory pages that are
copied multiple times. We configured a desktop VMwith
typical enterprise applications, such as Microsoft Office,
an email client and a browser with multiple open web
pages. We then migrated this VM back and forth, be-
tween the desktop and the server. When the VM was
on the desktop, we interacted with the applications as a
regular desktop user. In this setup, we observed that dif-
ferent migrations resulted in transfer sizes between 2.2-
2.7GB. Using a network transfer rate of 0.5Gbps (the ef-
fective TCP throughput of active migration on the GigE
network), transfer takes about 35-43 seconds. Includ-
ing the migration initiation overhead, the total migration
time is about 60 seconds, which matches the numbers
shown in the timeline and in Table 3.

We experimented with a simple compression opti-
mization to reduce the migration time. We used En-
dRE [16], an end-system redundancy elimination ser-
vice, with a 250MB packet cache to analyze the savings
from performing redundancy elimination in the VM mi-
gration traffic between two nodes. EndRE works in a
similar fashion to WAN optimizers [18], but on end hosts
instead of middleboxes. After identifying and eliminat-
ing redundant bytes, as small as 32 bytes, with respect to
the packet cache, GZIP is applied to further compress the
data. For various transfers, we found that the compres-
sor, operating at 0.4Gbps, was able to reduce the size
of transfer by 64-69%. Note that EndRE is designed to
be asymmetric. Thus, decompression is inexpensive and

does not result in additional latency. This implies that
migration transfer time can be reduced from 35-43 sec-
onds to about 15 seconds using redundancy elimination,
thereby significantly speeding up the migration process.
This approach can also help support migration of VMs
with larger memory sizes (e.g., 4GB) while limiting the
transfer time to under a minute.

7.2.5 Further Optimizations
First, the time to put the machine to sleep is 133 seconds,
much of it due to the reboot necessitated by the lack of
support for sleep in Hyper-V (Section 6). With a client
hypervisor that includes support for sleep, we expect the
time to go to sleep to shrink to just about 10 seconds.

Second, the time from when the user returns till when
they are able to start working is longer than we would
like — about 19.5 seconds. Of this, resuming the desktop
machine from sleep only constitutes 5.5 seconds. About
4 more seconds are taken by the user to key in their lo-
gin credentials. The remaining 10 seconds are taken to
launch the remote desktop application and make a con-
nection to the user’s VM, which resides on the server.
This longer than expected duration is because Hyper-V
freezes for several seconds after resuming from sleep.
We believe that this happens because our unconventional
use of Hyper-V, specifically putting it to sleep when it
is not designed to support sleep, triggers some untested
code paths. We expect that this issue would be resolved
with a client hypervisor. However, resuming the desk-
top and connecting to the users’ VM may still take on
the order of a few seconds that may be disruptive. One
approach to mask this disruption is to anticipate user re-
turns, for example, through user mobile phone tracking,
and resume the desktop before the user arrives at his disk.
This aspect is discussed in [22]. Such tracking of the
user’ location could also be used to improve user expe-
rience in other days, for instance, by preventing a seem-
ingly idle machine from being migrated to the server, say,
if the user is still in their office.

7.3 Results from Deployment
As noted in Section 6.1, we have had a deployment of
LiteGreen for a period of 28 days including 10 holidays
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Figure 4: Distribution of desktop sleep durations

and weekends, comprising about 3200 user-hours (max-
imum simultaneous usage by 10 users). While it is hard
to draw general conclusions given the small scale and
duration of the deployment thus far, it is nevertheless in-
teresting to consider some of the initial results.

7.3.1 Desktop Sleep Time Distribution
Figure 4 shows the cumulative distribution function of
the sleep durations for the seven researchers and the three
administrative staff. The sleep times tend to be quite
short, with a median of 40 minutes across the ten users,
demonstrating the exploitation of short idle periods by
the LiteGreen system. From the figure, one can see one
distinct difference in behavior between the administra-
tors and the researchers in our study. We notice that
there is a sharper spike in the curve for the administrators
around 900 minutes as compared to the smoother curve
for researchers. This is explained by the fact that admin-
istrators are more likely than researchers to maintain reg-
ular workhours (e.g., 9AM to 6PM) which corresponds
to 15 hours (900 minutes) of idle time.

7.3.2 Desktop Average Sleep Time
For our deployment, we used the default policy from
Section 5.2 to determine whether a VM was idle or ac-
tive. During the deployment period, the desktop ma-
chines were able to sleep for an average of 87.9% of the
time. Even the machine of the most active user in our
deployment, who used their LiteGreen desktop for all of
their computing activity, slept for 76% of the time.

Note that, while 88% of desktop sleep time may ap-
pear unusually large, out of the 3200 user-hours, only
about 960 user-hours corresponded to daytime weekdays
(8AM – 8PM) in our deployment. Thus, 12% or 384
user-hours of desktop awake time corresponds to 40% of
daytime weekday hours, representing a significant frac-
tion of the workday.

7.3.3 Energy Savings
The conversion of desktop average sleep time to energy
savings requires accounting of the energy costs of the
server. While a LiteGreen server was necessary for this
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Figure 5: Number of migrations

deployment, it was significantly under-utilized since it
was dedicated to host only 10 idle VMs. If we amor-
tize the cost of the server over a larger number of desk-
tops (e.g., 60), the power cost of the server per desktop is
4.2W (see Section 8.4 for details). We use this amortized
value of the server power cost below.

We use the power measurement numbers from Table 4
to estimate energy savings from LiteGreen. Let us as-
sume power consumption of 62.5W for an idle desktop,
95W for a fully active desktop and 2.5W for a sleep-
ing desktop. From Figure 1a, where CPU usage is less
than 10% for 90% of the time, let us assume a desktop
that never sleeps consumes 62.5W of power 90% of the
time and 95W of power 10% of the time. Then, desk-
top power consumption, without any energy savings, is
simply (0.9*62.5+0.1*95) = 65.75W per desktop.

In LiteGreen, since the average desktop sleep time is
88%, the power savings is (0.88*(62.5 - 2.5) - 4.2) = 48.6
W per desktop or 74% of total desktop energy consump-
tion.

Finally, the above energy savings calculations are ap-
plicable for enterprises that already have a centralized
storage deployment. Otherwise, we need to take into
account the energy consumed by the centralized storage
system as well. Consider a network attached storage box
such as the QNAP SS-839 Pro Turbo [6] that can host
up to 8 disks and consumes 34W in operation. Assum-
ing two desktop users are multiplexed onto each disk,
each of these storage devices can support up to 16 desk-
tops. Thus, the amortized energy cost of centralized stor-
age is 34/16 = 2.1W/desktop. Accounting for the storage
overhead, the power savings in LiteGreen is 48.6 - 2.1 =
46.5W per desktop or 71%.

7.3.4 Number of Migrations
Finally, Figure 5 shows the number of migrations for the
different days of deployment, segregated by daytime (8
am–8 pm) and nightime (8 pm–8 am), and further clas-
sified by weekdays and holidays (including weekends).
There were a total of 571 migrations during the deploy-
ment period. The number of migrations are higher during

11



42 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 43

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100  120  140  160

 0 512 1024 1536 2048 2560 3072 3584 4096

Pa
ge

 fa
ul

ts
 / 

se
c

Time (minutes)

VM memory (MB)

Figure 6: Memory ballooning experiment: every 5 min-
utes memory of a desktop VM is reduced by 128M. Ini-
tial memory size is 4096M

the day compared to night (470 versus 101) and higher in
the weekdays compared to the holidays (493 versus 78).
These numbers are again consistent with the LiteGreen
approach of exploiting short idle intervals.

7.4 Experiments with Xen
We would like to evaluate the effectiveness of memory
ballooning in relieving pressure on the server’s memory
resources due to consolidation. However, Hyper-V does
not currently support memory ballooning, so we con-
ducted experiments using the Xen hypervisor, which sup-
ports memory ballooning for the Linux guest OS using a
balloon driver (we are not aware of any balloon driver
for Windows). We used the Xen hypervisor (v3.4.2 built
with 2.6.18 SMP kernel) with the Linux guest OS (Cen-
tOS 5.4) on a separate testbed comprising two HP C-
class blades, each equipped with two quad-core 2.2 GHz
64-bit processors with 48GB memory, two Gigabit Eth-
ernet cards, and two 146 GB disks. One blade was used
as the desktop machine and the other as the server.
The desktop Linux VM was initially configured with

4096 MB of RAM. It ran an idle workload comprising
the Gnome desktop environment, two separate Firefox
browser windows, with a Gmail account and the CNN
main page open (each of these windows auto-refreshed
periodically without any user’s involvement), and the
user’s home directly mounted through SMB (which also
generated background network traffic). The desktop VM
was migrated to the server. Then, memory ballooning
was used to shrink the VM’s memory all the way down
to 128 MB, in steps of 128 MB every 5 minutes.

Figure 6 shows the impact of memory ballooning on
the page fault rate. The page fault rate remains low even
when the VM’s memory is shrunk down to 384 MB.
However, shrinking it down to 256 MB causes the page
fault rate to spike, presumably because the working set
no longer fits within memory.

We conclude that in our setup with the idle workload

that we used, memory ballooning could be used to shrink
the memory of an idle VM by over a factor of 10 (4096
MB down to 384 MB), without causing thrashing. Fur-
ther savings in memory could be achieved through mem-
ory sharing. While we were not able to evaluate this in
our testbed since neither Hyper-V nor Xen supports it,
the findings from prior work [26] are encouraging, as dis-
cussed in Section 9.

8 Trace-driven Analysis
To evaluate our algorithms further, we have built a
discrete event simulator written in Python using the
SimPy package. The simulator runs through the desktop
traces, and simulates the default and conservative poli-
cies based on various parameters including cpull (client
resource threshold below which client VMs are eligible
to be pulled to server), cpush (client resource thresh-
old above which client VMs are pushed to client) ,
spull (server resource thrshold above below client VMs
are pulled to server), spush (server resource threshold
above which client VMs are pushed to clientdis) and
ServerCapacity. In the rest of the section, we will re-
port on energy savings achieved by LiteGreen and uti-
lization of various resources (CPU, network, disk) at the
server as a result of consolidation of the idle desktop
VMs.

8.1 Desktop Sleep Time
Figure 7a shows the desktop sleep time for all the users
with existing mechanisms and LiteGreen, default and
conservative. For both the policies, we use cpull = 10

(less than 10% desktop usage classified as idle), cpush =

20, spull = 600, spush = 700 and ServerCapacity =

800 intended to represent a Server with 8 CPU cores.
As mentioned earlier, our desktop trace gathering tool

records a number of parameters, including CPU, mem-
ory, UI activity, disk, network, etc., every minute after
its installation. In order to estimate energy savings using
existing mechanisms (either automatic windows power
management or manual desktop sleep by the user), we
attribute any unrecorded interval or “gaps” in our desk-
top trace to energy savings via existing mechanisms. Us-
ing this technique, we estimate that existing mechanisms
would have put desktops to sleep 35.2% of the time.

We then simulate the migrations of desktop VMs
to/from the server depending on the desktop trace events
and the above mentioned thresholds for the conservative
and default policy. Using the conservative policy, we find
that LiteGreen puts desktop to sleep for 37.3% of the
time. This is in addition to the existing savings, for total
desktop sleep time of 72%. If we use the more aggres-
sive default policy, where the desktop VM is migrated to
the server unless there is UI activity, we find that Lite-
Green puts desktop to sleep for 51.3% on time for a total
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(c) Desktop sleep time for user2

Figure 7: Desktop sleep time from existing power management and LiteGreen’s default and conservative policies

desktop sleep time of 86%.
The savings of the different approaches are also clas-

sified by day (8AM-8PM) and night (8PM-8AM) and
also whether it was a weekday or a weekend. We note
that substantial portion of LiteGreen desktop sleep time
comes from weekdays, thereby highlighting the impor-
tance of exploting short idle intervals for energy savings.

8.2 Desktop Sleep Time for Selected Users
Based on the CPU utilization trace data, we found a user,
say user1, who had bursts of significant activity separated
by periods of no activity, likely because he/she manu-
ally switches off his/her machine when not in use. For
this particular case, LiteGreen is unable to significantly
improve on the energy savings of existing mechanisms
(i.e., manual power management). This is reflected in
the desktop sleep time for user1 in Figure 7b.

In contrast, for many of the users, say user2, the desk-
top exhibits low-levels of CPU activity with occasional
spikes almost continuously, with only short gaps of inac-
tivity. The few CPU utilization spikes can prevent Win-
dows power management from putting the desktop to
sleep, thereby wasting a lot of energy. However, Lite-
Green is able to exploit this situation effectively, and
puts the desktop to sleep for significantly longer time as
shown in Figure 7c.

8.3 Server Resource Utilization during
Consolidation

While the default policy provides higher savings than
the conservative policy, it is clear that the default pol-
icy would stress the resources on the server more, due to
hosting of more number of desktop VMs, than the con-
servative policy. We examine this issue next.
Figures 8a and 8b show the resource utilization due to

idle desktop consolidation at the server for the default
and conservative policies, respectively. The resources
shown are CPU usage, bytes read/second from the disk,
and network usage in Mbps.

First, consider CPU. Notice that the CPU usage at
the server in the default policy spikes up to between

spull = 600 an spush = 700 but, as intended, never
goes above spush. In contrast, since the conservative
policy pushes the VM back to the desktop as soon as
cpush = 20 is exceeded, the CPU usage at the server
hardly exceeds an utilization value of 100. Next con-
sider disk reads. It varies between 10B-10KB/s for the
default policy (average of 205 B/s ) while it varies be-
twen 10B-1KB/s for the conservative policy (average of
41 B/s). While these numbers can be quite easily man-
aged by the server, note that these are disk reads of idle,
and not active, desktop VMs. Finally, let us consider net-
work activity of the consolidated idle desktop VMs. For
the default policy, the network traffic mostly varies be-
tween 0.01 to 10Mbps, but with occassional spikes all
the way up to 10Gbps. In the case of conservative policy,
the network traffic does not exceed 10Mbps and rarely
goes above 1Mbps. While these network traffic numbers
are manageable for a single server, these represent the
workload of idle desktop machines. Scaling the server
infrastructure to enable consolidation of active desktop
VMs, as in the thin client model, will likely be expen-
sive.

8.4 Energy Savings
We use calculations similar to the one performed in
Section 7.3.3 for computing energy savings. Recall
that power consumption of a desktop, without any en-
ergy savings mechanism, is simply (0.9*62.5+0.1*95) =
65.75 W per desktop.

Using existing energy saving mechanisms, where the
desktop is put to sleep 35.2% of the time (Section 8.1),
0.352*(62.5-2.5) = 21.1 W per desktop or 32% of energy
savings can be achieved. In the case of LiteGreen, our
consolidation analysis (Section 8.3) suggests that one 8-
core server is capable of hosting the idle desktops in the
trace. Memory balooning results from Section 7.4 sug-
gest that an idle VM could be packed in 384MB, imply-
ing that a 32GB server has enough memory capacity for
up to to 96 idle VMs. Assuming some over-provisioning
for capacity and redundancy, let us dedicate two servers
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Figure 8: Resource utilization during idle desktop consolidation

of 250W each for the 120 desktops. The amortized cost
of a server/desktop is then 500W/120 = 4.2W. Thus,
power savings in LiteGreen (using the default policy with
average desktop sleep time of 86%) is (0.86*(62.5 - 2.5)
- 4.2) = 47.4 W per desktop or 72%, more than doubling
the energy savings under existing mechanisms.

Finally, as in Section 7.3.3, if we were to in-
clude the amortized energy cost of centralized storage
(2.1W/desktop), the energy savings in LiteGreen using
the default policy is simply 47.4 - 2.1 = 45.3W per desk-
top or 69%.

9 Limitations and Future Work
We consider some limitations of LiteGreen, which also
point to directions for future work.

9.1 Dependence on Shared Storage
Live migration assumes that the disk is shared between
the source and destination machines, say in the form of
network attached storage (NAS). This avoids the consid-
erable cost of migrating disk content. However, this is a
limitation of our current system since, in general, client
machines would have a local disk, which applications
(e.g., sharing of local files) need access to.

Recent work has demonstrated the migration of VMs
with local virtual hard disks (VHDs) by using techniques
such as pre-copying and mirroring of disk content [19] to
keep the downtime to under 3 seconds in a LAN setting.
Note that since the base OS image is likely to be already
available at the destination node, the main cost is that of
migrating the user data.

To quantify the costs involved in migrating the local
disk, we performed detailed tracing of all file system op-
erations on 3 actively used desktop machines using the
ProcessMonitor tool [35]. Table 5 summarizes the

1-hour window 4-hour window
(MB per hour) (MB per hour)

80-240 40-100

Table 5: Volume of dirty disk blocks

volume of dirty disk blocks that is generated, which rep-
resents the amount of disk state that would need to be
migrated. We consider two cases: dirty blocks being
pre-copied every hour versus every 4 hours. The latter
provides a greater opportunity for temporal consolida-
tion (i.e., merging of multiple writes to a block).

Migrating 100 MB of disk content over a GigE net-
work would take 1.6 seconds, assuming an effective
throughput of 500 Mbps. This means that over 2000 disk
migrations can be supported per hour, which suggests
that these migrations will not be the bottleneck. Further
optimizations are possible, for instance, by transferring
dirty data at a sub-block level and filtering out writes to
scratch space.

Note that enterprise enviroments often employ net-
work storage to hold persistent user data, since this en-
ables the data to be backed up. In such a setting, the
amount of data to be migrated would be further reduced
to only temporary files generated by applications.

9.2 Heavyweightness
LiteGreen is a more heavyweight solution than the alter-
native proxy-based approach. To deploy LiteGreen, we
would need to have desktop machines run a client hy-
pervisor and also provision the necessary network band-
width and server resources.

We believe that technology trends make it likely that
the enterprise IT infrastructure would move in this direc-
tion. Virtualized desktops simplify management for the
IT administrators. Also, the growth in thin clients would
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argue for server and network provisioning. Finally, the
desire to support mobility and a “work from anywhere”
capability would likely spur the development of a hybrid
computing model wherein the desktop VM resides on the
server when accessed from a thin client and migrates to
the local machine at other times. Thus, we believe that
that the LiteGreen approach fits in with these trends.

10 Conclusion
Recent work has recognized that desktop computers in
enterprise environments consume a lot of energy in ag-
gregate while still remaining idle much of the time. The
question is how to save energy by letting these machines
sleep while avoiding user disruption. LiteGreen uses
virtualization to resolve this problem, by migrating idle
desktops to a server where they can remain “always on”
without incurring the energy cost of a desktop machine.
The seamlessness offered by LiteGreen allows us to ag-
gressively exploit short idle periods as well as long pe-
riods. Data-driven analysis of more than 65000 hours of
desktop usage traces from 120 users as well as a small-
scale deployment of LiteGreen on ten desktops, compris-
ing 3200 user-hours over 28 days, shows that LiteGreen
can help desktops sleep for 86-88% of the time. This
translates to estimated desktop energy savings of 72-74%
for LiteGreen as compared to 32% savings under existing
power management mechanisms.
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ABSTRACT
Many of today’s applications are delivered as scalable,
multi-tier services deployed in large data centers. These
services frequently leverage shared, scale-out, key-value
storage layers that can deliver low latency under light
workloads, but may exhibit significant queuing delay and
even dropped requests under high load.

Stout is a system that helps these applications adapt to
variation in storage-layer performance by treating scal-
able key-value storage as a shared resource requiring
congestion control. Under light workloads, applications
using Stout send requests to the store immediately, min-
imizing delay. Under heavy workloads, Stout automat-
ically batches the application’s requests together before
sending them to the store, resulting in higher throughput
and preventing queuing delay. We show experimentally
that Stout’s adaptation algorithm converges to an appro-
priate batch size for workloads that require the batch size
to vary by over two orders of magnitude. Compared to
a non-adaptive strategy optimized for throughput, Stout
delivers over 34× lower latency under light workloads;
compared to a non-adaptive strategy optimized for la-
tency, Stout can scale to over 3× as many requests.

1. INTRODUCTION
Application developers are increasingly moving to-

wards a software-as-a-service model, where applications
are deployed in data centers and dynamically accessed
by users through lightweight client interfaces, such as
a Web browser. These “cloud-based” applications may
run on hundreds or even thousands of servers to support
hundreds of millions of users; the application servers in
turn leverage high-performance scalable key-value stor-
age systems, such as Google’s BigTable [7] and Mi-
crosoft’s Azure Storage [3], that allow them to grace-
fully handle variable client demand. Unfortunately, be-
cause these storage systems support many applications
on a single shared infrastructure, they present application
developers with a new source of variability: every appli-
cation must now cope with a store that is being loaded by
many applications’ changing workloads.

Unlike variability in its own workload, which an appli-
cation can easily monitor and often even predict, changes
in the level of competition for shared storage resources
are likely to be unexpected and outside the control of
a particular application. Instead, each individual appli-
cation must observe and react to changes in available
storage-system throughput. Ideally, the collection of ap-
plications leveraging a particular scalable storage system
would cooperate to achieve a mutually beneficial oper-
ating point that neither overloads the storage system nor
starves any individual application.

Today, each application seeks to minimize its own per-
ceived latency by sending each storage request immedi-
ately. Each storage request thus incurs overheads such
as networking delay, protocol-processing, lock acquisi-
tions, transaction log commits, and/or disk scheduling
and seek time. However, when the store becomes heav-
ily loaded, sending each request individually can lead to
queuing at the store, and consequently high delay or even
loss due to timeouts. In such heavily loaded situations,
the throughput of the storage service can often be im-
proved by batching multiple requests together, thereby
reducing queuing delay and loss. Batching achieves this
improvement by amortizing the previously mentioned
overheads across larger requests, and prior work has doc-
umented that many stores provide higher throughput on
larger requests [7, 16, 35].

Dynamically adjusting their degree of batching allows
applications to achieve lower latency under light load and
higher throughput under heavy load. Unfortunately, ex-
isting work applying control theory to computer systems
offers no easily applicable solutions [18, 23]. For exam-
ple, a common assumption in control theory is modest
actuation delay: a reasonable and known fixed time be-
tween when an application changes its request rate and
the store responds to this change. Scale-out key-value
storage systems do not have such bounds, as an appli-
cation can easily create a very deep pipeline of requests
to the storage system. Other control theory techniques
avoid this assumption, but bring other assumptions that
are similarly unsatisfied by such storage systems. In-
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stead, we observe that managing independent applica-
tion demands in a scale-out key-value storage environ-
ment is quite similar to congestion control in a network:
the challenge in both settings is determining an applica-
tion’s (sender’s) “fair share.” Moreover, the constraints
of distributed congestion control—multiple, independent
agents, unbounded actuation delay, and lack of a known
bandwidth target—are quite similar to our own. Hence,
we take inspiration from CTCP [37], a recently proposed
delay-based TCP variant which updates send-rates based
on deviation from the measured round-trip latency.

We propose an adaptive interface to cloud key-value
storage layers, called Stout, that implements distributed
congestion control for client requests. Stout works with-
out any explicit information from the storage layer: its
adaptation strategy is implemented solely at the applica-
tion server (the storage client) and is based exclusively on
the measured latency from unmodified scalable storage
systems. This allows Stout to be more easily deployed,
as individual cloud applications can adopt Stout without
changing the shared storage infrastructure. Stout both
adapts to sudden changes in application workload and
converges to fairness among multiple, competing appli-
cation servers employing Stout.

We show experimentally that Stout delivers good per-
formance across a range of workloads requiring batch-
ing intervals to vary by over two orders of magnitude,
and that Stout significantly outperforms any strategy us-
ing a fixed batching interval. Based on these results,
Stout demonstrates that much of the benefit of adapta-
tion can be had without needing to modify existing stor-
age systems; to use a new store, Stout requires only in-
ternal re-calibration. By allowing cloud applications to
sustain higher request rates under bursts, Stout can help
reduce the expense of over-provisioning [8, 34]. Simul-
taneously, Stout provides good common case storage la-
tency; this is critical to user-perceived latency because
generating a user response often requires multiple inter-
actions with the storage layer, thereby incurring this la-
tency multiple times [11].

The primary novelty of Stout is its adaptive algorithm
for dynamically adjusting the batching of storage re-
quests. To better understand both the benefits and chal-
lenges in building an adaptive interface to shared cloud
storage, we evaluate our adaptive control loop using a
workload inspired by a real-world cloud service that is
one component of Microsoft’s Live Mesh cloud-based
synchronization service [27]. In our performance evalu-
ation, we demonstrate that: 1) Stout successfully adapts
to a wide range of offered loads, providing under light
workloads over 34× lower latency than a long fixed
batching interval optimized for throughput, and under
heavy workloads over 3× the throughput of a short fixed
batching interval optimized for latency; 2) Stout provides

Figure 1: Stout in a datacenter spreadsheet application.

fairness without any explicit coordination across the dif-
ferent application servers utilizing a shared store; and 3)
the same adaptation algorithm works well with three dif-
ferent cloud storage systems (a partitioned store that uses
Microsoft SQL Server 2008; the PacificA research pro-
totype [26]; and the SQL Data Services cloud store [30]).

2. BACKGROUND
Stout targets interactive cloud services. This class of

services requires low end-user latency to a variety of
data. Stout facilitates high-performance storage access
for these services by controlling and adapting the way
the services make use of back-end key-value storage sys-
tems to provide the best possible response time (i.e., min-
imize end-user latency). While we believe that Stout’s
general approach of using a control loop to manage the
interactions with a persistent storage tier holds promise
for many different kinds of cloud-based services, includ-
ing those that process large data sets (e.g., services that
use MapReduce [10] or Dryad [20]) the rest of this sec-
tion elaborates on our current target class of interactive
latency-sensitive cloud services.

Stout works with scalable services that are partitioned.
A partitioned service is one that divides up a namespace
across a pool of servers, and assigns “keys” within that
namespace to only one server at a given point in time. To
enable fast response times, the objects associated with
the partition keys are stored in memory by these servers.
Stout is responsible for handling all interactions with the
back-end persistent storage tier. Figure 1 depicts a typ-
ical three-tier cloud service, and where Stout fits within
that model. The first tier simply consists of front-end
Web servers that route end-user requests to the appropri-
ate middle-tier server; the middle tier contains the appli-
cation logic glued together with Stout, and the back-end
tier is a persistent storage system.

As a concrete example, consider an online spreadsheet
application, such as that provided by Google Docs [15].
The user-interface component of the spreadsheet appli-
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cation runs inside the client Web browser. As users per-
form actions within the spreadsheet, requests are submit-
ted to the cloud infrastructure that hosts the spreadsheet
service. User requests arrive at front-end Web servers af-
ter traversing a network load balancer, and the front-end
server routes the user request to the appropriate middle-
tier server which holds a copy of the spreadsheet in mem-
ory. Each server in the middle tier holds a large num-
ber of spreadsheets, and no spreadsheet is split across
servers. Whenever the processing of a user request re-
sults in a modification to the spreadsheet, the changes
are persisted to a scalable back-end storage system be-
fore the response is sent back to the user.

Many of today’s Web services are built using the same
paradigm as the spreadsheet application above. For ex-
ample, a service for tracking Web advertising impres-
sions can store many “ad counters” at each middle-tier
server. Email, calendar, and other online office applica-
tions can also use this partitioning paradigm [15, 19, 29].

Forcing writes to stable storage before responding to
the user ensures strong consistency across failures in the
middle tier; that is, once the user has received a response
to her request to commit changes, she can rest assured
they will always be reflected by subsequent reads. So
long as a middle-tier server maintains these semantics, it
is free to optimize the interactions with the storage layer.
Thus, when a middle-tier is handling multiple changes,
it can batch them together for the storage layer.

3. ADAPTIVE BATCHING
Batching storage requests together before sending

them to the store leads to several optimization opportu-
nities (Section 3.1). However, delaying requests to send
in a batch is only needed when the store would other-
wise be overloaded; if the store is lightly loaded, delay-
ing requests yields a net penalty to client-visible latency.
This motivates Stout’s adaptation algorithm, which mea-
sures current store performance to determine the correct
amount of batching as workloads change (Section 3.2).

3.1 Overlapped Request Processing
Having multiple storage requests to send in a batch re-

quires the application to overlap its own processing of
incoming client requests. Figure 2 illustrates overlapped
request processing for both reads and writes. Note that
only reads that miss the middle-tier’s cache require a re-
quest to the store; cache hits are serviced directly at the
middle-tier. Initially, the application receives two client
requests, “Change 1 on A” and “Change 2 on B”. Both of
the client requests are processed up to the point that they
generate requests for the store. These are then sent in a
single batch to the store. After the store acknowledgment
arrives, replies are sent to both of the client requests.
While waiting for the store acknowledgment, client re-

Figure 2: An example of overlapped request processing.

quest “Change 3 on B” arrives and is processed up to the
point of generating a request to the store. Later, client
request “Read B” arrives and hits the middle-tier cache,
while “Read C” arrives and requires fetching C from the
store. We describe in Section 4 how the Stout implemen-
tation handles the multiplexing of these storage requests
into batches and the corresponding de-multiplexing of
store responses. Grouping storage requests together en-
ables two well-known optimizations:

• Batching: Many stores perform better when a set of
operations is performed as a group, and many systems
incorporate a group-commit optimization [6, 16, 17].
The performance improvements arise from a number
of factors, such as reducing the number of commit
operations performed on the transaction log, or re-
ducing disk seek time by scheduling disk operations
over a larger set. Storage system performance further
improves by initiating batching from the middle-tier
for reasons that include reduced network and protocol
processing overheads.

• Write collapsing: When multiple writes quickly oc-
cur on the same object, it can be significantly more
efficient for the middle-tier server to send only the fi-
nal object state. An example where write collapsing
may arise in cloud services is tracking advertising im-
pressions, where many clients may increment a single
counter in quick succession and the number of writes
can be safely reduced by writing only the final counter
value to the store. Many workloads possess opportu-
nities for write collapsing, and many prior systems are
designed to exploit these opportunities [36, 40].

Stout’s novelty is managing how these optimizations
are exploited for a shared remote store based on a
multiplicative-increase multiplicative-decrease (MIMD)
control loop. It does this by varying a single parameter,
the batching interval. At the end of each interval, Stout
sends all writes and cache-miss reads to the store. In this
way, the batch size is simply all such reads and writes
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Batching Interval
No batching 10ms 20ms

Requests/second 11k 13k 17k
Throughput Gain - 18% 55%

Table 1: How a service’s maximum throughput can in-
crease by exploiting batching.

generated in the previous interval, and write collapsing is
obtained to the extent that multiple updates to the same
key happened during this interval. Pipelining occurs if
this batch is sent to the store while an earlier batch is still
outstanding (i.e., when the batching interval is less than
the store latency).

For a given workload, a longer batching interval will
allow more requests to accumulate, leading to a larger
batch size and potentially greater throughput. Table 1
quantifies the improvement in maximum throughput for
one of the experimental configurations that we use to
evaluate Stout. This configuration is described in detail
in Section 5.2. Our goal here is simply to convey the
magnitude of potential throughput gain (over 50%) from
even slightly lengthening the batching interval. This
throughput gain translates into a much larger set of work-
loads that can be satisfied without queues building up at
the store and requests eventually being dropped.

However, the improved throughput of a longer batch-
ing interval is not always needed; if the workload is suf-
ficiently light, client latency is minimized by sending
every request to the store immediately. For example,
the batching intervals that lead to the higher through-
put shown in Table 1 also add tens of milliseconds to
latency. To determine the right batching interval at any
given point in time, Stout measures the current perfor-
mance of the store. Stout uses these measurements to set
its batching interval to be shorter if the store is lightly
loaded, and longer if the store is heavily loaded.

3.2 Updating the Batching Interval
The problem of updating the batching interval is a

classic congestion control problem: competing requests
originate independently from a number of senders (i.e.,
middle-tiers); these requests have to share a limited
resource—the store—and there is some delay before re-
source oversubscription is noticed by the sender (in this
case, the time until the store completes the request). Like
TCP, Stout does not require explicit feedback about the
degree of store utilization. This allows Stout to be easily
deployed with a wide range of existing storage systems.
Unlike TCP, Stout must react primarily to delay rather
than loss, as stores typically queue extensively before
dropping requests. Thus, our design for Stout’s control
loop borrows from a recent delay-based TCP, Compound
TCP (CTCP [37]). In general, delay-based TCP variants

EWMA factor 1/16
thresh 0.85
MinRequests 10
MinLatencyFrac 1/2

Table 2: Parameters to make measurements and compar-
isons robust to jitter.

react when the current latency deviates from a baseline,
falling back to traditional TCP behavior in the event of
packet loss. Compared to TCP Vegas [5] (another delay-
based TCP), CTCP more rapidly adjusts its congestion
window so that it can better exploit high bandwidth-
delay product links. For Stout, rapid adjustment means
faster convergence to a good batching interval.

However, one aspect of our problem differs from that
addressed by congestion control protocols. Delay-based
TCP assumes that increasing delay reflects congestion
and will consequently reduce the sending rate to allevi-
ate that congestion. Stout acts to reduce congestion by
improving per-request performance rather than reducing
send rates. Increasing the batch size means that the next
request will take longer to process even in the absence
of congestion. Furthermore, Stout must distinguish this
increased delay due to an increased batch size from in-
creased delay due to congestion. For this reason, Stout
has to depart from CTCP by incorporating throughput,
not just delay, into measuring current store performance
and assessing whether the store is congested.

The remainder of this section describes Stout’s ap-
proach to updating the batching interval, which we de-
note by intrvl, the time in milliseconds between send-
ing batches of requests to the store. In Section 3.2.1,
we describe how Stout decides when it is time to up-
date the batching interval. In Section 3.2.2, we describe
how Stout decides whether to increase or decrease the
batching interval. Increasing the batching interval cor-
responds to backing off—going slower because of the
threat of congestion—while decreasing the batching in-
terval corresponds to accelerating. Then in Section 3.2.3,
we describe how Stout decides how much to increase or
decrease the batching interval.

3.2.1 When to Back-off or Accelerate
Like TCP and its many variants, Stout is self clock-

ing: it decides whether or not to back-off more frequently
when the store is fast, and less frequently when the store
is slow. To this end, Stout tracks the latency between
when it sends a request to the store and when it receives
a response. Stout computes the mean of these latencies
over every request that completes since the last decision
to adjust intrvl; we abbreviate the mean latency as lat.

Stout decides to either back-off or accelerate as soon
as both MinRequests requests have completed and
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(MinLatencyFrac× lat) time has elapsed; the former
term is dominant when there is little pipelining, and the
latter term is dominant when there is significant request
pipelining. We find that this waiting policy mitigates
much of the jitter in latency measurements across indi-
vidual store operations. Table 2 shows the settings for
these parameters that we used in our experiments, as well
as the other parameters (introduced later in this section)
that play a role in making Stout robust to jitter.

3.2.2 Whether to Back-off or Accelerate
Stout makes its decision on whether to back-off or ac-

celerate by comparing the current performance of the
store to the performance of the store in the recent past.
We denote the store’s current performance by perf , its
recent performance by perf∗, and we explain how both
are calculated over the next several paragraphs. As men-
tioned in the Introduction, Stout restricts its measure-
ments to response times so that it can be re-used on
different stores, as this measurement requires no store-
specific support. The performance comparison is done
with some slack (denoted as thresh), so as to avoid sen-
sitivity to small amounts of jitter in the measurements:

if (perf < (thresh× perf∗))
BACK-OFF

else
ACCELERATE

We calculate perf using the number of bytes sent to
and received from the store during the most recent self-
clocking window (denoted by bytes), the mean latency
of operations that completed during this same period
of time, and the length of the current batching interval.
(Note that higher perf is better.)

perf =
bytes

lat+ intrvl

Our perf definition is a simple combination of la-
tency and throughput: Stout’s latency is intrvl + lat,
the time until Stout initiates a batch plus the time until
the store responds; Stout’s throughput is bytes/intrvl,
the amount sent divided by how often it is sent.

Incorporating throughput appropriately rewards
backing-off when it causes throughput to increase and
the throughput improvement outweighs the larger store
latency (lat) from processing a larger batch. By contrast,
just measuring latency could lead to an undesirable
feedback loop: Stout could back-off (taking more time
between batches), each batch could send more work
and hence take longer, the store would appear to be
performing worse, and Stout could back-off again.

Stout must compute recent performance (perf∗) in a
manner that is robust to background noise, is sensitive
to the effects of Stout’s own decisions, and that copes
with delay between its changes and the measurement of

those changes. To this end, Stout computes perf∗ over
different sets of recent measurements depending on its
own recent actions (e.g., backing off or accelerating). To
explain the perf∗ computation, we first present the algo-
rithm and then provide its justification.

if (last decision was ACCELERATE)
perf∗ = MAXi(

bytesi
lati+intrvli

) (1)

else // last decision was BACK-OFF
if (intrvl < EWMA(intrvli))

perf∗ = EWMA(bytesi)
EWMA(lati)+EWMA(intrvli)

(2)

else // (intrvl ≥ EWMA(intrvli))
perf∗ = EWMA(bytesi)

EWMA(lati)+intrvl (3)

Equation (2) for computing perf∗ is the most straight-
forward: it is an exponentially weighted moving aver-
age (EWMA) over all intervals i since the last acceler-
ation. However, Stout cannot always wait for latency
changes to be reflected in this EWMA because of the risk
of overshooting—not reacting quickly enough to latency
changes that Stout itself is causing. This risk motivates
Equations (1) and (3), which we now discuss.

Equation (1) prevents overshoot while accelerating.
When Stout is accelerating, it runs a risk of causing the
store to start queuing. To prevent this, Stout heightens its
sensitivity to the onset of queuing by computing recent
performance (perf∗) as the best performance since the
last time Stout backed-off. Stout stops accelerating as
soon as current performance drops behind this best per-
formance. By contrast, calculating recent performance
using an EWMA would mask any latency increase due
to queuing until it had been incorporated into the EWMA
multiple times.

Equation (3) prevents overshoot while backing-off:
when Stout backs off, the increase in intrvl can penal-
ize current perf , potentially causing Stout to back-off yet
again, even if throughput (the bytes/lat portion of perf )
has improved. To address this, when the current intrvl
is larger than its recent history, we use it in calculating
both perf and perf∗.

3.2.3 How Much to Back-off or Accelerate
Stout reuses the MIMD-variant from CTCP [37]:

MIMD allows ramping up and down quickly, and as in
CTCP, incorporating

√
intrvl into the update rule pro-

vides fairness between competing clients. A minor dif-
ference between CTCP and Stout is that CTCP modi-
fies the TCP window, and backing-off corresponds to de-
creasing this window; Stout modifies its batch interval,
and backing-off corresponds to increasing this interval.

Stout backs off using a simple multiplicative back-off
step, and it accelerates using a multiplicative factor that
decreases as intrvl approaches its lower limit (1 ms in
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α′ 1/400
αmax 1/2
β 1/10
intrvlinitial 80 ms
intrvlmax 400 ms

Table 3: Parameters for gain and boundary conditions.
These parameters are analogous to those in CTCP, e.g.,
intrvlmax corresponds to RTOmax.

this case):

BACK-OFF:
intrvli+1 = (1 + α) ∗ intrvli

ACCELERATE:
intrvli+1 = (1− β) ∗ intrvli + β ∗

√
intrvli

Competing clients converge to fairness because slow
clients accelerate more than fast clients when the store
is free, and all clients back-off by an equal factor when
the store is busy. The CTCP paper formally analyzes this
convergence behavior [37].

The incremental benefit of additional batching de-
creases as the batch size grows. Because of this, Stout
must react more dramatically if the store is already pro-
cessing large batches and then starts to queue. To accom-
plish this, we make α (the back-off factor) proportional
to an EWMA of latency, with an upper bound:

α = MAX(EWMA(lati) ∗ α′, αmax)

Finally, stores occasionally exhibit brief pauses in pro-
cessing, leading to short-lived latency spikes (this behav-
ior is described in greater detail in Section 5.7). This
behavior could cause Stout to back-off dramatically, and
then take a long time recovering. To address this, we in-
troduce an intrvlmax parameter; just as TCP will never
assume that the network has gotten so slow that retrans-
missions should wait longer than RTOmax, Stout will
never assume that store performance has degraded to the
point that batches should wait longer than intrvlmax.
This bounds Stout’s operating range, but allows it to re-
cover much more quickly from brief store pauses.

Table 3 shows the gain and boundary condition param-
eter settings. As in CTCP’s parameter settings, the initial
batching interval is conservative, and the gain parame-
ters lead to bigger back-offs than accelerations, similar
to how TCP backs off faster than it accelerates. Our ex-
periments in Section 5 show that Stout works well with
these choices, and that it effectively converges to batch-
ing intervals spanning over two orders of magnitude.

4. IMPLEMENTATION
Stout’s primary novelty is its algorithm for dynami-

cally adjusting the batching of storage requests. We im-
plement the Stout prototype to evaluate this algorithm

Figure 3: The internal architecture of Stout.

Figure 4: Data structures for Stout’s dependency map.

with a real-world cloud service (a component of Mi-
crosoft’s Live Mesh service [27]). We first describe
how the application ensures that each key is owned by
a single middle-tier (Section 4.1). We then describe
the Stout internal architecture (Section 4.2), followed
by how Stout multiplexes storage requests into batches
and the corresponding de-multiplexing of store responses
(Section 4.3). Finally, we describe the Stout API by
walking through an example of its use (Section 4.4).

4.1 Key Ownership
As discussed previously, applications that use Stout

must ensure that all requests on a given partition key are
handled by only one middle-tier server at any given point
in time. In particular, the write collapsing optimization
requires that all updates to a given partition key are being
sent to the same server. This requirement could be met
using a variety of techniques; the applications we evalu-
ate rely on Centrifuge [2].

Centrifuge is a system that combines lease-
management with partitioning. Centrifuge uses a
logically centralized manager to divide up a flat names-
pace of keys across the middle-tier servers. Centrifuge
grants leases to the middle-tiers to ensure that respon-
sibility for individual objects within the namespace are
assigned to only one server at any given point in time.
Front-end Web servers route requests to middle-tiers via
Centrifuge’s lookup mechanism.

4.2 Stout Internal Architecture
Stout’s internal architecture divides the problem of

managing interaction with the store into three parts, as
depicted in Figure 3. The “Persistence and Dependency
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Stout.Fill(key) Ask Stout to fetch objects associated with partition key from store.
Stout.MarkDirty(key) Mark objects associated with partition key as modified, so that Stout knows to persist them.
Stout.MarkDeleted(key) Mark objects associated with partition key as deleted, so that Stout knows to delete them from store.
Stout.SendMessageWhenSafe(key, Sends a reply message after Stout’s internal dependency map indicates it is safe to send response.

sendMsgCallback)
Stout.SerializeDone(key[], byte[][]) App indicates completion of Stout’s request to serialize objects.
App.Serialize(key[]) Callback invoked by Stout for objects that have been marked dirty. Requests App to convert objects

into byte arrays to send to the store and respond with SerializeDone().
App.Deserialize(key[], byte[][]) Callback invoked by Stout when Fill() responses arrive from store. Converts each byte[] into object.

Table 4: Client API. All calls are asynchronous.

// We have received a message containing ‘‘update’’
// for the spreadsheet named by ‘‘key’’.
ProcessRequest(update, key) {
// If we don’t have the state for this key,
// we ask Stout to get it from the back-end store.
if (table[key] == null)

Stout.Fill(key);
... // Block until Stout has filled in table[key].

// Spreadsheet-specific logic is in UpdateSheet().
replyMessage = UpdateSheet(table[key], update);
Stout.MarkDirty(key); // Tell Stout about update.

// Ask Stout to send reply when update is persisted.
Stout.SendMessageWhenSafe(key, replyMessage);

}

(a) Placement of API calls in sample application code. Stout
and the application communicate via message passing, so the
application does not need to coordinate its locking with Stout.

(b) Flow of calls between spreadsheet application, Stout and
store. The portion of time when the spreadsheet application is
active is denoted by the thick black line.

Figure 5: An example use case of a spreadsheet application interacting with Stout.

Manager” component handles correctness and ordering
constraints (e.g., ensuring that requests are committed
to the store before replies are sent), as described in
Section 4.3. Applications interact with this component
through the API described in Section 4.4. The “Up-
date Batching Interval” component implements the adap-
tive batching algorithm from Section 3.2. The “Storage
Proxy” component is a thin layer that connects Stout to a
specific scalable storage system. We have implemented
three proxies to interface Stout with different cloud stor-
age systems, and all three use TCP as a transport layer.

4.3 Persistence and Dependencies
Each middle-tier uses Stout to manage its in-memory

data as a coherent cache of the store. Stout is responsible
for communicating with the store and ensuring proper
message ordering. The application is then responsible
for calling Stout when it: (1) needs to fetch data from the
store, (2) modifies data associated with a partition key, or
(3) wants to send a reply to a client.

Stout ensures proper message ordering by maintain-
ing a dependency map that consists of two tables, as de-
picted in Figure 4. Keys are added to the table of dirty
keys whenever the application notifies Stout that a key
has been modified. Messages provided by the applica-

tion are added to the table of in-progress operations if
the key is dirty or there are any outstanding operations
to the store on this key; otherwise, the messages are sent
out immediately. When Stout sends a batch of writes to
the store to commit the new values of some keys, those
same keys are removed from the table of dirty keys, and
Stout fills in the “Store Op” for the appropriate rows in
the table of in-progress operations. When a store opera-
tion returns, Stout sends out messages in the order they
were received from the application.

Figure 4 depicts both batching (keys 11 and 51 were
both sent in storage operation 29) and write collapsing
(two update operations for key 11 were both conveyed
in operation 29). Stout requires the store to commit op-
erations in order, but the store may still return acknowl-
edgments out of order. In our example, if the acknowl-
edgment of 30 arrives before the acknowledgment of 29,
Stout would mark the fourth row of the table “Ready”
and send the message once all earlier store operations on
key 11 are ready and their messages sent.

4.4 Stout API
Table 4 describes each of the API calls and the call-

backs that applications must provide for Stout. Figure 5a
shows how a datacenter spreadsheet application places
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the API calls in its code. Before the application’s Pro-
cessRequest() function is called, the application has al-
ready received the request, done any necessary authenti-
cation, and checked that it holds the lease for the given
partition key. ProcessRequest() handles both modifying
spreadsheet objects (done in UpdateSheet()) and interact-
ing with Stout: using Stout to fetch state from the store,
letting Stout know that the state has been updated, and
telling Stout about a reply that should be sent once the
update has been persisted to the store. We do not show
the code to send the reply, but note that before the appli-
cation sends the reply message to the client, it must check
that the lease for the partition key has been continuously
held for the duration of the operation.

Figure 5b illustrates the ordering of calls between the
application and Stout, and between Stout and the store.
When an application or service first receives a request
on a given partition key, it fetches the state associated
with that partition key using the Stout.Fill() call. When
the state arrives, Stout calls App.Deserialize() to create
in-memory versions of fetched objects, which can then
easily be operated on by the application logic.

To support coherence, Stout needs to know when op-
erations modify internal service state, so that these up-
dates can be saved to the store. Since Stout has no a
priori knowledge of the application internals, Stout re-
quires the service developer to call Stout.MarkDirty()
in any service methods that modify objects associated
with a partition key. At some point after a key has been
marked as dirty, the Stout persistence manager will call
App.Serialize() on a set of dirty keys. By delaying calls to
App.Serialize(), Stout allows modifications to the same
object to overwrite each other in-memory, thus capturing
write collapsing. The application then responds by call-
ing Stout.SerializeDone() with the corresponding byte
arrays to be sent to the store.

When a Stout-enabled service would like to
send a response to a user’s request, it must use
Stout.SendMessageWhenSafe() to provide the outgo-
ing message callback to Stout. Stout will then take
responsibility for determining when it is safe to send
the outgoing message, based on its knowledge of the
current interactions with the persistent store related to
the partition key for that request. For example, if the
message is dependent on state which has not yet been
committed to the persistent store, Stout cannot release
the message until it receives a store acknowledgment
that the commit was successful.

For certain services, the state associated with a parti-
tion key may be large enough that one does not want to
serialize the entire object every time it is modified, espe-
cially if the size of the modifications is small compared
to the size of the entire state. To handle this case, the API
supports an additional parameter, a sub-key. Stout keeps

track of the set of dirty sub-keys associated with each
partition key, and asks the application for only the byte
arrays corresponding to these sub-keys. Finally, Stout
also enables deletion from the persistent store using the
Stout.MarkDeleted() call, which similarly takes both par-
tition keys and sub-keys. Stout tracks these requested
deletes, and then includes them in the next batch sent to
the store, along with any read and write operations.

5. EVALUATION
We now demonstrate the benefits of Stout’s adaptation

strategy. In Section 5.1, we describe the setup for our
experiments. In Section 5.2, we evaluate the potential
benefits of batching and write collapsing in the absence
of adaptation. In Sections 5.3-5.6, we evaluate Stout’s
adaptation strategy and show that it outperforms fixed
strategies with both constant and changing workloads,
that multiple instances of Stout dynamically converge to
fairly sharing a common store, and that Stout’s adapta-
tion algorithm works across three different cloud storage
systems. Finally, in Section 5.7, we examine the behav-
ior of our store, and we show that Stout is robust to brief
“hiccups” where the store stops processing requests.

5.1 Experimental Setup
We first describe the application that we ported to use

Stout and this application’s workload, and we then char-
acterize the system configuration for our experiments.

5.1.1 Application and Workload
The application we run on our middle-tier servers is a

“sectioned document” service. This service is currently
in production use, and additional details can be found
in the Centrifuge paper [2]. This service allows docu-
ments to contain independent sections that can be named,
queried, added, and removed. The unmodified service
is approximately 7k commented lines of C# code, and
we ported this service to use the Stout API changing ap-
proximately 300 lines of code. Stout itself consists of
4k commented lines of code and the storage proxies are
each approximately 600 commented lines of code.

In production, this service is deployed on multiple
large pools of machines. One pool is used exclusively to
store device presence: a small amount of addressing in-
formation, such as IP address, and an indication whether
the device is online. Although we were unable to obtain a
trace from production, we used known characteristics of
the production system to guide the design of a synthetic
client workload for our evaluation: varying request rates
on a large number of small documents, 2k documents per
middle-tier, each consisting of a single 256-byte section.
At saturation, our store is limited by the total number
of operations rather than the total number of bytes being
stored under this workload, a common situation [7, 31].

8

In this synthetic workload, we designed the read/write
mixture to best evaluate Stout’s ability to adapt under
workload variation. We avoid making the workload
dominated by reads, because this would have primarily
loaded the middle-tiers, and Stout’s goal is to appropri-
ately adapt when the store is highly loaded. We also
avoided a pure-write workload because this would not
capture how reads that hit the middle-tier cache are de-
layed if they touch documents that have been updated but
where the update has not yet been committed to the store.
This led us to choose a balanced request mixture of 50%
reads and 50% writes.

In the commercial cloud service that motivates our
workload, all data fits in RAM—Stout is using the store
for persistence, not capacity. Because of this, read laten-
cies are uniformly lower than write latencies (e.g., Fig-
ure 9 in Section 5.3). In the Stout consistency model,
write latencies impact the user experience because re-
sponses are only sent after persisting state changes (e.g.,
after saving a spreadsheet update). Because writes form
the half of the workload that poses the greater risk of
poor responsiveness, the rest of the evaluation reports
only write latencies unless otherwise noted.

5.1.2 System Configuration
Our testbed consists of 50 machines with dual-socket

quad-core Intel Xeon 5420 CPUs clocked at 2.5 GHz,
with 16 GB of RAM and 2×1 TB SATA 7200 rpm drives.
We chose the ratio of front-ends to middle-tiers to stor-
age nodes such that the overall system throughput was
maximized subject to the constraint that the storage sys-
tem was the bottleneck. This led to dividing the 50 ma-
chines into 1 experiment controller, 1 Centrifuge lease
manager, 12 front-ends that also generate the synthetic
client workload, 32 middle-tiers using the Stout library,
and 4 systems running the persistent storage system. The
choice of 32 middle-tiers means there are 64k total doc-
uments in the system. Unless noted otherwise, latency
is measured from the front-ends (denoted FE latency in
the figures)—this represents the part of end-to-end client
latency due to the datacenter application.

Most of our experiments run Microsoft SQL Server
2008 Express on each of the four storage servers to im-
plement persistent storage. We configure the storage
servers to use a dedicated disk for SQL logging, and we
followed the SQL documentation to ensure persistence
under power loss, including disabling write-caching on
our SATA drives [12]. The Stout storage proxy consists
of a simple client library that performs hash-based par-
titioning of the database namespace. For a small num-
ber of experiments, we used two additional stores: the
PacificA storage system [26] which uses log-based stor-
age and replication, and the commercially available SQL
Data Services (SDS) cloud-based storage system [30].
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Figure 6: Two fixed batching intervals (10 ms, 20 ms) on
a workload with low write collapsing (10k documents)
or high write collapsing (100 documents).
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Figure 7: Two fixed batching intervals (10 ms, 20 ms) on
identical workloads with and without batching.

Under our workload, these stores occasionally exhibit
brief hiccups where they pause in processing; we de-
scribe this in more detail in Section 5.7. Unless noted
otherwise, we report data from runs without hiccups.

5.2 Batching and Write Collapsing
We perform two experiments to evaluate the po-

tential performance improvements that are enabled by
the batching and write collapsing optimizations. For
both experiments, we use two different fixed batch-
ing intervals—10 and 20 ms—to isolate the benefits of
batching and write collapsing from adaptation.

Figure 6 shows the performance benefits of write col-
lapsing. For this experiment, requests are delayed for the
duration of the batching interval, but they are not actu-
ally sent in a batch; at the end of each batching interval,
all the accumulated requests are sent individually to the
store. Because of this, the entire observed performance
difference is due to write collapsing. The low collapsing
workload consists of 10k documents spread across the
32 middle-tiers, while high collapsing consists of only
100 documents, significantly increasing the probability
that there are multiple updates to the same document
within the batching interval. The graph shows that, as
expected, write collapsing reduces latency and improves

9
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Figure 8: Mean response latency for writes: Stout versus
fixed batching intervals over a wide variety of loads.

the capacity of the system. For the low collapsing case,
we see that the 10- and 20-ms batching intervals can sat-
isfy between 4k requests/second and 10k requests/second
with better client perceived latency for a 10-ms batch-
ing interval. However, at 12k requests/second the storage
system is overloaded, resulting in a large queuing delay
represented by an almost vertical line. In contrast, for
the high collapsing workload a 10-ms batching interval
can sustain nearly 15k requests/second because the ac-
tual number of writes sent to the store is reduced. For
the 20-ms batching interval, the number of writes is re-
duced enough to shift the bottleneck from the store to the
middle-tier and provide up to 80k requests/second.

Figure 7 shows the performance benefits of batching.
The no-batching experiments reflect disabling batching
using the same methodology as in the write collapsing
experiment: requests are delayed but then sent individ-
ually. We see that the throughput benefits of batching
are noticeable at 10 ms, and they increase as the batch-
ing interval gets longer, which in turn causes the batch
size to get larger. At a 20-ms batching interval, batch-
ing allows the system to handle an additional 6k requests
per second. The amount of write collapsing for each
fixed batching interval in this experiment is constant (and
small). We separately observed that PacificA also deliv-
ers performance benefits from batching (this is detailed
in Section 5.6, where we evaluate Stout on both PacificA
and SDS). As mentioned in the Introduction, the reason
for batching’s benefits depend on the individual store be-
ing used; for our partitioned store built on SQL, we sepa-
rately determined that a significant portion of the benefit
comes from submitting many updates as part of a single
transaction.

5.3 Adaptive vs. Fixed Batching
In this section, we demonstrate that Stout is effective

across a wide operating range of offered loads, and inves-
tigate the overhead imposed by Stout’s adaptation over
the best fixed batching interval at a given load.
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Figure 9: Mean response latency for reads: Stout ver-
sus fixed batching intervals over a wide variety of loads.
Note that the y-axis is 4× smaller than in Figure 8.

Figures 8 and 9 compare Stout to fixed batching inter-
vals that vary from 20 ms up to 160 ms, for offered loads
that range from 5k requests/second all the way up to 41k
requests/second, which is very near the maximum load
that our storage system can support. These figures are
generated from the same experiments: Figure 8 shows
the mean response latency for write operations whereas
Figure 9 shows the latency for reads – all reads are cache
hits in this workload, but the latency numbers do in-
clude delay from reading an updated document where
the update has not yet been committed to the store. In
both graphs, we see that Stout provides a wider operat-
ing range than any of the fixed batching intervals, and
it provides response latencies that are either similar to
or better than the fixed batching intervals. Looking at
the two extremes of latency and throughput in Figure 8,
Stout’s 4.2 ms latency at 6k requests/second is over 34×
smaller than the 144 ms latency incurred by the longest
fixed batching interval in this experiment (160 ms), while
Stout’s 41k requests/second maximum is over 3× larger
than the 12k requests/second maximum for the shortest
fixed batching interval in this experiment (20 ms).

To understand the overhead of Stout’s adaptation, we
compare Stout to different fixed batching intervals at fine
granularity under two fixed workloads. In Figures 10 (a)
and (b), the time series show Stout’s latency to be rela-
tively steady, and for this reason we focus on the mean
latency throughout this section. Figure 10 (c) compares
Stout’s mean to fixed intervals with an offered load of
24k requests/second. The best fixed interval is at 50 ms,
and here we observe that Stout’s adaptation adds just un-
der 15 ms to the response latency (from 80 to 94 ms) and
is within the standard deviation. When the fixed batch-
ing interval is too short (40 ms), the store is overloaded
and we see large queuing delays. When the fixed interval
is too long (at 70 ms and above), we see unnecessary la-
tency. Figure 10 (d) shows a similar comparison, but with
an offered load of 26.4k requests/second. Here we see
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Figure 10: Latency of responses for Stout (a, b) and fixed
batching intervals (c, d), at two different workloads, 24k
requests/second (a, c) and 26.4k requests/second (b, d).
In (a, b), we see Stout’s changing response latency over-
layed with its mean response latency. In (c, d), Stout’s
mean response latency is overlayed with the mean la-
tency and standard deviation for multiple fixed batching
intervals. The slight increase in requests/second causes
the best fixed interval from 24k requests/second to gen-
erate queuing at 26.4k requests/second.

that the best fixed interval is at 60 ms, and the overhead
imposed by Stout’s adaptation is about 25 ms (from 75 to
100 ms), again within the standard deviation. If we use
the best fixed interval from 24k requests/second (50 ms),
the store becomes overloaded and unable to process re-
quests in a timely fashion until the load subsides. These
results demonstrate the need for adaptation—choosing
the right fixed interval is difficult, even with this mod-
est difference in offered load.

5.4 Dynamic Load Changes
Thus far we have shown Stout operating over fixed

request rates. Here, we explore Stout’s response to a
sudden change in request load. For this experiment we
apply a fixed load of 12k requests/second to our stan-
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Figure 11: Stout outperforms a fixed batching interval
after the load either increases or decreases.

dard configuration and part way through the experiment
we change the request load. Figure 11 shows the front-
end latency for two of these experiments. In the first ex-
periment, the load decreases to 6k requests/second. The
front-end latency for Stout decreases from 50 ms to 5 ms.
In the second experiment, the load increases to 18k re-
quests/second and the latency increases from 50 ms to 80
ms. In contrast, a 20-ms fixed interval is marginally bet-
ter than Stout at 12k requests/second but it only achieves
24 ms after the decrease and it causes queuing at the store
after the increase. This demonstrates Stout’s benefits in
the presence of workload changes.

5.5 Fairness
Cloud storage systems typically serve many middle-

tiers and it is important that these middle-tiers obtain fair
usage of the store. To measure Stout’s ability to converge
to fairness, we ran an experiment where after 90 seconds,
we forcibly set half of the thirty-two middle-tiers to a
batching interval of 400 ms and the remaining half to 80
ms. The middle-tier servers then collectively reconverge
to the steady state. Because Centrifuge balances the dis-
tribution of documents across the middle-tiers, they have
identical throughput throughout the experiment and we
are only concerned with latency-fairness. The middle-
tiers achieve good fairness after re-convergence: measur-
ing from 30 seconds after the perturbation to 120 seconds
after the perturbation, the mean latencies have a Jain’s
Fairness [22] of 0.97, where a value of 1.0 is optimal.

5.6 Alternate Storage Layers
To explore the generality of Stout’s adaptation algo-

rithm, we run experiments using two additional storage
platforms with substantially different architectures. For
both, we keep the same algorithm but calibrate the pa-
rameters to the new store. We first evaluate Stout against
SQL Data Services (SDS) [30], a pre-release commercial
storage system. For SDS, we calibrate the parameters to
be the same as in Section 3.2 except that thresh = 0.2
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Figure 12: Mean response latency for writes using Paci-
ficA: Stout and fixed intervals over a variety of loads.

and β = 1/4. The current SDS API does not support
batching or pipelining, and thus the best approach in our
workloads is to send as rapidly as possible. We find that
Stout does converge to sending as rapidly as possible.

We also evaluate Stout against PacificA [26], a re-
search system that differs from our SQL-based storage
layer in that it includes replication and uses log-based
storage. We configure PacificA with three-way partition-
ing and three-way replication for a total of nine stor-
age machines and one additional metadata server. The
rest of the setup consists of twelve front-ends, sixteen
middle-tiers, and one Centrifuge manager server. We cal-
ibrate the parameters from Section 3.2 to have EWMA-
factor= 1/32, thresh = 0.7, and β = 1/8. Figure 12
shows Stout’s behavior across a range of request loads.
At low to moderate load, Stout compares favorably to
the best (20- and 40-ms) fixed batching intervals. As
load increases, PacificA’s log compaction frequency also
increases, resulting in sufficiently frequent store hiccups
that we are not able to avoid them in our experiments.
After 22.2k requests/second, Stout has difficulty differ-
entiating the store hiccups from the queuing behavior to
which it is adapting. In spite of these hiccups, Stout out-
performs any fixed batching interval in the presence of
significant workload variation: compared to the short in-
tervals, it avoids queuing at high loads; compared to long
intervals, it yields much better latency at low loads.

5.7 Store Hiccups
As mentioned in our experiments with PacificA, stores

sometimes experience hiccups, where they briefly pause
in processing new requests. Such Stout-independent hic-
cups can lead to large spikes in observed latency, com-
plicating Stout’s task of inferring store load. We now
investigate the issue of hiccups in more detail.

Figure 13 shows the occasional brief pauses in pro-
cessing (or “hiccups”) that occur over a 2-hour interval
when using the SQL Server storage system. For this ex-
periment, we used a single middle-tier server sending 3k
operations per second with a fixed 2-ms batching inter-
val to a single SQL Server back-end machine, and we
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Figure 13: Intermittent hiccups in store processing yield
brief spikes in latency as measured from the middle tier.
These measurements were taken with a 2-ms fixed batch-
ing interval and 3k requests/second.

measured latency from within the Stout storage proxy —
this is denoted SP latency and it only includes the time to
send the requests over a TCP connection to the back-end
and the time that the store takes to service these requests
and send responses back to the middle-tier. The figure
shows that these hiccups occur on an irregular and infre-
quent basis, and they lead to significant spikes in latency
— up to three orders of magnitude greater than the steady
state. Although this figure only shows the hiccups at one
offered load, we have run similar experiments with dif-
ferent loads, and we have not observed any obvious cor-
relation between the offered load and the frequency of
hiccups in this store.

Although we do not know the exact cause of hiccups
in the SQL store, we believe they are caused by periodic
background bookkeeping tasks that are common in stor-
age systems. We did make efforts to eliminate such hic-
cups from SQL Server by both disabling the option that
generates query-planning statistics and setting the recov-
ery interval to one hour (the recovery interval controls
how much replay from the log may be needed after a
crash). These changes reduced the number of hiccups
but did not eliminate them. As mentioned in Section 5.6,
we observed that log compaction is responsible for even
more frequent hiccups in PacificA.

Because these brief latency spikes may be unrelated
to the offered load, an appropriate response to them is
simply to pause briefly; increasing the batching interval
is not appropriate because the store is not actually over-
loaded. The problem of a unrelated event causing the
appearance of congestion is familiar from the literature
on TCP over wireless channels, where packet loss may
reflect either congestion (which should be mitigated by
the sender) or background channel noise (which can fre-
quently be ignored). In response, researchers have pro-
posed explicit signaling techniques like ECN [4, 25] to
improve performance in these challenging environments.
Our measurements suggest that similar mechanisms for
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Figure 14: Stout recovering from a store hiccup while
operating at 3k requests/second.

adaptive use of cloud storage are also worth research-
ing. In this paper, we restrict our attention to showing
that Stout, which does not try to distinguish latency due
to store hiccups from latency due to overload, still copes
acceptably with such hiccups.

Figure 14 shows how Stout reacts to one of these hic-
cups: the solid line shows the measured response time
of the store, and the dashed line shows how Stout ad-
justs its intrvl as a result of the latency spike. With
intrvlmax set to 400 ms, Stout takes slightly over half
a minute to recover from the very large spike in latency
(the peak in this figure is 2,696 ms) caused by this hic-
cup. This recovery is rapid compared to the frequency of
hiccups. Lowering intrvlmaxwould improve recovery
time, but would also reduce Stout’s operating range.

The rarity of store hiccups raises a methodological
question: each of our experiments would have needed
to run for hours in order for the number of hiccups to
be similar across runs. Because Figure 8 alone includes
27 such experiments, such an approach would have sig-
nificantly hindered our ability to evaluate Stout under a
wide variety of conditions. Because Stout recovers from
store hiccups with reasonable speed, we chose instead
to re-run the occasional experiment that saw such a hic-
cup. The one exception is our experiment using PacificA
(Section 5.6), where hiccups were sufficiently frequent
that we did not need to take any special steps to ensure a
comparable number across runs.

6. RELATED WORK
Stout’s control loop is inspired by the literature on

TCP and, more generally, adaptive control in computer
systems. The Stout implementation also incorporates
a number of well-known techniques from storage sys-
tems. We briefly discuss a representative set of this re-
lated work.

There is a large existing literature on TCP [21, 24,
43]. This prior work has explored many different indi-
cators of utilization and load; Stout uses response time

measurements to adjust its rate of sending requests to the
store. In this regard, Stout is similar to TCP Vegas [5],
FAST TCP [41] and Compound TCP (CTCP) [37], each
of which attempts to tune the transmit rate of a TCP flow
based upon the inter-packet delay intervals. In compari-
son, Stout’s control loop has to deal with the additional
subtlety of distinguishing delay due to congestion from
delay due to sending a larger batch.

Control theory is a deep field with many applications
to computer systems [42, 38, 8, 34, 28, 9]. Despite
these successes, many adaptation problems in computer
systems have remained unaddressable by control the-
ory due to the dramatic differences between computer
systems and the systems that control theory has tradi-
tionally considered [18]. For example, advocates of
a class of controllers called self-tuning regulators have
constructed a list of eight requirements that computer
systems must satisfy to enable their successful applica-
tion [23]. Scale-out storage systems fail to satisfy a num-
ber of these conditions, such as the requirement for a
modest bound on the actuation delay of the system (e.g.,
if an application enqueues a large number of requests,
future request batching can take a very long time to re-
duce user-perceived latency). Other control techniques
may remove this particular requirement, but instead in-
troduce other difficult requirements, such as the need
for a detailed model of scale-out storage system perfor-
mance [23].

The Stout implementation borrows from prior work on
storage systems in two major ways. First, the perfor-
mance benefits of batching, write collapsing and pipelin-
ing are well-known, and have been leveraged by sys-
tems such as Lightweight Recoverable Virtual Memory
(LRVM) [36], Low-Bandwidth File System [32], Far-
site [1], Cedar [16], Practical BFT [6], Tandem’s B30
system [17] and the buffer cache [40]. Stout’s novelty is
in using a control loop to manage exploiting these opti-
mizations, not the optimizations themselves.

Second, Stout’s internal architecture incorporates at
least two major ideas from prior storage systems. Split-
ting consistency management from storage was explored
in Frangipani [39] and LRVM [36], while prior work
such as Soft Updates [14], Generalized File System De-
pendencies [13], and xsyncfs [33] explored ways to pro-
vide some or all of the performance benefits of delayed
writes with better consistency guarantees.

7. CONCLUSION
Stout’s adaptation algorithm is the first technique for

automatically adapting application usage of scalable key-
value storage systems. Stout treats store access as a
congestion control problem, measuring the application-
perceived latency and throughput of the store, and dy-
namically adjusting the application’s grouping of re-

13
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quests to the store. To evaluate this algorithm, we im-
plemented the Stout system and modified a real-world
cloud service to use Stout. We found that in the presence
of significant workload variation, Stout dramatically out-
performs non-adaptive approaches.
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Abstract 

Sharing data between the processors becomes increasingly expensive as the number of cores in a system grows. In 
particular, the network processing overhead on larger systems can reach tens of thousands of CPU cycles per TCP 
packet, for just hundreds of "useful" instructions. Most of these cycles are spent waiting – when the CPU is stalled 
while accessing “bouncing” cache lines of network control data shared by all processors in the system – and 
synchronizing access to this shared state. In many cases, the resulting excessive CPU utilization limits the overall 
system performance. We describe an IsoStack architecture which eliminates the unnecessary sharing of network 
control state at all stack layers, from the low-level device access, through the transport protocol, to the socket 
interface layer. The IsoStack "offloads" network stack processing to a dedicated processor core; multiple 
applications running on the rest of the cores invoke the IsoStack services in parallel, using a thin access layer that 
emulates the standard sockets API, without introducing new dependencies between the processors. We present a 
prototype implementation of this architecture, and provide detailed performance analysis. We demonstrate the ability 
to scale up the number of application threads and scale down the size of messages. In particular, we show an order of 
magnitude performance improvement for short messages, reaching the 10Gb/s line speed at 40% CPU utilization 
even for 64 byte messages, while the unmodified system is choked when driving 11 times less throughput.  

1. Introduction 
While networking demands in data centers continue to 
grow, and the networking infrastructure continues to 
provide improved bandwidth and latency, single 
processor performance remains the same and in some 
cases even decreases. Recently, increasing the number 
of CPU cores became the only way to perform more 
instructions per cycle. However, the overhead due to 
interaction between these cores also goes up, and naïve 
data-sharing may inhibit performance scaling as the 
number of cores grows. Nevertheless, the familiar 
shared memory programming model is still commonly 
used for both application programming and 
implementation of OS services.  

Since the days of uniprocessor systems, network 
processing has been carried out in a "multithreaded" 
fashion: some portions of the stack are executed during 
the socket system calls (in the context of calling 
applications), others during receive packet processing 
(in the context of interrupt handlers or kernel threads 
owned by the network stack), and yet others in the 
context of timeout handler routines. As multiprocessors 
were introduced, it was natural to distribute these stack 

processing elements symmetrically on the multiple 
processors in order to keep pace with the growing 
networking speeds. As the number of processors grows, 
the cost of sharing the network control structures 
between the processors becomes extremely high; 
meanwhile, cores become so abundant that sparing a 
few becomes feasible. This has provided an opportunity 
to re-think the network stack architecture and take 
advantage of the changing landscape of computer 
systems. 

The IsoStack is a different approach for integrating 
network processing within a multicore system. Instead 
of using the cores symmetrically, the IsoStack uses 
dedicated cores for network processing, and leaves the 
rest of the cores for running applications. Since the 
network processing is confined to dedicated processors, 
the stack can be optimized – executed serially without 
interrupts and locks. Since the CPUs are not shared 
between applications and the stack, there are fewer
context switches, and the cache behavior is improved. 
The IsoStack provides applications with a high-level 
interface (similar to a TCP Offload Engine interface), 
which can also allow efficient virtualization support 
using simple HW devices. 
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Figure 1. Native stack vs. IsoStack 

The contributions of this paper are: 

 The architecture of an isolated network stack 
that allows independent, contention-free, 
execution of TCP/IP control operations on a 
dedicated core, and application data processing 
on the other cores; 

 The prototype implementation of such a stack 
in AIX 6.1 on Power6, providing a standard 
synchronous socket API built upon an 
asynchronous internal interconnect; 

 Implementation of an optimized message 
queue mechanism for internal communication 
between a large number of applications 
(producers) and a consumer running on a 
dedicated core; 

 The performance evaluation for a 10 Gb/s link, 
demonstrating a significant increase of 
bandwidth and/or decrease of total CPU 
utilization compared to the native stack, in 
some cases yielding an order-of-magnitude 
improvement. 

The rest of the paper is organized as follows: Section 2 
discusses the related work. Section 3 describes the 
system architecture, and Section 4 depicts the prototype 
implementation. We present the experimental results in 
Section 5, and conclude the paper in Section 6.  

2. Background and Related Work 
For decades, TCP performance optimizations were 
introduced gradually to address the performance hot 
spots of contemporary systems ([1, 2, 5]). The most 
widely adopted optimizations include checksum 
calculation offload, interrupt mitigation to decrease the 
number of interrupt requests from networking devices, 

and techniques that decrease the number of packets to 
be processed for bulk data transfer. Some of these 
techniques for decreasing the number of packets include 
jumbo frames ([5]), Large Send Offload (LSO [31]), 
also called TCP segmentation offload (TSO), and, 
recently, Large Receive Offload (LRO [21, 25]). 
Nevertheless, the resulting improvements merely 
succeeded to compensate for the rapidly growing 
networking demands, combined with relatively slow 
growth of CPU speed and even slower improvement of 
memory bandwidth and latency ([6, 16]).  

With the advent of multiprocessor and (later) multicore 
systems, stack parallelization became necessary to keep 
pace with the growing network bandwidth. However, 
efficient parallelization remains challenging, as the 
parallel stack architectures implemented in the modern 
operating systems incur additional locking overhead, 
cache inefficiencies, and scheduling overhead ([23]). 

Receive-Side Scaling ([18]) and similar techniques let a 
NIC classify the incoming packets to determine the 
affinity between these packets and CPU cores. On the 
basis of the packet classification result, received packets 
are dispatched to the appropriate receive queue, which 
is usually served by a particular processor. This 
technique allows more efficient low-level device 
sharing, as it relieves the bottleneck associated with 
sharing a single receive queue, and instead allows the 
stack to process received packets in truly parallel way 
when the packets are independent (i.e., belong to 
different sets of network flows). On special-purpose 
systems (such as embedded network appliances), 
running customized applications, this could potentially 
allow to confine all TCP processing for a particular 
connection to a single processor core. However, on 
general-purpose systems (running regular sockets 
applications), if the rest of the sharing issues are not 
addressed,  RSS (as well as other receive-side 
optimizations such as NAPI) only allow to eliminate a 
small part of the multiprocessing overhead. This is 
because the receive processing, the transmit processing 
and the timer processing for the same TCP connection 
are still likely to be executed on different processors. In 
particular, application-triggered data transmission is 
executed in application thread context, while ACK 
handling and ACK-triggered data transmission are 
executed by the receive handler. The transmit thread 
either does not have any CPU affinity, or its affinity is 
configured by the application, while the affinity of the 
receive handler is configured by the operating system, 
transparently to the application. Also, an application 
thread can handle multiple connections, that can be 
mapped by RSS to different CPUs. Accordingly, such 

un-coordinated execution still necessitates locking to 
protect access to the TCP connection and the associated 
socket state, and may cause cache line bouncing when 
accessing this state. 

A radical solution to the fast-network, slow-host 
phenomenon is offered by RDMA approach ([10]). It 
offloads the protocol to an RDMA-enabled adapter, 
which allows zero-copy operation due to RDMA 
semantics, and eliminates per-packet overhead due to 
offloaded transport processing. Although this approach 
is suitable for high-performance computing applications 
running in a closed environment and using MPI or 
explicit RDMA semantics API, it is not feasible for 
data-center applications using sockets API, 
implementing standard protocols (such as HTTP) 
directly over TCP, and interacting with legacy clients. 
For this latter class of applications, pure TCP offload 
(without RDMA semantics) has been proposed.  

TCP offload for socket applications has been pursued 
for a long time ([8, 11, 12, 13, 19]), and remains 
controversial. Its potential advantage is the improved 
performance due to a higher-level interface that 
decreases the amount of interaction between the 
software and the TCP Offload Engine (TOE) adapter, 
since the internal events are handled by the TOE 
adapter and do not disrupt application execution. 
However, in practice, the performance potential of TOE 
materializes only under various limitations. For 
example, it may be necessary to modify the existing 
applications in order to achieve improved performance. 
Also, due to high complexity and low volumes, TOE 
solutions tend to have high cost and longer development 
cycle comparing to the rest of the system components,  
which can make a TOE engine obsolete by the time it is 
released. In addition, TOE solutions lack the flexibility 
in protocol processing that is needed to support future 
protocol changes, and are prone to bugs that cannot be 
easily fixed. Even if the internal implementation is 
programmable, the changes can only be done by the 
adapter vendor, leaving the OS very little control over 
the protocol behavior. This impedes TOE support in 
some operating systems, and hinders TOE acceptance in 
general. 

“TCP onload” using a dedicated CPU was proposed for 
multiprocessor systems as an alternative to TCP 
offload, without the disadvantages of hardware-based 
TCP offload ([14, 15, 17, 20]). The concept is based on 
an asymmetric multi-processing mode, where at least 
one of the CPUs on a multiprocessor system is 
dedicated to network stack processing, serving as an 
integrated TCP offload engine. This architecture allows 

a significant reduction in overhead when compared to 
naïve parallelization approaches. The TCP Servers 
project ([7]) also demonstrates the value of a similar 
approach. However, the previous solutions for CPU-
based TCP offload made simplifying assumptions on 
the interaction between the applications and the 
onloaded stack, and did not demonstrate performance 
improvement for inconveniently small message sizes or 
for high number of applications sharing the "onloaded" 
services. The IsoStack work is focused on improving 
these aspects of the onload concept.  

Loosely coupled TCP acceleration ([22]) is a hybrid 
approach that combines the benefits of both offload and 
onload. Similar to the offload approach, the application 
CPU uses a lightweight interface to interact with an 
“offloaded” network stack. However, network stack 
processing is not fully offloaded to the network 
interface adapter. Instead, only the data processing is 
performed by a hardware acceleration engine on the 
adapter, while the protocol control operations are done 
by software on a dedicated main CPU. The software 
and hardware components are loosely coupled; the 
parallelization is done in a way that allows 
asynchronous and independent operation of both parts. 
In particular, the control information that has to be 
accessed by both entities is replicated rather than 
shared, using message queues to explicitly exchange 
state changes.  

The same principle of dividing up responsibilities was 
also applied in the Scalable I/O project ([26]), which 
showed that efficient and scalable I/O virtualization 
becomes possible by complete separation of the I/O and 
compute functions. Moreover, the OS structure itself 
can be revisited to reduce unnecessary sharing, as in the 
Corey operating system for many cores ([27]); or to 
eliminate the sharing altogether, as in the Multikernel 
architecture ([28]). Asymmetrical OS structure was also 
employed in the Piglet operating system ([4]) which 
used dedicated processors to implement "intelligent 
device" functions. 

3. IsoStack Architecture 
In this section we present the IsoStack architecture, in 
which we confine the network protocol processing to 
dedicated processors and isolate it from the application 
execution environment.  

The IsoStack architecture is guided by the following 
design principles: 
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 Serialized, event-driven, lock-free, and 
interrupt-free implementation of the IsoStack 
on one or more dedicated logical processors. 
In particular, adapter control structures are not 
shared between processors. 

 Asynchronous interaction between applications 
and the IsoStack, through explicit messaging, 
without the sharing of state.  

 The isolation is transparent to applications; in 
particular, the underlying asynchronous 
protocol does not affect the latency of 
synchronous operations. 

The first two design principles allow more efficient 
implementation of the network stack, with better 
utilization of multiple processors. This is due to 
elimination of the overhead caused by access to shared 
data structures from different processors and better use 
of each processor’s resources (e.g., decreased cache 
pollution). The last principle allows unmodified 
applications to benefit from the improved stack 
performance, without having to switch to a different 
API or make any other changes. 

Figure 2. IsoStack architecture 

The IsoStack architecture is depicted in Figure 2. 
Applications access network services using a socket 
front-end layer that implements the standard socket API 
and replaces the legacy sockets layer. The socket front-
end handles the API peculiarities and delegates the 
execution of networking operations to the socket back-
end. The socket front-end and the socket back-end 
interact using an asynchronous protocol over an internal 
interconnect. The architecture allows different types of 
internal interconnects. In our earlier work ([26]), we 
used Infiniband ([9]) for communication between the 
socket front-end and back-end. This work focuses on a 
message queue mechanism using the available general-
purpose hardware; namely, cache-coherent memory; the 
detailed discussion is in Section 4.1. 

Socket back-end receives network commands from 
socket front-end, executes the commands 
asynchronously and sends the command status in the 
opposite direction. The commands include socket 
transmit/receive/control commands, and buffer 
registration commands. Different APIs, such as standard 
synchronous BSD sockets or various flavors of 
asynchronous sockets, can be implemented using the 
same underlying command/status mechanism. For 
example, the asynchronous Extended Sockets API 
([33]), which exposes explicit memory registration of 
application buffers, allows transmit implementation
with true zero-copy. The standard socket API can be 
implemented with a single data copy into the socket 
transmit buffer, using in-advance registration of that 
internal socket buffer, as described in Section 4.2. 

The IsoStack uses a dedicated logical CPU, and is 
solely responsible for all network processing for a 
particular network interface, which eliminates 
contention on access to network control data structures 
and allows a wide range of optimizations. Since the 
processor is not shared with other components, context 
switching overhead is reduced, and polling-mode 
interrupt-free execution becomes possible, eliminating 
the interrupt handler overhead. Since the data structures 
are not shared with other processors, single-threaded, 
serialized execution enables lock-free operation, thus 
eliminating the locking overhead. Consequently, all 
major sources of stack inefficiency are removed.  

Although this paper focuses on the case of a single 
IsoStack processor and a single network interface 
assigned to it, this is not an architectural limitation. It is 
possible to run multiple independent IsoStack instances, 
where each IsoStack instance is responsible for one or 
more network interfaces. Moreover, since hardware 
support for packet classification (with multiple receive 
queues) is common, throughput scaling for a single 
network interface can be achieved by using several 
independent instances of the IsoStack, each responsible 
for a subset of network traffic flows on that interface, as 
discussed in Section 6. 

On the other hand, it is not necessary to consume 
completely a processor core under light load. In order to 
save power when the traffic rate is low, the IsoStack can 
temporarily enable the interrupts and stop the polling 
until it is notified on a new event. The interrupt handlers 
in this case are used only to resume the polling, hence 
this type of interrupt-driven execution does not re-
introduce the shortcomings of the regular stack 
implementation.  
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4. Prototype Implementation 
The IsoStack prototype is based on the AIX 6.1 
operating system, running on a Power6 system using the 
HEA 10Gb/s adapter. We modified several kernel 
components to allow the isolated-mode operation of the 
network stack as a single kernel thread, added new 
kernel extension modules to support "delegation" of
socket operations to the IsoStack, and implemented a 
user-space library that intercepts socket operations and 
passes them to the IsoStack instead of invoking the 
socket system calls. Figure 3 depicts the high-level 
system design. 

The socket layer is split into socket front-end and socket 
back-end to accomplish the delegation of socket 
operations.  In particular, the state of each socket is split 
into its socket delegation state at the front-end, while 
the actual socket object (including the network protocol 
control information) is maintained at the socket back-
end. The socket front-end consists of a socket intercept 
library that primarily provides user-space 
implementation of standard socket calls, and a socket 
helper kernel module that facilitates communication 
between the socket front-end and back-end when 
kernel-level privileges are required (for example, to 
access shared notification queues, as explained in 
Section 4.1). The socket back-end is a part of the 
IsoStack; it receives socket commands from the socket 

front-end, and executes them using the asynchronous in-
kernel socket APIs adapted for single-thread, interrupt-
free operation. 

Section 4.1 describes the design of the messaging 
mechanism used for the interaction between the socket 
front-end and back-end. Sections 4.2 and 4.3 provide 
details of the transmit and receive operations, 
respectively. Section 4.4 describes the event-driven 
operation of the IsoStack. Section 4.5 lists the lock 
elimination optimizations enabled by our architecture. 

4.1 Message Queues 
An efficient mechanism for interaction between the 
application and the IsoStack is critical for realizing the 
performance improvement potential of our architecture. 
Clearly, executing the network processing on a separate 
CPU, without the overhead of locks or interrupts, 
reduces the stack overhead. However, the separation 
introduces a new overhead, which must be kept very 
low in order to make the overall solution worthwhile. In 
particular, this necessitates a highly efficient many-to-
one producer-consumer mechanism, to pass commands 
to the IsoStack from multiple applications. 

The design of such a mechanism was one of the main 
challenges of this work. Our early experiments showed 
that the existing IPC services are too expensive in terms 
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of both CPU utilization and latency. On the other hand, 
the existing solutions for lock-free, producer-consumer 
interaction via shared memory provide much better 
performance for low numbers of producers, but do not 
scale well as the number of producers grows, because 
the consumer must poll large numbers of queues. 
Ideally, a simple hardware mechanism could be 
employed to safely serialize request submissions from 
multiple non-cooperative, non-trusted clients to a single 
request queue, which could then be polled by the server. 
Such a mechanism could allow lock-free direct access 
to the queue by multiple producers, with atomicity 
handled by the hardware. Unfortunately, such a 
mechanism is not yet available, which makes the single 
queue approach unfeasible. The access to such a single 
queue becomes very expensive under the heavy 
contention due to the queue sharing by all socket 
applications (and all processor cores) in the system.  

To decrease the cost of queue sharing, we chose to use a 
separate queue per logical processor (processor core or 
thread if SMT is in use). Thus, the number of queues is 
constant and small enough to allow efficient polling by 
the consumer. Each thread accesses (atomically) the 
queue of the processor on which it is running at the time 
of the access; the queue is not shared by other 
processors in the system, which allows contention-free 
producer operation. Unfortunately, since these queues 
are shared by different applications, they cannot be 
accessed directly from user-space; kernel-space socket 
helper provides protected access to the notification 
queues.  

The per-CPU queues are used to notify the IsoStack of 
new application requests; the notification queue entries 
include only the socket identification information. The 
actual socket commands are kept in per-socket 
command queues that reside in shared memory, 
accessible to both socket front-end and socket back-
end; the command responses are returned through per-
socket status queues. The queues are implemented using 
the coherent shared memory in a controlled way, where 
each side maintains its view of the protocol state; all 
memory locations used to exchange information 
between the sides are allowed to be updated by a single 
designated writer (i.e., each shared memory location can 
be written by either the socket back-end or the socket-
front-end within the appropriate application). Each 
application uses separate shared memory segment for 
writeable and readable parts of the queue state. Also, 
complete separation is maintained between the 
applications. 

The design is somewhat similar to direct-access TCP 

offload solutions with interface comparable to Virtual 
Interface Architecture (VIA [3]), when the notification 
queues serve to emulate doorbells, and 
command/response queues are implemented as lock-free 
producer-consumer queues.   

4.2 Socket Send Operation 
One of the key issues in the design of efficient data 
transfer (for any type of I/O) is memory management. 
This issue is particularly complicated for 
communication services based on legacy, streaming-
mode, synchronous socket API, due to inherent data 
copy semantics and unpredictable patterns of 
application operation. In particular, a large data transfer 
is likely to be implemented as a sequence of multiple 
smaller transfers, invoked synchronously, passing data 
residing at arbitrary locations. This observation, 
together with the fact that the data copying overhead 
becomes less pronounced on modern systems ([24]), 
underlies our decision to avoid zero-copy design for 
socket send operations – even though such a decision 
seems counter-intuitive, as zero-copy property is 
considered a holy-grail of network acceleration 
solutions. Zero-copy solutions tend to offer improved 
performance at the cost of application modification
(e.g., through new asynchronous APIs), and are only 
beneficial for a subset of workloads. We, on the other 
hand, strive to improve performance for a broad range 
of existing unmodified applications. In particular, one 
of our design goals was to keep (or improve) the low 
latency of the synchronous send call. Thus, we chose to 
keep the single data copy, performed on the application 
side.  

In our solution, the synchronous API is implemented 
using socket transmit buffers that are pre-allocated and 
pre-registered for the DMA access. This significantly 
reduces buffer management overhead and allows 
efficient aggregation of small data chunks. The socket 
back-end allocates DMA-able memory segments for 
each socket application; during socket initialization, the 
socket front-end (kernel helper) allocates per-socket 
transmit buffers out of the DMA-able chunk and maps 
them for user-space access. When the application sends 
data, the socket front-end copies the data from the 
application buffers into the socket transmit buffer
(mapped into the application address space) used as a 
contiguous cyclic buffer. Afterwards, the socket front-
end writes a transmit command to the socket command 
queue, specifying the location of new transmit data 
within the socket buffer. To simplify memory 
protection, it does not use pointers to identify the data 
in the transmit buffer, and instead uses offsets relative 

to the buffer start. When the socket back-end receives 
the command, it uses the buffer registration information 
and the specified offset to construct the DMA address 
to be passed to the device driver. The socket back-end 
does not access the transmit buffers; it just serves as an 
intermediary that facilitates the buffer sharing between 
the socket front-end and the NIC. 

The implementation of the send call copies the 
application data to the transmit buffer; the space 
occupied by the copied data is reused after the socket 
back-end reports that it was delivered to the remote 
receiver. The buffer space is used to facilitate the 
batching of multiple small requests in case the sender is 
faster than the local stack or the receiver. The socket 
front-end does not necessarily notify the socket back-
end about each new piece of data that was copied to the 
transmit buffer. Instead, it aggregates data if the amount 
of previously posted pending data becomes high, until 
the socket back-end reports sufficient progress on the 
data transmission, or until a large amount of data has 
accumulated. Thus, the data aggregation does not 
increase latency; it occurs only when the previously 
submitted data starts piling up. 

In turn, the socket back-end performs additional 
aggregation, postponing the TCP processing of newly 
submitted data when the TCP connection state does not 
allow immediate segment generation (i.e., when the 
TCP send window or congestion window is full). Like 
the aggregation at the socket front-end, the aggregation 
at the socket back-end does not introduce unnecessary 
delays; it decreases the TCP overhead and the overhead 
of the interaction with the device, due to better 
utilization of its TCP segmentation capabilities. 

4.3 Socket Receive Operation 
Handling incoming network traffic using a regular NIC 
is a known challenge. Due to unpredictable patterns of 
packet arrival, the packets received by a stateless NIC 
must land into anonymous buffers that are not 
associated with a particular connection. The packet data 
must be copied from the anonymous kernel buffers to 
the application buffers, which may be provided by the 
application after an arbitrary delay; thus, complex 
bookkeeping  of the packet data structures is needed. 
The main design choice we had to make was the context 
for performing the data copy operation.  

One choice would be asynchronous copy by the socket 
back-end, which seems to offload a maximal number of 
CPU cycles from the application CPUs. However, this 
approach has numerous drawbacks.  It causes thrashing 

of the IsoStack resources such as cache, TLB, and SLB, 
and it may actually decrease the application 
performance due to increased latency of receive 
operation and decreased cache locality; this occurs
when the application tries to access the newly received 
data, which was brought to the wrong cache during the 
copy. Accordingly, we decided to copy the data on the 
application CPU, within the socket front-end.  

Applications (or their writers) expect the latency of the 
receive socket call to be very low if the data already 
arrived.  In order to minimize this latency, our 
implementation strives to perform the copy during the 
synchronous execution of the receive call, without 
interacting with the socket back-end. To achieve that, 
the socket front-end "prefetches" receive buffers from 
the socket back-end in advance, independently of the 
receive calls invoked by the application, using 
asynchronous requests. Upon such request, the socket 
back-end hands over to the socket front-end the 
ownership on the data buffers that contain the receive 
data stream of the socket (when these are available). 
Multiple buffers corresponding to multiple network data 
segments can be reported at once, decreasing the 
interaction between the socket front-end and the back-
end. If the previously posted request is completed 
before the application invokes socket receive function, 
socket receive implementation in the socket front-end 
copies the data immediately; otherwise, the application 
blocks until the previously requested data buffers are 
available. The socket front-end uses a heuristic to 
decide when to request more buffers. 

Since the packet buffers reside in kernel space and 
cannot be mapped in advance to the relevant 
application, the receive pointers queue is maintained in 
the kernel by the socket helper kernel module, which 
also copies the data during the socket receive call
invoked by the application. This necessitates a kernel 
boundary crossing upon each receive operation, thus 
incurring a higher overhead than the send. However, the 
overhead is still lower than the native implementation 
because the socket front-end state is only accessed 
locally, unlike the regular socket object in the native 
stack, which is shared between different stack 
components running in different contexts. 

4.4 Event-Driven IsoStack Operation 
The IsoStack is implemented as a single-threaded non-
preemptive processing loop, serially handling 
asynchronous events. A dispatcher component of the 
IsoStack polls event queues to detect the new work to 
be done such as new packet arrivals, new application 
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requests to be executed, or timeout expiration; it then 
invokes appropriate event handlers sequentially. The 
device is configured to operate in polling mode; a new 
device driver entry point is used to poll periodically for 
new packet arrival. The message queue mechanism also 
allows periodic polling of the socket command queues 
(or, more precisely, event notifications queues). The 
polling is done by reading from a cache-coherent 
memory location, thus busy-wait polling on empty 
queues is inexpensive, because it is usually 
accomplished by access to the local cache only. 

The socket back-end running within the IsoStack 
executes the commands delegated by the socket front-
end. If it cannot execute a command immediately, it 
postpones the command execution until an appropriate 
change of state occurs (e.g., until incoming data is 
buffered, in the case of the receive command). Each 
such command is implemented as a separate state 
machine. For example, if the socket front-end is 
requested to send data on a socket when the transmit 
window is full, the command handler puts aside the 
command state and marks the socket to enable 
asynchronous notification when transmission becomes 
possible. It then returns, allowing the dispatcher to 
proceed with other work. When an ACK packet arrives 
on the appropriate connection, the adapter's polling 
receive handler (invoked by the dispatcher) passes the 
packet up the stack; the TCP processing layer performs 
its regular processing and then generates an internal 
event indicating that the window space is freed. Later, 
the dispatcher detects the internal event and passes it to 
the socket back-end, which resumes execution of the 
send command.  

4.5 Lock Elimination 
Our architecture allows elimination of locks that were 
introduced within the network stack as a part of support 
for multiprocessor systems. Since the socket back-end 
objects and the network interface data structures are 
accessed sequentially in the context of the IsoStack 
thread, there is no need to worry about mutually 
exclusive access for these resources, which are private 
to the IsoStack. We made minimal modifications to the 
appropriate stack components to bypass the 
locking/unlocking code when touching the device or 
socket resources that belong exclusively to the IsoStack.  

Many other stack resources, such as the hash table of 
TCP connections or IP routing table, are shared across 
the system. To better utilize the advantages of our 
architecture, it is desirable to avoid this sharing and 
allow local-only access instead. These structures can be 

split into independent instances, each holding the 
relevant portion of information, potentially replicated 
and updated only using explicit "messages" delivered as 
internal events. For example, the generic Ethernet 
handling layer uses a lock to protect access to shared 
device configuration information that is changed rarely, 
if ever, using management interfaces. In our 
architecture, the IsoStack must be the exclusive owner 
of configuration information for the devices assigned to 
it; the management interfaces need to be intercepted, 
and execution of configuration changes need to be 
delegated to the IsoStack. This would make locking 
unnecessary, since the device configuration is accessed 
serially. Our experiments show that even uncontended 
locks incur a high overhead; thus, elimination of these 
remaining locks can yield an additional tangible 
performance improvement. 

5. Experimental Results 
This section demonstrates the performance 
improvement that can be achieved using the IsoStack
approach. We use several micro-benchmarks to emulate 
different workloads, and evaluate the performance of 
several variants of the IsoStack, using the native 
(unmodified) stack as a baseline. 

5.1 Experimental Setup 
Our system under test is a Power6 machine, connected 
back-to-back to a "remote" system over a 10Gb/s link. 
Both machines have an additional NIC used for remote 
access. The Power6 system is a 4-way (8 core) system, 
running at 3.5 GHz, with 16 GB of RAM, equipped 
with a 10Gb/s HEA (Host Ethernet Adapter). All 
physical resources are assigned to a single logical 
partition (LPAR), which runs the AIX 6.1 operating 
system. Since the cores provide two-way SMT 
(symmetrical multithreading) capabilities, the machine 
appears to have 16 logical processors from the point of 
view of the OS. The remote system is a quad core AMD 
Opteron machine with 2GB RAM, equipped with 10G 
Broadcom NetXtreme II BCM57710 NIC, running Red 
Hat Enterprise Linux 5.3 (2.6.18 kernel). 

Our experiments compare the AIX native TCP/IP stack 
with the IsoStack, using the same micro-benchmark 
applications. To measure the IsoStack performance, we 
ran the IsoStack socket back-end and the test 
applications linked with the socket front-end.  To obtain 
AIX native results, we re-ran the same tests linked with 
the regular socket library over the unmodified AIX 
kernel and the unmodified network drivers with the 

same adapter configuration parameters. To achieve 
maximum bandwidth (on both types of systems), we 
increased the dedicated interfaces' MTU to 9000, 
disabled hardware flow control, and enabled TCP 
checksum offload and TCP segmentation offload. The 
AIX built-in Nmon tool ([32]) was used to measure 
network throughput and CPU utilization. 

In order to evaluate scalability of our implementation 
for multiple application threads, we used a multi-
threaded TTCP-like application, where each thread 
sends or receives data over a single socket. We 
measured the achieved throughput, and the total CPU 
utilization for all processors (i.e., 100% means all cores 
are fully utilized; a single core accounts for 12.5%). 
Note that the IsoStack core is always fully consumed, 
because of polling-mode operation. CPU utilization of 
IsoStack shown below includes the constant utilization 
of the IsoStack core, and varying CPU utilization of the 
IsoStack socket front-end on application cores. 

5.2 IsoStack Variants 
To analyze the design choices, in particular those 
related to queuing and aggregation mechanisms, we 
implemented different variants of the IsoStack: 

 Iso-Kernel. This implementation is described 
in Section 4. In particular, it supports transmit 
data aggregation, and uses in-kernel per-CPU 
notification queues; the socket back-end polls 
only the notification queues.  

 Iso-Basic. Each application thread has a 
separate command/status queue in user-mode. 
No aggregation is used; each socket command 
translates to a message in the command queue. 
The socket back-end polls all the command 
queues. 

 Iso-Aggregated. Uses the same queue structure 
as the Iso-Basic; implements client and server 
side transmit data aggregation.  

 Iso-Lock. This variant is similar to Iso-Kernel; 
it reintroduces some of the locks that were 
eliminated in the other variants. The sole 
purpose of this variant is to evaluate the impact 
of un-contended locks, by an experiment 
described in Section 5.5. 

The Iso-Kernel variant is the implementation that we 
used for most tests. In the rest of this section, unless 
stated otherwise, the term "IsoStack" refers to Iso-
Kernel variant. 

5.3 Throughput Evaluation 
We used a multi-threaded TTCP-like application to 
evaluate basic data streaming. We measured the 
achieved throughput, and the total CPU utilization for 
all processors. 

Since maximal throughput of a single connection is 
limited by end-to-end TCP behavior, the merit of 
IsoStack becomes more evident as more TCP 
connections are used. When the traffic amount is low, 
the socket back-end dedicated CPU is underutilized, 
and most of its cycles are wasted on polling empty 
queues. The observed results in many of the tests with 
low number of connections showed that the overall 
machine CPU utilization with the IsoStack 
implementation is higher compared to the native stack. 
However, when the number of connections starts to 
grow, this effect is quickly mitigated and the IsoStack 
shows not just an increased or identical bandwidth, but 
also lower CPU utilization. 

Figure 4. Receive performance for 64 connections

Figure 4 demonstrates receive performance for different 
message sizes for 64 connections (and 64 application 
threads). For small messages (64 bytes or 128 bytes), 
the IsoStack achieves bandwidth that is about 300% 
better than native, while both systems use almost all 
available CPU cycles. Clearly, CPU cycles are better 
used when CPUs are asymmetrically divided between 
the applications' CPUs and TCP. As message sizes 
increase, both stacks achieve the line speed with 
declining CPU utilization, although the native stack still 
uses more CPU cycles than the IsoStack to drive the 
same bandwidth. For message sizes above 16 KB, the 
performance improvement is less prominent: the 
throughput remains maximal for both stacks, CPU 
utilization of the IsoStack appears constant (although in 
fact the dedicated CPU spends more time in polling 
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empty queues), and the CPU utilization of the native 
stack decreases, as there are fewer system calls for the 
same amount of data. 

Figure 5 demonstrates the transmit performance for 
different message sizes using 128 connections. The 
IsoStack reaches the line speed even for a message size 
as small as 64 bytes, whereas the native stack can reach 
the line speed only for message sizes of 16 KB and 
above. Moreover, the IsoStack utilizes far fewer CPU 
cycles than the native stack. The difference is more 
dramatic for small messages, where the native stack 
uses 200% more CPU cycles (while driving a fraction 
of throughput) than the IsoStack. However, the 
difference is still high even for large message sizes, 
when both stacks achieve close to line-speed throughput 
and the native stack consumes 50% more CPU cycles 
when compared to the IsoStack. 

Figure 5. Transmit performance for 128 connections 

5.4 Request-Response Performance 
In this section, we discuss performance of 
request/response workloads. Each of the test application 
threads repeatedly sends and receives a single message, 
simulating typical client-server communication pattern. 
This type of workload maximizes the overhead for 
delegating socket operations to the IsoStack, since each 
socket operation involves interaction with the stack as  
no aggregation is taking place. 

Figure 6. Request-Response test, one connection 

Figure 6 demonstrates the request-response test 
performance for different message sizes using one 
connection. This allowed us to focus on the impact of 
socket delegation, without any additional improvements 
due to aggregation or reduced contention. In this 
scenario, the IsoStack provides more operations per 
second for all message sizes, although the difference 
between the stacks diminishes as the message size 
increases. Thus, the average latency of a single request-
response transaction improves when the IsoStack is 
used, which may seem surprising because of the added 
latency imposed by interaction between socket front-
end and socket back-end. However, this additional 
latency of socket delegation is offset by the decreased 
latency of the network processing, due to lock-free and 
interrupt-free operation. 

Because of the synchronous nature of this test (with just 
one operation in-flight), the performance is very low for 
both stacks, due to the delay caused by waiting to the 
remote application. The CPU utilization for the 
IsoStack appears to be higher than that of the native 
stack, since the socket server CPU – although 
underutilized – still uses 100% of its resources due to 
wasted polling cycles. 

To test the system scalability under the request/response 
workload, we ran the request-response test with varying 
numbers of connections (or, equivalently, application 
threads). Figure 7 shows the CPU utilization and the 
number of operations per second of both native stack 
and IsoStack, for different connection numbers, using a 
message size of 1KB. For up to eight connections, the 
native stack and IsoStack achieve a similar number of 
operations per second. For a higher number of 
connections, the IsoStack CPU becomes fully utilized, 
and turns into a bottleneck. The native stack allows 
multiple threads to utilize all processors in the system, 
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and each socket call is executed immediately, even if 
relatively slowly, on the calling processor. On the other 
hand, the IsoStack forces serialized execution of socket 
operations invoked for different sockets on different 
processors, and thus induces a queuing delay when 
many processors submit their operations in parallel. 
Thus, the native stack is able to make progress on each 
connection faster than the IsoStack, even though its 
CPU utilization per operation is higher. 

Figure 7. Request-Response test, 1KByte messages 

To analyze further the bottleneck imposed by the 
IsoStack, we measured various code paths inside the 
socket back-end CPU. We found that simply issuing the 
kernel call that wakes up the socket application (waiting 
to receive data) takes approximately 3s. To compare, 
the optimized TCP send operation (involving TCP, IP, 
and MAC layers) also takes approximately 3s, the 
socket back-end operation (without the wakeup) takes 
less than 1s, and the whole request/response 
transaction accounts for approximately 16s. Analysis 
of the wakeup call shows that the problem is mainly due 
to contention on several scheduler locks. This indicates 
that the IsoStack performance could be improved 
further if a more efficient wakeup mechanism is used.  

5.5 Impact of Uncontended Locks 
It is a popular belief that reducing lock contention is 
sufficient to address the problem of the lock overhead. 
Our implementation went one step further, and 
eliminated some of the locks completely, avoiding the 
lock operations altogether for the locks that are only 
taken on the IsoStack processor. To evaluate the impact 
of this optimization, we tested an additional variant of 
the IsoStack, called Iso-Lock, in which we re-
instantiated some of the locks – even though they are 
not needed in our architecture and are only accessed by 

the IsoStack CPU. 

Figure 8. Impact of extra lock on transmit 
performance for 64 byte messages 

Figure 8 depicts the effect that re-instantiating the locks 
had on the IsoStack performance. For this experiment, 
we re-introduced the HEA device driver TX and RX 
locks. These locks were acquired and released each 
time the device driver transmit or receive handler were 
called.  Socket send throughput tests were performed 
with a fixed message size of 64 bytes and a variable 
number of connections.  We used the native stack 
results as the baseline. For a small number of 
connections, the IsoStack achieves superior throughput 
compared to the Iso-Lock version, while the CPU 
utilization appears to be the same. The throughput 
improvement due to the eliminated lock reaches 
200MB/s for eight connections. As the connection 
number increases, both implementations reach line-
speed. The CPU utilization of Iso-Lock is higher than 
the regular IsoStack variant, which means, oddly, that 
the socket front-end consumes more CPU. This stems 
from the fact that additional locks (even though 
uncontended) make the socket back-end CPU perform 
slower; the socket transmit buffers then fill up more 
frequently, causing the socket front-end to wait for free 
space in the TX buffer. As a result, additional CPU 
cycles are spent on the extra scheduling that is involved 
in waking up the socket front-end.  
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This experiment shows clearly that even un-contended 
locks are a significant source of overhead. This result 
may seem counterintuitive, as kernel lock 
implementation usually takes just a few instructions. 
Indeed, the locking instruction path length is short, and 
the atomic update instructions are cache-hits. However,  
the lock implementation is also required to use a 
memory barrier – heavy-weight sync instruction ([34]), 
which causes long CPU stall. 

Since our implementation did not eliminate all locks 
that became redundant, the remaining locks pose 
potential for additional improvement. 

5.6 Evaluating Different Queuing 
Mechanisms 

In this section, we try to analyze the performance of 
queuing mechanisms implemented in the different 
IsoStack variants. 

Figure 9. Transmit performance for three IsoStack 
variants, 64 byte messages 

In Figure 9, we compare the 64-byte transmit 
performance of Iso-Basic (per thread notification 
queues without aggregation), Iso-Aggregate (per-thread 
notification queues with aggregation of transmit 
operations) and Iso-Kernel (per-CPU notification 
threads with transmit aggregation), with the native stack 
as a baseline. All three IsoStack variants achieve better 
throughput with reduced CPU utilization, compared to 
the native stack. Iso-Aggregate and Iso-Kernel achieve 
up to eleven times (1000%) more bandwidth than the 

other variants due to the aggregation that both employ. 
As a result, they both use more CPU than Iso-Basic, 
although they still use remarkably less CPU than the 
native stack. Due to the high cost of using the kernel 
notification queues, Iso-Aggregate performs better than 
Iso-Kernel for a low number of connections, but as the 
number of connections (and application threads) grows, 
Iso-Aggregate throughput declines, while Iso-Kernel 
stays at the same throughput with decreased CPU 
utilization, and eventually out-performs the Iso-
Aggregate. 

The scalability advantages of the Iso-Kernel variant can 
be seen more clearly in Figure 10, which depicts the 
results of a request-response test for varying numbers of 
connections. The performance of Iso-Aggregate drops 
dramatically as the number of connections grows 
beyond 16, while the Iso-Kernel stack scales gracefully, 
i.e., increased number of clients does not cause 
performance degradation. This is due to the reduced 
polling overhead for the socket back-end in the Iso-
Kernel implementation, as it polls only the constant 
number of notification queues, unlike the Iso-Aggregate 
variant that polls a separate queue for each application 
thread. 

Figure 10. Request/Response Scalabilty 

6. Conclusions and Future Work 
Our work shows that the design principles of 
asynchronous interaction, non-shared state, and non-
shared processor resources for demanding tasks can be 
applied to network stack design, yielding significant 
performance improvements for most workloads. 
However, some workloads remain challenging. For 
example, we encountered scenarios where the serialized 
execution within the IsoStack introduces additional 
latency when processing particular events. The 
dispatching of network events handling is rather 
unsophisticated in our implementation, where the basic 
policy arbitration is weighted round-robin between the 
different event queues. Other arbitration policies need 
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to be evaluated, possibly involving a real-time 
scheduler. Also, it would be beneficial to identify 
latency-sensitive flows (automatically or with the help 
of application-provided quality-of-service hints), and 
prioritize their handling. 

We evaluated the system performance for a 10 Gb/s 
network port, using a single dedicated processor core. 
As network speed continues to grow, with emerging 
support for 40 Gb/s and 100 Gb/s, while the processor 
speed is not expected to increase, it will soon become 
necessary to employ multiple cores to handle network 
traffic for a single port in parallel. Fortunately, multi-
queue support and minimal packet classification 
capabilities, available in state-of-the-art adapters, allow 
parallelization of network processing without re-
introducing dependencies between the processors. The 
IsoStack can be parallelized using independent stack 
instances for disjoint subsets of network flows, using 
separate control data structures, and  interacting with 
the client applications through distinct queues. 

Our experience shows that dedicating processor cores to 
specific tasks can improve the overall system 
performance and scalability. However, the performance 
gains come at a price: a significant development effort 
is needed to integrate "isolated" components 
successfully within a system that was designed under a 
completely different paradigm. Our implementation had 
to refrain from using existing system services, as they 
brought back the very problems we were trying to solve. 
We believe these services should not be re-invented for 
every subsystem that can benefit from isolation; instead, 
the operating system should provide adequate support 
for isolated execution. Moreover, the underlying 
hardware should provide better support for inter-
processor communication within the system, to supply a 
better infrastructure for subsystem isolation.  

The implementation described in this paper addresses a 
single OS environment. However, one of the original 
goals of this work was to devise an architecture for 
efficient network virtualization. The general 
architecture described in [26] allows multiple clients to 
share an isolated I/O subsystem which runs on a 
different physical machine in a cluster environment or 
on a different virtual machine within the same physical 
system. Ironically, interaction between physical 
machines over a cluster interconnect turned out to be 
more efficient than interaction between virtual machines 
within the same POWER system. To realize the 
performance potential of the IsoStack for virtualized 
systems, the hypervisor and the underlying hardware
have to provide better support for efficient inter-

processor communication between processors assigned 
to different virtual machines. 
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Abstract

Memory hardware reliability is an indispensable part

of whole-system dependability. This paper presents the

collection of realistic memory hardware error traces (in-

cluding transient and non-transient errors) from produc-

tion computer systems with more than 800GB memory

for around nine months. Detailed information on the er-

ror addresses allows us to identify patterns of single-bit,

row, column, and whole-chip memory errors. Based on

the collected traces, we explore the implications of differ-

ent hardware ECC protection schemes so as to identify

the most common error causes and approximate error

rates exposed to the software level.

Further, we investigate the software system suscepti-

bility to major error causes, with the goal of validating,

questioning, and augmenting results of prior studies. In

particular, we find that the earlier result that most mem-

ory hardware errors do not lead to incorrect software ex-

ecution may not be valid, due to the unrealistic model of

exclusive transient errors. Our study is based on an effi-

cient memory error injection approach that applies hard-

ware watchpoints on hotspot memory regions.

1 Introduction

Memory hardware errors are an important threat to

computer system reliability [37] as VLSI technologies

continue to scale [6]. Past case studies [27,38] suggested

that these errors are significant contributing factors to

whole-system failures. Managing memory hardware er-

rors is an important component in developing an overall

system dependability strategy. Recent software system

studies have attempted to examine the impact of memory

hardware errors on computer system reliability [11, 26]

and security [14]. Software system countermeasures to

these errors have also been investigated [31].

Despite its importance, our collective understanding

about the rate, pattern, impact, and scaling trends of

∗This work was supported in part by the National Science Foun-

dation (NSF) grants CNS-0615045, CCF-0937571, CCF-0747324, and

CNS-0719790. Kai Shen was also supported by an NSF CAREER

Award CCF-0448413 and an IBM Faculty Award.

memory hardware errors is still somewhat fragmented

and incomplete. The lack of knowledge on realistic er-

rors has forced failure analysis researchers to use syn-

thetic error models that have not been validated [11, 14,

24, 26, 31]. Without a good understanding, it is tempt-

ing for software developers in the field to attribute (often

falsely) non-deterministic system failures or rare perfor-

mance anomalies [36] to hardware errors. On the other

hand, anecdotal evidence suggests that these errors are

being encountered in the field. For example, we were

able to follow a Rochester student’s failure report and

identify a memory hardware error on a medical System-

on-Chip platform (Microchip PIC18F452). The faulty

chip was used to monitor heart rate of neonates and it re-

ported mysterious (and alarming) heart rate drops. Using

an in-circuit debugger, we found the failure was caused

by a memory bit (in the SRAM’s 23rd byte) stuck at ‘1’.

Past studies on memory hardware errors heavily fo-

cused on transient (or soft) errors. While these errors re-

ceived a thorough treatment in the literature [3,30,41,42,

44], non-transient errors (including permanent and inter-

mittent errors) have seen less attention. The scarcity of

non-transient error traces is partly due to the fact that col-

lecting field data requires access to large-scale facilities

and these errors do not lend themselves to accelerated

tests as transient errors do [44]. The two studies of non-

transient errors that we are aware of [10, 35] provide no

result on specific error locations and patterns.

In an effort to acquire valuable error statistics in real-

world environments, we have monitored memory hard-

ware errors in three groups of computers—specifically,

a rack-mounted Internet server farm with more than 200

machines, about 20 university desktops, and 70 Planet-

Lab machines. We have collected error tracking results

on over 800GB memory for around nine months. Our

error traces are available on the web [34]. As far as we

know, they are the first (and so far only) publicly avail-

able memory hardware error traces with detailed error

addresses and patterns.

One important discovery from our error traces is that

non-transient errors are at least as significant a source

of reliability concern as transient errors. In theory, per-

manent hardware errors, whose symptoms persist over
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time, are easier to detect. Consequently they ought to

present only a minimum threat to system reliability in an

ideally-maintained environment. However, some non-

transient errors are intermittent [10] (i.e., whose symp-

toms are unstable at times) and they are not necessarily

easy to detect. Further, the system maintenance is hardly

perfect, particularly for hardware errors that do not trig-

ger obvious system failures. Given our discovery of non-

transient errors in real-world production systems, a holis-

tic dependability strategy needs to take into account their

presence and error characteristics.

We conduct trace-driven studies to understand hard-

ware error manifestations and their impact on the soft-

ware system. First, we extrapolate the collected traces

into general statistical error manifestation patterns. We

then perform Monte Carlo simulations to learn the error

rate and particularly error causes under different mem-

ory protection mechanisms (e.g., single-error-correcting

ECC or stronger Chipkill ECC [12]). To achieve high

confidence, we also study the sensitivity of our results to

key parameters of our simulation model.

Further, we use a virtual machine-based error injection

approach to study the error susceptibility of real software

systems and applications. In particular, we discovered

the previous conclusion that most memory hardware er-

rors do not lead to incorrect software execution [11,26] is

inappropriate for non-transient memory errors. We also

validated the failure oblivious computing model [33] us-

ing our web server workload with injected non-transient

errors.

2 Background

2.1 Terminology

In general, a fault is the cause of an error, and errors

lead to service failures [23]. Precisely defining these

terms (“fault”, “error”, and “failure”), however, can be

“surprisingly difficult” [2], as it depends on the notion of

the system and its boundaries. For instance, the conse-

quence of reading from a defective memory cell (obtain-

ing an erroneous result) can be considered as a failure of

the memory subsystem, an error in the broader computer

system, or it may not lead to any failure of the computer

system at all if it is masked by subsequent processing.

In our discussion, we use error to refer to the incidence

of having incorrect memory content. The root cause of

an error is the fault, which can be a particle impact, or

defects in some part of the memory circuit. Note that an

error does not manifest (i.e., it is a latent error) until the

corrupt location is accessed.

An error may involve more than a single bit. Specif-

ically, we count all incorrect bits due to the same root

cause as part of one error. This is different from the con-

cept of a multi-bit error in the ECC context, in which case

the multiple incorrect bits must fall into a single ECC

word. To avoid confusions we call these errors word-

wise multi-bit instead.

Transient memory errors are those that do not per-

sist and are correctable by software overwrites or hard-

ware scrubbing. They are usually caused by temporary

environmental factors such as particle strikes from ra-

dioactive decay and cosmic ray-induced neutrons. Non-

transient errors, on the other hand, are often caused (at

least partially) by inherent manufacturing defect, insuf-

ficient burn-in, or device aging [6]. Once they manifest,

they tend to cause more predictable errors as the deteri-

oration is often irreversible. However, before transition-

ing into permanent errors, they may put the device into a

marginal state causing apparently intermittent errors.

2.2 Memory ECC

Computer memories are often protected by some form

of parity-check code. In a parity-check code, information

symbols within a word are processed to generate check

symbols. Together, they form the coded word. These

codes are generally referred to as ECC (error correcting

code). Commonly used ECC codes include SECDED

and chipkill.

SECDED stands for single-error correction, double-

error detection. Single error correction requires the code

to have a Hamming distance of at least 3. In binary

codes, it can be easily shown that r bits are needed for

2
r − 1 information bits. For double-error detection, one

more check bit is needed to increase the minimum dis-

tance to 4. The common practice is to use 8 check bits

for 64 information bits forming a 72-bit ECC word as

these widths are used in current DRAM standards (e.g.,

DDR2).

Chipkill ECC is designed to tolerate word-wise multi-

bit errors such as those caused when an entire mem-

ory device fails [12]. Physical constraints dictate that

most memory modules have to use devices each provid-

ing 8 or 4 bits to fill the bus. This means that a chip-

fail tolerant ECC code needs to correct 4 or 8 adjacent

bits. While correcting multi-bit errors in a word is the-

oretically rather straightforward, in practice, given the

DRAM bus standard, it is most convenient to limit the

ECC word to 72 bits, and the 8-bit parity is insufficient

to correct even a 4-bit symbol. To address this issue,

one practice is to reduce the problem to that of single-

bit correction by spreading the output of, say, 4 bits to 4

independent ECC words. The trade-off is that a DIMM

now only provides 1/4 of the bits needed to fill the stan-

dard 64-data-bit DRAM bus, and thus a system needs a

minimum of 4 DIMMs to function. Another approach is

to use b-adjacent codes with much more involved matri-

ces for parity generation and checking [7]. Even in this

case, a typical implementation requires a minimum of 2

DIMMs. Due to these practical issues, chipkill ECC re-

mains a technique used primarily in the server domain.

3 Realistic Memory Error Collection

Measurement results on memory hardware errors, par-

ticularly transient errors, are available in the literature.

Ziegler et al. from IBM suggested that cosmic rays may

cause transient memory bit flips [41] and did a series of

measurements from 1978 to 1994 [30, 42, 44]. In a 1992

test for a vendor 4Mbit DRAM, they reported the rate

of 5950 failures per billion device-hour. In 1996, Nor-

mand reported 4 errors out of 4 machines with a total of

8.8Gbit memory during a 4-month test [29]. Published

results on non-transient memory errors are few [10, 35]

and they provide little detail on error addresses and pat-

terns, which are essential for our analysis.

To enable our analysis on error manifestation and soft-

ware susceptibility, we make efforts to collect realistic

raw error rate and patterns on today’s systems. Specif-

ically, we perform long-term monitoring on large, non-

biased sets of production computer systems. Due to the

rareness of memory hardware errors, the error collection

can require enormous efforts. The difficulty of acquiring

large scale error data is aggravated by the efforts required

for ensuring a robust and consistent collection/storage

method on a vast number of machines. A general under-

standing of memory hardware errors is likely to require

the collective and sustained effort from the research com-

munity as a whole. We are not attempting such an am-

bitious goal in this study. Instead, our emphasis is on

the realism of our production system error collection. As

such, we do not claim general applicability of our results.

Many large computer systems support various forms

of error logging. Although it is tempting to exploit these

error logs (as in some earlier study [35]), we are con-

cerned with the statistical consistency of such data. In

particular, the constantly improving efficacy of the error

statistics collection can result in higher observed error

rates over time by detecting more errors that had been left

out before, while there could be no significant change in

the real error rates. Also, a maintenance might temporar-

ily suspend the monitoring, which will leave the faulty

devices accumulate and later swarm in as a huge batch of

bad chips once the monitoring comes back online. These

factors all prevent a consistent and accurate error obser-

vation.

To ensure the statistical consistency of collected data,

we perform proactive error monitoring under controlled,

uniform collection methodology. Specifically, we moni-

tor memory errors in three environments—a set of 212

production machines in a server farm at Ask.com [1],

about 20 desktop computers at Rochester computer sci-

ence department, and around 70 wide-area-distributed

PlanetLab machines. Preliminary monitoring results

(of shorter monitoring duration, focusing exclusively on

transient errors, with little result analysis) were reported

in another paper [25]. Here we provide an overview of

our latest monitoring results on all error types. Due to

factors such as machine configuration, our access priv-

ileges, and load, we obtained uneven amount of infor-

mation from the three error monitoring environments.

Most of our results were acquired from the large set of

server farmmachines, where we have access to the mem-

ory chipset’s internal registers and can monitor the ECC-

protected DRAM of all machines continuously. Below

we focus our result reporting on the data obtained in this

environment.

All 212machines from the server farm use Intel E7520

chipset as memory controller hub [20]. Most machines

have 4GB DDR2 SDRAM. Intel E7520 memory con-

troller is capable of both SECDED or Chipkill ECC. In

addition to error detection and correction, the memory

controller attempts to log some information about mem-

ory errors encountered. Unfortunately, this logging ca-

pability is somewhat limited—there are only two regis-

ters to track the addresses of two distinct errors. These

registers will only capture the first two memory errors

encountered. Any subsequent errors will not be logged

until the registers are reset. Therefore, we periodically

(once per hour) probe the memory controller to read out

the information and reset the registers. This probing is

realized through enhancements of the memory controller

driver [5], which typically requires the administrative

privilege on target machines.

Recall that when a memory cell’s content is corrupted

(creating a latent error), the error will not manifest to our

monitoring system until the location is accessed. To help

expose these latent errors, we enable hardware memory

scrubbing—a background process that scans all mem-

ory addresses to detect and correct errors. The intention

is to prevent errors from accumulating into more severe

forms (e.g., multi-bit) that are no longer correctable. It

is typically performed at a low frequency (e.g., 1.5 hours

for every 1GB) [20] to minimize the energy consump-

tion and contention with running applications. Note that

scrubbing does not help expose faults—writing varying

values into memory does that. Since we monitored the

machines for an extended period of time (9 months), the

natural usage of the machines is likely to have exposed

most (if not all) faults.

We collected error logs for a period of approximately

9 months (from November 30, 2006 to September 11,

2007). In the first 2 months we observed errors on 11 ma-

chines. No new errors were seen for 6 months and then

1 more erroneous machine appeared in the most recent
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Figure 1. The visualization of example error patterns on physical memory devices. Each cross represents an

erroneous cell at its row/column addresses. The system address to row/column address translation is obtained from

the official Intel document [20].

month of monitoring. We choose 6 erroneous machines

with distinct error patterns and show in Figure 1 how the

errors are laid out on the physical memory arrays. Based

on the observed patterns, all four memory error modes

(single-cell, row, column, and whole-chip [4]) appear in

our log. Specifically, M10 contains a single cell error.

M7 and M12 represent a row error and a column error

respectively. The error case on M1 is comprised of mul-

tiple row and columns. Finally, for machine M8, the er-

rors are spread all over the chip which strongly suggests

faults in the chip-wide circuitry rather than individual

cells, rows, or columns. Based on the pattern of error

addresses, we categorize all error instances into appro-

priate modes shown in Table 1.

While the error-correction logic can detect errors,

it cannot tell whether an error is transient or not.

We can, however, make the distinction by continued

observation—repeated occurrences of error on the same

address are virtually impossible to be external noise-

induced transient errors as they should affect all elements

with largely the same probability. We can also identify

non-transient errors by recognizing known error modes

related to inherent hardware defects: single-cell, row,

column, and whole-chip [4]. For instance, memory row

errors will manifest as a series of errors with addresses

on the same row. Some addresses on this row may be

caught on the log only once. Yet, the cause of that er-

ror is most likely non-transient if other cells on the same

row indicate non-transient errors (loggedmultiple times).

ConsiderM9 in Figure 1 as an example, there are five dis-

tinct error addresses recorded in our trace, two of which

showed up only once while the rest were recorded multi-

ple times. Since they happen on the same row, it is highly

probable that they are all due to defects in places like the

word line. We count them as a row error.

4 Error Manifestation Analysis

We analyze how device-level errors would be exposed

to software. We are interested in the error manifestation

rates and patterns (e.g., multi-bits or single-bit) as well

as leading causes for manifested errors. We explore re-

sults under different memory protection schemes. This

is useful since Chipkill ECC represents a somewhat ex-

treme trade-off between reliability and other factors (e.g.,

performance and energy consumption) and may remain

a limited-scope solution. In our memory chipset (In-

tel E7520) for example, to provide the necessary word

length, the Chipkill design requires two memory chan-

nels to operate in a lock-stepping fashion, sacrificing

throughput and power efficiency.

Machine Cell Row Column Row-Column Whole-Chip

M1 1

M2 1

M3 1 (transient)

M4 1

M5 1 (transient)

M6 1

M7 1

M8 1

M9 1

M10 1

M11 1

M12 1

Total 5 (2 transient) 3 1 1 2

Table 1. Collected errors and their modes (single-cell, row, column, multiple rows and columns, or whole-chip errors).

Two of the collected errors are suspected to be transient. Over a nine-month period, errors were observed on 12

machines out of the full set of 212 machines being monitored.

DRAM technology DDR2

DIMM No. per machine 4

Device No. per DIMM 18

Device data width x4

Row/Column/Bank No. 2
14/211/4

Device capacity 512 Mb

Capacity per machine 4 GB

ECC capability None,

SECDED,

or Chipkill

Table 2. Memory configuration for our server farm ma-

chines.

4.1 Evaluation Methodology

We use a discrete-event simulator to conduct Monte-

Carlo simulations to derive properties of manifested er-

rors. We simulate 500 machines with the exact configu-

ration as the Ask.com servers in Section 3. The detailed

configuration is shown in Table 2. We first use the er-

ror properties extracted from our data to generate error

instances in different memory locations in the simulated

machines. Then we simulate different ECC algorithms

to obtain a trace of manifested memory errors as the out-

put. Our analysis here does not consider software sus-

ceptibility to manifested errors, which will be examined

in Section 5. Below, we describe several important as-

pects of our simulation model, including temporal error

distributions, device-level error patterns, and the repair

maintenance model.

Temporal error distributions— We consider transient

and non-transient errors separately in terms of tem-

poral error distribution. Since transient errors are

mostly induced by random external events, it is well

established that their occurrences follow a mem-

oryless exponential distribution. The cumulative

distribution function of exponential distribution is

F (t) = 1 − e−λt, which represents the probability

that an error has already occurred by time t. The

instantaneous error rate for exponential distribution

is constant over time, and does not depend on how

long the chip has been operating properly.

The non-transient error rate follows a “bathtub”

curve with a high, but declining rate in the early “in-

fant mortality” period, followed by a long and stable

period with a low rate, before rising again when de-

vice wear-out starts to take over. Some study has

also suggested that improved manufacturing tech-

niques combined with faster upgrade of hardware

have effectively made the wear-out region of the

curve irrelevant [28]. In our analysis, we model

16 months of operation and ignore aging or wear-

out. Under these assumptions, we use the oft-used

Weibull distributions which has the following cu-

mulative distribution function: F (t) = 1 − e(t/β)
α

.

The shape parameter α controls how steep the rate

decreases, and the scale parameter β determines

how “stretched out” the curve is. Without consider-

ing the wear-out region, the shape parameter in the

Weibull distribution is no more than 1.0, at which

point the distribution degenerates into an exponen-

tial distribution. The temporal error occurrence in-

formation in our data suggested a shape parameter

of 0.11.

Device-level error patterns— For transient errors,

prior studies and our own observation all point

to the single-bit pattern. For non-transient errors,
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we have the 10 distinct patterns in our trace as

templates. When a non-transient error is to be

generated, we choose one out of these templates in

a uniformly random fashion. There is a problem

associated with using the exact template patterns—

error instances generated from the same templates

are always injected on the same memory location

and thus they would always be aligned together

to cause an uncorrectable error in the presence of

ECC. To address this problem, we shift the error

location by a random offset each time we inject an

error instance.

Repair maintenance model— Our model requires a

faulty device repair maintenance strategy. We em-

ploy an idealized “reactive” repair without preven-

tive maintenance. We assume an error is detected as

soon as it is exposed to the software level. If the er-

ror is diagnosed to be non-transient, the faulty mem-

ory module is replaced. Otherwise the machine will

undergo a reboot. In our exploration, we have tried

two other maintenance models that are more proac-

tive. In the first case, hardware scrubbing is turned

on so that transient errors are automatically cor-

rected. In the second case, we further assume that

the memory controller notifies the user upon detect-

ing a correctable non-transient error so that faulty

memory modules can be replaced as early as pos-

sible. We found these preventive measures have a

negligible impact on our results. We will not con-

sider these cases in this paper.

Below, Section 4.2 provides evaluation results using

the above described model. Due to the small number

of errors in the collected error trace, the derived rate

and temporal manifestation pattern may not provide high

statistical confidence. To achieve high confidence, we

further study the sensitivity of our results to two model

parameters—the Weibull distribution shape parameter

for non-transient errors (Section 4.3) and the temporal

error rate (Section 4.4).

4.2 Base Results

Here we present the simulation results on failures. The

failure rates are computed as the average of the simulated

operational duration. We describe our results under dif-

ferent memory protection schemes.

Figure 2(A) illustrates the failure rates and the break-

down of the causes when there is no ECC protection. In

this case, any error will be directly exposed to software

and cause a failure. As a result, we can study the errors in

isolation. With our measurement, the transient error rate

is 2006FIT 1 for each machine’s memory system. De-

1FIT is a commonly used unit to measure failure rates and 1 FIT
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Figure 2. Base failure rates and breakdown causes

for no ECC and SECDED ECC. Results (with varying

machine operational durations) are for Section 4.2.

pending on the operational time of the machines, the av-

erage non-transient error rates would vary, and so are the

corresponding failure rates. Overall, for machines with-

out ECC support, both transient and non-transient errors

contribute to the overall error rate considerably.

SECDED ECC can correct word-wise single-bit er-

rors. For the errors in our trace, it could correct all but

one whole-chip error, one row error, and one row-column

error. These three cases all have multiple erroneous bits

(due to the same root cause) in one ECC word, prevent-

ing ECC correction. Theoretically, a failure can also oc-

cur when multiple independent single-bit errors happen

to affect the same ECC word (such as when a transient

error occurs to an ECC word already having a single-bit

non-transient error). However, since errors are rare in

general, such combination errors are even less probable.

In our simulations, no such instance has occurred. Fig-

ure 2(B) summarizes the simulation results.

When using the Chipkill ECC, as expected, the mem-

ory system becomes very resilient. We did not observe

any uncorrected errors. This result echoes the conclusion

of some past study [12].

equals one failure per billion device-hour. To put the numbers into

perspectives, IBM’s target FIT rates for servers are 114 for undetected

(or silent) data corruption, 4500 for detected errors causing system ter-

mination, and 11400 for detected errors causing application termina-

tion [8]. Note that these rates are for the whole system including all

components.

4.3 Shape Parameter Sensitivity for Non-
Transient Error Distribution

To reach high confidence in our results, we consider a

wide range of the Weibull shape parameters for the non-

transient error temporal distribution and study the sensi-

tivity of our results to this parameter. We use a machine

operational duration of 16 months, which is the age of

the Ask.com servers at the end of our data collection.

Prior failure mode studies in computer systems [16,

40], spacecraft electronics [17], electron tubes [22], and

integrated circuits [19] pointed to a range of shape pa-

rameter values in 0.28–0.80. Given this and the fact

that the Weibull distribution with shape parameter 1.0

degenerates to an exponential distribution, we consider

the shape parameter range of 0.1–1.0 in this sensitivity

study.

In both ECC mechanisms, the non-transient error rate

depends on the Weibull shape parameter. The lower the

shape parameter, the faster the error rate drops, and the

lower the total error rate for the entire period observed.

Note that the transient error rate also fluctuates a little be-

cause of the non-deterministic nature of ourMonte-Carlo

simulation. But the change of transient error rates does

not correlate with the shape parameter. For no-ECC, as

Figure 3(A) shows, for machines in their first 16 months

of operation, the difference caused by the wide ranging

shape parameter is rather insignificant.

In the case of SECDED shown in Figure 3(B), the im-

pact of the Weibull shape parameter is a bit more pro-

nounced than in the case of no ECC but is still relatively

insignificant. Also, even though error rates are signifi-

cantly reduced by SECDED, they are still within a factor

of about five from those without ECC.

4.4 Statistical Error Rate Bounds

Due to the small number of device-level errors in our

trace, the observed error rate may be quite different from

the intrinsic error rate of our monitored system. To ac-

count for such inaccuracy, we use the concept of p-value

bounds to provide a range of possible intrinsic error rates

with statistical confidence.

For a given probability p, the p-value upper bound

(λu) is defined as the intrinsic error rate under which

Pr{X≤n} = p. Here n is the actual number of errors

observed in our experiment. X is the random variable

for the number of errors occurring in an arbitrary exper-

iment of the same time duration. And likewise, the p-

value lower bound (λl) is the intrinsic error rate under

which Pr{X≥n} = p. A very small p indicates that

given n observed errors, it is improbable for the actual

intrinsic error rate λ to be greater than λu or less than λl.

Given p, the probability distribution of random vari-

able X is required to calculate the p-value for our data.
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Figure 3. Failure rates and breakdown causes for no

ECC and SECDED ECC, with varying Weibull shape

parameter for non-transient error distribution. Results

are for Section 4.3.

Thankfully, when the memory chips are considered iden-

tical, we can avoid this requirement. This is because in

any time interval, their probability of having an error is

the same, say q. Let N be the total number of memory

chips operating, then the actual number of errors happen-

ing in this period, X , will be a random variable which

conforms to binomial distribution: PN,q{X = k} =(
N
k

)
qk

(1 − q)N−k. When N is very large (we simulated

thousands of chips), we can approximate by assuming N

approaches infinity. In this case the binomial distribution

will turn into Poisson distribution. For the ease of cal-

culation, we shall use the form of Poisson distribution:

Pλ{X = k} =
e−λλk

k!
, where λ = q · N is the expecta-

tion of X .

Based on the analysis above and the observed er-

ror rates, we have calculated the 1% upper and lower

bounds. For instance, the transient error rate in non-

ECC memory system is 2006FIT as mentioned ear-

lier. The corresponding 1%-upper-bound and 1%-lower-

bound are 8429FIT and 149FIT respectively. The

bounds on the various manifested error rates, derived

from different raw error rates, are shown in Figure 4.

From left to right, the bars show the 1%-lower-bound, the

originally observed rate, and the 1%-upper-bound. As

can be seen, for manifestations caused by non-transient
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Figure 4. Manifested errors when input device-level

error rates are the originally observed and 1%-

lower/upper-bounds. Results are for Section 4.4.

errors, the two 1% bounds are roughly 2x to either direc-

tion of the observed rate. The ranges are narrow enough

such that they have little impact to the qualitative conclu-

sions.

For Chipkill ECC, the 1%-upper-bound offers a better

chance to observe failures in the outcome of our simu-

lation. With this increased rate, we finally produced a

few failure instances (note there were none for Chipkill

in the base simulations done in previous sub-sections).

The patterns of the failures are shown in Figure 4(C). All

of the failures here are caused by a transient error hitting

an existing non-transient chip error.

4.5 Summary

We summarize our results of this part of the study:

• In terms of the absolute failure rate, with no ECC

protection, error rates are at the level of thousands

of FIT per machine. SECDED ECC lowers the

rates to the neighborhood of 1000FIT per machine.

Chipkill ECC renders failure rates virtually negligi-

ble.

• Non-transient errors are significant (if not domi-

nant) causes for all cases that we evaluated. Partic-

ularly on SECDED ECC machines, manifested fail-

ures tend to be caused by row errors, row-column

errors, and whole-chip errors. With Chipkill ECC,

the few failures occur when a transient error hits

a memory device already inflicted with whole-chip

non-transient errors.

• In terms of the error patterns, word-wise multi-bit

failures are quite common.

Major implications of our results are that memory

hardware errors exert non-negligible effects on the sys-

tem dependability, even on machines equipped with

SECDED ECC. Further, system dependability studies

cannot assume a transient-error-only or single-bit-error-

only model for memory hardware errors.

5 Software System Susceptibility

A memory error that escaped hardware ECC correc-

tion is exposed to the software level. However, its cor-

rupted memory value may or may not be consumed by

software programs. Even if it is consumed, the soft-

ware system and applications may continue to behave

correctly if such correctness does not depend on the con-

sumed value. Now we shift our attention to the suscep-

tibility of software systems and applications to memory

errors. Specifically, we inject the realistic error patterns

from our collected traces and observe the software be-

haviors. Guided by the conclusion of Section 4, we also

take into account the shielding effect of ECC algorithms.

There is a rich body of prior research on software sys-

tem reliability or security regarding memory hardware

errors [11,14,24,26,31,33]. One key difference between

these studies and ours is that all of our analysis and dis-

cussions build on the realism of our collected error trace.

In this section, we tailor our software susceptibility eval-

uation in the context of recent relevant research with the

hope of validating, questioning, or augmenting prior re-

sults.

5.1 Methodology of Empirical Evaluation

Memory Access Tracking and Manipulation To run

real software systems on injected error patterns, we must

accomplish the following goals. First, every read ac-

cess to a faulty location must be supplied with an er-

roneous value following the injection pattern. This can

be achieved by writing the erroneous value to each in-

dividual faulty address at the time of injection. Second,

for every write access to a faulty location, if the error is

non-transient, we must guarantee the erroneous value is

restored right after the write. The injection is then fol-

lowed by error manifestation bookkeeping. The book-

keeping facility has to be informed whenever a faulty ad-

dress is accessed so that it would log some necessary in-

formation. The key challenge of such error injection and

information logging is to effectively track and manipu-

late all the accesses to locations injected with errors (or

tracked locations).

Traditional memory tracking approaches include:

• Hardware watchpoints [26]—employing hardware

memory watchpoints on tracked locations. Due to

the scarcity of hardware watchpoints on modern

processors, this approach is not scalable (typically

only able to track a fewmemory locations at a time).

• Code instrumentation [39]—modifying the binary

code of target programs to intercept and check

memory access instructions. This approach may in-

cur excessive overhead since it normally must inter-

cept all memory access instructions before know-

ing whether they hit on tracked memory locations.

Further, it is challenging to apply this approach on

whole-system monitoring including the operating

system, libraries, and all software applications.

• Page access control [39]—applying virtual memory

mechanism to trap accesses to all pages containing

tracked memory locations and then manipulating

them appropriately with accesses enabled. For this

approach, it is important to reinstate the page ac-

cess control after each page fault handling. This is

typically achieved by single-stepping each trapped

memory access, or by emulating the access within

the page fault handler. This approachmay also incur

substantial overhead on false memory traps since all

accesses to a page trigger traps even if a single lo-

cation in the page needs to be tracked.

We propose a new approach to efficiently track a large

number of memory locations. Our rationale is that al-

though the whole system may contain many tracked

locations exceeding the capacity of available hardware

watchpoints, tracked locations within an individual page

are typically few enough to fit. Further, the locality of

executions suggests a high likelihood of many consecu-

tive accesses to each page. By applying hardware watch-

points on tracked locations within the currently accessed

hot page, we do not have to incur false traps on accesses

to non-tracked locations within this page. At the same

time, we enforce access control to other pages contain-

ing tracked locations. When an access to one such page is

detected, we set the new page as hotspot and switch hard-

ware watchpoint setup to tracked locations within the

new page. We call our approach hotspot watchpoints. Its

efficiency can be close to that of hardware watchpoints,

without being subject to its scalability constraint. Note

that it is possible that tracked locations within a page still

exceed the hardware watchpoint capacity. If such a page

is accessed, we fall back to the memory access single-

stepping as in the page access control approach.

There is a chance for a single instruction to access

multiple pages with tracked locations. For example, an

instruction’s code page and its data page may both con-

tain tracked locations. If we only allow accesses to one

tracked page at a time, then the instruction may trap

on the multiple tracked pages alternately without mak-

ing progress—or a livelock. We detect such livelock by

keeping track of the last faulted program counter. Upon

entering the page-fault handler, we suspect a livelock if

the current faulting program counter address is the same

as the last one. In such a situation we fall back to the

memory access single-stepping while allowing accesses

to multiple tracked pages that are necessary. It is possible

that a recurring faulted program counter does not corre-

spond to an actual livelock. In this case, our current ap-

proach would enforce an unnecessary instruction single-

stepping. We believe such cases are rare, but if needed,

we may avoid this slowdown by more precise tracking of

execution progresses (e.g., using hardware counters).

We should also mention a relevant memory monitor-

ing technique called SafeMem [32], originally proposed

for detecting memory leaks and corruptions. With mod-

est modifications, it may be used for continual memory

access tracking as well. SafeMem exploits the mem-

ory ECC mechanisms to trap accesses to all cachelines

containing tracked locations. Because typical cacheline

sizes (32–256bytes) are smaller than the typical page

size of 4KB, false memory traps (those trapped memory

accesses that do not actually hit tracked locations) under

cacheline access control can be significantly fewer than

that under page access control. Nevertheless, our hotspot

watchpoints technique can further reduce the remaining

false memory traps. In this case, hardware watchpoints

will be set upon tracked locations within the current hot

cacheline (or cachelines) instead of the hot page.

Error Monitoring Architecture If the error injection

and monitoring mechanisms are built into the target sys-

tem itself (as in [26]), these mechanisms may not be-

have reliably in the presence of injected memory er-

rors. To avoid this potential problem, we utilize a vir-

tual machine-based architecture in which the target sys-

tem runs within a hosted virtual machine while the error
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injection and monitoring mechanisms are built in the un-

derlying virtual machine monitor. We enable the shadow

page table mode in the virtual machine memory man-

agement. Error injections only affect the shadow page

tables while page tables within the target virtual machine

are not affected. We also intercept further page table

updates—we make sure whenever our faulty pages are

mapped to any process, we will mark the protection bit

in the corresponding page table.

In order to understand software system susceptibility

to memory hardware errors, we log certain information

every time an error is activated. Specifically, we record

the access type (read or write), access mode (kernel or

user), and the program counter value. For kernel mode

accesses, we are able to locate specific operating system

functions from the program counter values.

System Setup and Overhead Assessment Our exper-

imental environment employs Xen 3.0.2 and runs the tar-

get system in a virtual machine with Linux 2.6.16 op-

erating system. We examine three applications in our

test: 1) the Apache web server running the static re-

quest portion of the SPECweb99 benchmarkwith around

2GB web documents; 2) MCF from SPEC CPU2000—a

memory-intensive vehicle scheduling program for mass

transportation; and 3) compilation and linking of the

Linux 2.6.23 kernel. The first is a typical server work-

load while the other two are representative workstation

workloads (in which MCF is CPU-intensive while ker-

nel build involves significant I/O).

We assess the overhead of our memory access tracking

mechanism. We select error pattern M8 (illustrated in

Figure 1), the one with most number of faulty bits in our

overhead assessment. This error pattern consists of 1053

faulty 32-bit long words scattered in 779 pages, among

which 668 pages contain only one erroneous word. Note

that in this overhead evaluation, we only specify the spots

to be tracked without actually flipping the memory bits.

So the correctness of system and application executions

should not be affected.

We compare the overhead of our approach to that of

page access control. Results in Figure 5 suggest that

our approach can significantly reduce the overhead com-

pared to the alternative page access control approach.

In particular, for Linux kernel build, our approach can

reduce the execution time by almost a factor of four.

The efficiency of our hotspot watchpoints approach also

makes it a promising technique to support other utiliza-

tion of memory access tracking [39] beyond the hard-

ware error injection in this paper. Across the three appli-

cations, kernel build incurs the greatest amount of slow-

down due to memory access tracking. We are able to

attribute much (about two thirds) of the slowdown to the

kernel function named vma merge whose code section
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Figure 5. Benchmark execution time of our hotspot

watchpoints approach, compared to the page access

control approach [39]. The execution time is normal-

ized to that of the original execution without memory

access tracking. The slowdown was evaluated with the

whole-chip error pattern of M8. Note for web server,

the execution time is for requesting all the 2 GB data in

a sweep-through fashion.

contains a tracked location. This function is triggered

frequently by the GNU compiler when performingmem-

ory mapped I/O.

5.2 Evaluation and Discussion

Evaluation on Failure Severity Two previous stud-

ies [11, 26] investigated the susceptibility of software

systems to transient memory errors. They reached simi-

lar conclusions that memory errors do not pose a signif-

icant threat to software systems. In particular, Messer et

al. [26] discovered that of all the errors they injected, on

average 20%were accessed, among which 74% are over-

written before being really consumed by the software. In

other words, only 5% of the errors would cause abnormal

software behaviors. However, these studies limited their

scope for single-bit transient errors only. Our findings in

Section 4 show non-transient errors are also a significant

cause of memory failures. When these errors are taken

into account, the previous conclusions may not stand in-

tact. For example, non-transient errors may not be over-

written, and as a result, a portion of the 74% overwritten

errors in [26] would have been consumed by the software

system if they had been non-transient.

Table 3 summarizes the execution results of our three

benchmark applications when non-transient errors are in-

jected. Since our applications all finish in a short time (a

few minutes), we consider these non-transient errors as

permanent during the execution. In total we had 12 dif-

ferent error patterns. M3 and M5 are transient errors and

therefore we do not include them in this result. M8 is so

massive that as soon as it is injected, the OS crashes right

away. We also exclude it from our results.

Application Web server MCF Kernel build

No ECC

M1 (row-col error) WO AC AC

M2 (row error) OK

M4 (bit error) OK

M6 (chip error) KC WO AC

M7 (row error) WO WO

M9 (row error) OK

M10 (bit error) OK

M11 (bit error)

M12 (col error) WO

SECDED ECC

M1 (row-col error) WO WO AC

M7 (row error) WO WO

Table 3. Error manifestation for each of our three appli-

cations. The abbreviations in the table should be inter-

preted as follows, with descending manifestation sever-

ity: KC—kernel crash; AC—application crash; WO—

wrong output; OK—program runs correctly. The blank

cells indicate the error was not accessed at all.

The table includes results for both cases of no ECC

and SECDED ECC. Since errors are extremely rare on

Chipkill machines (see conclusions of Section 4), here

we do not provide results for Chipkill. For no ECC,

briefly speaking, out of the 27 runs, 13 have accessed

memory errors and 8 did not finish with expected cor-

rect results. This translates to 48% of the errors are acti-

vated and 62% of the activated errors do lead to incorrect

execution of software systems. In the SECDED case,

single-bit errors would be corrected. Most errors (except

M1 and M7) are completely shielded by the SECDED

ECC. However, for the six runs with error patterns M1

andM7, five accessed the errors and subsequently caused

abnormal behaviors.

Overall, compared to results in [26], non-transient er-

rors evidently do cause more severe consequences to

software executions. The reason for the difference is

twofold— 1) non-transient errors are not correctable by

overwriting and 2) unlike transient errors, non-transients

sometimes involve a large number of erroneous bits. To

demonstrate reason #1, we show in Table 4, when these

errors are turned into transient ones (meaning they can

be corrected by overwritten values), quite a few of the

execution runs would finish unaffected.

Validation of Failure-Oblivious Computing This

evaluation study attempts to validate the concept of

failure-oblivious computing [33] with respect to memory

hardware errors. The failure-oblivious model is based

on the premise that in server workloads, error propaga-

tion distance is usually very small. When memory er-

rors occur (mostly they were referring to out-of-bound

Application Web server MCF Kernel build

No ECC

M1 (row-col error) WO AC OK

M2 (row error) OK

M4 (bit error) OK

M6 (chip error) KC OK OK

M7 (row error) WO OK

M9 (row error) OK

M10 (bit error) OK

M11 (bit error)

M12 (col error) WO

SECDED ECC

M1 (row-col error) WO OK OK

M7 (row error) WO OK

Table 4. Error manifestation for each of our three ap-

plications, when the errors are made transient (thus

correctable by overwrites). Compared to Table 3, many

of the runs are less sensitive to transient errors and

exhibit no mis-behavior at the application level.

memory accesses), a failure-oblivious computing model

would discard the writes and supply the read with arbi-

trary values and try to proceed. In this way the error

occurred will be confined within the local scope of a re-

quest and the server computation can be resumed without

being greatly affected.

The failure-oblivious concept may also apply to mem-

ory hardware errors. It is important to know what the

current operating system does in response to memory er-

rors. Without ECC, the system is obviously unaware of

any memory errors going on. Therefore it is truly failure-

oblivious. With ECC, the system could detect some of

the uncorrectable errors. At this point the system can

choose to stop, or to continue execution (probably with

some form of error logging). The specific choices are

configurable and therefore machine dependent.

For our web server workload, we check the integrity

of web request returns in the presence of memory errors.

Table 5 lists the number of requests with wrong contents

for the error cases. We only show error cases that trigger

wrong output for the web server (as shown in Table 3).

The worst case is M1, which caused 15 erroneous request

returns (or files with incorrect content). However, this is

still a small portion (about 0.1%) in the total 14400 files

we have requested. Our result suggests that, in our tested

web server workload, memory-hardware-error-induced

failures tend not to propagate very far. This shows the

promise of applying failure-oblivious computing in the

management of memory hardware errors for server sys-

tems.

Discussion on Additional Cases Though error testing

data from the industry are seldom published, modern
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No ECC

M1 (row-col error) Wrong output (15 requests)

M7 (row error) Wrong output (2 requests)

M12 (col error) Wrong output (1 request)

SECDED ECC

M1 (row-col error) Wrong output (8 requests)

M7 (row error) Wrong output (1 request)

Table 5. Number of requests affected by the errors in

SPECweb99-driven Apache web server. We only show

error cases that trigger wrong output for the web server

(as shown in Table 3). We request 14400 files in the

experiment.

commercial operating systems do advocate their coun-

termeasures for faulty memory. Both IBM AIX [18] and

Sun Solaris [38] have the ability to retire faulty mem-

ory when the ECC reports excessive correctable mem-

ory errors. Our results suggest that with ECC protection,

the chances of errors aligning together to form an uncor-

rectable one is really low. However, this countermeasure

could be effective against those errors that gradually de-

velop into uncorrectable ones by themselves. Since our

data does not have timestamps for most of the error in-

stances, it is hard to verify how frequently these errors

occur. On Chipkill machines [18], however, this coun-

termeasure seems to be unnecessary since our data shows

that without any replacement policy, Chipkill will main-

tain the memory failure rate at an extremely low level.

A previous security study [14] devised a clever attack

that exploits memory errors to compromise the Java vir-

tual machine (JVM). They fill the memory with pointers

to an object of a particular class, and through an acci-

dental bit flip, they hope one of the pointers can point

to an object of another class. Obtaining a class A pointer

actually pointing to a class B object is enough to compro-

mise the whole JVM. In particular, they also provided an

analysis of the effectiveness of exploiting multi-bit er-

rors [14]. It appears that they can only exploit bit flips in

a region within a pointer word (in their case, bit 2:27 for

a 32-bit pointer). In order for an error to be exploitable,

all the bits involved must be in the region. The proba-

bility that they can exploit the error decreases with the

number of erroneous bits in the word. Considering that

the multi-bit errors in our collected error trace are mostly

consecutive rather than distributed randomly, we can be

quite optimistic about successful attacks.

Another previous study [31] proposed a method to

protect critical data against illegal memory writes as well

as memory hardware errors. The basic idea is that soft-

ware systems can create multiple copies of their critical

data. If a memory error corrupts one copy, a consistency

check can detect and even correct such errors. The ef-

ficacy of such an approach requires that only one copy

of the critical data may be corrupted at a time. Using

our collected realistic memory error patterns, we can ex-

plore how the placement of multiple critical data copies

affects the chance for simultaneous corruption. In partic-

ular, about half of our non-transient errors exhibit regu-

lar column or row-wise array patterns. Therefore, when

choosing locations for multiple critical data copies, it is

best to have them reside in places with different hardware

row and column addresses (especially row addresses).

6 Related Work

The literature on memory hardware errors can be

traced back over several decades. In 1980, Elkind

and Siewiorek reported various failure modes caused by

low-level hardware fault mechanisms [13]. Due to the

rareness of these errors, collecting error samples at a rea-

sonable size would require a substantial amount of time

and resource in field tests. Such field measurements have

been conducted in the past (most notably by Ziegler at

IBM) [29, 30, 43, 45]. These studies, however, have ex-

clusively dedicated to transient errors and single-bit error

patterns. Our previous study on transient error rates [25]

also falls into this category.

Studies that cover non-transient errors are relatively

few. In 2002, Constantinescu [10] reported error

collection results on 193 machines. More recently,

Schroeder et al. [35] examinedmemory errors on a larger

number of servers from six different platforms. The large

dataset enabled them to analyze statistical error correla-

tions with environmental factors such as machine tem-

perature and resource utilization. However, these studies

provide no detail on error addresses or any criteria for

categorizing transient and non-transient errors. Such re-

sults are essential for the error manifestation analysis and

software susceptibility study in this paper.

Previous research has investigated error injection ap-

proaches at different levels. Kanawati et al. [21] altered

target process images from a separate injection process

that controls the target using ptrace calls. This is a user-

level method that cannot inject errors to the operating

system image. Li et al. [24] injected errors into hardware

units using a whole-system simulator. This approach al-

lows failure analysis over the whole system but the slow

simulator speed severely limits the analysis scale.

Several studies utilized debugging registers for error

injection at close-to-native speed. Gu et al. [15] fo-

cused on injecting faults in instruction streams (rather

than memory error injection in our study). Carreira et

al. [9] resorted to external ECC-like hardware to track

the activation of memory errors whereas our approach

is a software-only approach and therefore it can be ap-

plied on off-the-shelf hardware. In addition, they cannot

monitor non-transient errors without completely single-

stepping the execution. Messer et al. [26] also targeted

transient errors. And their direct use of the watchpoint

registers limited the number of simultaneously injected

errors. In contrast, our hotspot watchpoint technique

allows us to inject any number of transient and non-

transient errors at high speed.

7 Conclusion

Memory hardware reliability is an indispensable part

of whole-system dependability. Its importance is evi-

denced by a plethora of prior studies of memory error’s

impact on software systems. However, the absence of

solid understanding of the error characteristics prevents

software system researchers from making well reasoned

assumptions, and it also hinders the careful evaluations

over different choices of fault tolerance design.

In this paper, we have presented a set of memory

hardware error data collected from production computer

systems with more than 800GB memory for around

9 months. We discover a significant number of non-

transient errors (typically in the patterns of row or col-

umn errors). Driven by the collected error patterns and

taking into account various ECC protection schemes, we

conducted a Monte Carlo simulation to analyze how er-

rors manifest at the interface between the memory sub-

system and software applications. Our basic conclusion

is that non-transient errors comprise a significant por-

tion of the overall errors visible to software systems. In

particular, with the conventional ECC protection scheme

of SECDED, transient errors will be almost eliminated

while only non-transient memory errors may affect soft-

ware systems and applications.

We also investigated the susceptibility of software sys-

tem and applications to realistic memory hardware er-

ror patterns. In particular, we find that the earlier re-

sults that most memory hardware errors do not lead to

incorrect software execution [11, 26] may not be valid,

due to the unrealistic model of exclusive transient er-

rors. At the same time, we provide a validation for

the failure-oblivious computing model [33] on a web

server workload with injected memory hardware errors.

Finally, as part of our software system susceptibility

study, we proposed a novel memory access tracking tech-

nique that combines hardware watchpoints with coarse-

grained memory protection to simultaneously monitor

large number of memory locations with high efficiency.
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Abstract
UCop, the “utility coprocessor,” is middleware that

makes it cheap and easy to achieve dramatic speedups
of parallelizable, CPU-bound desktop applications using
utility computing clusters in the cloud. To make UCop
performant, we introduced techniques to overcome the
low available bandwidth and high latency typical of the
networks that separate users’ desktops from a utility
computing service. To make UCop economical and easy
to use, we devised a scheme that hides the heterogene-
ity of client configurations, allowing a single cluster to
serve virtually everyone: in our Linux-based prototype,
the only requirement is that users and the cluster are us-
ing the same major kernel version.

This paper presents the design, implementation, and
evaluation of UCop, employing 32–64 nodes in Amazon
EC2, a popular utility computing service. It achieves
6–11× speedups on CPU-bound desktop applications
ranging from video editing and photorealistic rendering
to strategy games, with only minor modifications to the
original applications. These speedups improve perfor-
mance from the coffee-break timescale of minutes to the
15–20 second timescale of interactive performance.

1 Introduction

The hallmark that separates desktop computing from
batch computing is the notion of interactivity: users can
see their work in finished form as they go. However,
many CPU-intensive applications that are best used inter-
actively, such as video editing, 3D modeling, and strat-
egy games, can be slow enough even on modern desktop
hardware that the user experience is disrupted by long
wait times. This paper presents the Utility Coproces-
sor (UCop), a system that dramatically speeds up desk-
top applications that are CPU-bound and parallelizable
by supplementing them with the power of a large data-
center compute cluster. We demonstrate several applica-
tions and workloads that are changed in kind by UCop:

slow jobs that take several minutes without UCop be-
come interactive (15–20 seconds) with it. Thanks to
the recent emergence of utility-computing services like
Amazon EC2 [8] and FlexiScale [45], which rent com-
puters by the hour on a moment’s notice, anyone with a
credit card and $10 can use UCop to speed up his own
parallel applications.

One way to describe UCop is that it effectively con-
verts application software into a scalable cloud service
targeted at exactly one user. This goal entails five re-
quirements. Configuration transparency means the ser-
vice matches the user’s application, library, and con-
figuration state. Non-invasive installation means UCop
works with a user’s existing file system and application
configuration. Application generality means a developer
can easily apply the system to any of a variety of applica-
tions, and ease of integration means it can be done with
minimal changes to the application. Finally, the system
must be performant.

UCop achieves these goals. To guarantee that the clus-
ter uses exactly the same inputs as a process running on
the client, it exclusively uses clients’ data files, applica-
tion images, and library binaries; the cluster’s own file
system is not visible to clients. The application exten-
sion is a simple user-mode library that can be installed
easily and non-invasively. We demonstrate UCop’s gen-
erality by applying it to the diverse application areas
of 3D modeling, strategy games, and video editing; we
also describe six other suitable application classes. Fi-
nally, UCop is easy to integrate: with our 295-line patch
to a video editor, users can exploit a 32-node cluster
(at $7/hour), transforming three-minute batch workflow
for video compositing into 15-second interactive WYSI-
WYG display.

The biggest challenge in splitting computation be-
tween the desktop and the cloud is achieving good per-
formance despite the high-latency, low-bandwidth net-
work that separates them. It is dealing with this chal-
lenge that most distinguishes our work from past “depart-
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ment clusters,” such as NOW [9], MOSIX [12], and Con-
dor [40], which assume users and compute resources are
colocated and connected by a fast network. UCop com-
bines a variety of old and new techniques to address net-
working issues. To reduce latency penalties, we carefully
relax the file consistency contract and use automatic pro-
filing to send cache validation information to the server
before it is needed. To reduce bandwidth penalties,
we use remote differential compression. A library-level
multiplexer on the cluster end of the link scales the ef-
fects of these techniques across many servers. This com-
bination reduces UCop’s overhead for remotely running
a process (assuming most of its dependencies are cached
in the cloud) down to just a few seconds, even on links
with latencies of several hundred milliseconds.

Of course, it makes little sense to pay a remote-
execution overhead of a few seconds for a computation
that could be done locally in less time. UCop is also
not practical for tasks that are I/O bound, or for multi-
threaded applications with fine-grained parallelism. In
other words, UCop will not speed up an Emacs session or
reduce the wait while Outlook indexes incoming email.
However, there is an important class of desktop applica-
tions that are both CPU-bound and parallelizable; UCop
enhances such applications less invasively and at more
interactive timescales than existing systems.

The contributions of this paper are:

• We identify a new cluster computing configuration:
remote parallelization for interactive performance,
which provides practical benefit to independent, in-
dividual users.

• We identify the primary challenges of this new con-
figuration: the latency and bandwidth constraints of
the user’s access link.

• We introduce prethrowing and task-end-to-start
consistency as techniques for dealing with that link.

• We add remote differential compression, a cluster-
side multiplexer, and a shared cache, resulting in
a system that can invoke a wide parallel computa-
tion using just four round-trip latencies and minimal
bandwidth.

• We show our system is performant, easy to deploy,
and can readily adapt existing programs into paral-
lel services running in the cloud.

We begin with a review of related work in §2. §3
describes UCop’s architecture and implementation, and
§4 describes UCop applications. §5 has several evalu-
ations: microbenchmarks (§5.1), end-to-end application
benchmarks (§5.2), a decomposition of each optimiza-
tion’s effect (§5.3), a sensitivity analysis to latency and

bandwidth (§5.4), and an analysis of the optimized sys-
tem’s time budget (§5.5). Finally, §6 concludes.

2 Prior Work

UCop bears similarity to prior research on computa-
tional clusters, grids, process migration, network file sys-
tems, and parallel programming models.

Computational clusters are collections of computers
that are typically homogeneously configured, geograph-
ically close, and either moderately or very tightly cou-
pled. Sprite [32] is a distributed operating system that
provides a network file system, process-migration facil-
ities, and a single system image to a cluster of worksta-
tions. MOSIX [12] is a management system that runs on
clusters of x86-based Linux computers; it supports high-
performance computing for both batch and interactive
processes via automatic resource discovery and dynamic
workload distribution. Condor [40] is a software frame-
work that runs on Linux, Unix, Mac OS X, FreeBSD, and
Windows, and supports the parallel execution of tasks on
tightly coupled clusters or idle desktop machines. The
Berkeley NOW [9] system is a distributed supercomputer
running on a set of extremely tightly coupled worksta-
tions interconnected via Myrinet. Cluster systems have
been applied to interactive applications, including some
of those we consider in §4, such as compilation [28] and
graphics rendering [25]. However, for transparent paral-
lelization, clusters require the client to be one of the ma-
chines in the cluster, requiring invasive installation. By
contrast, in the UCop system architecture, the client is ar-
bitrarily configured, geographically remote, and largely
decoupled from the cluster.

Computational grids [19] are collections of comput-
ers that are loosely coupled, heterogeneously configured,
and geographically dispersed. Grid systems comprise a
large body of work, encompassing various projects (e.g.,
the Open Science Grid [20] and EGEE [3]), standards
(e.g., WSRF [11]), recommendations (e.g., OGSA [20]),
and toolkits (e.g., Globus [18] and gLite [5]). Although
the majority of work on grid systems is focused on batch
processing, there has been some limited research into
adding interactivity to grid systems. IC2D [14] is a
graphical environment for monitoring and steering ap-
plications that employ the ProActive Java library. I-
GASP [13] is a system that provides grid interactivity
via a remote shell and desktop. It also includes mid-
dleware for matching applications to their required re-
sources, which is considered by some [38] to be a criti-
cal problem for satisfying the quality-of-service require-
ments of interactive applications. The DISCOVER [27]
system provides system-integration middleware and an
application-control network to support runtime moni-
toring and steering of batch applications. The Interac-
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tive European Grid project [6] provides many services
intended to support interactivity, including a migrating
desktop, complex visualization services, job scheduling,
and security services [34]. However, none of this work
supports interactive applications per se, but rather pro-
vides mechanisms for interactively monitoring and ma-
nipulating a long-running distributed computation.
For a few specific types of applications, there ex-

ist massively parallel dedicated services that achieve in-
teractive responsiveness to geographically remote, de-
coupled client machines. Amazon’s Dynamo sys-
tem employs hundreds of machines to provide real-
time response to e-commerce transactions initiated by
clients [16]. Google and other search engines perform
brief bursts of highly parallel computation to answer
clients’ search queries [15]. SABRE and other on-
line reservation systems provide clients with near-instant
searching and booking for travel options [10]. However,
these specialized services do not support arbitrary paral-
lel applications, nor do they support applications whose
authoritative state resides on the client machine.

Research on process migration is extensive; several
surveys of this extensive body of work have been pub-
lished [29, 31, 37]. To our knowledge, no prior work
combines mechanisms and techniques as UCop does,
and none of it achieves the same set of benefits. More-
over, the prior systems that are architecturally closest to
UCop are not process-migration systems but network file
systems. In a sense, UCop is a network file system in
which the user’s machine is the file server, tuned for a
specific usage scenario.

Sun’s NFS [36] is a basic network file system; in the
UCop context, NFS’s chatty protocol would make highly
inefficient use of the high-latency connection between
the client and the datacenter. The Andrew File System
(AFS) [23] and Coda [26] avoid chattiness by employ-
ing leases [22]. However, leases require the ability to
inspect the effect of every file system operation, which
would greatly impinge on our goal of non-invasive instal-
lation; rather than simply installing a new applications,
users would have to start using a new file system. UCop’s
prethrowing (§3.3) achieves the same performance ben-
efits as leases without modifying the underlying file sys-
tem.

The Low Bandwidth File System (LBFS) [30] is
specifically aimed at improving performance over low-
bandwidth WAN links. It employs caching, differen-
tial compression, and stream compression, in much the
same manner as UCop does to minimize bandwidth us-
age (§3.4). As a general remote file system, LBFS lacks
crucial optimizations for the UCop context, including our
task-based consistency model, coalescing of tasks into
jobs, cache sharing, and a library interface, all of which
we show to be critical to achieving interactive perfor-

mance (§5.3). In addition, LBFS uses leases instead of
prethrowing, so the machine that holds the authoritative
files (the server in LBFS terms, but the client in UCop
terms) must store its files using the Arla [44] AFS client.
This would require invasive installation in our scenario.

Involved parallel programming models, such as the
Parallel Virtual Machine (PVM) [39] and the Message
Passing Interface (MPI) [17], serve more tightly-coupled
parallel applications. However, these are mechanisms for
writing new applications. UCop’s simple model, while
less general, offers much easier integration for existing
applications, even those not designed to exploit a cluster.

3 The Utility Coprocessor

In this section, we describe the design and implemen-
tation of the Utility Coprocessor. Sections 3.1 and 3.2
describe the programming model, and outline our im-
plementation of its execution environment. We then de-
scribe the optimizations required to achieve good perfor-
mance over a high-latency, low-bandwidth network link.

3.1 Programming model
We had several goals in designing UCop’s program-

ming model: simplicity for developers, generality across
applications and operating system configurations, and
good performance over slow links.

One of the mechanisms UCop uses to achieve these
goals is location independence: applications can launch
remote processes, each of which has the same effect
as if it were a local process. Suppose an application’s
work can be divided among a set of child processes, each
of which communicates with the parent through the file
system or standard I/O. UCop provides a command-line
utility, remrun, that looks like a local worker process,
but is actually a proxy for a remotely running process.
A simple change from exec("program -arg")
to exec("remrun program -arg") provides the
same semantics to the application while offloading the
compute burden from the client CPU.

The consistency contract is simple: each child pro-
cess is guaranteed to see any changes committed to the
client file system before the child was launched, and any
changes it makes will be committed back to the file sys-
tem before the child terminates. Thus, dependencies
among sequential children, or dependencies from child
to parent, are correctly preserved. We refer to this con-
tract as task-end-to-start consistency semantics. Because
this contract applies to the entire file system, remote pro-
cesses see all the same files as local client processes,
including the application image, shared library binaries,
system-wide configuration files, and user data.
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When remrun is used to launch a proxy child pro-
cess, it transmits an exec message to the cluster that in-
cludes remrun’s command line arguments and environ-
ment variables. The cluster picks a worker node and
launches a worker process with the specified arguments
and a replicated set of environment variables, chrooted
into a private namespace managed by the UCop daemon
(via the FUSE user-space file system framework [4]). On
each read access to an existing file, UCop faults the file
contents from the client; on each write to a non-existing
file name, UCop creates the file in a buffer local to the
node’s file system. To prevent violations of task-end-
to-start semantics from failing silently, UCop disallows
writes to existing files. Standard input and output are
shuttled between the client proxy process and the cluster
worker process. When the worker process exits, UCop
sends any surviving created files to the client. It also
sends the process exit status; the client proxy process
exits with the same status.

An example best illustrates how UCop provides loca-
tion independence. When compiling a single source file,
UCop’s remrun gcc hello.c produces an output
file identical to a locally run gcc hello.c, because
the remote version

• has the same $PATH as the client, and sees the same
directories, so uses the same gcc;

• sees the same environment, including
$LD LIBRARY PATH (shared library search
path) and $LANG (localization);

• runs gcc in the same working directory, and thus
finds the correct hello.c;

• finds the same compiler configuration and system
include files; and

• writes all its output to the the client file system in
the same place as if it had run locally.

Contrast this approach to other remote execution sys-
tems. Application-specific clusters such as compile and
render clusters [33, 35] must be configured with a ver-
sion of the compiler or renderer that matches that on
the client. Grid and utility computing clusters standard-
ize on a configuration, requiring the client configuration
to conform. Process migration systems such as NOW,
Condor, and MOSIX assume that user and worker ma-
chines have a network-shared /home and identical soft-
ware configurations—for example, so that a dynamically
linked executable built on a user’s machine can find its
shared libraries when it executes on the cluster.

The Utility Coprocessor is meant to be used by dis-
parate independent users. No single configuration is
ideal; various users sharing a cluster may have conflict-
ing configurations. The semantics presented here hide

these conflicts. Each UCop worker process mimics the
client computer, and a single cluster may do so simul-
taneously across users and applications. As we show
in §5.1.2, different Linux distributions can transparently
use the same UCop cluster without any explicit pre-
configuration. Our UCop cluster, which happens to use
GNU libc 2.3.6, never exposes its own libraries to client
applications. We have demonstrated applications that ex-
pect glibc versions as old as 2.3 and as new as 2.9.

3.2 Limitations on location independence
UCop’s location-independent compute model does

have limits: it extends only to the file system, envi-
ronment variables, process arguments, and standard I/O
pipes. Programmers UCopifying an application need to
be aware of these limits. As we will show, these limits
are not stumbling blocks in practice; a variety of appli-
cations can be UCopified easily.

Because UCop supports no interprocess communica-
tion other than standard I/O pipes, it precludes tightly-
coupled computations in which concurrent child pro-
cesses synchronize with each other using shared mem-
ory, signals, or named pipes. Some of the applications
we adapted to UCop used an unsupported mechanism;
our modifications primarily involved rerouting this com-
munication through the file system (see §4).

Another limitation is that the kernel seen by a remote
process is that of the cluster’s worker machine, not the
user’s client. This is significant for two reasons. First, the
semantics of system calls change slightly between kernel
versions. Our application tests have not yet revealed any
failures due to such a kernel incompatibility, but they are
likely in code that is tightly coupled with the kernel. Sec-
ond, there will be detectable differences in the machine-
local state exposed by the kernel, such as process lists
and socket state. UCop hides most of /dev and /proc
from workers, exposing only commonly-used pseudo-
devices such as /dev/null and /proc/self; the
latter supports commonly-used idioms for finding load-
able modules using a path relative to the currently exe-
cuting image’s path.
Finally, regular files on the client machine appear on

the remote machine as symbolic links to files named by
a hash of their contents. This is a workaround for a per-
formance problem discussed in §5.1.3. It has little effect
on most programs in practice.

3.3 Minimizing round trips
At this point, we have a basic system model with se-

mantics suitable for the class of applications we aim
to support. However, a straightforward implementation
would perform poorly on a high-latency, low-bandwidth
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link. We turn now to the problem of using that link ef-
ficiently by minimizing round-trip and bandwidth costs,
starting with the former.

An obvious requirement for reasonable performance is
to cache file contents near the cluster. The classic ques-
tion is how to ensure that cached content is fresh. Neither
frequent validation (à la NFS [36]) nor leases (à la AFS
[23] or Coda [26]) are compatible with UCop’s require-
ments, as detailed in §2.

Prethrow. Consistency semantics require that, for
each path a worker touches during its run, we communi-
cate the mutable binding from path to file attributes and
content. A naı̈ve implementation might ask the client for
each binding on-demand, requiring one round-trip per
file. We observe almost all paths touched by an applica-
tion are libraries and configuration data touched on every
run, making them easy to predict. Rather than wait for
workers to request path information serially, the client
sends a batch of path information likely to be useful be-
fore execution starts. We call this a prethrow—like a
prefetch, but initiated by the sender. A prethrow is a hint:
it can improve performance but does not change seman-
tics if the prediction is wrong.

The client maintains sets of accessed paths, indexed
by the first argument to exec. This way, the set for the
3D modeling program is maintained separately from that
for the video editor. UCop prethrows only those paths
that have been accessed more than once, to prevent pollu-
tion of the prethrow list by temporary files from previous
runs. Currently, paths do not expire out of the prethrow
list; in future versions, the server will provide a list of
useless prethrows to the client after execution, to help
the client decide which paths should expire.

One potential limitation of indexing by executable
name is that UCop does not distinguish between two dif-
ferent programs invoked via the same interpreter (e.g.,
Python). UCop may therefore send information about
paths that are not relevant. Because prethrows are hints,
compact, and cachable (§3.5), this has not been a prob-
lem in practice.

3.4 Minimizing bandwidth
In a bandwidth-constrained environment, caching is

critical. We adopt the well-known approach of caching
by immutable hash, so that if a block of data is referred
to by multiple names we only have to transmit it once.

Remote differential compression. Whole-file
caching works well for files that change rarely, such
as application binaries. However the user’s input often
changes slightly between UCop invocations. For exam-
ple, a video editor’s edit decision list (EDL) is a compact
representation of the user’s proposed manipulations to a
set of (unchanging) video input files. The EDL changes

File foo.c
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Block F93

Block 68C

byte 0

byte n

Recipe 29D

E1A
F93
68C

Read/Write

Figure 1: Objects in UCop’s file synchronization protocol. To
make the illustration compact, 20-byte SHA-1 hashes are rep-
resented by three hexadecimal digits.

foo.c RecipeName?

foo.c = 29D

Recipe 29D?

Client
Machine

Compute
Server

Time

E1A
F93
68C

Figure 2: File transfer protocol with cold caches. To make the
illustration compact, 20-byte SHA-1 hashes are represented by
three hexadecimal digits.

slowly, at keyboard and mouse bit rates. Remote dif-
ferential compression (RDC), used by LBFS [30] and
rsync [42], is useful in this scenario. RDC detects which
parts of a file are already cached and transmits only a
small region around each changed part.
To understand our use of RDC, we first introduce some

terminology (Figure 1). UCop uses the rsync fingerprint
algorithm to divide all files’ contents into blocks with
offset-insensitive boundaries. (We plan future support
for LBFS, which is more robust to modifications.) It then
constructs a recipe for each file: a list of its constituent
blocks’ hashes, plus the file’s permissions and ownership
fields. This recipe can itself be large, so we often com-
pactly refer to it by its hash, called a RecipeName.
UCop rolls whole-file caching and RDC into a sin-

gle mechanism (Figure 2). Worker nodes resolve each
application-requested path to a RecipeName, first by
checking prethrows, then making a request to the client.
If the worker recognizes the RecipeName, it knows that it
already has the whole file cached. Otherwise, it requests
the recipe, then any blocks from that recipe it lacks.

Stream compression. After RDC, the number of
bytes that still must be transmitted can often be reduced
using conventional compression. UCop compresses its

5
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channels with zlib.
Cache sharing. Multiple worker processes virtually

always share files, such as the C library. It is wasteful
for the client to send this data to each worker over the
bottleneck link. Cluster nodes are interconnected with a
high bandwidth network, so it is better for the client to
send each file once to a cache shared by all workers.

We implemented this scheme by introducing a distrib-
utor node, called remdis. Remdis has a pass-through in-
terface: it accepts jobs from the client as if it were a (fast)
cluster node, and submits jobs to workers as if it were a
client. Remdis forwards most messages in both direc-
tions without modification. However, it intercepts file
system requests, interposing its own cache. Duplicate
requests for the same content are suppressed, ensuring
that no unique block is sent over the bottleneck link more
than once. The Remdis cache does not change consis-
tency semantics because RecipeNames and content block
hashes describe immutable content.

In our experiments, remdis began to become a bottle-
neck at around 64–128 nodes. Because of its simple in-
terface, however, it would be straightforward to build a
32-wide tree of remdis nodes to extend the distribution
function to higher scales.

Job consistency. Computing and sending a prethrow
message requires the client to look up the modification
times of hundreds of files and transmit a few tens of
KiB across the bottleneck link. Invoking n tasks in-
curs these costs n times. On the other hand, using the
same prethrow message for all tasks, sent once and re-
broadcast by remdis, reduces the prethrow cost by a fac-
tor of n.

Of course, reusing a single prethrow message violates
our consistency model. If a file changes between when
Task A and Task B are launched, but B uses A’s prethrow
message, B will see the file used by A, which is now
stale. This is not a problem for groups of tasks that have
no interdependencies; we call such a collection of tasks
a job. UCop has support for job-end-to-start consistency
semantics: each task sees any changes committed to the
client file system before its enclosing job was launched.
Applications that can operate with these semantics group
tasks into jobs and generate one prethrow for each job.
Other than make, all of the applications we deployed
bundle their tasks into a job.

3.5 Client-side optimizations
The following two optimizations are performed on the

client and thus involve no changes to the protocol.
Recipe caching. Constructing a recipe on the client

is fast. However, some applications require hundreds of
recipes, and the client can not generate a prethrow until
it has them all. Thus, the client caches recipes, along

with the last-modified time (mtime) of the underlying
file. When a recipe is needed, the client uses the cached
version if the file’s mtime has not changed. For one ap-
plication, this optimization saves the client from hash-
ing 93 MiB of content, saving seconds of computation
(see §5.3).

Thread interface. The remrun command-line utility
lets applications divide their work in a natural way, creat-
ing what seem to be local worker processes but are actu-
ally proxies for remote processes. This elegance makes
it trivial to expose remote execution opportunities in sys-
tems like make. However, simply launching 32 or 64
local processes can take several seconds, particularly on
low-end desktop machines. This can consume a signifi-
cant fraction of our budget for interactive responsiveness.

Thus, we added a remrun() library interface. A
client that wants n remote processes can spawn n threads
and call remrun() from each; the semantics are identi-
cal to spawning instances of the command-line version.
The library obviates the need for extra local processes in
exchange for a slightly more invasive change to the ap-
plication.

3.6 Summary
In the common case, UCop incurs four round trips:

the necessary one, plus three more to fault in changed
user input. (We believe it is possible to eliminate all but
a single RTT; see §5.5.2.) UCop also uses bandwidth
sparingly. It uploads only one copy of the path attributes
required by our consistency model, the per-task parame-
ters with duplication compressed away, and the changed
part of the job input. It downloads only the output data
and the exit codes of the tasks.

Together, these optimizations compose an algorithm
that attaches to application code with a simple inter-
face, yet minimizes both round trips and bandwidth
on the high-latency, low-bandwidth link. UCop effec-
tively transforms software not originally designed for
distributed computation into an efficient, highly parallel
application service targeted at a single user.

4 Applications

In this section, we describe various classes of applica-
tions that work well with UCop. We first describe four
applications we have already ported (with performance
evaluations to come in §5.2). We then describe other suit-
able application categories.

4.1 Make
The process of adapting software to UCop is best ex-

plained by starting with a simple example: make, the

6

automatic software build tool. The user’s rules in the
Makefile file tell make how to transform input files
into output files, e.g., by invoking gcc. make assumes
that when a command completes, the output file has
been generated, and it is safe to launch a new command
that depends on that output. That is, make assumes
task-end-to-start consistency. Therefore, one can replace
gcc with remrun gcc—literally, in the Makefile
definitions—to push each compilation out to UCop. Ad-
ditionally, make has a built-in facility for exploiting par-
allelism intended to exploit a local multiprocessor: make
-j 20 launches up to 20 concurrent processes that have
no mutual ordering constraints. With remrun, those
concurrent compiles are delegated to the UCop cluster.

Adapting make to UCop is trivial since it was de-
signed to expose parallel work as separate processes
communicating through the file system. For the mono-
lithic applications we describe next, minor modification
is required to expose concurrency as separate processes.

4.2 Blender
Blender [1] is a 3D modeling, animation, and ren-

dering program written in C and C++. A common us-
age mode is to interactively build a model using a real-
time wire-frame or shaded model; then, to refine details
and lighting, the user requests a ray-traced photorealistic
rendering. Since ray tracing is embarrassingly parallel,
Blender has a built-in facility for exploiting local mul-
tiprocessing. Specifically, it can be easily configured to
render different tiles of a scene in different threads, each
accessing the current world model via shared memory.

Blender also includes a notion of a render cluster that
can batch-process an animation. To use it, the user must
configure a cluster with software matching her current
version of Blender, with a network-mounted shared file
system such as NFS, accessible over a high-bandwidth
and low-latency network.

UCop can transform Blender’s minutes-long batch-
style frame render into an interactive-speed preview. We
modified Blender’s preview code to write the current 3D
model to a temporary file, split the frame into very small
(8-pixel-wide) tiles and dispatch a random subset of tiles
to each worker node. The randomization reduces the in-
efficiency introduced by inter-task variance; without it,
worker processes responsible for complex portions of the
scene don’t finish rendering until long after other work-
ers have gone idle. As each worker completes, it writes
its JPEG output tiles back to the file system. The parent
UI process waits for the children; as each returns, the
tiles are read and displayed, generating a preview that is
gradually completed. These changes comprise 167 state-
ments.

One unfortunate property of Blender is its unstable

model file format: The temporary model file differs sub-
stantially from one render to the next, even when the
model is unchanged. Therefore, even minor changes
to the viewpoint or model require relatively large up-
dates. UCop’s remote differential compression (§3.4) is
able to eliminate all but 11% of the differences. With
warm caches, render requests typically transmit 779 KiB
of blocks to express the input delta. With further effort,
Blender might be updated to use a stable file format.

4.3 Chinese Checkers
Another suitable application class is turn-based strat-

egy games played against a computer opponent. The
effective skill of the computer is tightly linked to the
amount of processing time available, making players
choose between a good artificial opponent or a fast one.
Interactivity is key here: it is not fun to play against an
opponent that takes a dozen minutes to make each move.
Traversal of AI search trees is highly parallelizable, so
these games are good candidates for adaptation to UCop.

The application we use to demonstrate this class is
b1cc, a Java program that plays Chinese Checkers [21].
Its “expert player” mode is based on a 4-deep alpha-beta-
pruned minimax move-tree search.
We modified the tree search to emit a snapshot of the

game configuration using the save-game function, then
dispatch each branch of the first level of the search tree
to a separate process. Each process computes an (n−1)-
level alpha-beta minimax. This sacrifices our ability to
prune across trees, but we expect to make up for this with
the high parallelism UCop can bring to bear.

This approach was easy, but it exposes varying degrees
of parallelism, and its tasks exhibit high variance. A bet-
ter approach might be to locally evaluate the tree to a
greater depth to find low-variance task subsets.

4.4 Cinelerra
Cinelerra [2] is an open-source video editing tool.

With it, the user creates an edit decision list (EDL), a
metadata document that describes how source video is to
be clipped, transformed, and composited into the output
video. Cinelerra then performs these operations.

To test Cinelerra, we constructed a 45-second video
montage composed of 29 MiB of low-resolution clips
from a digicam. This montage uses only simple animated
transformations, but renders 8.3× slower than realtime.
Cinelerra offers many compute-intensive effect plugins
that slow down previewing even more.

Like Blender, Cinelerra includes a notion of a ren-
der cluster that depends on explicit version configura-
tion and a fast network. Its “background render” function
breaks a clip into frames and pre-renders the sequence of
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frames so the operator can preview the sequence at full
frame rate. We modified Cinelerra to emit a set of con-
trol files (in Cinelerra’s native job-control language) that
divide the preview region temporally into brief snippets.
It launches one child process to render each snippet to
MPEG, then collects the MPEGs into a render timeline
and plays them in order.

The biggest constraint on using Cinelerra with UCop
is getting enormous video inputs to the cluster. Our 29-
MiB input videos represent amateur video editing; seri-
ous editing will use multi-GiB input files. While they
are read-only and thus their size does not affect a warm-
cache scenario, big inputs produce substantial transmis-
sion delay in a cold-cache scenario.

Three techniques may mitigate this constraint. First,
UCop might demand-fault individual blocks rather than
entire files; this can help if only small portions of the
input videos are used in the output. Second, Cinelerra
might transcode video at the client into lower-quality
drafts to exploit UCop even when transmission delays
are dominant. Third, a user might fault in media to
a UCop cluster (e.g., by running remrun md5sum
movie.avi on it) the day before sitting down to edit.

4.5 Other applications
Beyond the applications we have modified, many other

application classes can exploit UCop. The best applica-
tions are those where small changes to input incur CPU-
bound and coarsely parallelizable computation. This sec-
tion has some examples.

One potential class is mathematics software. For in-
stance, numeric modeling packages such as Matlab and
Octave parallelize vector math, and symbolic math pack-
ages such as Macsyma and Mathematica parallelize ma-
nipulation of independent subexpressions. Also, spread-
sheet applications have parallelizable data-flow models.

Speech dictation software often performs a great deal
of processing to parse a small amount of user speech. A
researcher familiar with the area claims desktop access
to parallel resources would improve quality and enable
new applications [43].

Interactive GIS applications often perform CPU-
intensive tasks, such as rendering a large database of
vector data into a bitmap or performing convolutions
on large bitmaps (e.g., reprojecting maps or aerial pho-
tographs). In these applications, small user inputs such
as changes in view or layer registration can change
the global configuration and necessitate CPU-bound re-
rendering.

Photo manipulation software may also be readily
adaptable to UCop. Photoshop and GIMP are adopting
a nondestructive editing model, i.e., recording a stack of
operations rather than just their cumulative effects. This

stack is essentially an edit decision list, which UCop
could send concisely. Image filters are both coarsely par-
allelizable and slow, making them a good fit for UCop.

Finally, software analysis tools, such as model check-
ers, whole-program static analyzers, and theorem provers
generate substantial parallel workloads and are often
used as part of a developer’s interactive workflow.

Note that like Blender and Cinelerra, some of these
applications already have support for a single-purpose,
locally-administered, tightly-coupled cluster. Some even
sell dedicated cluster hardware [7]. UCop, in contrast, is
general: a single cluster running a single piece of soft-
ware that can service all these applications simultane-
ously.

5 Evaluation

Our evaluation of UCop is divided into five parts. We
begin with microbenchmarks in §5.1. End-to-end appli-
cation benchmarks are described in §5.2. In §5.3, we
analyze the efficacy of UCop’s protocol optimizations,
showing how performance suffers as each is disabled.
We present a sensitivity analysis to latency and band-
width in §5.4. Finally, in §5.5, we decompose how a
typical UCop task spends its time budget.

All of our experimental clusters were constructed from
Amazon’s EC2 “Elastic Compute Cloud” service. Each
VM is one of Amazon’s “high-CPU medium” instances:
a Xen virtual machine with 1.7 GB of memory and 2
CPU cores, each of which is approximately equal to a
2.5GHz Opteron or Xeon processor, circa 2007. Within
EC2, we measured a typical interconnect bandwidth of
800 Mbit/sec and RTT of 600 µsec. As we will see in
§5.2, most tests used artificial bandwidth and latency re-
strictions to emulate the typical case of a client separated
from the compute cluster by a bottleneck link.

5.1 Microbenchmarks

5.1.1 Correctness

Our task-close-to-open consistency model and whole-
file-system replication scheme were designed to let re-
mote processes produce results identical to those pro-
duced by local computation. To verify this property,
we used UCop to build GNU Coreutils v7.1, a collec-
tion of 102 system utilities. The build process has an
intricate dependency structure and invokes hundreds of
sub-tasks, many of which redirect stdin or stdout to
other programs or the file system. Errors in UCop’s con-
sistency model or its implementation are likely to cause
build failures (and did so in early versions of UCop).
Adapting the build process to UCop only required typing

8

OS Distribution libc gcc kernel
Centos 5.2 2.5 4.1.2 2.6.18
Debian 3.1 2.3.2 3.3.5 2.6.16
Debian 4.0 2.3.6 4.1.2 2.6.21.7
Debian 5.0 2.7 4.3.2 2.6.21.7

Debian 6.0 beta 2.7 4.3.3 2.6.21.7
Fedora Core 8 2.7 4.1.2 2.6.21.7
Gentoo 2008.0 2.6.1 4.1.2 2.6.18
Ubuntu 9.04 2.9 4.3.3 2.6.21.7

Table 1: Linux distributions used as clients to compile GNU
Coreutils with a UCop cluster running Debian 4.0. In each case,
UCop generated binaries identical to those compiled locally.

./configure CC="remrun gcc". We also com-
piled Coreutils locally; all the locally-compiled outputs
were identical to their cluster-compiled counterparts.

Further supporting our claim of location indepen-
dence is our (accidental) discovery that remrun is
“self-hosting.” An author was tinkering with remrun
commands when he noticed the system had slowed,
and was transferring files that seemed unrelated to his
task. He eventually discovered that he’d accidentally
edited his command-line to read remrun remrun
gcc hello-world.c—that is, a recursive call to
remrun. The command still ran correctly; the remrun
client ran on the server automatically.

We also built this paper using remrun latex
paper.tex. The emitted .dvi file differed from a
locally-built copy in one byte: the minute field of a time-
stamp.

5.1.2 Configuration Transparency

To test UCop’s insensitivity to heterogeneous clients,
we repeated the Coreutils build test on various distribu-
tions of Linux, only one of which matched the version
running on the UCop cluster itself (Debian 4.0). Each
distribution generated distinct outputs due to variations
in the versions of gcc and libc. Indeed, simply invoking
Debian 5.0’s gcc binary on a Debian 4.0 machine fails
due to shared library incompatibility. Using UCop, how-
ever, every locally-built binary matched the binary the
cluster built on that client’s behalf. The distributions we
tested are shown in Table 1.

5.1.3 FUSE Performance

We implemented UCop’s on-demand file system using
FUSE [4], a user-space file system framework. This sim-
plified development, but proxying every file system op-
eration through user-space has a significant performance
cost for I/O intensive processes. In this section, we eval-
uate a technique to mitigate this cost.
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Figure 3: Log-log plot of the amortized time per syscall after
one open, n reads, and one close on a file. All reads are
4,096 bytes. The file was resident in the buffer cache.

When a worker process tries to open a path corre-
sponding to an extant file on the client, FUSE instantiates
that path not with a local file but with a symbolic link to
a file with the appropriate contents. This file is kept on
a kernel-managed native file system. Thus, access to ex-
tant files is mediated by FUSE only during open; other
operations like read are handled much more efficiently.
We quantified the advantage of our approach by mea-

suring the time required to open, read, and close a file.
Figure 3 shows the amortized cost per syscall for sequen-
tial 4,096 byte reads with a warm buffer cache, plotted
for a range of reads per open.

The top curve shows the performance of a FUSE-
managed file system without redirection. The bottom
curve shows the performance of Linux’s native ext3 file
system. The slowdown is significant, and is worst for
small numbers of reads, ranging from 10× to 60×. The
middle curve shows amortized read performance with
our symlink scheme in place. The optimization never
hurts performance, and after about 40 reads, improves
amortized performance to within 2× native.

Note that the optimization does slightly hurt trans-
parency: all files seen by the workers are symbolic links.

5.2 Application Benchmarks
In this section, we describe end-to-end benchmarks for

three applications run on UCop, tested under realistic
network conditions. In most tests, the client and clus-
ter were both within Amazon EC2, with latency artifi-
cially injected and bandwidth constrained by Linux Traf-
fic Control [24]. The exception is Section 5.2.5, in which
we ran experiments from a real coffee shop.

To determine what network conditions should be em-
ulated for our EC2-based experiments, we tested the
networks at various locations in Seattle that offer pub-
lic wireless Internet access. These included two coffee

9
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shops, a cell phone company hot-spot, and a restaurant.
At each, we characterized the access-link bandwidth and
latency to EC2 (which is across the country, in Virginia).
Average latency ranged from 121 ms for the cell phone
company to 199 ms for one of the coffee shops. Up-
stream bandwidth occupied a fairly narrow range: from
1300 Kib/s for one of the coffee shops to 1500 Kib/s for
the restaurant. Downstream bandwidth also occupied a
narrow range: from 1400 Kib/s for the same coffee shop
to 1600 Kib/s for the restaurant.

In the experiments that follow, the coffee-shop con-
figuration models a round-trip time of 160 ms, an up-
stream available bandwidth of 1400 Kib/s, and a down-
stream available bandwidth of 1500 Kib/s. A second
cable-modem configuration, based on the authors’ home
offices, models 70 ms RTT, 4 Mib/s upstream, and
16 Mib/s downstream.

In most experiments, the local-computation measure-
ments are run on exactly the same kind of machine as the
cluster worker nodes. The exception is §5.2.5, where, out
of necessity, the client was a laptop.

5.2.1 Cold cache performance

When caches are cold, UCop is slow. Files are faulted
in serially over the bottleneck link, necessitating at least
as many RTTs and transfer delays are there are files. Fig-
ure 4 shows that warm-up times are from 2 to over 10
minutes. Cinelerra is slowest, with round trips propor-
tional to its 484 paths, and bandwidth costs proportional
to its 93 MiB of files.

The evaluations that follow all measure performance
once the caches are warm. In each experiment, we first
destroy all cached data, then warm the caches by in-
voking the test application twice. Finally, we collect a
data point by timing the application’s performance when
given a new (uncached) input for the first time: a tweaked
Cinelerra edit decision list, a modified Blender model, or
a new move in a game of Chinese Checkers. We repeat
each experiment 10 times and plot the mean. Around
each mean we show, using error bars, the 95% confidence

interval for the mean using Student’s t-distribution.
Cold-cache performance is slow; UCop performs

poorly for applications run only once. Of course, the
same can be said of client software, whose installation
also typically takes several minutes. Though currently
unimplemented, caches could be made persistent across
cluster instances and even users; clusters would then boot
ready-to-use in the common case.

5.2.2 Blender

The first application we test is Blender (§4.2). This test
renders a 14.2-MiB model of the Starship Enterprise [41]
at HD quality (1920×1080). Figure 5 compares the time
to run locally with the time to run at various levels of
parallelism in UCop.

First, observe that in the local case, rendering takes
137 sec, a duration most users would consider non-
interactive and that would cause them to task-switch.
Next, observe that in either of our network configura-
tions, a cluster size of two breaks even with the local
case; even a small degree of parallelism overcomes the
overhead of remote operation. Finally, observe that from
the coffee shop, 64 workers render the scene in 20 sec,
and, using a cable modem, 64 workers take 18 sec. These
results show that even on long-delay, low-bandwidth net-
works, UCop can perform complex rendering in seconds,
turning it from a batch to an interactive operation.

5.2.3 Chinese Checkers

The next experiment measures the time it takes for
the Chinese Checkers expert algorithm to make a move.
As described earlier, in the local case, Chinese Checkers
uses a sequential pruning tree search; for both local and
remote tests, we use only one core per machine. We au-
tomate the game by driving the expert mode (with and
without UCop) against a locally-executed novice oppo-
nent. We measure only the time taken to compute the
expert’s most complex move.

Figure 5 shows the results. Computed locally, the
computer’s move takes 317 sec, a long enough wait that
the game might not be fun. UCop overcomes the remote-
processing overhead by degree 3. With a 64-node clus-
ter, the worst-case move time is reduced to 26 sec in the
coffee shop, and to 23 sec with a cable modem. This il-
lustrates how UCop can make strategy games enjoyably
interactive even at expert levels.

5.2.4 Cinelerra

The third application is the Cinelerra video editor. Be-
cause video playback results play out over time, total
completion time is not an interesting metric; therefore,
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our measure of interactive latency for Cinelerra is pre-
roll time. This is the delay until video playback could
theoretically begin and still allow uninterrupted complete
playback. The workload is a 20-second clip of the digi-
cam montage described in §4.4.

Figure 5 shows the results. In the local case, the delay
is 166 sec, a long time to preview a clip. UCop begins
showing benefit at degree 2, readily overcoming the re-
mote overhead. Finally, by degree 32, Cinelerra delivers
the same clip in only 23 sec from a coffee shop, or 15 sec
using a cable modem.

5.2.5 Tests from a real coffee shop

The previous sections reported experiments done in a
controlled environment meant to emulate a coffee shop.
We now discuss experiments using an actual coffee shop.
In these tests, the client is a laptop, a Lenovo z61p with
a 2GHz Core Duo running Debian Lenny. The workers
are still EC2 cluster machines. Blender is linked against
Debian Etch, and thus runs from inside a kvm hardware
virtual machine, which is limited to one core. Figure 6
shows the results; they are essentially similar to, and thus
validate, our earlier emulated-environment results.

5.2.6 Discussion

UCop’s goal is to improve interactive performance by
achieving low latency; computational efficiency is less
important. Indeed, speedup per node in these tests peaks
at 1–2 nodes (56–85%) and decreases monotonically
thereafter, sinking to 12–35% for 32–64 nodes. For this
reason, in the following experiments we consider only
32-node clusters, as they provide reasonably low laten-
cies at reasonable cost.
“Reasonable” latency is difficult to define objectively.

Results are highly sensitive to workload characteristics;
any selection is, to some degree, arbitrary. Had we cho-
sen simpler workloads, the desktop might have rendered
them quickly, obviating the need for the remote cluster.
More complex workloads favor UCop: Overheads limit
UCop’s ability to use a larger cluster to reduce wait time,
but UCop can often use a larger cluster to hold wait time
constant as the workload complexity increases dramati-
cally. Similarly, due to the preroll metric, a short Cinel-
erra clip duration favors local computation, and longer
durations favor UCop.

5.3 Decomposition
The preceding section shows that UCop is performant.

We now break down the contribution of each optimiza-
tion described in §3. As Figure 7 shows, each optimiza-
tion is necessary for good performance, although some
are more important for certain applications.

Prethrow. The first group in both graphs of Figure 7
shows that prethrowing is the most important optimiza-
tion. Cinelerra, which accesses 484 paths, is most af-
fected by the loss of prethrown attributes. Because files
are validated sequentially, the worst slowdown is seen in
the highest-latency configuration, coffee-shop.

Remote differential compression. The next group
shows performance when RDC is disabled. That is, ev-
ery byte of changed files must be uploaded, rather than
just the changed bytes. Blender fares worst without this
optimization, since its input file is the largest.

11
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Stream compression. In the next group, we show the
effect of disabling stream compression. Again, this af-
fects Blender the most, since even with RDC, Blender’s
unstable output requires UCop to transmit 779 KiB of
changed blocks; performance suffers in this test because
the blocks are compressible.

Cache sharing. Without cache sharing within the
cluster, all worker nodes must get everything directly
from the client via the bottleneck link. This inflates
all overheads by a factor equal to the cluster size.
Clearly, this is unscalable. Indeed, this experiment
ran so slowly that we abandoned collecting statistically-
significant data; none appear in the figures.

Job consistency. The next group of bars shows the
benefit of job-end-to-start consistency. Here, no two
tasks share the same job, and hence consistency seman-
tics demand that each task prethrow its own path list.
This has no effect on round-trips, but congests the link
with duplicate data.

Recipe caching. In the next group of bars, the client
does not cache recipes as described in §3.5; therefore,
the client must compute megabytes of hashes before it
can begin the transaction with a prethrow.

Thread interface. The last group shows the value
of launching UCop tasks from threads rather than pro-
cesses. Here, the cost is the serialized overhead on the
client machine. Chinese Checkers suffers the most be-
cause it launches 86 tasks; the other applications launch
32. This optimization will be more important on slow
clients (our experimental client is fast), and at higher de-
grees of parallelism.

5.4 Sensitivity analysis
Figures 8 and 9 show the sensitivity of our results to

network characteristics. UCop is effective at dramati-
cally reducing sensitivity to poor latency and bandwidth
conditions. These experiments also show how UCop
achieves this. Without prethrow, performance is highly
sensitive to latency. Without compression and RDC, per-
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Smaller times are better. Prethrows make UCop’s performance
nearly latency-insensitive. Error bars show 95% confidence in-
terval around displayed mean.

formance is highly sensitive to bandwidth, at least for
Blender, which is bandwidth-intensive.

5.5 Remaining costs
The previous section explained the techniques that

achieve interactive-scale performance. This section ex-
plores the present limits to performance and how it might
be further improved.

5.5.1 Latency breakdown

To guide this discussion, Figure 10 provides a rough
analysis of how the 20 sec of interactive latency for our
Blender workload arose. We estimated the latency com-
ponents as follows:

Launch overhead. We measured remrun on EC2
with no artificial latency or bandwidth throttling. It spent
about 1 sec launching 32 job requests, including time to
stat the file system for each prethrow path and fault in
missing blocks.

Process start. We asked Blender to load the Enter-
prise model, then exit without rendering anything; this
took about 1.5 sec.

12

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

0.5 1 2 4 8 0.5 1 2 4 8In
te

ra
ct

iv
e 

la
te

nc
y 

(s
ec

)

  with compress/RDC    without compress/RDC
Upload bandwidth cap (Mib/s) (download = 4x upload)

1
8

4
3

1
1

82
6 3
0

1
8

9
9

3
0

1
62
2 3

0
1

6

6
1

3
0

1
52
0 3

0
1

5

4
0

3
0

1
52
0 3

0
1

5

3
0

3
0

1
51
9 3

0
1

5

Blender
Chinese Checkers
Cinelerra

Figure 9: Interactive latencies with varying available band-
width, cable-modem client/cluster RTT, and 32 worker nodes.
Smaller times are better. RDC and compression make UCop’s
performance nearly bandwidth-insensitive. Error bars show
95% confidence interval around displayed mean.

fa
s
t-

n
e
t 

la
u
n
c
h

c
o
m

p
u
te

ta
s
k
 v

a
ri
a
n
c
e

fa
s
t-

n
e
t 

re
tu

rn

c
a
b
le

-m
o
d
e
m

 

la
te

n
c
y
/b

w

c
o
m

p
u
te

-s
ta

rt
u
p

0 5 10 15 20

Figure 10: Approximate components of overall latency:
Blender on a 32-node cluster.

Computation. Rendering one of the 32 tiles takes
6.7 sec on average, with a maximum of 10.5 sec. This
variance arises because nodes rendering the blackness of
space surrounding the Enterprise become idle long be-
fore the most-loaded node puts finishing touches on the
glow of the warp nacelles. Thus, we account for the time
as 6.7 sec of computation plus 3.8 sec of inter-task vari-
ance. Contrary to prior reports [46], we observed no sig-
nificant effect from inter-machine variance; the time re-
quired to complete a task correlated with the task’s work-
load, not the machine that ran it.

Results download. Our test with an unthrottled EC2
network showed that UCop spends 1.8 sec organizing
and returning the result tiles.

Real network costs. The costs above account for all
but 5 sec of the cable-modem time. We attribute these
remaining 5 sec to the network delays due to increased
RTT and reduced available bandwidth.

5.5.2 Opportunities for improvement

The firmest contributor to latency is the compute time
itself. Of course, wider parallelization can help, but the
benefit is constrained by inter-task variance and offset by
an increase in network launch and return costs.

The four round trips we spend are three more than
strictly necessary. Eliminating them as follows could
save as much as 0.5 sec in the coffee shop. The prethrow
technique already profiles applications to predict paths
with stable contents. The same technique could detect
repeatedly-used paths with consistently fresh contents,
and use that cue to eliminate the RecipeNameRequest
round-trip. Reasonably assuming that the RecipeName
itself is fresh, the client could pipeline the recipe as well.
Finally, by maintaining a shadow index of blocks the
cluster already knows, the client could further pipeline
the set of new blocks, eliminating a third RTT.

Process startup might be mitigated by checkpointing
the client-side process after basic initialization or after
parsing stable inputs. In addition, each process’s com-
pute time might be predictable in some cases; shorter
subtasks might automatically be run locally, or run lo-
cally in the case of network failure.

6 Conclusions

The Utility Coprocessor is a new use for utility com-
pute clusters: dramatically enhancing the performance
of CPU-intensive, parallelizable desktop applications.
UCop’s non-invasive installation and automatic support
for arbitrary client software configurations lets users
farm their desktop compute tasks out to the cloud with-
out changing their model of where files are stored or how
new software is installed.

The primary challenge in making a system like UCop
performant is overcoming the relatively high latency and
low bandwidth of the link separating the user’s desktop
from the compute cloud. We introduce the techniques
of task-end-to-start consistency and prethrowing to avoid
latency penalties. We avoid bandwidth penalties using a
combination of cluster-wide cache sharing, remote dif-
ferential compression, and the notion of job-end-to-start
consistency. We also use a variety of techniques to mini-
mize the client’s CPU and I/O load when sending work to
a cluster. Taken together, these techniques allow UCop
to efficiently execute wide parallel computations in the
cloud with low overhead, even though all the canonical
state is on the client.

Our evaluation demonstrates speedup with only 2–3
nodes even in a challenging coffee-shop network envi-
ronment, and 15–20 second interactive performance with
32–64 nodes. We show the necessity of each of UCop’s
optimizations, and that the optimized system is insensi-
tive to latency and bandwidth variations. We also iden-
tify further opportunities for improving performance.

The Utility Coprocessor is a novel and practical sys-
tem for easily and inexpensively improving the perfor-
mance of CPU-bound desktop applications. It is gen-
eral to many applications, and UCop support is easy
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Abstract
Desktop computers are often compromised by the inter-
action of untrusted data and buggy software. To address
this problem, we present Apiary, a system that trans-
parently contains application faults while retaining the
usage metaphors of a traditional desktop environment.
Apiary accomplishes this with three key mechanisms. It
isolates applications in containers that integrate in a con-
trolled manner at the display and file system. It intro-
duces ephemeral containers that are quickly instantiated
for single application execution, to prevent any exploit
that occurs from persisting and to protect user privacy.
It introduces the Virtual Layered File System to make
instantiating containers fast and space efficient, and to
make managing many containers no more complex than
a single traditional desktop. We have implemented Api-
ary on Linux without any application or operating sys-
tem kernel changes. Our results with real applications,
known exploits, and a 24-person user study show that
Apiary has modest performance overhead, is effective in
limiting the damage from real vulnerabilities, and is as
easy for users to use as a traditional desktop.

1 Introduction

In today’s world of highly connected computers, desk-
top security and privacy are major issues. Desktop users
interact constantly with untrusted data they receive from
the Internet by visiting new web sites, downloading files,
and emailing strangers. All these activities use informa-
tion whose safety the user cannot verify. Data can be
constructed maliciously to exploit bugs and vulnerabili-
ties in applications, enabling attackers to take control of
users’ desktops. For example, a major flaw was recently
discovered in Adobe Acrobat products that enables an
attacker to take control of a desktop when a maliciously
constructed PDF file is viewed [2].

The prevalence of untrusted data and buggy software
makes application fault containment increasingly impor-
tant. Many approaches have been proposed to isolate ap-
plications from one another using mechanisms such as
process containers [24, 28, 32] or virtual machines [39].

Faults are confined so that if an application is compro-
mised, only that application and the data it can access
are available to an attacker.

However, existing approaches suffer from an unre-
solved tension between ease of use and degree of fault
containment. Some approaches [20, 26] provide an in-
tegrated desktop feel but only provide partial isolation.
They maintain traditional usage metaphors, but do not
prevent vulnerable applications from compromising the
system itself. Other approaches [34, 39] have less of an
integrated desktop feel but fully isolate applications into
distinct environments, typically by using separate virtual
machines. These approaches effectively limit the impact
of compromised applications, but are harder to use be-
cause users are forced to learn new ways to use these
systems as well as having to manage many environments.

To address these problems, we introduce Apiary, a
system that provides strong isolation for robust appli-
cation fault containment while retaining the integrated
look, feel, and ease of use of a traditional desktop en-
vironment. Apiary accomplishes this using three key
mechanisms that combine well-understood technologies
like thin clients, operating system containers, and union-
ing file systems in novel ways.

First, it decomposes a desktop’s applications into iso-
lated containers. Each container is an independent appli-
ance that provides all services an application needs to ex-
ecute. This prevents an application exploit from compro-
mising other applications. To retain traditional desktop
semantics, Apiary integrates these containers in a con-
trolled manner at the display and file system.

Second, it introduces the concept of ephemeral con-
tainers. Ephemeral containers are execution environ-
ments with no access to the user’s data that are quickly
instantiated from a clean state for only a single appli-
cation execution. When the application terminates, the
container is archived and never used again. Ephemeral
containers have three benefits. First, they prevent com-
promises, because exploits, even if triggered, cannot per-
sist. Second, they protect users from compromised ap-
plications. Even when an application has been compro-
mised, a new ephemeral container running that applica-
tion in parallel will remain uncompromised. Third, they

for developers to integrate. Thanks to the availability
and low cost of utility computing clusters like Amazon
EC2, the power of UCopified applications is available to
individuals—today.
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help protect user privacy when using the Internet. Api-
ary uses ephemeral containers as a fundamental building
block of the integrated desktop experience.

Third, Apiary introduces the Virtual Layered File Sys-
tem (VLFS). Apiary introduces the VLFS to efficiently
store and instantiate containers. Each software package
or application is stored as a read-only software file sys-
tem layer. Layers are analogous to software packages
in current systems. A VLFS dynamically composes to-
gether a set of shared software layers into a single file
system view. In Apiary, each container has its own inde-
pendent VLFS. Since each container’s VLFS will share
the layers that are common to them, Apiary’s storage re-
quirements are the same as a traditional desktop. Simi-
larly, since no data has to be copied to create a new VLFS
instance, Apiary is able to quickly instantiate ephemeral
containers for a single application execution.

We have implemented an Apiary Linux prototype
without any application or operating system kernel
changes. We evaluated its effectiveness by conducting
various experiments with real applications, vulnerabili-
ties, and users in a user study. Our results show that Api-
ary can instantiate application containers in under a sec-
ond, can upgrade a set of containers in under a seconds,
has scalable storage requirements, and has only modest
file system performance overhead. Our results show that
Apiary is effective at containing real exploits. It quickly
returns the desktop to a clean uncompromised state in
cases where the exploit forces a complete reinstall when
it occurs on a traditional desktop system. Finally, our re-
sults from a blind user study show that users find Apiary
as easy to use as a traditional desktop.

2 Apiary Usage Model

Figure 1 shows the Apiary desktop. It looks and feels like
a regular desktop. Users launch programs from a menu
or from within other programs, switch among launched
programs using a taskbar, interact with running programs
using the keyboard and mouse, and have a single display
with an integrated window system and clipboard func-
tionality that contains all running programs.

Although Apiary works similarly to a regular desktop,
it provides fault containment by isolating applications
into separate containers. Containers provide all the re-
sources an application needs to run. This includes an iso-
lated execution context, independent display driver and
complete file system. As each container’s file system is
independent, each container has its own isolated home
directory to store files created by the user in that con-
tainer and to isolate them from every other container. For
example, if one had a web browsing container and a word
processing container, each application would store their
contents in the container’s version of the user’s home

Figure 1: Apiary desktop session: (1) application menu, (2)
window list, (3) composited display

directory. This enables containers to enforce isolation
without the creation of any isolation rules.

Apiary isolates individual applications, not individual
programs. An application in Apiary is a software appli-
ance made up of multiple programs that are used together
in a single environment to accomplish a specific task. For
instance, a user’s web browser and word processor are
separate applications and isolated from one another. This
software appliance model means that users can install
separate isolated applications that contain many or all of
the same programs, but used for different purposes. For
example, a banking application contains a web browser
for accessing a bank’s website, while a web surfing appli-
cation also contains a web browser, but for general web
browsing. Both appliances make use of the same web
browser program, but are listed as different applications
in the application menu. This model can be extended
to the point where individual containers are provided for
many individual sites, such as Amazon and eBay. While
this model differs from a regular desktop, it is similar to
what users experience on mobile devices, such as iPhone
and Android phones, where they install website specific
applications to gain more efficient access to those sites.

Apiary provides two types of containers: ephemeral
and persistent. Ephemeral containers are created fresh
for each application execution. Persistent containers
maintain their state across application executions. Api-
ary lets users select whether an application should launch
within an ephemeral or a persistent container.

Ephemeral containers provide a powerful mechanism
for protecting desktop security and user privacy. Users
will typically run multiple ephemeral containers, even
for the same application, at the same time. They provide
important benefits for a wide range of uses.

Ephemeral containers prevent compromises because
exploits cannot persist. For example, a malicious PDF

document that exploits an ephemeral PDF viewer will
have no persistent effect on the system because the ex-
ploit is isolated in the container and will disappear when
the container finishes executing.

Ephemeral containers protect user privacy when using
the Internet. For example, many websites require cook-
ies to function, but also store advertisers’ cookies that
can compromise a user’s privacy. Apiary makes it easy
to use multiple ephemeral web browser containers simul-
taneously, each with separate cookies, and prevents the
cookies from persisting.

Ephemeral containers protect users from compromises
that may have already occurred on their desktop. If a
web browser has been compromised, parallel and future
uses of the web browser will allow an attacker to steal
sensitive information when the user accesses important
websites. Ephemeral containers are guaranteed to launch
from a clean slate. For example, by using a separate
ephemeral web browser container for accessing a bank-
ing site, Apiary ensures that an already exploited web
browser installation cannot compromise user privacy.

Ephemeral containers allow applications to launch
other applications safely. For example, users often re-
ceive viewable email attachments such as PDF docu-
ments. To avoid compromising an email container, Api-
ary creates an ephemeral PDF viewer container for the
PDF. Even if it is malicious, it cannot effect the user’s
desktop, as it only affects the ephemeral container.

Persistent containers are necessary for applications
that maintain state across executions to prevent a single
application compromise from affecting the entire system.
Unlike ephemeral containers, users use only one persis-
tent container per application. Some applications only
use one type of container, while others use both. For ex-
ample, email is typically used in a persistent container
to maintain email state across executions. On the other
hand, a web browser may be used both in a persistent
container, to access a user’s trusted websites, and in an
ephemeral container, to view untrusted websites.

Apiary’s containers work together to provide a secu-
rity system that differs fundamentally from common se-
curity schemes that attempt to lock down applications
within a restricted-privilege environment. In Apiary,
each application container is an independent entity that
is entirely isolated from every other application container
on the Apiary desktop. One does not have to apply any
security analysis or complex isolation rules to determine
which files a specific application should be able to ac-
cess. Also, in most other schemes, an application, once
exploited, will continue to be exploited, even if the ex-
ploited application is restricted from accessing other ap-
plications’ data. Apiary’s ephemeral containers, how-
ever, prevent an exploit from persisting between appli-
cation execution instances.

Apiary provides every desktop with two ways to share
files between containers. First, containers can use stan-
dard file system share concepts to create directories that
can be seen by multiple containers. This has the benefit
of any data stored in the shared directory being automat-
ically available to the other containers that have access to
the share. Second, Apiary supplies every desktop with a
special persistent container with a file explorer. The ex-
plorer has access to all of the user’s containers and can
manage all of the user’s files, including copying them be-
tween containers. This is useful if the user wants to pre-
serve a file from an ephemeral container, or move a file
from one persistent container to another, as, for instance,
when emailing a set of files. The file explorer container
cannot be used in an ephemeral manner. Its functionality
cannot be invoked by any other application on the system
and no other application is allowed to execute within it.
This prevents an exploited container from using the file
explorer container to corrupt others.

It should be noted that both of these mechanism break,
to some degree, the container’s isolation. File system
shares can be used by an exploited container as a vector
to infect other containers by tricking a user into moving
a malicious file between containers. However, this is a
tension that will always exist in security systems that are
meant to be usable to a diverse crowd of users. To mit-
igate this, Apiary lets documents stored in a persistent
manner be viewable, by default, in an ephemeral con-
tainer. For example, PDF files can be stored persistently,
but always viewed in ephemeral containers. However,
to persistently edit a PDF file, it would still have to be
opened within a persistent container such that a mali-
cious PDF would have a persistent effect.

3 Architecture

To support its container model, Apiary must have four
capabilities. First, Apiary must be able to run applica-
tions within secure containers to provide application iso-
lation. Second, Apiary must provide a single integrated
display view of contains all running applications. Third,
Apiary must be able to instantiate individual containers
quickly and efficiently. Third, for a cohesive desktop
experience, Apiary must allow applications in different
containers to interact in a controlled manner.

Apiary does this by using a virtualization architecture
that consists of three main components: an operating sys-
tem container that provides a virtual execution environ-
ment, a virtual display system that provides a virtual dis-
play server and viewer, and the VLFS. Apiary also pro-
vides a desktop daemon that runs on the host to instan-
tiate containers, manage their lifetimes, and ensure that
they are correctly integrated.
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3.1 Process Container

Apiary’s containers enable applications to be isolated
from one another. Individual applications can run in par-
allel within separate containers, and have no conception
that there are other applications running. This enforces
fault containment, as an exploited process only has ac-
cess to files available within its own container.

Apiary’s containers leverage commodity operating
system features such as Solaris’s zones [32], FreeBSD’s
jails [21], and Linux’s containers [24] to create isolated
and independent execution environments. Each con-
tainer has its own private kernel namespace, file system,
and display server, providing total isolation at the pro-
cess, file system, and display levels. Programs within
separate containers can only interact using normal net-
work communication mechanisms. Each container is
provided with an application control daemon that enables
the virtual display viewer to query the container for its
contents and interact with it.

3.2 Display

Apiary’s virtual display system is crucial to complete
process isolation and a cohesive desktop experience. In
Apiary, each container has a virtual display similar to
existing systems [4,11,37,38]. This virtual display oper-
ates by decoupling the display state from the underlying
hardware and enabling the display output to be redirected
anywhere. This is necessary, since if containers were
to share a single display directly, malicious applications
could leverage built-in mechanisms in commodity dis-
play architectures [13, 27] to insert events and messages
into other applications that share the display, enabling
the malicious application to remotely control the others,
effectively exploiting them as well. Many existing com-
modity security systems do not isolate applications at the
display level, providing an easy avenue for attackers to
further exploit applications on the desktop.

However, if each container’s display is independent,
they will not provide a single cohesive display. Apiary
provides a cohesive display in two ways. First, it inte-
grates the displays views into a single view. While a
regular remote framework provides all the information
needed to display each desktop, it assumes that there is
no other display in use, and therefore expects to be able
to draw the entire display area. In Apiary, where multi-
ple containers are in use, this assumption does not hold.
Therefore, to enable multiple displays to be integrated
into a single view, the Apiary viewer does Porter-Duff
compositing [30] of the displays using the over com-
positing operation.

Second, Apiary’s display viewer provides the normal
desktop metaphors that users expect, including a single

menu structure for launching applications and an inte-
grated task switcher that allows the user to switch among
all running applications. Apiary leverages the applica-
tion control daemon running within each container to
enumerate all the available applications within the con-
tainer, much like a regular menu application does in a
traditional desktop. Instead of providing the menu di-
rectly in the screen, however, it transmits the collected
data back to the viewer, which then integrates this in-
formation into its own menu, associating the menu entry
with the container it came from. When a user selects a
program from the viewer’s menu, the viewer instructs the
correct daemon to execute it within its container.

Similarly, to manage running applications effectively,
Apiary provides a single taskbar with which the user can
switch between all applications running within the in-
tegrated desktop. Apiary leverages the system’s ability
to enumerate windows and switch applications [15] to
have the daemon enumerate all the windows provided by
its container and transmit this information to the viewer.
The viewer then integrates this information into a sin-
gle taskbar with buttons corresponding to application
windows. When the user switches windows using the
taskbar, the viewer communicates with the daemon and
instructs it to bring the correct window to the foreground.

3.3 Virtual Layered File System

Apiary requires containers to have file systems that are
efficient in storage space, instantiating time, and man-
agement costs. A container’s file system has to be effi-
cient in storage space to enable regular desktops to sup-
port the large number of application containers that will
be used within the Apiary desktop. A container’s file
system has to be efficient to instantiate to provide fast
interactive response time, especially for launching eph-
emeral containers. Finally, a container’s file system has
to be efficient to manage as Apiary increases the number
of file systems that are in use.

There are many existing file system approaches that
could be used for Apiary, but they all suffer drawbacks.
Package management [12, 35] is useful for managing a
file system, however, it does not help provision a file sys-
tem quickly nor is it space efficient if each independent
container’s file system has its own copy of the package.
This also impacts management as each file system would
have to be updated independently. File systems that sup-
port a branching semantic [7, 29] can be used to instan-
tiate an ephemeral container quickly from a template file
system. However, each template is independent and is
therefore inefficient in space and in its ability to be main-
tained. Finally, even a single template file system with all
the programs desired for every container does not help
since it reduces isolation between programs.

Apiary introduces the concept of a VLFS to meet these
requirements. The VLFS extends the package manage-
ment concept to enable file systems to be created by com-
posing shareable layers together into a single file system
namespace view. VLFSs are built by combining a set
of shared software layers together in a read-only manner
with a per container private read-write layer. The VLFS’s
software layers are analogous to packages in a traditional
system, and just like a file system will have hundreds of
packages installed into it, a VLFS can be composed of
hundreds of layers as well. Similar to a regular file sys-
tem, where package management tools are used to update
and install packages and their dependencies into the sys-
tem, in Apiary, the same type of tools are used to create
VLFSs and keep them up to date.

Unlike multiple regular file systems that will each
need their own copy of a file, multiple VLFSs provid-
ing multiple applications are as efficient as a single reg-
ular file system as all files that are common among them
will be stored once in the set of shared layers. There-
fore, Apiary is able to store the file systems needed by
its containers in an efficient manner. This also enables
Apiary to manage its containers easily, as all one has to
do is replace the single layer that contains the files that
have to be updated to update each VLFS that uses it. The
VLFS also enables Apiary to efficiently instantiate each
container’s file system. As no data has to be copied into
place and each of the software layers is shared in a read-
only manner, instantiating a file system is nearly instan-
taneous, and occurs transparently to the end user.

Layers are the primary building block of a VLFS. Lay-
ers are composed of three elements: the metadata files
that describe the layers, configuration scripts that en-
able the layer to be added and removed from the VLFS
correctly, and the primary component, its file system
namespace. The layer’s file system namespace is a self-
contained set of files providing a specific set of function-
ality. The files are the individual items in the layer that
are composed into a larger VLFS. There are no restric-
tions on the type of files. They can be regular files, sym-
bolic links, hard links or device nodes. The layer’s file
system namespace can be viewed as a directory stored
on the shared file system that contains the same file and
directory structure that would be created if the individual
items were installed into a traditional file system. On a
traditional UNIX system, the directory structure would
typically contain directories such as /usr, /bin and
/etc. Symbolic links work as expected between layers
since they work on path names, but a limitation is that
hard links cannot exist between layers.

To support the VLFS, Apiary must solve a number of
file system related problems. First, to enable quick in-
stantiation, the VLFS must be able to quickly compose
numerous distinct file system layers into a single static

view. Second, as users expect to be able to interact with
the VLFS as a normal file system, such as by creating
and modifying files, Apiary has to enable an instantiated
VLFS to be fully modifiable, while enforcing the read-
only semantics for the software layers. Finally, Apiary
has to support the ability to dynamically add and remove
layers without taking the file system off-line. This is
equivalent to installing, removing or upgrading a soft-
ware package while a monolithic file system is online.

To solve these problems, Apiary leverages and ex-
pands upon unioning file systems [41]. Unioning file
systems enable Apiary to solve the first problem as they
allow the system to join multiple distinct file system
namespaces into a single namespace view. These direc-
tories are unioned by layering directories on top of one
another, joining all the files provide by all the layers into
a single file system namespace view. As unioning re-
quires no copying, it occurs quickly, enabling Apiary to
be efficient in terms of provisioning.

To solve the second problem, union semantics are ex-
tended [41] to enable the assignment of properties to the
layers, defining some layers to be read only, while others
are read-write. This results in a model that borrows from
copy-on-write (COW) file systems, where modifying a
file on a lower read-only layer will cause it to be copied to
the topmost writable layer in a COW fashion. The VLFS
leverages this property to enable multiple VLFSs to share
a set of software layers in a read-only manner, while pro-
viding each instantiated VLFS with its own read-write
private layer to store file system modifications. This en-
ables Apiary to be efficient in terms of storage.

This layering model also provides semantics that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels. To
provide a consistent semantic, if a file is deleted, a white-
out mark is also created to ensure that files existing on a
lower layer are not revealed. The white-out mechanism
enables obscuring files on the read only lower layers, by
just creating the white-out file on the topmost read-write
private layer.

However, this creates a problem where a file deleted
from a read-only share will never be able to be recreated.
In a traditional file system, a deleted system file can be
recovered by simply reinstalling the package that pro-
vided that file. In a VLFS, if the white-outs are stored in
the private layer, they will persist, and even if the layer
containing the file is replaced, the file will remain ob-
scure. The VLFS solves this problem by associating in-
dividual private writable layers with each of its shared
read-only layer for the storage of white-outs. When a
file in a shared read-only layer is deleted, instead of writ-
ing a white-out file to the top-most layer, the white-out
is stored in the shared layer’s associated white-out layer.
When a layer is replaced, its associated white-out layer
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will be replaced with an empty white-out layer as well,
enabling any obscured file to be revealed.

Similarly, the VLFS has to handle the case where a
file belonging to a shared read-only layer was modified
and therefore copied up to the VLFS’s private read-write
layer. Apiary provides a revert command that enables the
owner of a file that has been modified to revert the file’s
state to its original pristine state. While a regular VLFS
unlink operation would remove the modified file from the
private layer and create a white-out mark to obscure the
original file, revert only removes the copy in the private
layer thereby revealing the original copy below it.

Finally, VLFSs also have to support being managed
while they are in use. In a traditional file system, an ad-
ministrator can remove a package containing files in use,
as deleting a file does not remove its contents from the
file system until the file is no longer in use. However, if a
layer is removed from a union, the data is effectively re-
moved as well as unions only operate on system names-
paces and not on the data the underlying files contain. If
an administrator wanted to modify the VLFS by remov-
ing a layer due to deletion or upgrade maintenance, one
would be forced to perform the maintenance off-line due
to not being able to remove layers that are in use.

The VLFS solves this problem by emulating what the
unlink operation does on a single file and applies it to
layer removal. unlink operates in two steps. It first
deletes the file name from the file system’s namespace,
while only freeing up the space taken up by the file’s
contents when it’s no longer in use. Traditional pack-
age management systems rely on these semantics to en-
able them to upgrade packages, even if files are in use,
by unlinking and then recreating them instead of directly
overwriting the files. Apiary applies these semantics to
layers. When a layer is removed from a VLFS, Apiary
marks the layer as unlinked, removing it from the file
system namespace. While this layer is no longer part of
the file system namespace and therefore cannot be used
by any operations that work on the file system names-
pace, such as open, it remains part of the VLFS enabling
data operations, such as read and write, to continue
to work correctly for files that were previously opened.

3.4 Inter-Application Integration

Apiary’s isolated containers provide effective fault con-
tainment. However, isolated containers can hinder ef-
fective use of the desktop. For instance, if one’s web
browser is totally isolated from the PDF viewer, how
does one view a downloaded PDF file? If the PDF viewer
is included within the web browser container the isola-
tion that should exist between web browser and an appli-
cation viewing untrusted content is violated. Users could
copy the file from the web browser container to the PDF

viewer container, but this is not the integrated feel that
users expect.

Apiary solves this problem by enabling applications
in one container to execute specific applications in eph-
emeral containers. Every container is preconfigured with
a list of programs that it enables other applications to
use in an ephemeral manner. Apiary refers to these as
global programs. For instance, a Firefox container can
specify /usr/bin/firefox and a Xpdf container
can specify /usr/bin/xpdf as global programs. Pro-
gram paths marked global exist in all containers. Api-
ary accomplishes this by populating a single global layer,
shared by all the container’s VLFSs, with a wrapper pro-
gram for each global program. This wrapper program is
used to instantiate a new ephemeral container and exe-
cute the requested process within it.

When executed, the wrapper program determines how
it was executed and what options were passed to it. It
connects via network mechanisms to the Apiary desk-
top daemon on the same host and passes this information
to it. The daemon maintains a mapping of global pro-
grams to containers and determines which container is
being requested to be instantiated ephemerally. This en-
sures that only the specified global programs’ containers
will be instantiated, preventing an attacker from instan-
tiating and executing arbitrary programs. Apiary is then
able to instantiate the correct fresh ephemeral container,
along with all the required desktop services, including a
display server. The display server is then automatically
connected to the viewer. Finally, the daemon executes
the program as it was initially called in the new container.

To ensure that ephemeral containers are discarded
when no longer needed, Apiary’s monitors the process
executed within the container. When it terminates, Api-
ary terminates the container. Similarly, as the Apiary
viewer knows which containers are providing windows
to it, if it determines that no more windows are being pro-
vided by the container, it instructs the desktop daemon to
terminate the container. This ensures that an exploited
process does not continue running in the background.

However, running a new program in a fresh container
is not enough to integrate applications correctly. When
Firefox downloads a PDF and executes a PDF viewer, it
must enable the viewer to view the file. This will fail
because Firefox and an ephemeral PDF viewer contain-
ers do not share the same file system. To support this
functionality, Apiary enables small private read-only file
shares between a parent container and the child ephem-
eral container it instantiates. Because well-behaved ap-
plications such as Firefox, Thunderbird, and OpenOffice
only use the system’s temporary directory to pass files
among them, Apiary restricts this automatic file sharing
ability to files located under /tmp. To ensure that there
are no namespace conflicts between containers, Apiary

provides containers with their own private directory un-
der /tmp to use for temporary files, and they are precon-
figured to use that directory as their temp directory.

But providing a fully shared temporary file directory
allows an exploited container to access private files that
are placed there when passed to an ephemeral container.
For instance, if a user downloads a malicious PDF and a
bank statement in close succession, they will both exist in
the temp directory at the same time. To prevent this, Api-
ary provides a special file system that enhances the read-
only shares with an access control list (ACL) that deter-
mines which containers can access which files. By de-
fault, these directories will appear empty to the rest of the
containers, as they do not have access to any of the files.
This prevents an exploited container from accessing data
not explicitly given to it. A file will only be visible within
the directories if the Apiary desktop daemon instructs
the file system to reveal that file by adding the container
to the file’s ACL. This occurs when a global program’s
wrapper is executed and the daemon determines that a
file was passed to it as an option. The daemon then adds
the ephemeral container to the file’s ACL. Because the
directory structure is consistent between containers, sim-
ply executing the requested program in the new ephem-
eral container with the same options is sufficient.

Situations can conceivably exist where the ephemeral
application would need to access multiple files located
within the temporary directory, such as a web page with
images where the entire web page is saved. In these
cases, Apiary’s sharing will fail to permit access to all
the files. However, in practice, these situations are un-
common and Apiary’s scheme works well. In situations
where this can occur, one can construct the application
containers to contain all the programs needed. For in-
stance, in a web development container, one will provide
a web browser to preview one’s content, instead of in-
stantiating an external ephemeral container, thereby pre-
venting this problem from occurring.

Apiary enables the file explorer container discussed in
Section 2 in a similar way. The file explorer container
is similar to Apiary’s other containers. It is fully iso-
lated from the rest of the containers and users interact
with it via the regular display viewer. However, the other
containers are not fully isolated from it. This is neces-
sary as users can store their files in multiple locations
in each container, most notably, the /tmp directory and
the user’s home directory. Apiary’s file explorer provides
read-write access to each of these areas as file shares
within the file explorer’s file system namespace. Apiary
prevents any executable located within these file systems
from executing with the file explorer container to prevent
malicious programs from exploiting it. Users are able
to use normal copy/paste semantics to move files among
containers. While this is more involved than a normal

desktop with only a single namespace, users generally
do not have to move files among containers.

The primary situation in which users might desire to
move files between containers is when interacting with
an ephemeral container, as a user might want to pre-
serve a file from there. For instance, users can run web
browsers in an ephemeral containers to maintain privacy,
but also download files they want to keep. While the
ephemeral container is active, a user can just use the file
explorer to view all active containers. To avoid situa-
tions where users only remembers after terminating the
ephemeral container that it had files they wanted to keep,
Apiary archives all newly created or modified non hid-
den files that are accessible to the file explorer when the
ephemeral container terminates. This allows a user to
gain access to them even after the ephemeral container
has terminated. Apiary automatically trims this archive
if no visible data was stored within the ephemeral con-
tainer, such as in the case of an ephemeral web browser
that the user only used to view a web page, not down-
load and save a specific file. Similarly, Apiary provides
users the ability to trim the archive to remove ephemeral
container archives that do not contain data they need.

Apiary also turns the desktop viewer into an inter-
process communication (IPC) proxy that can enable IPC
state to be shared among containers in a controlled and
secure manner. This means that only explicitly allowed
IPC state is shared. For example, one of the most
basic ways desktop applications share state is via the
shared desktop clipboard. To handle the clipboard, each
container’s desktop daemon monitors the clipboard for
changes. Whenever a change is made to one container’s
clipboard, this update is sent to the Apiary viewer, and
then propagated to all the other containers. The Apiary
viewer also keeps a copy of the clipboard so that any
future container can be initialized with the current clip-
board state. This enables users to continue to use the clip-
board with applications in different containers in a man-
ner that is consistent with a traditional desktop. However,
by allowing the clipboard of an ephemeral container to
read from the shared clipboard, Apiary does allow infor-
mation to be leaked. This can be handled by only allow-
ing ephemeral containers to write to the shared clipboard,
if the decreased functionality is acceptable.

4 Experimental Results

We have implemented a remote desktop Apiary proto-
type system for the Linux desktop without any appli-
cation, library, window system, or base kernel changes.
The prototype consists of a virtual display driver for the
X window system based on MetaVNC [37], a set of user
space utilities that enable container integration, and a
loadable kernel module for the Linux 2.6 kernel that pro-
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vides the ability to create and mount VLFSs. Apiary uses
Zap [28], a predecessor to Linux containers [24], to pro-
vide the isolated containers.

For our prototype, we created 211 software layers by
converting the set of Debian packages needed by the set
of applications we tested into individual layers. Each De-
bian package can be viewed as providing three sets of
items, a set of files that is extracted into a file system, a
set of metadata that determines the dependency relation-
ship among packages, and configuration scripts that are
executed on installation and removal to ensure the pack-
ages are installed correctly. For the VLFS, we first ex-
tract the set of files into a directory that will be used for
composition. Second, we extract the metadata that de-
termines dependency relationships between the packages
and associate it with the newly created layers. Finally,
we associate the configuration scripts from each pack-
age with the layers which are used each time the layer is
added or removed from an application appliance. Using
these layers, we are able to create per application appli-
ances for each individual application by simply selecting
which high-level applications we want within the appli-
ance, such as Firefox, with the dependencies between the
layers ensuring that all the required layers are included.
Using these appliances, we are able to instantly provision
persistent and ephemeral containers for the applications
as needed.

Using this prototype, we used real exploits to evalu-
ate Apiary’s ability to contain and recover from attacks.
We conducted a user study to evaluate Apiary’s ease of
use compared to a traditional desktop. We also measured
Apiary’s performance with real applications in terms of
runtime overhead, startup time, and storage efficiency.
For our experiments, we compared a plain Linux desktop
with common applications installed to an Apiary desk-
top that has applications available for use in persistent
and ephemeral containers. The applications we used are
the Pidgin 2.4.3 instant messenger, the Firefox 3.0.3 web
browser, the Thunderbird 2.0 email client, the OpenOf-
fice.org 2.4.1 office suite, the Xpdf 3.02 PDF viewing
program, and the MPlayer 1.0-rc2 media player. Exper-
iments were conducted on an IBM HS20 eServer blade
with dual 3.06 GHz Intel Xeon CPUs and 2.5 GB RAM.
All desktop application execution occurred on the blade.
Participants in the usage study connected to the blade via
a Thinkpad T42p laptop, with a 1.8 GHz Intel Pentium-
M CPU and 2GB of RAM running the MetaVNC viewer.

4.1 Handling Exploits

We tested two scenarios that illustrate Apiary’s ability to
contain and recover from a desktop application exploit,
as well as explore how different decisions can affect the
security of Apiary’s containers.

4.1.1 Malicious Files

Many desktop applications have been shown to be vul-
nerable to maliciously created files that enable an at-
tacker to subvert the target machine and destroy data.
These attacks are prevalent on the Internet, as many
users will download and view whatever files are sent
to them. To demonstrate this problem, we use 2 mali-
cious files [14, 16] that exploit Xpdf 1.01 and mpg123
pre0.59s. We installed the older Xpdf version in the
Xpdf container and mpg123 in the MPlayer container.
The mpg123 exploit works by creating an invalid mp3
file that triggers a buffer overflow in old versions of
mpg123, enabling the exploit to execute any program
it desires. The Xpdf exploit works by exploiting a be-
havior of how Xpdf launched helper programs, that is,
by passing a string to sh -c. By including a back-tick
(‘ ‘) string within a URL embedded in the PDF file,
an attacker could get Xpdf to launch unknown programs.
Both of these exploits are able to leverage sudo to per-
form privileged tasks, in this case, deleting the entire file
system. Sudo is exploited because popular distributions
require users to use it to gain root privileges and have it
configured to run any applications. Additionally, sudo,
by default, caches the user’s credentials to avoid needing
to authenticate the user each time it needs to perform a
privileged action. However, this enables local exploits to
leverage the cached credentials to gain root privileges.

In the plain Linux system, recovering from these ex-
ploits required us to spend a significant amount of time
reinstalling the system from scratch, as we had to install
many individual programs, not just the one that was ex-
ploited. Additionally, we had to recover a user’s 23 GB
home directory from backup. Reinstalling a basic Debian
installation took 19 minutes. However, reinstalling the
complete desktop environment took a total of 50 minutes.
Recovering the user’s home directory, which included
multimedia files, research papers, email, and many other
assorted files, took an additional 88 minutes when trans-
ferred over a Gbps LAN.

Apiary protected the desktop and enabled easier re-
covery. It protected the desktop by letting the mali-
cious files be viewed within ephemeral containers. Even
though the exploits proceeded as expected and deleted
the container’s entire file system, the damage caused is
invisible to the user, because that ephemeral container
was never used again. Even when we permitted the ex-
ploits to execute within persistent containers, Apiary en-
abled significantly easier recovery from the exploits. As
shown in Table 2, Apiary can provision a file system in
just a few milliseconds. This is nearly 6 orders of mag-
nitude faster than the traditional method of recovering
a system by reinstallation. Furthermore, Apiary’s per-
sistent containers divide up home directory content be-

tween them. For instance, a web browser container’s
home directory will contain the web browser’s configura-
tion, browser cache and downloaded files, while a word
processing container will contain the documents one has
created or edited. This eliminates the need to recover all
of a user’s data if only one application is exploited.

This also shows how persistent containers can be con-
structed in a more secure manner to prevent exploits from
harming the user. As a large amount of the above user’s
data, such as media files, is only accessed in a read-only
manner, the data can be stored on file system shares. This
enables the user to allow the different containers to have
different levels of access to the share. The file explorer
container can access it in a read-write manner, enabling
a user to manage the contents of the file system share,
while the actual applications that view these files can be
restricted to accessing them in a read-only manner, pro-
tecting the files from being damaged by exploits.

4.1.2 Malicious Plugins

Applications are also exploited via malware that users
are tricked into downloading and installing. This can be
an independent program or a plugin that integrates with
an already-installed application. For example, malware
have tried to convince users to download a “codec” they
need to view a video. Recently, a malicious Firefox ex-
tension was discovered [6] that leverages Firefox’s ex-
tension and plugin mechanism to extract a user’s bank-
ing credentials from the browser when the user visits a
bank’s website. These attacks are common because users
are badly conditioned to always allow a browser to install
what it claims is needed. When installed into a traditional
environment, this malicious extension persists until the
user, or the user’s anti-virus software, discovers and re-
moves it. As it does not affect regular use of the browser,
there is little to alert users that they have been attacked.
As this exploit is not publicly available, we simulated its
presence with the non-malicious Greasemonkey Firefox
extension [18]. Like with the malicious file, ephemeral
containers prevented the extension from persisting.

However, this exploit poses a significant risk to per-
sistent web browser containers. While one might expect
Firefox extensions to be uninstallable through Firefox’s
extension manager, this is only true of extensions that
are installed through it. If an extension is installed di-
rectly into the file system, it can only be disabled this
way, but not uninstalled. This applies equally to Api-
ary and traditional machines. While Apiary users can
quickly recreate the entire persistent Firefox container,
that requires knowing that the installation was exploited.
Apiary handles this situation more elegantly by allowing
the user to use Firefox in multiple web browsing con-
tainers. In this case, we created a general-purpose web

browsing container for regular use, as well as a finan-
cial web browsing container for the bank website only.
Apiary configured the financial web browser container
to refuse to install any addons within it’s browser, keep-
ing it isolated and secure even when the general-purpose
web browsing container was compromised.

Apiary enables the creation of multiple independent
application containers, each containing the same appli-
cation, but performing different tasks, such as visiting a
bank website. Because the great majority of the VLFS’s
layers are shared, the user incurs very little cost for these
multiple independent containers. This approach can be
extended to other related but independent tasks, for in-
stance, using a media player to listen to one’s personal
collection of music, as opposed to listening to Internet
radio from an untrusted source.

This scenario also reveals a problem with how plug-
ins and other extensions are currently handled. When the
browser provides its own package management interface
independent of the system’s built-in package manager,
this impacts Apiary, because certain application exten-
sions might be needed in an ephemeral container, but if
they are not known to the package manager, they cannot
be easily included. However, many plugins and browser
extensions are globally installable and manageable via
the package manager itself in systems like Debian. In
these systems, this yields the benefit that when multiple
users wish to use an extension, it only has to be installed
once. In Apiary, it additionally provides the benefit that it
can become part of the application container’s definition,
making it available to the ephemeral container without
requiring it to be manually installed by the user on each
ephemeral execution.

4.2 Usage Study

We performed a 24-person usage study that evaluated the
ability of users to use Apiary’s containerized applica-
tion model based on our prototype environment, focus-
ing on their ability to execute applications from within
other programs. Participants were mostly recruited from
within our local university, including faculty, staff and
students. All of the users were computer-literate, though
a significant number were not power users and included
business and humanities students.

For our study, we created three distinct environments.
The first was a plain Linux environment running the
Xfce4 desktop. It provided a normal desktop Linux ex-
perience with a background of icons for files and pro-
grams and a full-fledged panel application with a menu,
task switcher, clock and other assorted applets. The sec-
ond was a full Apiary environment. It provided a much
sparser experience, as the current Apiary prototype only
provides a set of applications and not a full desktop envi-
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Test Description
Untar Extract Linux 2.6.19 kernel source archive
Gzip Compress a 250 MB Linux kernel source archive
Octave Octave 3.0.1 numerical benchmark [19]
Kernel Build the 2.6.19 kernel

Table 1: Application Benchmarks

ronment. The third was a neutered Apiary environment
that differs from the full environment in not launching
any child applications within ephemeral containers.

The three environments enable us to compare the par-
ticipants’ experience along two axes. First, we can com-
pare the plain Linux environment, where each applica-
tion is only installed once and always run from the same
environment, to the neutered Apiary environment, where
each application is also only installed once and run from
the same environment. This allows us to measure the cost
of using the Apiary viewer, with its built-in taskbar and
application menu, against plain Linux, where the taskbar
and application menu are regular applications within the
environment. Second, the full and neutered Apiary desk-
tops enable us to isolate the actual and perceived cost to
the participants of instantiating ephemeral containers for
application execution. We presented the environments to
the participants in random order and iterated through all
6 permutations equally.

We timed the participants as they performed a num-
ber of specific multi-step tasks in each environment that
were designed to measure the overhead of using multi-
ple interacting applications. In summary, the tasks were:
(1) download and view a PDF file with Firefox and Xpdf
and follow a link embedded in the PDF back to the web;
(2) read an email in Thunderbird that contains an attach-
ment that is to be edited in OpenOffice and returned to
the sender; (3) create a document in OpenOffice that con-
tains text copied and pasted from the web and sent by e-
mail as a PDF file; (4) create a “Hello World” web page
in OpenOffice and preview it in Firefox; and (5) launch
a link received in the Pidgin IM client in Firefox.

As Figure 2 shows, the average time to complete each
task only differed by a few seconds for all tasks in all
environments. Figure 2 shows that even in tasks where
users were creating multiple new ephemeral containers,
that overhead imposed in creating these containers is
minimal and generally unnoticeable to the user. There-
fore, users were able to complete the tasks using Apiary
with the same efficiency as on a regular system.

The participants also rated their perceived ease of use
of each environment on a scale of 1 to 5. The average
rating, of both the plain Linux environment and Apiary,
was a 3.9 with a standard deviation of 0.9 and 1.1 respec-
tively. The participants were asked if they could imagine
using Apiary full time and whether they would prefer to
do so if it would keep their desktop more secure. All of

the participants expressed a willingness to use this en-
vironment full-time, and a large majority indicated that
they would prefer to use Apiary over the plain Linux en-
vironment if it would keep their data more secure.

4.3 Performance Measurements
4.3.1 Application Performance

To measure the performance overhead of Apiary on real
applications, we compared the runtime performance of
a number of applications within the Apiary environment
against their performance in a traditional environment.
To provide a conservative measure of Apiary perfor-
mance, we used a container with all of the applications
from all of our experiments to maximize the number of
layers installed.

Table 1 lists our application tests. We focus mostly
on file system benchmarks, as we have shown [4, 28]
that display and operating system virtualization have lit-
tle overhead. Untar tests file creation and throughput.
Gzip tests file system throughput and computation. Oc-
tave is a pure computation benchmark. The kernel build
tests computation and stresses the file system, because of
the large number of lookups that occur due to the large
size of the kernel source tree and the repeated execution
of the preprocessor, compiler, and linker. To stress the
system with many containers and provide a conservative
performance measure, each test was run in parallel with
25 instances. To avoid out-of-memory (OOM) condi-
tions, as the Octave benchmark requires 100 to 200 MB
of memory at various points during its execution, we ran
the benchmarks staggered 5 seconds apart to ensure they
kept their high memory usage areas isolated to avoid the
benchmarks being killed by Linux’s OOM handler. Fig-
ure 3 shows that Apiary imposes almost no overhead in
most cases, with about 10% overhead in the kernel build
case due to the VLFS’s constant need to perform lookups
on the file system incurring an extra cost. This demon-
strates that Apiary is able to scale to a large number of
concurrent containers with minimal overhead.

4.3.2 Container Creation

For ephemeral containers to be useful, container instan-
tiation must be quick and impose little overhead on ap-
plication startup time. Although our user study already
indicates that Apiary container instantiation overhead is
not noticeable to users, we measure the overhead in two
more ways. We measure both how long it takes to instan-
tiate a VLFS and how long the application takes to start
up within the container. First, we compare how long it
takes to setup a VLFS against three other potential ap-
proaches to setting up the same container file system: us-
ing traditional Debian bootstrapping tools (Create), ex-
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P F T O X M
Create (s) 317 276 294 365 291 294
Extract (s) 82 86 87 150 81 81
FS-Snap (s) .016 .015 .016 .020 .009 .010
Apiary (s) .005 .005 .005 .005 .005 .005

Table 2: File System Instantiating Times for (P)idgin,
(F)irefox, (T)hunderbird, (O)penOffice, (X)pdf and (M)Player

tracting the file system from a tar archive (Extract), and
using Btrfs [9], a file system with a snapshot operation,
to create a new snapshot and branch of a preexisting file
system namespace (FS-Snap). To minimize network ef-
fects with the bootstrapping tools, we used a local De-
bian mirror on the local 100 Mbps campus network, and
were able to saturate the connection while fetching the
packages to be installed.

Table 2 shows that Apiary instantiates containers with
a VLFS composed of nearly 200 layers nearly instanta-
neously. This compares very positively with traditional
ways of setting up a system. Table 2 show that it takes
a significant amount of time to create a file system for
the application container using either Debian’s bootstrap-
ping tool or extracting it from a tar archive. Therefore,
these methods are not usable for ephemeral application
containers, as users will not want to wait minutes for
their applications to start. Tar archives also suffer from
their need be actively maintained and rebuilt whenever
they need fixes. Therefore, the amount of administrative
work increases linearly with the number of applications
in use. As Apiary creates the file system nearly instan-
taneously, it is able to support the creation of ephemeral
application containers with no noticeable overhead to the
users. While Table 2 shows that file systems with a snap-
shot and branch operation can also perform quickly, the
user would have to manage each of the application’s in-
dependent file systems separately.

Second we quantify startup time by measuring how
long it takes for the application to open and then be au-
tomatically closed using ephemeral containers, persis-
tent containers, and plain Linux. In the case of Firefox,
Xpdf, and OpenOffice.org, this includes the time it takes
to display the initial page of a document, while Pidgin,
MPlayer and Thunderbird are only loading the program.
For ephemeral containers, we measure the total time it
takes to set up the container and execute the applica-

tion within it, while for persistent containers and plain
Linux, we only measure application execution time as
these environments are persistent and therefore require
no setup time. We compare ephemeral container ap-
plication startup time to cold (C) and warm (W) cache
application startup times for both plain Linux and Api-
ary’s persistent containers. We include cold cache re-
sults for benchmarking purposes and warm cache results
to demonstrate the results users would normally see.

As Figure 4, shows, the startup time overhead of run-
ning within a container versus plain Linux with no con-
tainers is generally under 25% in both cold and warm
cache scenarios. This overhead is mostly due to the
added overhead of opening the many files needed by to-
day’s complex applications. The most complex applica-
tion, OpenOffice, imposes the most, while the least com-
plex application, Xpdf, has negligible overhead. While
the maximum absolute extra time spent in the cold cache
case was nearly 5 seconds for OpenOffice, in the warm
cache case it dropped to under .5 seconds. Ephemeral
containers provide an interesting result. Even though
they have a fresh new file system and would be thought
to be equivalent to a cold cache startup, they are nearly
equivalent to the warm cache case. This is because
their underlying layers are already cached by the sys-
tem. The ephemeral case has a slightly higher overhead
due to the need to create the container and execute a dis-
play server inside of it in addition to regular application
startup. However, as this takes under 10 milliseconds, it
adds only a minimal amount to the ephemeral application
startup time.

4.4 File System Efficiency

To support a large number of containers, Apiary must
store and manage its file system efficiently. This means
that storage space should not significantly increase with
an increasing number of instantiated containers and
should be easily manageable in terms of application up-
dates. For each application’s VLFS, Table 3 shows its
size, its number of layers, the amount of state shared with
the other application VLFSs, and the amount of state
unique to it. For instance, the 129 layers that make up
Firefox’s VLFS require 353 MB, of which 330 MB are
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P F T O X M
Size (MB) 394 353 367 645 339 355
# Layers 147 129 125 186 130 162
Shared (MB) 322 330 335 329 330 326
Unique (MB) 72 23 32 316 9 29

Table 3: VLFS Layer Storage Breakdown for (P)idgin,
(F)irefox, (T)hunderbird, (O)penOffice, (X)pdf and (M)Player

shared with other applications and 23 MB are unique to
the Firefox VLFS. Table 3 shows that the majority of files
in each container are shared with other containers.

Table 4 compares the storage requirements of a plain
Linux desktop versus Apiary when using different num-
bers of containers to store the six applications listed in
Table 3. When all the applications are installed within a
single container, plain Linux and Apiary require the same
amount of storage. However, when each application is
installed within its own container, Apiary’s VLFS im-
poses no additional storage requirements while the tradi-
tional Linux method of provisioning an independent file
system for each container requires more than three times
more disk space due to the duplication of files amongst
the containers. If instead of using local desktops, multi-
ple remote desktops are provided on a server, the VLFS
usage would remain constant with the total size of all lay-
ers, while the plain Linux case would grow linearly with
the number of desktops.

Table 4 demonstrates how Apiary improves the ability
of users to maintain their many containers. We measured
the time it took to apply a security update common to all
the containers. Table 4 shows the time it took to update
a single container containing all the applications, as well
as all six application containers. The plain Linux case
is two order of magnitude longer due its need to extract
files from a package archive and copy them into the con-
tainer’s file system. In Apiary, no copying has to be per-
formed. While Table 4 demonstrates that an individual
update by itself does not take too long, the total time to
apply common updates to many containers rises linearly
with the number of containers.

5 Related Work

Isolation mechanisms such as VMs [39] and operating
system containers [24, 32] have long been used to in-
crease the security of applications. However, this re-
sults in applications not being integrated into the user’s
desktop experience. Each application is totally inde-
pendent and cannot leverage another one. Products like
VMware’s Unity [39] attempt to solve part of this issue
by combining the applications from multiple VMs into
a single display with a single menu and taskbar, as well
as providing file system sharing between host and VMs.
While VMs provide superior isolation, they suffer higher

FS Size Update Time

1 Container Plain Linux 815 MB 18 s
Apiary 815 MB 124 ms

6 Containers Plain Linux 2453 MB 108 s
Apiary 815 MB 745 ms

Table 4: Apiary vs Traditional File System Efficiency

overhead due to running independent operating systems.
This impacts performance and makes them unusable for
ephemeral usage on account of their long startup times.
In contrast, Apiary provides lightweight containers that
can support ephemeral execution.

Tahoma [34] is similar to Apiary in that it creates fully
isolated application environments that remain part of a
single desktop. Tahoma creates browser applications that
are limited to certain resources, such as specific URLs,
and that are fully isolated from each other. However,
it only provides these isolated application environments
for web browsers. It does not provide any way to inte-
grate these isolated environments and does not provide
ephemeral application environments. Google’s Chrome
web browser [17] builds upon some of these ideas to iso-
late web browser pages within a single browser. But the
browser as a whole does not offer any isolation from the
system. While its multiple-process model uses operating
system mechanisms to isolate separate web pages that
are concurrently viewed, it does not provide any isola-
tion from the system itself. For instance, any plugin that
is executed has the same access to the underlying system
as does the user running the browser.

Modern web browsers improve privacy by providing
private browsing modes that prevent browser state from
being committed to disk. While they serve a similar pur-
pose to ephemeral containers, private browsing is fun-
damentally different. First, it has to be written into the
program itself. Many different types of programs have
privacy modes to prevent them from recording state and
this model requires them to implement it independently.
Second, it only provides a basic level of privacy. It can-
not prevent a plugin from writing state to disk. Further-
more, it makes the entire browser and any helper program
or plugin that it executes part of the trusted computing
base (TCB). This means that the user’s entire desktop be-
comes part of the TCB. If any of those elements gets ex-
ploited, no privacy guarantees can be enforced. Apiary’s
ephemeral containers make the entire execution private
and support any application with a state a user desires to
remain private without any application modifications. It
also keeps the TCB much smaller, by only requiring that
the underlying operating system kernel and the minimal
environment of Apiary’s system daemon be trusted.

Apiary’s ability to run multiple applications in parallel
resembles Lampson’s Red/Green isolation [22] and Win-
dowBox [3]. These schemes involve users running two

or more separate environments, for instance, a red envi-
ronment for regular usage and a green environment for
actions requiring a higher level of trust. However, unlike
Apiary’s ephemeral containers, if an exploit enters the
green container, it will persist. Furthermore, by requiring
two separate virtual machines, one increases the amount
of work a user has to do to manage their machines. Api-
ary, by leveraging the VLFS, minimizes the overhead re-
quired required to manage multiple machines. Storage
Capsules [8] also attempts to mitigate this problem by
securely running the applications requiring trust in the
same operating system environment as the untrusted ap-
plications, while keeping their data isolated from one an-
other. However, this involves significant startup and tear-
down costs for each execution.

File systems and block devices with branching or
COW semantics [7, 29, 36] can be used to create a fresh
file system namespace for a new container quickly. How-
ever, these file systems do not help to manage the large
number of containers that exist within Apiary. Because
each container has a unique file system with different
sets of applications, administrators must create individ-
ual file systems tailored to each application. They cannot
create a single template file system with all applications
because applications can have conflicting dependency re-
quirements or desire to use the same file system path lo-
cations. Furthermore, if all applications are in a single
file system, they are not isolated from each other. This
results in a set of space-inefficient file systems, as each
file system has an independent copy of many common
files. This inefficiency also makes management harder.
When security holes are discovered and fixed, each indi-
vidual file system must be updated independently.

Many systems have been created that attempt to pro-
vide security through isolation mechanisms [1, 5, 10, 23,
25, 31, 33, 40]. All these systems differ from Apiary in
that they try to isolate the many different components
that make up a standard fully-integrated single system
using sets of rules to determine which of the machine’s
resources the application should be able to access. This
often results in one of two outcomes. First, a policy is
created that is too strict and does not let the application
run correctly. Second, a policy is created that is too le-
nient and lets an exploited application interact with data
and applications it should not be able to access. Api-
ary, on the other hand, forces each components to be
fully isolated within its own container before determin-
ing on which levels it should be integrated. As container
setup leverages regular installation utilities to ensure all
the required components are installed, it is much easier
to ensure the container is setup correctly and provides all
the resources that the application needs to execute. As
the container is independent from all other containers on
the system, no complicated rule sets have to be created

to determine what it needs access to. Furthermore, rule
based systems do not provide ephemeral execution and
therefore if an application gets exploited, it will remain
exploited, even if the exploit is confined.

Solitude [20] provides isolation via its Isolation File
System (IFS), which a user can throw away. This is sim-
ilar to Apiary’s ephemeral containers. However, the IFSs
are not fully isolated. First, Solitude does not create a
new IFS for each application execution. Second, the IFS
is built on top of a base file system with which it can
share data, breaking the isolation. To handle this, Soli-
tude implements taint tracking on files shared with the
underlying base file system. This helps determine post
facto what other applications may have been corrupted.
Similarly, Solitude only provides isolation at the file sys-
tem level. Because each application still shares a single
display, malicious and exploited applications can lever-
age built-in mechanisms in commodity display architec-
tures [13, 27] to insert events and messages into other
applications sharing the display.

6 Conclusions

Apiary introduces a new compartmentalized application
desktop paradigm. Instead of running one’s applications
in a single environment with complex rules to isolate
the applications from each other, Apiary enables them
to be easily and completely isolated while retaining the
integrated feel users expect from their desktop computer.
The key innovations that make this possible are the intro-
duction of the Virtual Layered File System and the eph-
emeral containers they enable. The Virtual Layered File
System enables the multiple containers to be stored as ef-
ficiently as a single regular desktop, while also allowing
containers to be instantiated almost instantly. This func-
tionality enables the creation of the ephemeral contain-
ers that provide an always fresh and clean environment
for applications to run in. Ephemeral containers prevent
malicious data from having any persistent effect on the
system and isolate faults to a single application instance.

We have implemented Apiary on Linux without re-
quiring any operating system kernel or application
changes. Our results demonstrate that Apiary’s con-
tainerized desktop severely reduces the threat posed by
malicious files and plugins by isolating them in ephem-
eral containers and enabling users to quickly recover if
they penetrate a persistent container. Our 24-person us-
age study demonstrates that Apiary is as easy to use as a
regular Linux desktop by both measuring the time it took
users to perform their tasks and their subjective opinions.
Furthermore, we demonstrate that Apiary adds minimal
overhead to application performance, is as efficient as a
regular desktop in its use of storage space, and instanti-
ates ephemeral containers in less than .5 s.
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ABSTRACT

This paper presents SUD, a system for running existing
Linux device drivers as untrusted user-space processes.
Even if the device driver is controlled by a malicious
adversary, it cannot compromise the rest of the system.
One significant challenge of fully isolating a driver is to
confine the actions of its hardware device. SUD relies on
IOMMU hardware, PCI express bridges, and message-
signaled interrupts to confine hardware devices. SUD
runs unmodified Linux device drivers, by emulating a
Linux kernel environment in user-space. A prototype of
SUD runs drivers for Gigabit Ethernet, 802.11 wireless,
sound cards, USB host controllers, and USB devices, and
it is easy to add a new device class. SUD achieves the
same performance as an in-kernel driver on networking
benchmarks, and can saturate a Gigabit Ethernet link.
SUD incurs a CPU overhead comparable to existing run-
time driver isolation techniques, while providing much
stronger isolation guarantees for untrusted drivers. Finally,
SUD requires minimal changes to the kernel—just two
kernel modules comprising 4,000 lines of code—which
may at last allow the adoption of these ideas in practice.

1 INTRODUCTION

Device drivers are a significant source of bugs in an op-
erating system kernel [11, 13]. Drivers must implement
complex features, such as wireless drivers running the
802.11 protocol, the Linux DRM graphics subsystem
supporting OpenGL operations, or the Linux X server
running with direct access to the underlying hardware.
Drivers must correctly handle any error conditions that
may arise at runtime [19]. Finally, drivers must execute in
restrictive kernel environments, such as when interrupts
are disabled, without relying on commonly-available ser-
vices like memory allocation. The result is kernel crashes
due to bugs in drivers, and even security vulnerabilities
that can be exploited by attackers [1, 5].

Significant work has been done on trying to isolate de-
vice drivers, and to make operating systems reliable in the
face of device driver failures [4, 6, 7, 10, 12, 14, 15, 21–
23, 26–29, 33–36]. Many research operating systems
include support to fully isolate device drivers [2, 15]. Un-
fortunately, work on commodity operating systems, like
Linux, focuses on fault isolation to prevent common de-
vice driver bugs, and cannot protect the rest of the system
from malicious device drivers [7, 30]. For instance, many

driver isolation techniques trust the driver not to subvert
the isolation, or not to livelock the system. If attackers
exploit a bug in the device driver [1, 5], they can proceed
to subvert the isolation mechanism and compromise the
entire system. While some systems can provide stronger
guarantees [28, 33], they rely on the availability of a fully-
trusted, precise specification of the hardware device’s
behavior, which is rarely available for devices today.

This paper presents the design and implementation of
SUD, a kernel framework that provides complete isolation
for untrusted device drivers in Linux, without the need
for any special programming languages or specifications.
SUD leverages recent hardware support to implement
general-purpose mechanisms that ensure a misbehaving
driver, and the hardware device that it manages, cannot
compromise the rest of the system. SUD allows unmod-
ified Linux device drivers to execute in untrusted user-
space processes, thereby limiting the effects of bugs or
security vulnerabilities in existing device drivers. SUD
also ensures the safety of applications with direct access
to hardware, such as the Linux X server, which today can
corrupt the rest of the system.

Moving device drivers to untrusted user-space code in
any system requires addressing three key challenges. First,
many device drivers require access to privileged CPU
instructions in order to interact with its device. However,
to protect the rest of the system, we need to confine the
driver’s execution. Second, the hardware device needs to
perform a range of low-level operations, such as reading
and writing physical memory via DMA and signaling
interrupts. However, to protect the rest of the system from
operations that a malicious driver might request of the
device, we must also control the operations that can be
performed by the device. Finally, we would like to reuse
existing driver code for untrusted device drivers. However,
existing drivers rely on a range of kernel facilities not
available in user-space applications making it difficult to
reuse them as-is.

SUD’s design addresses these challenges for Linux as
follows. First, to isolate driver code, SUD uses existing
Unix protection mechanisms to confine drivers, by run-
ning each driver in a separate process under a separate
Unix user ID. To provide the device driver with access
to its hardware device, the kernel provides direct access
to memory-mapped device IO registers using page tables,
and uses other x86 mechanisms to allow controlled access

1
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to the IO-space registers on the device. The kernel also
provides special device files for safely managing device
state that cannot be directly exposed at the hardware level.

Addressing the second challenge of confining the phys-
ical hardware managed by a driver is more difficult, due
to the wide range of low-level operations that hardware
devices can perform. SUD assumes that, unlike the device
driver, the device hardware is trusted, and in particu-
lar, that it correctly implements the PCI express speci-
fication [25]. Given that assumption, SUD relies on an
IOMMU [3, 17] and transaction filtering in PCI express
bridges [25] to control the memory operations issued by
the device under the control of the driver. SUD also relies
on message-signaled interrupts [24] to route and mask
interrupts from the device.

Finally, to support unmodified Linux device drivers,
SUD emulates the kernel runtime environment in an un-
trusted user-space process. SUD relies on UML [9] to
implement the bulk of the kernel facilities, and allows
drivers to access the underlying devices by using SUD’s
direct hardware access mechanisms provided by the un-
derlying kernel. The underlying kernel, in turn, exposes
an upcall interface that allows the user-space process to
provide functionality to the rest of the system by imple-
menting the device driver API.

We have implemented a prototype of SUD for the Linux
kernel, and have used it to run untrusted device drivers
for Gigabit Ethernet cards, 802.11 wireless cards, sound
cards, and USB host controllers and devices. SUD runs ex-
isting Linux device drivers without requiring any source-
code modifications. A benchmark measuring streaming
network throughput achieves the same performance with
both in-kernel Linux drivers and the same drivers running
in user-space with SUD, saturating a Gigabit Ethernet
link, although SUD imposes an 8–30% CPU overhead.
Our experiments suggest that SUD protects the system
from malicious device drivers, even if the device driver
attempts to issue arbitrary DMA requests and interrupts
from its hardware device.

SUD provides complete isolation of untrusted user-
space processes with access to arbitrary PCI devices, with-
out relying on any specialized languages or specifications.
SUD demonstrates how this support can be used to run un-
modified Linux device drivers in an untrusted user-space
process with CPU overheads comparable to other driver
isolation techniques, and the same mechanisms can be
used to safely run other applications that require direct
access to hardware devices. Finally, we are hopeful that
by making only minimal changes to the Linux kernel—
two loadable kernel modules—SUD can finally put these
research ideas to use in practice.

The rest of this paper is structured as follows. We first
review related work in Section 2. We present the design
of SUD in Section 3, and describe our implementation of

SUD for the Linux kernel in Section 4. Section 5 eval-
uates the performance of our SUD prototype. Section 6
discusses the limitations of SUD and future work, and
Section 7 concludes.

2 RELATED WORK

There is a significant amount of related work on improv-
ing the reliability, safety, and reuse of device drivers. The
key focus of SUD is providing strong confinement of un-
modified device drivers on Linux. In contrast, many prior
systems have required adopting either a new OS kernel,
new drivers, or new specifications for devices. On the
other hand, techniques that focus on device driver relia-
bility and reuse are complementary to SUD, and would
apply equally well to SUD’s untrusted drivers. The rest of
this section surveys the key papers in this area.

Nooks [30] was one of the first systems to recognize
that many kernel crashes are caused by faulty device
drivers. Nooks used page table permissions to limit the
effects of a buggy device driver’s code on the rest of the
kernel. However, Nooks was not able to protect the ker-
nel from all possible bugs in a device driver, let alone
malicious device driver code, whereas SUD can.

A few techniques for isolating kernel code at a finer
granularity and with lower overheads than page tables
have been proposed, including software fault isolation [6,
10] and Mondrian memory protection [34, 35]. While
both SFI and MMP are helpful in confining the actions of
driver code, they cannot confine the operations performed
by the hardware device on behalf of the device driver,
which is one of the key advantages of SUD.

Microkernels partition kernel services, including
drivers, into separate processes or protection domains [2,
31]. Several microkernels, such as Minix 3 and L4, re-
cently added support for IOMMU-based isolation of de-
vice DMA, which can prevent malicious device drivers
from compromising the rest of the system [2, 15]. SUD
borrows techniques from this previous work, but differs
in that it aims to isolate unmodified Linux device drivers.
We see this as a distinct challenge from previous work,
because Linux device drivers are typically more complex
than their microkernel counterparts1 and SUD does not
change the kernel-driver interface to be more amendable
to isolation.

Virtual machine monitors must deal with similar issues
to allow guest OS device drivers to directly access underly-
ing hardware devices, and indeed virtualization is the key
reason for the availability of IOMMU hardware, which
has now been used in a number of VMMs [4, 23, 32]. In a
virtual machine, however, malicious drivers can compro-
mise their own guest OS and any applications the guest
OS is running. SUD runs a separate UML process for

1For example, the Linux e1000 Ethernet device driver is 13,000 lines
of C code, and the Minix 3 e1000 driver is only 1,250 lines.

2

each device driver; in this model, a driver compromising
its user-space UML kernel is similar to a process compro-
mising its libc. Thus, in SUD, the Linux kernel prevents a
malicious driver from compromising other device drivers
or applications.

Loki [36] shows how device drivers, among other parts
of kernel code, can be made untrusted by using physical
memory tagging. However, Loki incurs a memory over-
head for storing tags, and requires modifying both the
CPU and the DMA engines to perform tag checks, which
is unlikely to appear in mainstream systems in the near
future. Unlike SUD, Loki’s memory tagging also cannot
protect against devices issuing arbitrary interrupts.

Many of the in-kernel isolation techniques, including
Nooks, SFI, and MMP, allow restarting a crashed device
driver. However, doing so requires being able to reclaim
all resources allocated to that driver at runtime, such as
kernel memory, threads, stacks, and so on. By running
the entire driver in an untrusted user-level process, SUD
avoids this problem altogether.

Another approach to confining operations made by the
hardware device on behalf of the driver is to rely on a
declarative specification of the hardware’s state machine,
such as in Nexus [33] or Termite [28]. These techniques
can provide fine-grained safety properties specific to each
device, using a software reference monitor to control a
driver’s interactions with a device. However, if a spec-
ification is not available, or is incorrect, such a system
would not be able to confine a malicious device driver,
since it is impossible to predict how interactions between
the driver and the device translate into DMA accesses
initiated by the device.

In contrast to a specification-based approach, SUD
enforces a single safety specification, namely, memory
safety for PCI express devices. It does so without rely-
ing on precise knowledge of when a device might issue
DMA requests or interrupts, by using hardware to con-
trol device DMA and interrupts, and providing additional
system calls to allow driver manipulation of PCI regis-
ter state. The drawback of enforcing a single memory
safety property is that SUD cannot protect physical de-
vices from corruption by misbehaving drivers, unlike [33].
We expect that the two techniques could be combined,
by enforcing a base memory safety property in SUD, and
using finer-grained specifications to ensure higher-level
properties.

Nooks introduced the concept of shadow drivers [29] to
recover device driver state after a fault, and SUD’s archi-
tecture could also use shadow drivers to gracefully restart
untrusted device drivers. In SUD, shadow drivers could
execute either in fully-trusted kernel code, or in a separate
untrusted user-space process, isolated from the untrusted
driver they are shadowing. Techniques from CuriOS [8]
could likewise be applied to address this problem.

Device driver reuse is another important area of re-
lated work. Some of the approaches to this problem have
been to run device drivers in a virtual machine [22] with-
out security guarantees, or to synthesize device drivers
from a common specification language [28]. By allowing
untrusted device drivers to execute in user-space, SUD
simplifies the task of reusing existing, unmodified device
drivers safely across different kernels. A well-defined
driver interface, such as [28], would make it easier to
move drivers to user-space, but SUD’s architecture would
still provide isolation.

Even if a driver cannot crash the rest of the system,
it may fail to function correctly. A number of systems
have been developed to help programmers catch common
programming mistakes in driver code [19, 27], to make
sure that the driver cannot mis-configure the physical
device [33], and to guarantee that the driver implements
the hardware device’s state machine correctly [28]. A
well-meaning driver running under SUD would benefit
from all of these techniques, but the correctness of these
techniques, or whether they were used at all, would not
impact the isolation guarantees made by SUD.

Finally, user-space device drivers [21] provide a num-
ber of well-known advantages over running drivers in
the kernel, including ease of debugging, driver upgrades,
driver reuse, and fault isolation from many of the bugs
in the driver code. Microdrivers [12] shows that the
performance-critical aspects of a driver can be moved into
trusted kernel code, while running the bulk of the driver
code in user-space with only a small performance penalty,
even if written in a type-safe language like Java [26].

SUD achieves the same benefits of running drivers
in user-space, but does not rely on any device-specific
trusted kernel code. This allows SUD to run arbitrary de-
vice drivers and applications with direct hardware access,
without having to trust any part of them ahead of time, at
the cost of somewhat higher CPU overheads as compared
to Microdrivers. We expect that performance techniques
from other user-level device driver systems [21] can be
applied to SUD to similarly reduce the CPU overhead.

3 DESIGN

The goal of SUD is to prevent a misbehaving device driver
from corrupting or disabling the rest of the system, includ-
ing the kernel, applications, and other drivers.2 At the
same time, SUD strives to provide good performance in
the common case of well-behaved drivers. SUD assumes
that the driver can issue arbitrary instructions or system
calls, and can also configure the physical device to issue
arbitrary DMA operations or interrupts. The driver can
also refuse to respond to any requests, or simply go into

2Of course, if the application relies on the device in question, such
as a web server relying on the network card, the application will not be
able to make forward progress until a working device driver is available.
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Figure 1: Overview of the interactions between components of SUD
(shaded). Shown in user-space is an unmodified Ethernet device driver
running on top of SUD-UML. A separate driver process runs for each
device driver. Shown in kernel-space are two SUD kernel modules, an
Ethernet proxy driver (used by all Ethernet device drivers in SUD), and
a safe PCI device access module (used by all PCI card drivers in SUD).
Arrows indicate request flow.

an infinite loop. To confine drivers, SUD assumes the use
of recent x86 hardware, as we detail in Section 3.2.

The design of SUD consists of three distinct compo-
nents, as illustrated in Figure 1. First, a proxy driver
Linux kernel module allows user-space device drivers to
implement the device driver interface expected by the
Linux kernel. This kernel module acts as a proxy driver
that can implement a particular type of device, such as an
Ethernet interface or a wireless card. The proxy driver’s
job is to translate kernel calls to the proxy driver into
upcalls to the user-space driver. A safe PCI device ac-
cess kernel module allows user-space drivers to manage a
physical hardware device, while ensuring that the driver
cannot use the device to corrupt the rest of the system.
Finally, a user-space library based on User-Mode Linux
(UML) [9], called SUD-UML, allows unmodified Linux
device drivers to run in untrusted user-space processes.

The rest of this section describes how the user-space de-
vice driver interacts with the rest of the system, focusing
on how isolation is ensured for malicious device drivers.

3.1 API between kernel and driver
Traditional in-kernel device drivers interact with the ker-
nel through well-known APIs. In Linux a driver typically
registers itself with the kernel by calling a register func-
tion and passing a struct initialized with driver specific
data and callbacks. The kernel invokes the callbacks to
pass data and control to the driver. Likewise, drivers
deliver data and execute kernel functions by calling pre-
defined kernel functions.

As a concrete example, consider the kernel device
driver for an imaginary “nic” Ethernet device, whose
pseudo-code is shown in Figure 2. The Linux PCI

void nic_xmit_frame(struct sk_buff *skb)

{

/*

* Transmit a packet on behalf of the networking

* stack.

*/

nic_tx_buffer(skb->data, skb->data_len);

}

void nic_do_ioctl(int ioctl, char *result)

{

/* Return MII media status. */

if (ioctl == SIOCGMIIREG)

nic_read_mii(result);

}

void nic_irq_handler(void)

{

/*

* Pass a recently received packet up to the

* networking stack.

*/

struct sk_buff *skb = nic_rx_skb();

netif_rx(skb);

}

void nic_open(void)

{

/*

* Register an IRQ handler with the kernel and

* enable the nic.

*/

request_irq(nic_irq_num(),

nic_irq_handler);

nic_enable();

}

void nic_close(void)

{

free_irq(nic_irq_num());

}

struct net_device_ops nic_netdev_ops = {

.ndo_open = nic_open,

.ndo_stop = nic_close,

.ndo_start_xmit = nic_xmit_frame,

.ndo_do_ioctl = nic_do_ioctl,

};

int nic_probe(void)

{

/* Register a device driver with the kernel. */

char mac[6];

struct net_device *netdev = alloc_etherdev();

netdev->netdev_ops = &nic_netdev_ops;

nic_read_mac_addr(mac);

memcpy(netdev->dev_addr, mac, 6);

register_netdev(netdev);

return 0;

}

Figure 2: Example in-kernel Ethernet driver code, with five callback
functions nic open, nic close, nic xmit frame, nic do ioctl,
and nic irq handler. Ethernet drivers for real device require more
lines of code.
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code calls nic probe when it notices a PCI device that
matches the nic’s PCI device and vendor ID. nic probe
allocates and initializes a struct net device with
the nic’s MAC address and set of device specific call-
back functions then registers with Linux by calling
register netdev. When a user activates the device
(e.g. by calling ifconfig eth0 up), Linux invokes the
nic open callback, which registers an IRQ handler to
handle the device’s interrupts, and enables the nic. When
the Linux networking stack needs to send a packet, it
passes the packet to the nic xmit frame callback. Like-
wise, when the nic receives a packet it passes the packet
to the networking stack by calling netif rx.

In order to move device drivers into user-space pro-
cesses, SUD must translate the API between the kernel
and the device driver, such as the example shown in Fig-
ure 2, into a message-based protocol that is more suitable
for user-kernel communication. SUD uses proxy drivers
for this purpose. A SUD proxy driver registers with the
Linux device driver subsystem, providing any callback
functions and data required by the class of drivers it sup-
ports. When the kernel invokes a proxy driver’s callback
function, the proxy driver translates the callback into an
RPC call into a user-space driver. The kernel-driver API
can also include shared memory that is accessed by either
the driver or the kernel without invoking each other’s func-
tions. In our Ethernet driver example, the card’s MAC
address is stored in netdev->dev addr, and is accessed
without the use of any function calls. The proxy driver
synchronizes such shared memory locations by mirroring,
as we will discuss in Section 3.3.

SUD proxy drivers use a remote procedure call abstrac-
tion called user channels (or uchans for short), which
we’ve optimized for messaging using memory shared be-
tween kernel and user address spaces. Figure 3 provides
an overview of the SUD uchan interface. SUD imple-
ments uchans as special file descriptors. A uchan library
translates the API in Figure 3 to operations on the file
descriptor.

When the kernel invokes one of the proxy driver’s call-
backs, such as the function for transmitting a packet, the
proxy driver marshals that request into an upcall into
the user-space process. In the case of transmitting a
packet, the proxy driver copies packet information into
a msg t, and calls sud asend to add the msg t to the
queue holding kernel-to-user messages. Since transmit-
ting a packet does not require an immediate reply, the
proxy asynchronously sends the msg t. On the other
hand, synchronous upcalls are used for operations that
require an immediate reply, such as ioctl calls to query
the current MII media status of an Ethernet card, and
result in the message being sent with sud send, which
blocks the callback until the user-space driver replies to
the message.

kernel and user-space functions
sud send(msg t) Send a synchronous message.
sud asend(msg t) Send an asynchronous message.
buf t sud alloc() Allocate a shared buffer.
sud free(buf t) Free a shared buffer.

user-space functions
msg t sud wait() Wait for a message.
sud reply(msg t) Reply to a message.

Figure 3: Overview of the SUD uchan and memory allocation API.

The user-space process is responsible for handling ker-
nel upcall messages, and typically the driver waits for a
message from the kernel by calling sud wait. When the
proxy driver places on a message on the kernel-to-user
queue, sud wait dequeues the message and returns it to
the user-space driver. The user-space driver processes
the message by unmarshaling the arguments from the
message, and invoking the corresponding callback in the
driver code. If the callback returns a result (i.e. the kernel
called sud send), the user-space driver marshals the re-
sponse into a msg t, and calls sud reply, which places
the msg t on a queue holding user-to-kernel messages.

When the user-to-kernel message queue contains a re-
ply message, the proxy driver removes the message from
the queue and unblocks the callback waiting for the reply.
The callback completes by returning appropriate results
to its caller. In the ioctl example, the kernel passes a
buffer to the callback that the callback copies the result
from the user-space driver reply into.

User-space drivers may also need to invoke certain
kernel functions, such as changing the link status of the
Ethernet interface. This is called a downcall in SUD, and
is implemented in an analogous fashion, where the user-
space driver and the in-kernel proxy driver reverse roles
in the RPC protocol. One notable difference is that the
kernel returns results of downcalls directly by copying
the results into the message buffer the driver passed to
sud send, instead of by sending a separate message to
the driver process.

3.1.1 Protecting the kernel from the device driver

Moving device drivers to user-space prevents device
drivers from accessing kernel memory directly. This pre-
vents buggy or malicious device drivers from crashing
the kernel. However, a buggy or malicious user-space
device driver may still break the kernel, other processes,
or other devices, unless special precautions are taken at
the user-kernel API. The kernel, and the proxy driver in
particular, needs to make as few assumptions as possi-
ble about the behavior of the user-space device driver.
The rest of this subsection describes how SUD handles
liveness and semantic assumptions.

Liveness assumptions. One assumption that is often
made of trusted in-kernel drivers is that they will handle
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requests in a timely fashion. However, if a malicious
user-space device driver fails to respond to upcalls, many
threads in the kernel may eventually be blocked waiting
for responses that will never arrive. SUD addresses this
problem in two ways. First, for upcalls that require a
response from the user-space device driver before the in-
kernel proxy can proceed, the upcall is made interruptable.
This allows the user to abort (Ctrl-C) an operation that
appears to have hung, such as running ifconfig on an
unresponsive driver. To implement interruptable upcalls,
the user-kernel interface must be carefully designed to
allow any synchronous upcall to return an error.

Second, SUD uses asynchronous upcalls whenever pos-
sible. Asynchronous upcalls can be used in situations
where the in-kernel proxy driver does not require any re-
sponse from the user-space driver in order to return to its
caller safely, such as packet transmission. If the device
driver’s queue is full, the kernel can wait a short period of
time to determine if the user-space driver is making any
progress at all, and if not, the driver can be reported as
hung to the user.

Asynchronous upcalls are also necessary for handling
upcalls from threads running in a non-preemptable con-
text, such as when holding a spinlock. A thread in a non-
preemptable context cannot go to sleep, and therefore can-
not allow the user-space driver to execute and process the
upcall. While multi-core systems can avoid this problem
by running the driver and the non-preemptable context
concurrently, SUD still must not rely on the liveness of
the untrusted device driver.

A potential problem can occur if a non-preemptable
kernel thread invokes the in-kernel proxy driver and ex-
pects a response (so that the proxy driver might need
to perform an upcall). One solution to this problem is
rewriting the kernel code so a non-preemptable context is
unnecessary. In Linux, for example, we could replace the
spin lock with a mutex. However, this solution is unde-
sirable, because it might require restructuring portions of
the kernel and affect performance poorly.

To address this problem, we observe that the work per-
formed by functions called in a non-preemptable context
is usually small and well-defined; after all, the kernel
tries to avoid doing large amounts of work in a non-
preemptable context. Thus, for every class of devices, the
corresponding SUD proxy driver implements any short
functions invoked by the kernel as part of the driver API.3

Any state required by these functions is mirrored and
synchronized between the real kernel and the SUD-UML
kernel. For example, the Linux 802.11 network stack

3While we have found that this approach works for device drivers
we have considered so far, it is possible that other kernel APIs have
long, device-specific functions invoked in a non-preemptable context.
Supporting these devices in SUD would require modifying the kernel,
as Section 3.1.3 discusses.

calls the driver to enable certain features, while executing
in a non-preemptable context; the driver must respond
with the features it supports and will enable. The wire-
less proxy driver mirrors the (static) supported feature set,
and when the kernel invokes the function to enable some
feature, the proxy driver queues an asynchronous upcall
to SUD-UML containing the newly-enabled features.

Semantic assumptions. A second class of assumptions
that kernel code may make about trusted in-kernel drivers
has to do with the semantics of the driver’s responses. A
hypothetical kernel might rely on the fact that, once the
kernel changes the MAC address of an Ethernet card, a
query to get the current MAC address will return the new
value. SUD does not enforce such invariants on drivers,
because we have not found any examples of such assump-
tions in practice. Infact, Linux subsystems that interact
with device drivers (such as the network device subsys-
tem) are often robust to driver mistakes, and print error
messages when the driver is acting in unexpected ways.
At this point, the administrator can kill the misbehaving
user-space driver. If the kernel did rely on higher-level
invariants about driver behavior, the corresponding proxy
driver would need to be modified to keep track of the
necessary state, and to enforce the invariant.

3.1.2 Uchan optimizations

Two potential sources of performance overhead in SUD
come from the context switches due to upcalls and down-
calls, and from data copying, such as the packets in an
Ethernet driver.

The SUD uchan implementation optimizes the num-
ber of context switches due to upcalls and downcalls by
mapping message queues into memory shared by the ker-
nel and user-space driver. SUD uchans implement the
message queues using ring buffers. The kernel writes
messages into the head of the kernel-to-user ring. When
the user-space driver calls sud wait to wait for a mes-
sage, sud wait polls the kernel-to-user ring tail pointer.
If the tail points to a message sud wait dequeues the
message by incrementing the tail pointer, the user-space
driver processes the message, and possibly returns results
by calling sud reply. When the tail of the ring equals
the head, the queue is empty and the user-space process
sleeps by calling select on the uchan file descriptor.
select returns when the kernel adds a message to the
head of the kernel-to-user ring. This interface allows a
user-space process to process multiple messages without
entering the kernel.

The downcall message queues work in a similar fashion,
except that the user-space driver writes to the head of the
ring and the kernel reads from the tail of the ring. When a
user-space driver calls sud asend, the uchan library adds
the message to the queue, but does not notify the kernel

6

of the pending message until the user-space driver calls
sud wait or sud send. This allows user-space drivers
to batch asynchronous downcalls.

SUD also optimizes data copying overhead by pre-
allocating data buffers in the user-space driver, and hav-
ing the in-kernel proxy driver map them in the kernel’s
address space. A call to sud alloc returns one of the
shared messages buffers and sud free returns the mes-
sage buffer to the shared heap. In an Ethernet driver, this
allows packet transmit upcalls and packet receive down-
calls to exchange pointers using sud send, and avoid
copying the data. As we will describe later, the same
shared buffers are passed to the physical device to access
via DMA, avoiding any additional data copy operations
in the user-space driver.

The in-kernel proxy driver may need to perform one
data copy operation to guard against malicious user-space
drivers changing the shared-memory data after it has been
passed to the kernel. For example, a malicious driver
may construct an incoming packet to initially look like a
safe packet that passes through the firewall, but once the
firewall approves the packet, the malicious driver changes
the packet in shared memory to instead connect to a fire-
walled service. In the case of network drivers, we can
avoid the overhead of this additional data copy operation
by performing it at the same time that the packet’s check-
sum is computed and verified, at which point the data
is already being brought into the CPU’s data cache. An
alternative design may be to mark the page table entries
read-only, but we have found that invalidating TLB entries
from the IOMMU’s page table is prohibitively expensive
on current hardware.

3.1.3 Limitations

The implementation of the Linux kernel imposes several
limitations on what types of device drivers SUD supports
and what driver features a proxy driver can support.

It is unlikely SUD will ever be able to support device
drivers that are critical for a kernel to function. For ex-
ample, Linux relies on a functioning timer device driver
to signal the scheduler when a time quantum elapses. A
buggy or malicious timer driver could deadlock the kernel,
even while running as a SUD user-space driver.

Another limitation is how proxy drivers handle call-
backs when the calling kernel thread is non-preemptable.
Servicing the callback in the in-kernel proxy allow SUD
to support common functions for several device classes,
but it does not work in all cases. For SUD to support
all the functions of Linux kernel devices it is likely that
some kernel subsystems would need to be restructured so
non-preemptable threads do not need to make upcalls.

Despite these limitations SUD supports common fea-
tures for several widely used devices. We could incremen-
tally add support for more functions.

3.2 Confining hardware device access
The key challenge to isolating an untrusted device driver
is making sure that a malicious driver cannot misuse its
access to the underlying hardware device to escape iso-
lation. In this subsection, we discuss how SUD confines
the driver’s interactions with the physical device, first
focusing on operations that the driver can perform on
the device, and second discussing the operations that the
device itself may be able to perform.

To control access to devices without knowing the de-
tails of the specific device hardware interface, SUD as-
sumes that all devices managed from user-space are PCI
devices. This assumption holds for almost all devices of
interest today.

3.2.1 Driver-initiated operations

In order for the user-space device driver to function,
it must be able to perform certain operations on the
hardware device. This includes accessing the device’s
memory-mapped IO registers, accessing legacy x86 IO
registers on the device, and accessing the device’s PCI
configuration registers. SUD’s safe PCI device access
module, shown in Figure 1, is responsible for supporting
these operations.

To allow access to memory-mapped IO registers, SUD’s
PCI device access module allows a user-space device
driver to directly map them into the driver’s address space.
To make sure that these page mappings do not grant un-
intended privileges to an untrusted device driver, SUD
makes sure that all memory-mapped IO ranges are page-
aligned, and does not allow untrusted drivers to access
pages that contain memory-mapped IO registers from
multiple devices.

Certain devices and drivers also require the use of
legacy x86 IO-space registers for initialization. To al-
low drivers to access the device’s IO-space registers, SUD
uses the IOPB bitmask in the task’s TSS [16] to permit
access to specific IO ports.

Finally, drivers need to access the PCI configuration
space of their device to set certain PCI-specific param-
eters. However, some of the PCI configuration space
parameters might allow a malicious driver to intercept
writes to arbitrary physical addresses or IO ports, or issue
PCI transactions on behalf of other devices. To prevent
such attacks, SUD exposes PCI configuration space access
through a special system call interface, instead of grant-
ing direct hardware access to the user-space driver. This
allows SUD to ensure that sensitive PCI configuration
registers are not modified by the untrusted driver.

3.2.2 Device-initiated operations

A malicious user-space driver may be able to escape iso-
lation by asking the physical hardware device to perform
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operations on its behalf, such as reading or writing physi-
cal memory via DMA, or raising arbitrary interrupts. To
prevent such problems, SUD uses hardware mechanisms,
as shown in Figure 4, to confine each physical device
managed by an untrusted device driver.

DMA. First and foremost, SUD must ensure that the de-
vice does not access arbitrary physical memory via DMA.
To do so, SUD relies on IOMMU hardware available in
recent Intel [17] and AMD [3] CPUs and chipsets to in-
terpose on all DMA operations. The PCI device access
module specifies a page table for each PCI device in the
system, and the IOMMU translates the addresses in each
DMA request according to the page table for the origi-
nating PCI device, much like the CPU’s MMU. By only
inserting page mappings for physical pages accessible to
the untrusted driver into the corresponding PCI device’s
IO page table, SUD ensures that a PCI device cannot ac-
cess any physical memory not already accessible to the
untrusted driver itself.

Peer-to-peer DMA. Although an IOMMU protects the
physical memory of the system from device DMA re-
quests, a subtle problem remains. Traditional PCI bridges
route DMA transactions according to the destination phys-
ical address, and a PCI device under the control of a
malicious driver may be able to DMA into the memory-
mapped registers of another PCI device managed by a
different driver. As can be seen in Figure 4, a DMA trans-
action from device A to the physical address of device
B’s registers would not cross the IOMMU, and thereby
would not be prevented.

To avoid this problem, SUD requires the use of a PCI
express bus, which uses point-to-point physical links be-
tween PCI devices and switches, as opposed to traditional
PCI which uses a real bus shared by multiple devices.
When multiple devices share the same physical PCI bus,
there is nothing that can prevent a device-to-device DMA
attack. With PCI express, at least one PCI express switch
is present between any two devices, and can help us avoid
this problem.

To ensure that all PCI requests pass through the
root switch, SUD enables PCI access control services
(ACS) [25] on all PCI express switches. ACS allows the
operating system to control the routing and filtering of
certain PCI requests. In particular, SUD enables source
validation, which ensures that a downstream PCI device
cannot spoof its source address, and P2P request and com-
pletion redirection, which ensures that all DMA requests
and responses are always propagated from devices to the
root (where the IOMMU is located), and from the root to
the devices, but never from one device to another.

Interrupts. The final issue that SUD must address is
interrupts that can be raised by devices. Although inter-

PCI
Device A

PCI
Device B

PCI express
switchIOMMU

DRAM

CPU MSI

Physical
memory
bus

APIC bus

Figure 4: Overview of the hardware mechanisms used by SUD to con-
fine hardware devices managed by untrusted drivers. In some systems,
the APIC bus is overlaid on the physical memory bus, and in some
systems the DRAM is attached directly to the CPU.

rupts are unlikely to corrupt any system state on their own,
a malicious driver could use an interrupt storm to force
CPUs to keep handling interrupts, thereby livelocking
the system. Traditionally, the device driver’s interrupt
handler is responsible for clearing the interrupt condition
before interrupts are re-enabled. In some cases devices
share an interrupt and are expected to coordinate inter-
rupt handling. With untrusted device drivers, however,
the kernel cannot rely on a driver to clear the interrupt
condition or cooperate with other drivers, so SUD takes a
few measures to prevent this from happening.

First, SUD prevents devices from raising legacy inter-
rupts shared by multiple devices. SUD does so by restrict-
ing drivers from directly accessing the PCI configuration
registers to change the interrupt configuration. Instead
of legacy interrupts, SUD relies on message-signaled in-
terrupts (MSI), which are mandatory for PCI express
devices, and support generic interrupt masking that does
not depend on the specific device.

Second, SUD forwards device interrupts to untrusted
drivers via the upcall mechanism that was described in
Section 3.1. When an interrupt comes in, SUD issues an
upcall to the corresponding driver indicating that an inter-
rupt was signaled. At this point, SUD does not mask fur-
ther MSI interrupts, since they are edge-triggered. How-
ever, if another interrupt for the same device comes in,
before the driver indicates that it has finished process-
ing the interrupt, SUD uses MSI to make sure further
interrupts do not prevent the driver’s forward progress.

Note that this design allows the OS scheduler to sched-
ule device drivers along with other processes in the system.
When the device driver’s time quantum expires, it will
be descheduled, and even if it were handling an inter-
rupt, MSI will be used to mask subsequent interrupts until
the driver can run again. Of course, in practice it may
be desirable to run device drivers with high priority, to
make sure that devices are serviced promptly, but should
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a driver misbehave, other processes will still be able to
execute.

The final consideration has to do with how message-
signaled interrupts are implemented on x86. A device
signals an MSI by performing a memory write to a re-
served physical memory address, and the MSI controller
on the other side of the IOMMU picks up writes to that
memory address and translates them into CPU interrupts
on the APIC bus, as shown in Figure 4. Unfortunately,
it is impossible to determine whether a write to the MSI
address was caused by a real interrupt, or a stray DMA
write to the same address. SUD can mask real interrupts
by changing the MSI register in the PCI configuration
space of the device, but cannot prevent stray DMA writes
to the MSI address.

To avoid interrupt storms and arbitrary interrupts
caused by a malicious driver using DMA to the MSI
address, SUD uses two strategies, depending on which
IOMMU hardware it has available to it. On Intel’s VT-
d [17], SUD uses interrupt remapping support. Interrupt
remapping allows the OS kernel to supply a table trans-
lating potential MSI interrupts raised by each device to
the physical interrupt that should be raised as a result, if
any. Changing an interrupt remapping table is more ex-
pensive than using MSI masking, so SUD first tries to use
MSI to mask an interrupt, and if that fails, SUD changes
the interrupt remapping table to disable MSI interrupts
from that device altogether. With AMD’s IOMMU [3],
SUD removes the mapping for the MSI address from that
particular device’s IO page table, thereby preventing that
device from performing any MSI writes.

3.3 Running unmodified drivers in user-space

To allow unmodified Linux device drivers to run in un-
trusted user-space processes, SUD uses UML [9] to supply
a kernel-like runtime environment in user-space, which
we call SUD-UML. SUD-UML’s UML environment pro-
vides unmodified drivers with all of the kernel code they
rely on, such as kmalloc() and jiffies.

SUD-UML differs from traditional UML in three key
areas that allow it to connect drivers to the rest of the
world. First, SUD-UML replaces low-level routines that
access PCI devices and allocate DMA memory with calls
to the underlying kernel’s safe PCI device access module,
shown in Figure 1. For example, when the user-space
driver calls pci enable device to enable a PCI device,
SUD-UML performs a downcall to the underlying kernel
to do so. When the user-space driver allocates DMA-
capable memory, SUD-UML requests that the newly-
allocated memory be added to the IOMMU page table for
the relevant device. When the driver registers an interrupt
handler, SUD-UML asks the underlying kernel to forward
interrupt upcalls to it.

Second, SUD-UML implements the user-kernel RPC
interface that we described in Section 3.1 by invoking the
unmodified Linux driver when it receives an upcall from
the kernel, and sends the response, if any, back to the
kernel over the same file descriptor. For example, when
an interrupt upcall is received by SUD-UML, it invokes
the interrupt handler that was registered by the user-space
driver.

Finally, SUD-UML mirrors shared-memory state that
is part of the driver’s kernel API, by maintaining the same
state in both the real kernel and SUD-UML’s UML kernel,
and synchronizing the two copies as needed. For example,
the Linux kernel uses shared memory variables to track
the link state of an Ethernet interface, or the currently
available bitrates for a wireless card. The SUD proxy
driver and SUD-UML cooperate to synchronize the two
copies of the state. If the proxy driver updates the kernel’s
copy of the state, it sends an upcall to SUD-UML with
the new value. In SUD-UML, we exploit the fact that
updates to driver shared memory variables are done via
macros, and modify these macros to send a downcall with
the new state to the real kernel. This allows the user-space
device driver to remain unchanged.

Updates to shared-memory state are ordered with re-
spect to all other upcall and downcall messages, which
avoids race conditions. Typically, any given shared-
memory variable is updated by either the device driver or
by the kernel, but not both. As a result, changes to shared-
memory state appear in the correct order with respect to
other calls to or from the device driver. However, for secu-
rity purposes, the only state that matters is the state in the
real kernel. As discussed in Section 3.1.1, the Linux ker-
nel is robust with respect to semantic assumptions about
values reported by device drivers.

Poorly written or legacy drivers often fail to follow ker-
nel conventions for using system resources. For example,
some graphics cards set up DMA descriptors with physi-
cal addresses instead of using the kernel DMA interface to
get a DMA capable address. A poorly written driver will
run in SUD-UML until it attempts to accesses a resource
that it has not properly allocated. When this happens the
SUD-UML process terminates with an error.

4 IMPLEMENTATION

We have implemented a prototype of SUD as a kernel
module for Ubuntu’s Linux 2.6.30-5 kernel on x86-64
CPUs. We made several minor modifications to the Linux
kernel proper. In particular, we augmented the DMA map-
ping interface to include functions for flushing the IOTLB,
mapping memory starting at a specified IO virtual address,
and garbage collecting an IO address space. We have only
tested SUD on Intel hardware with VT-d [17], but the
implementation does not rely on VT-d features, and SUD
should run on any IOMMU hardware that provides DMA

9
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Feature Lines of code
Safe PCI device access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio card proxy driver 550
USB host proxy driver 0
SUD-UML runtime 5000

Figure 5: Lines of code required to implement our prototype of SUD,
SUD-UML, and each of the device-specific proxy drivers. SUD-UML
uses about 3 Mbytes of RAM, not including UML kernel text, for each
driver process.

address translation, such as AMD’s IOMMU [3]. SUD-
UML, our modified version of UML, is also based on
Ubuntu’s Linux 2.6.30-5 kernel.

Our current prototypes of SUD and SUD-UML include
proxy drivers and UML support for Ethernet cards, wire-
less cards, sound cards, and USB host controllers and
devices. On top of this, we have been able to run a
range of device drivers as untrusted user-space processes,
including the e1000e Gigabit Ethernet card driver, the
iwlagn5000 802.11 wireless card driver, the ne2k-pci Eth-
ernet card driver, the snd hda intel sound card driver, the
EHCI and UHCI USB host controller drivers, and various
USB device drivers, all with no modifications to the driver
itself.

Figure 5 summarizes the lines of code necessary to
implement the base SUD system, the base SUD-UML
environment, and to add each class of devices. The USB
host driver class requires no code beyond what is provided
by the SUD core. Some USB devices, however, require
additional driver classes. For example, a USB 802.11
wireless adapter can use the existing wireless proxy driver,
and a USB sound card could use the audio card proxy
driver. We are working on a block device proxy driver to
support USB storage devices.

4.1 User-mode driver API
SUD’s kernel module exports four SUD device files for
each PCI device that it manages, as shown in Figure 6.
The device files are initially owned by root, but the system
administrator can set the owner of these devices to any
other UID, and then run an untrusted device driver for
this device under that UID.

When the system administrator starts a driver, SUD-
UML searches sysfs for a matching device. If SUD-
UML finds a matching device, it invokes the kernel to
start a proxy driver and open a uchan shared with the
proxy driver.

SUD-UML translates Linux kernel device driver API
calls to operations on the SUD device files. When a
device driver calls dma alloc coherent, SUD-UML
uses mmap to allocate anonymous memory from the
dma coherent device. This allocates the requested num-
ber of memory pages in the driver’s process, and also

maps the same pages at the same virtual address in the cor-
responding device’s IOMMU page table. Likewise, SUD-
UML allocates cacheable DMA memory using anony-
mous mmap on dma caching. The mmio file exports the
PCI device’s memory-mapped IO registers, which the
driver accesses by mmaping this device. Finally, The ctl
file is used to handle kernel upcalls and to issue downcalls.
Figure 7 gives sample of upcalls and downcalls.

System administrators can manage user-space drivers
in the same way they manage other processes and dae-
mons. An administrator can terminate a misbehaving or
buggy driver with kill -9, and restart it by starting a
new SUD-UML process for the device. The Linux func-
tions for managing resource limits, such as setrlimit,
work for user-space drivers. For example, an administra-
tor might use setrlimit to limit the amount of memory
a suspicious driver is allowed to allocate.

Some device drivers, such as sound card drivers, might
require real time scheduling constraints to function prop-
erly, for example to ensure a high bit rate. For these
devices an administrator can use sched setscheduler
to assign the user-space driver one of Linux’ real-time
scheduling policies. If the audio driver turns out to be ma-
licious or buggy, it could consume a large fraction of CPU
time, but unlike a fully-trusted kernel driver, it would not
be able to lock up the system entirely.

4.2 Performance optimizations
Most of the performance overhead in SUD comes from
SUD-UML. Our efforts to optimize SUD-UML are ongo-
ing, but we have implemented several important optimiza-
tions, which we describe in the following paragraphs.

One optimization is to handle upcalls and invoke call-
backs directly from the UML idle thread. This must be
done with care, however, because some drivers implement
callbacks that block the calling thread, but expect other
threads to continue to invoke driver callbacks. For exam-
ple, the e1000e driver determines which type of interrupt
to configure (e.g. legacy or MSI) by triggering the inter-
rupt, sleeping, and then checking a bit that should have
been set by the e1000e interrupt handler.

To handle this case, when the UML idle thread receives
an upcall, it checks if the corresponding callback is al-
lowed to block (according to kernel conventions). If the
callback is not allowed to block, the UML idle thread
invokes the callback directly. Otherwise, the idle thread
creates and runs a worker thread to invoke the callback.
We optimize worker thread creation using a thread pool.

Another optimization, which we have not implemented
yet, but we expect to improve performance, it to use su-
perpages to map SUD-UML’s memory, including mem-
ory shared with the kernel. The kernel must flush all
non-kernel mappings when it performs a context switch
between user-space virtual address spaces. This impacts
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File Use
/sys/devices/.../sud/ctl Transfers upcall and downcall messages.
/sys/devices/.../sud/mmio Represents the PCI device’s memory-mapped IO regions; intended for use with mmap.
/sys/devices/.../sud/dma coherent Allocates anonymous non-caching memory on mmap, mapped at the same virtual address

in both the driver’s page table, and the device’s IOMMU page table.
/sys/devices/.../sud/dma caching Allocates anonymous caching memory on mmap, mapped at the same virtual address

in both the driver’s page table, and the device’s IOMMU page table.

Figure 6: An overview of device files that SUD exports for each PCI device.

Upcall Description
ioctl Request that the driver perform a device-specific ioctl.
interrupt Invoke the SUD-UML driver interrupt handler.
net open Prepare a network device for operation.
bss change Notify an 802.11 device that the BSS has changed.

Downcall Description
interrupt ack Request that SUD unmask the device interrupt line.
request region Add IO-space ports to the driver’s IO permission bitmask.
netif rx Submit a received packet to the kernel’s network stack.
pci find capability Checks if device supports a particular capability.

Figure 7: A sample of SUD upcalls and downcalls.

user-space drivers, because the drivers often have a large
working set of DMA buffers. For example, the e1000e
allocates 256 buffers, which might span multiple pages,
for both the transmit and receive DMA rings. In the case
of the e1000e driver, the driver might read the contents
of the DMA buffer after a packet has been received. This
results in a TLB miss if the kernel context-switched from
the SUD-UML process to another process since the last
time the driver read the DMA buffer. By mapping all
the DMA buffers using several super pages, SUD-UML
could avoid many of these TLB misses.

5 EVALUATION

To evaluate SUD, we wanted to understand how hard it
is to use SUD, how well it performs at runtime, and how
well it protects the system from malicious drivers. The
implementation section already illustrated that SUD al-
lows existing Linux device drivers to be used as untrusted
user-space drivers with no source-code modifications. In
this section, we focus on the runtime overheads imposed
by SUD for running device drivers in user-space, and on
the isolation guarantees that SUD provides.

In short, our results show that SUD incurs performance
overheads comparable to other device driver isolation
techniques, while providing stronger guarantees. To il-
lustrate SUD’s security guarantees, we have verified that
SUD prevents both DMA and interrupt attacks, as well as
the driver’s attempts to mishandle kernel upcalls. The rest
of this section describes our experimental evaluation in
more detail.

5.1 Network driver performance
The primary performance concern in running device
drivers as user-space processes is the overhead of context
switching and copying data. To understand the perfor-
mance overhead imposed by SUD, we consider the worst-

case scenario—a Gigabit Ethernet device that requires
both high throughput and low latency to achieve high
performance, using both small and large packets—so that
any overhead introduced by SUD’s protection mechanisms
will show up clearly in the benchmark results. In practice,
we expect most of the drivers running under SUD to be
less performance-critical (for example keyboard, mouse,
printer, or sound card drivers), and thus any performance
penalties imposed by SUD on those drivers would be even
less noticeable.

We run four netperf [18] benchmarks to exercise the
e1000e Linux device driver running under SUD on an
Thinkpad X301 with a 1.4GHz dual-core Intel Centrino.
The Thinkpad is connected to a 2.8GHz dual-core Pen-
tium D Dell Optiplex by a Gigabit switched network.
We configure netperf to run experiments to report results
accurate to 5% with 99% confidence.

Figure 8 summarizes performance results and CPU
overheads for the untrusted driver running in SUD and the
trusted driver running in the kernel. The first benchmark,
TCP STREAM, measures TCP receive throughput and is
run with 87380 byte receive buffers and 16384 byte send
buffers. SUD offers the same performance as the kernel
driver with little overhead, because SUD-UML is able to
batch delivery of many large packets to the kernel in one
downcall.

The UDP STREAM TX and RX benchmarks measure
throughput for transmitting and receiving 64 byte UDP
packets. These benchmarks are more CPU intensive than
TCP STREAM, and demonstrate overheads in SUD that
might have been obscured by the use of large packets in
TCP STREAM. For both TX and RX, SUD performs com-
parably to the kernel driver, but has about a 11% overhead
for TX and a 30% overhead for RX.

The final benchmark, UDP RR, is designed to measure
driver latency. The UDP RR results are given in transac-
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tions per second. The client completes a transaction when
it sends a 64 byte UDP packet and waits for the server
to reply with a 64 byte UDP packet. In some ways this
is a worst case benchmark for SUD, which has a CPU
overhead of 2x. After each packet transmit or receive the
e1000e process sleeps to wait for the next event. Unfortu-
nately, waking up the sleeping process can take as long
as 4µs in Linux. If e1000e driver has more work and
sleeps less, such as in the UDP STREAM benchmark, this
high wakeup overhead is avoided.

5.2 Security

We argued in Section 3 that SUD uses IOMMUs to pre-
vent devices from accessing arbitrary physical memory.
Figure 9 shows the IO virtual memory mappings for the
e1000e driver. We read all mappings by walking the
e1000e device’s IO page directory. This ensures that the
BIOS or other system software does not create special
mappings for device use. The lack of any other map-
pings indicates that a malicious device driver can at most
corrupt its own transmit and receive buffers, or raise an
interrupt using MSI.

Our experimental machine does not have support for
interrupt remapping in its IOMMU hardware, so our con-
figuration is vulnerable to livelock by a malicious driver
issuing DMA requests to the MSI address. Unfortunately,
Intel VT-d always includes an implicit identity mapping
for the MSI address in every page table, so it was not
possible to prevent this type of attack. A newer chipset
version would have avoided this weakness, and we expect
that doing so would not impact the performance of SUD.
Alternatively, AMD’s IOMMU does not include an im-
plicit MSI mapping, and we could simply unmap the MSI
address on an AMD system when an interrupt storm is
detected, to prevent further interrupts from a device.

We tested SUD’s security by constructing explicit test
cases for the attacks we described earlier in Section 3, in-
cluding arbitrary DMA memory accesses from the device
and interrupt storms. In all cases, SUD safely confined
the device and the driver. We have also relied on SUD’s
security guarantees while developing SUD-UML and test-
ing drivers. For example, in one situation a bug in our
SUD-UML DMA code was returning an incorrect DMA
address, which caused the USB host controller driver to at-
tempt a DMA to an unmapped address. The bug, however,
was easy to spot, because it triggered a page fault. As
another example, the SUD-UML interrupt code responsi-
ble for handling upcalls was not invoking the iwlagn5000
interrupt handler, but was re-enabling interrupts with SUD.
The resulting interrupt storm was easily fixed by killing
the SUD-UML process. It is also relatively simple to
restart a crashed device driver by restarting the device
driver process.

Test Driver Throughput CPU %

TCP STREAM
Kernel driver 941 Mbits/sec 12%
Untrusted driver 941 Mbits/sec 13%

UDP STREAM TX Kernel driver 317 Kpackets/sec 35%
Untrusted driver 308 Kpackets/sec 39%

UDP STREAM RX Kernel driver 238 Kpackets/sec 20%
Untrusted driver 235 Kpackets/sec 26%

UDP RR
Kernel driver 9590 Tx/sec 5%
Untrusted driver 9489 Tx/sec 10%

Figure 8: TCP streaming, minimum-size UDP packet streaming, and
UDP request-response performance for the e1000e Ethernet driver run-
ning as an in-kernel driver and as an untrusted SUD driver. Each UDP
packet is 64-bytes.

Memory use Start End
TX ring descriptor 0x42430000 0x42431000
RX ring descriptor 0x42431000 0x42433000
TX buffers 0x42433000 0x42C33000
RX buffers 0x42C33000 0x43433000
Implicit MSI mapping 0xFEE00000 0xFEF00000

Figure 9: The IO virtual memory mappings for the e1000e driver.

6 DISCUSSION

We think SUD demonstrates that unmodified device
drivers can be run as user-space processes with good
performance. This section examines some limitations of
SUD and explores directions of future work.

New hardware. Our test machine does not support in-
terrupt remapping, which leaves SUD vulnerable to a live-
lock attack from a malicious driver. The ability to remap
interrupts is necessary to prevent this attack, but could
also be useful for improving performance. For example,
it might be faster to mask an interrupt by remapping the
MSI page instead of by reconfiguring the PCI device.

Hardware queued IOTLB invalidation, which is present
in some Intel VT-d implementations, allows software to
queue several IOTLB invalidations efficiently. SUD could
use this feature to unmap DMA buffers from the user-
space device driver while they are being processed by the
kernel.

Device delegation. In the current SUD design, the ker-
nel defines all of the devices in the system (e.g., all PCI
devices), and grants user-space drivers access at that gran-
ularity (e.g., one PCI device). An alternative approach
that we hope to explore in the future is to allow one un-
trusted device driver to create new device objects, which
could then be delegated to separate device driver pro-
cesses. For example, the system administrator might start
a PCI express bus process, which would scan the PCI
express bus and start a separate driver process for each
device it found. If one of the devices on the PCI express
bus was a USB host controller, the USB host controller
driver might start a new driver process for each USB de-
vice it found. If the device was a SATA controller, the
SATA driver may likewise start a new driver for each disk.
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Finally, a network card with hardware support for multi-
ple virtual queues, such as the Intel IXGBE, could give
applications direct access to one of its queues.

Optimized drivers. Supporting unmodified device
drivers is a primary goal SUD-UML. However, porting
drivers to a SUD interface might eliminate some CPU
overhead that results from supporting unmodified drivers.
For example, SUD-UML constructs Linux socket buffers
for each packet the kernel transmits, because this is what
the unmodified device expects. By modifying device
drivers to take advantage of the SUD interface directly, we
may be able to achieve lower CPU overheads as in [21].

Applications. There are some applications that are not
necessarily suitable to run in the kernel, but that benefit
from direct access to hardware. These applications either
make do with sub-optimal performance, or are imple-
mented as trusted modules and run in the kernel, in spite
of the security concerns. For example, the Click [20]
router runs as a kernel module so that it has direct ac-
cess to packets as they are received by the network card.
With SUD, these applications could run as untrusted SUD-
UML driver processes, with direct access to hardware,
and achieve good performance without the security threat.

7 CONCLUSION

SUD is a new system for confining buggy or malicious
Linux device drivers. SUD confines malicious drivers by
running them in untrusted user-space processes. To en-
sure that hardware devices controlled by untrusted drivers
do not compromise the rest of the system through DMA
or interrupt attacks, SUD uses IOMMU hardware, PCI ex-
press switches, and message-signaled interrupts. SUD can
run untrusted drivers for arbitrary PCI devices, without
requiring any specialized language or specification. Our
SUD prototype demonstrates support for Ethernet cards,
wireless cards, sound cards, and USB host controllers, and
achieves performance equal to in-kernel drivers with rea-
sonable CPU overhead, while providing strong isolation
from malicious drivers. SUD requires minimal changes to
the Linux kernel—a total of two kernel modules compris-
ing less than 4,000 lines of code—which may finally help
these research ideas to be applied in practice.
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Abstract
Authentication is an important mechanism for the reliable
operation of any Voice over IP (VoIP) infrastructure. Di-
gest authentication has become the most widely adopted
VoIP authentication protocol due to its simple properties.
However, even this lightweight protocol can have a signif-
icant impact on the performance and scalability of a VoIP
infrastructure. In this paper, we present Proxychain – a
novel VoIP authentication protocol based on a modified
hash chain construction. Proxychain not only improves
performance and scalability, but also offers additional se-
curity properties such as mutual authentication. Through
experimental analysis we demonstrate an improvement of
greater than 1700% of the maximum call throughput pos-
sible with Digest authentication in the same architecture.
We show that the more efficient authentication mecha-
nisms of Proxychain can be used to improve the overall
security of a carrier-scale VoIP network.

1 Introduction

Voice over IP (VoIP) is fundamentally reshaping the tele-
phony landscape. Instead of using dedicated, circuit-
switched lines, VoIP allows for phone calls to be multi-
plexed with other data traffic over the Internet. This con-
vergence between voice and data communications pro-
vides a number of benefits. For instance, providers can
now offer a range of new services such as video and pres-
ence. Unfortunately, the transition from traditional phone
networks to VoIP also creates a number of new security
challenges.

Authentication represents one of the most important
security issues facing VoIP systems. Providers have re-
sponded by implementing a number of security mecha-
nisms, ranging from SSL/TLS to Digest authentication.
Unfortunately, none of the suggested schemes are simul-
taneously strong, efficient and scalable enough to meet
the needs of carrier-scale networks without vastly increas-
ing the amount of deployed infrastructure.

In this paper, we develop Proxychain, a robust and ef-
ficient authentication infrastructure designed to support
operations in carrier-scale VoIP networks. Our solution
is built around a single centralized authentication service
working with proxy nodes distributed across a wide geo-
graphic area. We reduce the impact of the latency and load
associated with this architecture by using a modified hash
chain construction (a sequence of one-time authentication
tokens generated by applying a hash function repeatedly,
once-per token, to a secret root value). In addition to pro-
viding an efficient mechanism for mutual authentication,
our approach also provides improved scalability through
the secure caching of temporary authentication tokens at
the proxies. To the best of our knowledge, Proxychain is
the first protocol that applies the idea of hash chains in the
SIP domain. Proxychain not only adapts this idea to SIP
authentication but also extends it by including additional
modifications that solve some of the weaknesses associ-
ated with hash chain protocols, resulting in a more robust
protocol.

This paper makes the following contributions:

• Design and implementation of Proxychain: We
develop a construction based on modified hash
chains. Our construction not only dramatically re-
duces the load on the centralized authentication
database and the latencies associated with accessing
it, but also provides mutual authentication for clients
and providers.

• Evaluation of Proxychain through an extensive
measurement study: We measure, characterize and
compare the performance characteristics of our pro-
posed infrastructure against commonly used mech-
anisms. Our results show up to a 1700% improve-
ment over such schemes. Moreover, we demon-
strate the ability to support the authentication needs
of a national-scale VoIP network using unoptimized
COTS hardware and databases.

• Evidence of robustness to outages and downtime:
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We demonstrate that our construction allows the net-
work to operate during planned and unplanned out-
ages, and estimate its robustness to such incidents.
We show the ability to support normal operations
with high availability for approximately 6 hours us-
ing only 28 minutes of preemptive computation.

Improvements to the efficiency of SIP authentication
afforded by Proxychain allow us to significantly increase
the overall security of VoIP systems. For instance, several
recently disclosed attacks on VoIP systems [2, 29] can be
mitigated by simply having an authentication infrastruc-
ture scalable enough to cryptographically verify the ori-
gin of multiple SIP signaling request types (e.g., INVITE
and BYE).

The remainder of our paper is organized as follows:
Section 2 discusses a nation-wide VoIP architecture and
provides important background information; Section 3
details our proposed protocol; Section 4 provides the de-
tails of our experimental setup; Section 5 shows the re-
sults of our experiments; Section 6 discusses a number of
additional points; Section 7 presents related work; Sec-
tion 8 offers concluding remarks and future work.

2 A Nationwide VoIP Infrastructure

Telephony networks have long relied on a series of dis-
tributed databases and proxies to implement authentica-
tion. However, advances in processor speeds and ease of
management have prompted a number of cellular [18] and
VoIP providers such as Skype to rely on a central authenti-
cation service.1 Therefore, our authentication mechanism
is designed to work for a similar architecture. Figure 1
shows our simulated testbed.

2.1 Session Initiation Protocol
The Session Initiation Protocol (SIP) [21] is the under-
lying architecture of the majority of VoIP systems. This
application-layer signaling protocol has several compo-
nents. End devices are known as User Agents (UA), and
can act as a client (UAC) or as a server (UAS). UACs gen-
erate SIP requests, while the UAS generates responses to
SIP requests. When attempting to establish a session with
Bob, Alice sends her request to a SIP Proxy server. The
proxy determines the IP address of Bob’s UAS and for-
wards Alice’s request. In addition to routing call setup
requests, a proxy also participates in the process of au-
thentication with the help of an authentication database.

SIP provides two message types: requests (client to
server) and responses (server to client). There are six
types of requests: INVITE (to establish a session be-
tween UAs), ACK (to acknowledge a reliable message ex-
change), CANCEL (to terminate a pending request), BYE
(to terminate a existent session), OPTIONS (to query for

P

DB
P

P

P

P

P

Figure 1: The hypothetical nationwide SIP infrastructure mod-
eled in our experiments using latencies collected from Planetlab.
As it is done by some cellular providers, our authentication ser-
vice (DB) is centrally located, with proxies (P) distributed across
the country.

the capabilities of servers), and REGISTER (used by a UA
to notify its current IP address to a Registrar process run-
ning on the proxy). The responses are grouped into six
categories and indicate the status of a current request. For
example, a 200 OK response indicates a successful trans-
action (more detail in the RFC 3261 [21]).

2.2 Digest Authentication
SIP Digest authentication is a challenge-response au-
thentication protocol based on HTTP Digest authentica-
tion [11]. Digest authentication is used by SIP proxies
to validate the identity of requests received from UAs. It
allows users to prove their knowledge of a shared secret
(e.g., password) to a server without sending the secret un-
protected over the network (protection against eavesdrop-
ping attacks). Digest authentication is widely supported
because it is more efficient and easier to implement than
the other protocols recommended by RFC 3261 (i.e., TLS,
S/MIME, IPsec). Furthermore, it is the only authentica-
tion protocol required in the UAs according to RFC 3261
(support for other protocols is not required).

Figure 2 shows a SIP call dialog using Digest au-
thentication. As in most deployments, only INVITE re-
quests require authentication. First, Alice’s UA sends
an INVITE request to the proxy. The proxy determines
that the request requires authentication and responds
with a SIP 407 response (“Proxy Authentication
Required”) containing a nonce. Alice’s UA acknowl-
edges the reception of the challenge, computes the hash
of the shared secret and the nonce and sends it back to
the proxy using a new INVITE message. The proxy then
computes the answer after querying a database that stores
the user’s shared secret. Finally, the proxy compares both
values and, if they match, forwards the INVITE to the
destination and the SIP dialog continues its standard flow.

Digest authentication efficiency relies on the use of
hash operations and nonces, instead of symmetric or pub-
lic key cryptography. In its basic form, a Digest authenti-
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Figure 2: SIP call setup using Digest authentication (bold).

cation response is computed as follows:

Response = H( H(uid||realm||pwd) ||n|| H(method||URI) )

where H() is a cryptographic hash function (MD5 is
the default), || corresponds to a concatenation operation,
uid is the user ID, realm is the proxy’s protection do-
main, pwd is the user password, n is a nonce, method
is the SIP request authenticated (e.g., INVITE) and URI
is the destination address Alice is trying to reach (e.g.,
bob@eastcoaststate.edu).

2.3 Problems with Digest Authentication

While more efficient, Digest authentication is less secure
than protocols such as TLS or IPsec. For instance, it does
not provide mutual authentication and complete message
integrity. Limited integrity protection is offered but it is
optional and not widely supported by UAs. Additionally,
current implementations actually send the shared secret
from the database to the proxy in order to calculate the
correct client response. This approach is dangerous if the
proxy is compromised. Several vulnerabilities have been
published regarding commercial SIP deployments due to
these weaknesses [29].

The use of Digest authentication in an environment
with a remote authentication service dramatically reduces
performance. The main reason is that authentication oper-
ations become more expensive - the round-trip time (RTT)
between a proxy and the database (tens of milliseconds) is
now added to each authentication operation (hundreds of
microseconds). The additional time added per call setup
reduces the call throughput of each proxy. The problem
is exacerbated by the fact that proxies have to query the
database for each SIP message that requires authentica-
tion. This action also creates a considerable network load
when the call throughput is high. If multiple proxies are
used, the load could overwhelm the database or its net-
work link. As a result, scalability is also affected.

The use of multiple databases (i.e., one local database

per proxy) or adding more hardware resources to the
database are not efficient solutions. Dacosta et al. [8]
showed that the effects of network latency could be re-
duced by a combination of parallelization and batching
techniques. However, the network load to the database is
still high enough to affect the scalability of the system. A
more efficient approach is to reduce the number of queries
to the database. To achieve this, we can use temporary
authentication credentials that each proxy stores in mem-
ory and that can be used in multiple authentication op-
erations without contacting the database. This approach
reduces the load received by the database and the effects
of network latency. Our proposed protocol follows this
approach.

3 Proxychain Protocol Specification

3.1 Hash Chains
A hash chain is created by applying a cryptographic hash
function H() (e.g., MD5, SHA-1) multiple times to a ran-
dom value r to generate a sequence of values that can be
used as one-time authentication tokens. A hash chain of
length n is computed as:

Hn(r) = H(. . . H(H(r)) . . .)

Hash chains rely on the preimage resistant (i.e., one-
way) property of cryptographic hash functions. When at-
tempting to authenticate to a server possessing Hn(r),
the client transmits Hn−1(r). The server then hashes
Hn−1(r) a single time and, if the result matches Hn(r),
authenticates C based on the computational infeasibility
of an adversary guessing the correct preimage.

3.2 Design Goals
Proxychain design addresses some of the shortcomings of
Digest authentication in SIP topologies with a centralized
authentication service. Our first goal is efficiency: Proxy-
chain should execute authentication operations faster than
Digest authentication, allowing improved call throughput.
Second, we focus on scalability: Proxychain should sup-
port more users and proxies than Digest authentication
without the need for additional resources. In particular,
Proxychain should reduce the bandwidth and processing
time required by the database to avoid bottlenecks. Fi-
nally, our third goal is security: Proxychain should im-
prove upon the security assurances provided by Digest
authentication.

3.3 Design and Formal Description
Proxychain is designed to reduce the impact of latency
and load on the remote authentication service by caching
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407 Response [ i, P, nD,A, nD,P , HMAC(tkP , nA,P||i) ] 

INVITE [ A, B, i, HMAC(tkP , A||B||i), Hi-1(tkA) ]

INVITE

INVITE [ nA,P ]

407 Response [ i-1, P, nD,A, nD,P , HMAC(tkP , nA,P||i-1) ] 
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Figure 3: Call setup flow using Proxychain. For the first request (above dashed line), the proxy must request a temporary credential
from the database. Subsequent requests (below dotted line) can be dealt with immediately by the proxy.

1. A → P : A, B, nA,P

2. P → D : A, P

3. D → P : H l(tkA), l, nD,A, nD,P , tkP

4. P → A : i, P, nD,A, nD,P ,

HMAC(tkP , nA,P ||i)
5. A → P : A, B, i, HMAC(tkP , A||B||i),

Hi−1(tkA)
6. P → B

A, B, P, D : Alice, Bob, Proxy, Database
kA,D : Secret key between Alice and database

nD,A, nD,P , nA,P : Nonces
l : Hash chain length
i : Hash chain current sequence number

Hi(x) : i-th hash value of x, H(H(...H(x)...))
HMAC(k, x) : HMAC with key k on x

tkA : HMAC(kA,D, nD,A||P )
tkP : HMAC(kA,D, nD,P ||P )

Figure 4: Proxychain protocol: The formal definition of the Proxychain protocol. We assume that there exists an encrypted channel
(e.g., IPsec connection) between the proxy and the database.

temporary authentication credentials at the proxies. Us-
ing hash chain-based credentials of length l, a proxy can
authenticate multiple requests from a particular user with
only 1

l queries to the database. The database creates cre-
dentials based on the secret it shares with each user and
determines the credential’s parameters, including length,
hash function, and expiration time. This approach is more
secure than the associated Digest authentication mecha-
nism, as the shared secret between the database and the
user is never exposed to the proxies. A compromise of
one of these servers, therefore, does not necessarily re-
quire password resets for large number of users.

Each proxy provides services only to users that are
geographically close to it (i.e., based on IP address or
ZIP code information), much like a traditional telephony

switch. Each proxy accordingly needs to store creden-
tials for only a subset of the total number of users in the
system. We explore the overhead associated with such
credential storage in Section 4.2.

Figures 3 and 4 provide graphical and formal defini-
tions of the Proxychain protocol, respectively. A user
Alice attempts to call Bob by first sending an INVITE
request to her proxy, which contains the source and des-
tination of the call and a nonce nA,P (Message 1). The
proxy checks to see if it has a credential for Alice and,
if not, queries the authentication database with the iden-
tifiers corresponding to Alice and the proxy (A, P ) for a
new hash chain (Message 2). Note that requests between
proxies and the authentication database occur over a long-
lived, encrypted and authenticated channel such as IPsec

or TLS/SSL. The database generates a five-tuple that in-
cludes a new hash chain (H l(tkA)), the length of the hash
chain l, nonces for both the proxy and Alice (nD,P and
nD,A), and a session key tkP . The hash chain is cal-
culated as H l(HMAC(kA,D, nD,A||P )), and the session
key as HMAC(kA,D, nD,P ||P ) (Message 3).

After receiving the tuple from the authentica-
tion database, the proxy returns a 407 Proxy
Authentication Required SIP message to Alice.
This message includes a counter i ≤ l − 1, the proxy’s
identifier P , the two nonces generated by the authentica-
tion database (nD,P and nD,A) and a network authentica-
tion token HMAC(tkp, nA,P ||i) (Message 4). The client
receives the response and uses kA,D to calculate the ses-
sion key tkP and then authenticates the message from
the proxy. If the message authenticates properly, Alice
then generates her session key tkA and hashes it i − 1
times to generate Hi−1(tkA). Alice responds to the proxy
by sending a new INVITE message containing A, B, i,
HMAC(tkP , A||B||i) and Hi−1(tkA), which the proxy
hashes forward a single time (assuming that the HMAC
properly verifies) (Message 5). If H(Hi−1(tkA)) =
Hi(tkA), then the proxy records Hi−1(tkA) as the next
legitimate credential, decrements i and the INVITE re-
quest is forwarded to Bob (message 6). On subsequent
authentication attempts by Alice where c < i − 1, the
proxy responds to Message 1 with Message 4, which con-
tains c, P, nD,A, nD,P , HMAC(tkP , nA,P ||c).

Note that unlike Digest authentication, Proxychain pro-
vides mutual authentication. Specifically, the network
authentication token HMAC(tkp, nA,P ||i) can only be
produced with knowledge of tkP and using the nonce
supplied by the user Alice. Moreover, because only the
user and the authentication database could have created
tkP (because only they have knowledge of kA,D), an ad-
versary can not create legitimate hash chains without the
assistance of the authentication database.

4 Experimental Setup

4.1 Experimental Testbed

Our experimental testbed is based on the VoIP infrastruc-
ture depicted in Figure 1. As this figure shows, the testbed
is composed of three main components: the authentica-
tion database, SIP proxies and the user clients (UAs). The
database and proxies are run on servers from the Georgia
Tech Emulab testbed.2 We use seven servers to represent
the infrastructure (one database and six proxies). These
servers run Linux Kernel 2.6.26 (Fedora Release 8), have
two 2.80 GHz Intel Xeon processors and 512 MB of mem-
ory. The UAs are run on servers from our research lab. A
total of nine servers are used, each running multiple UA
instances to generate call traffic. These servers run Linux

Kernel 2.6.24 (Ubuntu 8.04.2), eight (8) 2.00 GHz Quad-
Core AMD Opteron processors and 16 GB of memory.

The network latency between the proxies and the
database is simulated using Emulab’s traffic shaping func-
tionality. In order to use realistic latency values, we
performed measurements using the Planetlab network
testbed.3 Using the ping network tool, we measured the
round-trip time (RTT) between a Planetlab node located
in the University of Kansas and Planetlab nodes located
at UC Berkeley (67.6 ms), Georgia Tech (33.1 ms), MIT
(44.7 ms), Princeton (43.8 ms), the University of Texas
(20.6 ms), and the University of Washington (43.4 ms).
The RTT data was collected during a 24 hours period and
average values were calculated. Finally, no additional la-
tency values were simulated between the proxies and the
UAs (latency was around 1 ms). The reason is that our
testbed assumes physical proximity and low latency val-
ues (e.g., < 10 ms) between the UAs and the proxies.
Simulating this latency is not necessary because it would
not affect the test load generated by the UAs and our re-
sults (it would slightly affect the setup time of each call).

The proxies are implemented using OpenSIPS4 1.5.2.
OpenSIPS is a mature open source SIP proxy optimized
for high performance. The proxies are configured with
minimal functionality (stateless configuration and basic
modules required for routing). We run MySQL5 5.0.45
as our database, a well-known open source relational
database management system. MySQL is run with a
default configuration (no optimizations). Finally, SIPp6

3.1 is used to generate the UAs’ workload, which con-
forms to a uniform random distribution. SIPp is an open
source traffic generator for the SIP protocol. A total of 36
SIPp instances are used in our experiments (18 UACs and
UASs). Default SIPp scenarios are modified to support
INVITE and BYE authentication for Digest and Proxy-
chain authentication (SIP call flows in Figures 2 and 3).

Each proxy serves requests for 200,000 unique users.
The number of users per proxy is limited by the proxy’s
available memory, disk space in the database and the size
of authentication credentials (see Section 4.2). As a result,
the total number of users in the database is 1,200,000. All
the users are part of a single SIP domain (no inter-domain
calls).

4.2 Proxychain Implementation
Implementing Proxychain requires a combination of new
code modules and modifications to existing software. In
the proxies, OpenSIPS (≈ 320000 lines of code (loc))
required approximately 710 loc to support Proxychain.
In the UAs, SIPp (≈ 3000 loc) required around 140
loc. In the database, we built a separate concurrent-
process server application to handle queries from prox-
ies and the associated cryptographic operations. This
server application required approximately 880 loc. The
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MySQL database software itself was unmodified. All
of our experimental code, which was written in C, and
supporting scripts are available at http://www.cc.
gatech.edu/˜idacosta/proxychain.html

Proxychain uses the same SIP headers in the chal-
lenge and response messages. For example, a Proxy-
Authenticate header (challenge) looks as follows:

Proxy-Authenticate:PC realm="CISEC", i="10",

nda="0ec497d9a5ba5e1f2b2177d83fb3d341",

ndp="f1e992583dd5daecddea3309a01e5347",

hmac="15f5d33206e79eaea7245682d9953164"

where PC indicates the use of the Proxychain protocol,
realm is proxy’s identifier, i is the sequence number, nda
and ndp are the nonces and hmac is the network authenti-
cation token.

The corresponding Proxy-Authorization header using
Proxychain looks as follows:

Proxy-Authorization: PC username="0000001",

realm="CISEC", i="10",

response="a0843d4b8a712284ff5a6fcd136c4b47,"

hmac="f9fd4ef6689850406a560965a4381c57"

where response is the next value in the hash chain se-
quence. The other parameters have the same meaning as
in the Proxy-Authenticate header.

Our Proxychain implementation uses the MD5 hash
function in order to compare it more directly and fairly
to Digest authentication. Nevertheless, our code requires
few modifications to support SHA-1. With MD5, the size
of a temporary authentication credential is 134 bytes. As
a result, each proxy in our testbed requires a minimum of
26 MB of free memory for serving 200,000 users.

4.3 Methodology
We perform a number of different experiments in order
to characterize Proxychain. We specifically compare our
protocol against a system with no authentication mecha-
nism and one using Digest authentication. We do not mea-
sure more computationally expensive mechanisms such
as TLS/SSL as previous studies have demonstrated that
they provide significantly lower throughput [5, 6, 15, 16].
We collect the following metrics in most of our experi-
ments: call throughput, message retransmissions, failed
calls, bandwidth utilization and database CPU utilization.
These are global metrics, the totals for the whole infras-
tructure (i.e., the call throughput is equal to the sum of the
call throughput measured in each proxy).

The call throughput refers to the number of successful
calls per second (cps) measured every five seconds.

Message retransmissions corresponds to the number of
SIP messages retransmitted due to the expiration of timers
in the UAs. Our tests use the default retransmission time

Protocol Digest Stdev Proxychain Stdev
Response (µsec) 116.81 13.59 184.76 49.92

Verification (µsec) 197.24 21.51 66.97 15.07

Table 1: Response computation time at the UA and verifica-
tion time at the proxy for Digest and Proxychain authentication.
Proxychain adds little overhead to the response computation and
it is more efficient performing verifications.

Length 10 100 1000 10000
Time (µsec) 294.10 335.15 1383.53 11875.71
Stdev (µsec) 18.42 15.28 18.07 120.44

Table 2: Time required by the database to compute credentials
with different hash chain lengths. For lengths < 100, the over-
head is small.

defined by SIP standards (500 ms). Failed calls refer to
the total number of unsuccessful calls measured in the last
period. In our experiments, we consider only calls fail-
ures due to maximum number of retransmissions (maxi-
mum number of UDP retransmissions attempts has been
reached). We use the default values in SIPp for the max-
imum number of retransmissions: five for INVITE mes-
sages and seven for others. Finally, bandwidth utilization
corresponds to the total network throughput (KBytes/sec)
measured from the database during each test.

During our experimental analysis, each test was run at
least 10 times to ensure the soundness of the results. Aver-
age values are used in our analysis and a 95% confidence
interval is provided in most of the graphs. Note that these
bounds are often difficult to observe in our graphs as the
values are generally very close to the mean.

5 Experimental Results

5.1 Microbenchmarks

To understand the computational differences between Di-
gest and Proxychain authentication, we measure the time
to compute a response in the UA and the time to verify a
response in the proxy. To measure these values, we use
network traces (100 samples per value). For Proxychain,
the measurements are performed the first time a credential
is used (hash chain length of 10). This corresponds to the
worst case for response computation because it requires
the highest number of hash operations (9 operations).

Table 1 shows the results. The UA running Proxychain
requires approximately 70 µsec of additional computation
than one running Digest authentication. This difference
is due to the additional integrity checks and hash oper-
ations required by Proxychain in the UA. However, this
difference is not significant as individual UAs does not
perform large amounts of computation in this system. In-
terestingly, the response verification is nearly three times
faster when Proxychain is used by the proxy. The rea-
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Figure 5: Total call throughput for no, Digest and Proxychain
authentication. Proxychain’s maximum call throughput is close
to the one obtained without authentication.

son is that Proxychain only requires two hash operations
to verify a response. On the contrary, Digest authentica-
tion requires three hash operations and additional checks
to verify a response. Based on these results, we argue
that the computational overhead added by Proxychain is
not significantly different from the one added by Digest
authentication.

We also evaluate the overhead of generating hash
chains of varying lengths. Specifically, we measure the
time required by the authentication database to generate
credentials of lengths 10, 100, 1000 and 10000. As be-
fore, we use network traces to measure the time for each
configuration (100 samples per configuration). Table 2
shows the results of these experiments. As expected, in-
creasing the hash chain size increases the time required to
generate credentials. The additional time remains small
for hash chains with length up to 100 (< 350 µsec).

5.2 Call Throughput

Microbenchmarks provide insight into the overhead that
can be expected at each component of the network. How-
ever, they do not provide a picture of the overall behavior
of a system. Accordingly, we characterize the interac-
tion of those components by measuring total call through-
put. We compare throughput for systems configured to
use Digest authentication, Proxychain and no authenti-
cation mechanism. UAs generate an increasing call load
(270 cps increments every 5 seconds) over the course of
10 minutes. In addition, we evaluate the best configu-
ration for each protocol. For Digest authentication, we
use close to 100 concurrent proxy-processes per proxy.7

For Proxychain, we preload each proxy with all its user
credentials (200K credentials with hash chain length of
10) before each experiment and use 8 concurrent proxy-
processes per proxy (OpenSIPS recommended value).

Figure 5 shows the results of these experiments. With-
out authentication (baseline configuration), the network
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for Digest and Proxychain authentication. The database process
is virtually idle when Proxychain is used.

supports a maximum call throughput of nearly 24,000
cps. When Digest authentication is used, the maxi-
mum call throughput drops dramatically to approximately
1,160 cps. This result represents a 95% reduction in call
throughput when compared with the baseline configura-
tion. For Proxychain, the result is more favorable: a total
call throughput of over 19,700 cps. In this case, the call
throughput drops by only 18% when compared with the
baseline configuration. However, when compared to Di-
gest authentication, Proxychain allows an increase of over
1,700% (more than an order of magnitude). Accordingly,
Proxychain is significantly more efficient than Digest au-
thentication in this architecture.

Figure 6 provides insight into the poor performance
of Digest authentication. The database process rapidly
reaches 175% CPU utilization (dual-core machine). This
behavior indicates that queries from the proxies satu-
rate the authentication database, making it a bottleneck.
We observe the opposite when using Proxychain. The
database was virtually idle (< 5% CPU utilization) be-
fore the system reaches its maximum call throughput, at
which point the system becomes unstable due to the high
number of retransmissions.

A naı̈ve solution to improve Digest authentication per-
formance would be to use a more powerful database.
Therefore, we repeated the experiment using a quad-
processor server for the database. As expected, the maxi-
mum call throughput increases, but only to approximately
4,000 cps. However, in this experiment the database does
not saturate - CPU utilization is below 300%. In this case,
throughput fails to increase further due to the network la-
tency between the proxies and the database.

Another important difference is the total bandwidth re-
quired for both configurations. The message overhead be-
tween a UA and the proxy are arguably equivalent. Mes-
sage 4, the challenge, requires an additional 92 B and 165
B for Digest and Proxychain authentication, respectively.
The response in Message 5 similarly requires an addi-
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tional 199 B and 153 B. At its maximum call through-
put (measured from the database), Digest authentication
required almost 130 and 430 KBytes/sec for queries and
responses respectively. In contrast, Proxychain required
less than 1 KByte/sec for both, queries and responses. As
expected, the use of temporary credentials significantly
reduces the total number of queries to the database.

The previous results also mean that increasing the hash
chain length (>10) will not help to improve performance
in our testbed. The reason is that the load in the database
is already low with a hash chain length of 10. Using a
longer size will make the load even lower but the differ-
ence will not affect the overall performance of the system.
On the contrary, using hash chains that are too long could
affect performance because of the additional hash opera-
tions that will be needed by the UACs and the database.

Finally, for the baseline and Proxychain configurations,
the maximum call throughput is limited by the proxy ap-
plication itself: OpenSIPS. Analyzing the resources usage
statistics (memory, CPU and bandwidth) collected during
the experiments for the different testbed components, we
find that none of the resources are completely used (no
shortage of resources) when the two configurations reach
the maximum call throughput. Based on this evidence and
in our experience with OpenSIPS, we can conclude that
the OpenSIPS software is the performance bottleneck for
no authentication and Proxychain configurations. Using
an optimized version of OpenSIPS or a faster proxy server
application will provide higher call throughput values.

5.3 Scalability

In this set of experiments, we evaluate how the testbed
handles an increasing number of users, and therefore, an
increasing load. To simulate a varying number of users,
we measure performance with a varying number of prox-
ies, where each proxy represents 200,000 users. Using
a similar procedure as in the previous test, we measure

the call throughput for 3, 4, 5 and 6 proxy configurations
(600K, 800K, 1M and 1.2M users respectively).

The results are presented in Figure 7. We can see that
for Digest authentication, the maximum call throughput
measured is approximately the same (≈1,200 cps; lin-
ear regression: y = −79.6x + 1670.5 R2 = 0.848
8) for all the configurations. The reason is that even
for a three-proxy configuration, the database becomes
saturated rapidly (see previous test). Therefore, Digest
authentication limits the scalability of the system. For
Proxychain, the maximum call throughput increases lin-
early with the number of proxies (≈3,250 cps per proxy;
linear regression: y = 3243.9x + 416.5 R2 = 0.998).
From these results, we can conclude that Proxychain al-
lows the system to grow by just adding new proxies and
without requiring changes to the database.

5.4 Credential Preloading in the Proxies
In the previous tests, we evaluated Proxychain’s perfor-
mance using a best-case scenario: each proxy had all the
credentials in memory before the tests started. We now
evaluate performance when a lower number of credentials
are preloaded in each proxy. For this purpose, we use a
similar procedure as in previous tests but with two excep-
tions. First, we use a constant workload of 10,000 cps
with no ramp-up period. Second, we preload the proxies
with 200K, 150K, 100K and 50K credentials in each test.

Figure 8 shows the results for all the configurations.
For the 200K configuration (best-case, Figure 8a), the call
throughput reaches 10,000 cps quickly (< 10 sec) with
virtually no message retransmissions or failed calls. For
the 150K configuration (Figure 8b), the call throughput
jumps to approximately 3,000 cps, and then continues in-
creasing until it reaches almost 10,000 cps by the end of
the test. However, a large number of retransmissions and
failed calls occur. Finally, for the other two configurations
(Figures 8c and 8d), the behavior is worse. The maximum
call throughput measured was around 2,000 and 1,000
cps respectively during the experiments. The number of
retransmissions and failed calls is also constantly high.
In theory, each configuration should have reached 10,000
cps after some period of time. However, the large num-
ber of retransmissions makes the system unstable. These
results show the importance of having most of the creden-
tials stored in the proxies to avoid the negative effects of
retransmissions, especially when high loads are expected.

5.5 Prefetching mechanism
The previous test shows that Proxychain is more effective
if each proxy has credentials for almost all its users (best
case scenario). However, credentials are stored or updated
in the proxy only after a user request that requires authen-
tication. Therefore, we implement a prefetching mecha-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(a) 200K credentials (100 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(b) 150K credentials (75 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(c) 100K credentials (50 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(d) 50K credentials (25 %)

Figure 8: Call throughput measured for different number of credentials preloaded in the proxies and a constant offered load (10K
cps). Proxychain requires that proxies have most of the credentials in memory for maximum performance.

nism that automatically queries the database for creden-
tials without requiring any user action. This mechanism,
running as a separate proxy process, checks if a user has
a credential in the proxy or if her credential has already
expired (i.e., l = 0). In short, the prefetching mechanism
guarantees the best case scenario for Proxychain.

In this experiment, we characterize the effect of the
prefetching mechanism on the call setup time for individ-
ual UAs (time elapsed between the first INVITE request
and the 200 OK response). We use a UA sending a low
load (< 5 cps) to a single proxy and estimate the call setup
time using network traces (100 samples). Four proxy con-
figurations are used: no authentication, Digest authentica-
tion, Proxychain and Proxychain with prefetching.

Figure 9 shows the results for each configuration. As
expected, when no authentication is used (Figure 9a), the
call setup is the fastest: 1.47 ms on average. For Digest
authentication (Figure 9b), we can observe the effects of
the RTT between the proxy and the database (≈33 ms) on
the call setup time. Two call setup times are measured: 36
and 71 ms approximately. The reason is that for the first

value, only one RTT is required during call setup, while
for the second value, two RTTs are required due to the low
test load used (no TCP piggybacking). In general, only
one RTT is required, so we can assume that the call setup
time for Digest authentication is approximately 36 ms. In
the case of Proxychain, Figure 9c shows how the tempo-
rary credentials reduced the call setup time while they are
valid. While the credentials are active (hash chain size >
0), the call setup time is only 2.27 ms on average. Once
a credential expires (hash chain size = 0), a query to the
database is required, so the call setup time increased by
one RTT: 36.28 ms on average. When Proxychain is used
with prefetching (Figure 9d), the average call setup time
is only 2.67 ms. The reason is that no credential updates
are performed during call setups. Instead, credentials are
updated by the prefetching process automatically, before
they are required in a call setup. Therefore, the call setup
time when Proxychain is used with prefetching is close to
the call setup time when no authentication is used (≈1 ms
difference). Accordingly, prefetching helps to eliminate
the effect of network latency on call setup time.
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Figure 9: Call setup time for four different configurations: no, Digest, Proxychain and Proxychain with prefetching authentication.
The call setup time for Proxychain with prefetching is similar to the one obtained with no authentication.

5.6 Authenticating Multiple Message Types
In our final set of experiments, we explore the effect of au-
thenticating multiple SIP message types request per ses-
sion (call dialog). For example, the lack of authentication
of BYE requests allows several reported attacks against
SIP deployments [29]. However, if BYE requests are
also authenticated using Digest authentication, the per-
formance of the system will decrease even more due to
the additional operations and queries to the database. In
this experiment, we evaluate the impact of authenticating
INVITE and BYE requests on performance when Proxy-
chain is used. We use a similar procedure as in Section 5.2
(i.e., no prefetching). The only difference is that the prox-
ies and UACs are configured to authenticate BYE in addi-
tion to INVITE requests.

Figure 10 shows the call throughput for the two con-
figurations: INVITE and “INVITE and BYE” Proxychain
authentication. As expected, the maximum call through-
put supported by the testbed decreases when two requests
are authenticated to approximately 12,000 cps. This rep-
resents a performance drop of nearly 50%. The reason is

that credentials are used faster (twice as fast) because two
authentication operations are required per call, making the
number of queries to the database increase, resulting in
higher CPU and bandwidth utilization. However, the use
of Proxychain to authenticate two types of signaling mes-
sages still provides over 800% greater throughput than Di-
gest authentication authenticating a single message.

Finally, we test if increasing the hash chain length im-
proves the performance in this scenario. The idea is that,
if credentials are used faster when two requests per call
are authenticated, increasing the hash chain length should
reduce how fast they need to be replaced. This will result
in lower load to the database and increased throughput.
The experiment confirms our hypothesis: using a hash
chain length of 20 results in a maximum call throughput
of almost 14,000 cps. This represents an improvement of
almost 17% when compared to using hash chain length
of 10. However, increasing the hash chain length further
does not improve performance. On the contrary, the per-
formance drops back to almost 12,000 cps with a hash
chain size of 30 (using a longer hash chain caused ear-
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Figure 10: Throughput for INVITE and INVITE and BYE
Proxychain authentication. Proxychain allows authentication of
two requests per call while still supporting high throughput.

lier retransmissions, which affects the performance). The
reason for these results is that we again reach the limits
of the proxy application. The call throughput achieved is
lower because the authentication of two requests involves
additional messages and operations.

6 Discussion

6.1 Performance

The results presented in the previous section show that
Proxychain effectively addresses the limitations of Digest
authentication in VoIP topologies with a centralized au-
thentication service. Specifically, Proxychain reduces the
effects of network latency, allowing higher throughput. In
our testbed, Proxychain’s performance improvement was
enough to reach the limits imposed by the proxy applica-
tion (OpenSIPS). Moreover, Proxychain reduces the load
received by the database, improving scalability.

The caching of temporary authentication credentials
across the proxies allows our solution to perform so much
better than Digest authentication. Not surprisingly, cellu-
lar networks perform a similar distributed caching of cre-
dentials, which are generated by a Home Location Reg-
ister (HLR) and stored in the Mobile Switching Cen-
ter/Visitor Location Register (MSC/VLR) closest to the
client. However, the Proxychain approach is more effi-
cient in terms of memory. Specifically, the current ap-
proach used in cellular networks requires that multiple
credentials are stored in the MSC/VLR per user. Should
the authentication database (HLR) wish to reduce its load,
the proxies (MSC/VLRs) would need to be equipped with
additional memory. Because Proxychain authentication
credentials require a constant amount of memory regard-
less of the hash chain length, our approach is also more
scalable than traditional caching. This property is partic-
ularly advantageous as it allows for more dynamic behav-
ior by the infrastructure. For example, a database could

monitor the received load and automatically increase the
length of the hash chains in response to a spike in the load
(e.g., busy hours, DoS attack or a flash crowd). We plan
to explore such dynamic reprovisioning in future work.

The performance gains obtained in our experiments are
based on the assumption that each proxy has most of its
users’ credentials most of the time. We also assumed that
each proxy has a fixed set of registered users and that users
do not register with other proxies often (e.g., traveling to
another state). These assumptions can be relaxed by pro-
viding additional cache space in the proxies. For example,
each proxy will have a cache of fixed size, and keep in the
cache the credentials of the most active users. When new
users register with a proxy, the proxy can use an eviction
policy to replace the credentials in the cache based on fre-
quency of use. In this way, each proxy could handle a
variable number of users (more flexibility). This approach
will be evaluated in future work.

The call throughput numbers achieved in our testbed
could be considered high for commercial VoIP deploy-
ments. For example, AT&T average nationwide call vol-
ume is estimated to be around 300M calls per day, or an
average of 3,472 cps [10], or roughly 17% of the through-
put provided by our architecture. We note that while
our testbed lacks some of the other functionality that a
provider may chose to deploy (e.g., billing, media gate-
ways), the performance benefits provided by Proxychain
represent a significant potential improvement to real net-
works. Specifically, the additional capacity offered by
Proxychain can serve as a defense mechanism to handle
unexpected increments of requests for service.

The performance gains obtained by Proxychain re-
quires some trade-offs. First, a proxy using Proxychain
requires to keep a small amount of state for all its users
(credentials), which is not necessary for Digest authen-
tication. However, our experiments demonstrated that
this was not a significant burden. UACs also need to
perform more authentication operations when Proxychain
is used. Specifically, Proxychain requires additional in-
tegrity checks and hash chain computations required to
create a response. Nevertheless, the most expensive op-
erations are hash computations that are in general very
efficient to execute. In addition, the use of adequate hash
chain lengths (i.e., < 100) and caching intermediate re-
sults in the UAC can reduce these overheads. Third, the
database also requires to perform computation to create
the user credentials. However, this is a one-time cost and
it is lower than processing an equivalent number of re-
quests per user as in Digest authentication.

In general, any SIP infrastructure with multiple proxies
and a remote central authentication service will benefit
from Proxychain, even if the performance requirements
are not carrier-level. For example, the SIP infrastructure
of a multinational corporation where each regional office
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has a SIP proxy and the central database is located in
the headquarters. The use of Proxychain in this scenario
will reduce the load to the database (lower bandwidth and
CPU utilization) and provide more security. As our re-
sults shows, the main requirement is to cache the creden-
tials of most of the users (e.g., > 75%) served by each
proxy. This is not a hard requirement given the size of the
credentials and the memory costs. Even in environments
with high mobility requirements, caching the credentials
of all the users in all the proxies or using caching algo-
rithms are reasonable options. Finally, the concepts be-
hind Proxychain can also be used in other domains with
similar topology requirements. For example, remote au-
thentication services such as RADIUS or DIAMETER,
or authentication in IP Multimedia Subsystem (IMS) de-
ployments could benefit from the performance, scalability
and security advantages offered by Proxychain.

6.2 Security and Threat Analysis
Proxychain not only offers the security advantages of hash
chains protocols (i.e., protection against eavesdropping
and replay attacks), but also solves some of the weak-
nesses associated with these protocols [17]. For example,
Proxychain provides integrity protection of the challenge
in the form of an HMAC. This feature protects against an
attacker located between the proxy and the client trying
to change the counter (i) in the challenge to a lower value
(i = 1) to obtain the complete hash chain sequence (small
n attack [12]). Also, Proxychain provides mutual authen-
tication between the UA and the proxy through the use of
the session key generation based on a shared secret. The
mutual authentication provided by Proxychain is less ex-
pensive and easier to implement than the one provided by
protocols such as TLS or IPsec. In addition, Proxychain
does not require hash chain synchronization9 as S/Key
does. The reason is that the hash chains are generated
based on a secret derived from users’ passwords.

Proxychain’s threat model assumes that the database
has a high level of security (a central database model fa-
cilitates this assumption). Only trusted entities (i.e., prox-
ies) are allowed to communicate with the database using
a robust security protocol (e.g., TLS or IPsec). Therefore,
threats against the database can be considered low risks.
In contrast, the proxies and the network traffic between
proxies and UAs have a higher risk of being targeted by
both, active and passive attackers.

An active attacker could try to compromise a proxy and
steal its cached credentials. However, Proxychain creden-
tials cannot be used to impersonate users (another advan-
tage of hash chains). Instead, stolen Proxychain creden-
tials could only be used to impersonate the proxy to the
users due to the session key included in the credentials.
In this scenario, only mutual authentication will be af-
fected, resulting in the same security level provided by

Digest authentication or S/Key (no server authentication).
Therefore, an attacker will still need considerable effort to
impersonate users even if she manages to steal the creden-
tials cached by the proxy. While not implemented in our
testbed, Proxychain can also include a revocation mech-
anism where the database can invalidate the credentials
cached in a proxy. This mechanism will be useful in situ-
ations where a user needs to change her password or when
a proxy has been compromised.

In addition, an active attacker could try to resend a pre-
viously captured user’s response to make unauthorized re-
quests in behalf of the user (replay attack). Proxychain
provides a stronger defense against this type of attacks
than Digest authentication due to the one-time password
property of hash chains. Even if the attacker manages
to capture a valid user’s response (e.g., a MITM attack
where the attacker prevents the user’s response to reach
the proxy), she will not be able to use it arbitrarily. The
reason is that a Proxychain response includes the origin
and destination of the request which are verified by the
proxy (the attacker cannot modify the response because
its integrity is protected).

Passive attackers (e.g., eavesdroppers) can monitor and
record the communication between the UAs and the prox-
ies. Proxychain protocol provides no additional informa-
tion that passive attackers could use to impersonate users.
Dictionary attacks against the challenge and the response
values are still possible, but they require more effort than
in Digest authentication due to the additional hash opera-
tions used in Proxychain.

Finally, Proxychain makes SIP authentication cheap
enough to authenticate more than one message per ses-
sion. Authenticating more SIP messages per session pro-
vides protection against several known attacks that target
current SIP deployments. From the security perspective,
all the messages should be authenticated to avoid vulnera-
bilities. Proxychain represents a first step in this direction.

6.3 Availability
The availability of the database is critical in scenarios
with a central authentication service. For example, if the
database becomes unavailable, the proxies will be unable
to authenticate UAs requests. As a result, no call sessions
can be established until the database is back online. This
risk can be mitigated through mechanisms such as high
availability clusters or backup sites. However, these alter-
natives are typically expensive and complex to manage.

Proxychain offers a cheaper alternative for database
outages. The idea is that the database can create a list of
authentication credentials with long enough hash chains
and no expiration time. These backup-credentials can
be stored offline in each proxy location and be activated
when the database is not available. Once each proxy loads
the backup-credentials in memory, they will be able to

authenticate UA requests as long as the credentials are ac-
tive (sequence counter > 0). A naı̈ve approach would be
to generate backup-credentials with uniformly long hash
chains (i.e., length = 1,000) to reduce the risks of users
finishing their credentials before the database is back on-
line. However, this approach is inefficient because very
long hash chains will cause unnecessary overheads in the
database and the UAs and lower performance during their
generation. A more efficient approach would be to es-
timate the necessary length of the hash chains based on
the expected time that the database is going to be unavail-
able. For example, a provider needs to install new hard-
ware, requiring the database to be offline. The provider
can estimate how many authenticated requests occur in a
period of six hours based on its call statistics. For exam-
ple, the provider can determine the call rate of its most
active users. Assuming that the most active users make
10 calls per hour during busy hours, backup-credentials
with a hash chain length of at least 60 will be required
(also assuming that only one request per call is authenti-
cated). Using Table 1, we know that the time to compute
one credential with hash chain length = 100 is approxi-
mately 335 µsecs. Therefore, if the provider has 5 million
users, the database will require approximately 28 minutes
of computation to generate backup-credentials that will
be active during 6 hours. This simple calculation could be
made more robust by identifying those users most likely
to far exceed the uses of the temporary credentials (i.e.,
profiling via long-term logging) and selectively increase
the length of their hash chains.

7 Related Work

Authentication is a required service in most SIP deploy-
ments. The VoIP standard (RFC 3261 [21]) recommends
the use of robust security mechanisms such as TLS, IPsec
and S/MIME to provide authentication and other secu-
rity guarantees. However, these mechanisms are com-
putationally expensive [5, 6, 15, 16] and complex to man-
age (i.e., client certificates are required). Digest authen-
tication, also recommended by RFC 3261, is more effi-
cient and simpler authentication mechanism with lower
implementation requirements than the previous schemes.
As a result, it is the preferred authentication mechanism
for most SIP deployments. However, previous research
shows that Digest authentication can still have a con-
siderable impact on the performance of a SIP infras-
tructure [19, 22], specially when a remote authentication
database is employed [8]. In addition, in scenarios where
the remote database is shared by multiple proxies, the
database could become a bottleneck due to the high load
the it receives. In this case, the database could be sus-
ceptible to DoS attacks. For example, multiple mali-
cious clients could generate enough load to saturate the

database, as was demonstrated by Traynor et al. [24] in
cellular networks.

The impact on performance caused by authentication is
also one of the reasons why only a few messages are au-
thenticated in a SIP call transaction. This fact and the lack
of mutual authentication lead to several possible attacks
against a SIP infrastructure [2, 29]. Moreover, Digest au-
thentication is considered a weak authentication protocol
by today’s cryptographic standards given its lack of mu-
tual authentication and susceptibility to a number of other
attacks [3, 9, 26, 27]. Several alternative schemes have
been proposed to overcome the weaknesses of Digest au-
thentication. Most of these alternatives focus on provid-
ing stronger security guarantees [4, 25, 27, 28], while oth-
ers also focus on better performance [7]. However, these
alternatives do not provide an implementation and experi-
mental performance analysis to determine their impact on
the performance of a SIP server.

To avoid the saturation of the database and improve per-
formance, we present a new authentication mechanism
based on temporary authentication vectors stored in the
proxies. A similar idea is used in the Authentication and
Key Agreement (AKA) [1] security protocol for 3G cellu-
lar networks. However, instead of using multiple authen-
tication vectors as AKA does, our scheme uses a modified
hash chain construction [13] to provide mutual authenti-
cation. Hash chains have been used in security protocols
in different domains where efficiency is critical such as
sensor networks [14, 20] and RFID tags [23]. Our work
is the first to take advantage of the security, performance
and space efficient properties of hash chains to reduce the
overhead of the authentication process in SIP.

8 Conclusions

VoIP has and will continue to change telephony. These
systems not only drastically reduce the costs associated
with building and providing such services, but also offer
the potential for rich new sets of features. Unfortunately,
the large-scale usage of VoIP also creates a number of new
security concerns. In this paper, we develop Proxychain,
a mechanism that provides strong authentication between
VoIP providers and their customers. Unlike previously
deployed mechanisms, Proxychain is highly scalable and
offers throughput improvements of greater than an order
of magnitude. This increased efficiency allows providers
not only to support a much larger customer base on a rel-
atively limited hardware footprint, but also increases the
overall security of the network by allowing for multiple
message types to be authenticated. In so doing, we have
significantly increased the robustness of VoIP systems.
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Abstract
In this paper, we describe ZooKeeper, a service for co-
ordinating processes of distributed applications. Since
ZooKeeper is part of critical infrastructure, ZooKeeper
aims to provide a simple and high performance kernel
for building more complex coordination primitives at the
client. It incorporates elements from group messaging,
shared registers, and distributed lock services in a repli-
cated, centralized service. The interface exposed by Zoo-
Keeper has the wait-free aspects of shared registers with
an event-driven mechanism similar to cache invalidations
of distributed file systems to provide a simple, yet pow-
erful coordination service.

The ZooKeeper interface enables a high-performance
service implementation. In addition to the wait-free
property, ZooKeeper provides a per client guarantee of
FIFO execution of requests and linearizability for all re-
quests that change the ZooKeeper state. These design de-
cisions enable the implementation of a high performance
processing pipeline with read requests being satisfied by
local servers. We show for the target workloads, 2:1
to 100:1 read to write ratio, that ZooKeeper can handle
tens to hundreds of thousands of transactions per second.
This performance allows ZooKeeper to be used exten-
sively by client applications.

1 Introduction

Large-scale distributed applications require different
forms of coordination. Configuration is one of the most
basic forms of coordination. In its simplest form, con-
figuration is just a list of operational parameters for the
system processes, whereas more sophisticated systems
have dynamic configuration parameters. Group member-
ship and leader election are also common in distributed
systems: often processes need to know which other pro-
cesses are alive and what those processes are in charge
of. Locks constitute a powerful coordination primitive

that implement mutually exclusive access to critical re-
sources.

One approach to coordination is to develop services
for each of the different coordination needs. For exam-
ple, Amazon Simple Queue Service [3] focuses specif-
ically on queuing. Other services have been devel-
oped specifically for leader election [25] and configura-
tion [27]. Services that implement more powerful prim-
itives can be used to implement less powerful ones. For
example, Chubby [6] is a locking service with strong
synchronization guarantees. Locks can then be used to
implement leader election, group membership, etc.

When designing our coordination service, we moved
away from implementing specific primitives on the
server side, and instead we opted for exposing an API
that enables application developers to implement their
own primitives. Such a choice led to the implementa-
tion of a coordination kernel that enables new primitives
without requiring changes to the service core. This ap-
proach enables multiple forms of coordination adapted to
the requirements of applications, instead of constraining
developers to a fixed set of primitives.

When designing the API of ZooKeeper, we moved
away from blocking primitives, such as locks. Blocking
primitives for a coordination service can cause, among
other problems, slow or faulty clients to impact nega-
tively the performance of faster clients. The implemen-
tation of the service itself becomes more complicated
if processing requests depends on responses and fail-
ure detection of other clients. Our system, Zookeeper,
hence implements an API that manipulates simple wait-
free data objects organized hierarchically as in file sys-
tems. In fact, the ZooKeeper API resembles the one of
any other file system, and looking at just the API signa-
tures, ZooKeeper seems to be Chubby without the lock
methods, open, and close. Implementing wait-free data
objects, however, differentiates ZooKeeper significantly
from systems based on blocking primitives such as locks.

Although the wait-free property is important for per-
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formance and fault tolerance, it is not sufficient for co-
ordination. We have also to provide order guarantees for
operations. In particular, we have found that guarantee-
ing both FIFO client ordering of all operations and lin-
earizable writes enables an efficient implementation of
the service and it is sufficient to implement coordination
primitives of interest to our applications. In fact, we can
implement consensus for any number of processes with
our API, and according to the hierarchy of Herlihy, Zoo-
Keeper implements a universal object [14].

The ZooKeeper service comprises an ensemble of
servers that use replication to achieve high availability
and performance. Its high performance enables appli-
cations comprising a large number of processes to use
such a coordination kernel to manage all aspects of co-
ordination. We were able to implement ZooKeeper us-
ing a simple pipelined architecture that allows us to have
hundreds or thousands of requests outstanding while still
achieving low latency. Such a pipeline naturally enables
the execution of operations from a single client in FIFO
order. Guaranteeing FIFO client order enables clients to
submit operations asynchronously. With asynchronous
operations, a client is able to have multiple outstanding
operations at a time. This feature is desirable, for exam-
ple, when a new client becomes a leader and it has to ma-
nipulate metadata and update it accordingly. Without the
possibility of multiple outstanding operations, the time
of initialization can be of the order of seconds instead of
sub-second.

To guarantee that update operations satisfy lineariz-
ability, we implement a leader-based atomic broadcast
protocol [23], called Zab [24]. A typical workload
of a ZooKeeper application, however, is dominated by
read operations and it becomes desirable to scale read
throughput. In ZooKeeper, servers process read opera-
tions locally, and we do not use Zab to totally order them.

Caching data on the client side is an important tech-
nique to increase the performance of reads. For example,
it is useful for a process to cache the identifier of the
current leader instead of probing ZooKeeper every time
it needs to know the leader. ZooKeeper uses a watch
mechanism to enable clients to cache data without man-
aging the client cache directly. With this mechanism,
a client can watch for an update to a given data object,
and receive a notification upon an update. Chubby man-
ages the client cache directly. It blocks updates to in-
validate the caches of all clients caching the data being
changed. Under this design, if any of these clients is
slow or faulty, the update is delayed. Chubby uses leases
to prevent a faulty client from blocking the system indef-
initely. Leases, however, only bound the impact of slow
or faulty clients, whereas ZooKeeper watches avoid the
problem altogether.

In this paper we discuss our design and implementa-

tion of ZooKeeper. With ZooKeeper, we are able to im-
plement all coordination primitives that our applications
require, even though only writes are linearizable. To val-
idate our approach we show how we implement some
coordination primitives with ZooKeeper.
To summarize, in this paper our main contributions are:
Coordination kernel: We propose a wait-free coordi-

nation service with relaxed consistency guarantees
for use in distributed systems. In particular, we de-
scribe our design and implementation of a coordi-
nation kernel, which we have used in many criti-
cal applications to implement various coordination
techniques.

Coordination recipes: We show how ZooKeeper can
be used to build higher level coordination primi-
tives, even blocking and strongly consistent primi-
tives, that are often used in distributed applications.

Experience with Coordination: We share some of the
ways that we use ZooKeeper and evaluate its per-
formance.

2 The ZooKeeper service

Clients submit requests to ZooKeeper through a client
API using a ZooKeeper client library. In addition to ex-
posing the ZooKeeper service interface through the client
API, the client library also manages the network connec-
tions between the client and ZooKeeper servers.

In this section, we first provide a high-level view of the
ZooKeeper service. We then discuss the API that clients
use to interact with ZooKeeper.

Terminology. In this paper, we use client to denote a
user of the ZooKeeper service, server to denote a process
providing the ZooKeeper service, and znode to denote
an in-memory data node in the ZooKeeper data, which
is organized in a hierarchical namespace referred to as
the data tree. We also use the terms update and write to
refer to any operation that modifies the state of the data
tree. Clients establish a session when they connect to
ZooKeeper and obtain a session handle through which
they issue requests.

2.1 Service overview

ZooKeeper provides to its clients the abstraction of a set
of data nodes (znodes), organized according to a hierar-
chical name space. The znodes in this hierarchy are data
objects that clients manipulate through the ZooKeeper
API. Hierarchical name spaces are commonly used in file
systems. It is a desirable way of organizing data objects,
since users are used to this abstraction and it enables bet-
ter organization of application meta-data. To refer to a
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given znode, we use the standard UNIX notation for file
system paths. For example, we use /A/B/C to denote
the path to znode C, where C has B as its parent and B
has A as its parent. All znodes store data, and all znodes,
except for ephemeral znodes, can have children.

/

/app1 /app2

/app1/p_1 /app1/p_2 /app1/p_3

Figure 1: Illustration of ZooKeeper hierarchical name
space.

There are two types of znodes that a client can create:
Regular: Clients manipulate regular znodes by creating

and deleting them explicitly;
Ephemeral: Clients create such znodes, and they ei-

ther delete them explicitly, or let the system remove
them automatically when the session that creates
them terminates (deliberately or due to a failure).

Additionally, when creating a new znode, a client can
set a sequential flag. Nodes created with the sequen-
tial flag set have the value of a monotonically increas-
ing counter appended to its name. If n is the new znode
and p is the parent znode, then the sequence value of n
is never smaller than the value in the name of any other
sequential znode ever created under p.

ZooKeeper implements watches to allow clients to
receive timely notifications of changes without requir-
ing polling. When a client issues a read operation
with a watch flag set, the operation completes as nor-
mal except that the server promises to notify the client
when the information returned has changed. Watches
are one-time triggers associated with a session; they
are unregistered once triggered or the session closes.
Watches indicate that a change has happened, but do
not provide the change. For example, if a client is-
sues a getData(‘‘/foo’’, true) before “/foo”
is changed twice, the client will get one watch event
telling the client that data for “/foo” has changed. Ses-
sion events, such as connection loss events, are also sent
to watch callbacks so that clients know that watch events
may be delayed.

Data model. The data model of ZooKeeper is essen-
tially a file system with a simplified API and only full
data reads and writes, or a key/value table with hierar-

chical keys. The hierarchal namespace is useful for al-
locating subtrees for the namespace of different applica-
tions and for setting access rights to those subtrees. We
also exploit the concept of directories on the client side to
build higher level primitives as we will see in section 2.4.

Unlike files in file systems, znodes are not designed
for general data storage. Instead, znodes map to abstrac-
tions of the client application, typically corresponding
to meta-data used for coordination purposes. To illus-
trate, in Figure 1 we have two subtrees, one for Applica-
tion 1 (/app1) and another for Application 2 (/app2).
The subtree for Application 1 implements a simple group
membership protocol: each client process pi creates a
znode p i under /app1, which persists as long as the
process is running.

Although znodes have not been designed for general
data storage, ZooKeeper does allow clients to store some
information that can be used for meta-data or configu-
ration in a distributed computation. For example, in a
leader-based application, it is useful for an application
server that is just starting to learn which other server is
currently the leader. To accomplish this goal, we can
have the current leader write this information in a known
location in the znode space. Znodes also have associated
meta-data with time stamps and version counters, which
allow clients to track changes to znodes and execute con-
ditional updates based on the version of the znode.

Sessions. A client connects to ZooKeeper and initiates
a session. Sessions have an associated timeout. Zoo-
Keeper considers a client faulty if it does not receive any-
thing from its session for more than that timeout. A ses-
sion ends when clients explicitly close a session handle
or ZooKeeper detects that a clients is faulty. Within a ses-
sion, a client observes a succession of state changes that
reflect the execution of its operations. Sessions enable a
client to move transparently from one server to another
within a ZooKeeper ensemble, and hence persist across
ZooKeeper servers.

2.2 Client API
We present below a relevant subset of the ZooKeeper
API, and discuss the semantics of each request.
create(path, data, flags): Creates a znode

with path name path, stores data[] in it, and
returns the name of the new znode. flags en-
ables a client to select the type of znode: regular,
ephemeral, and set the sequential flag;

delete(path, version): Deletes the znode
path if that znode is at the expected version;

exists(path, watch): Returns true if the znode
with path name path exists, and returns false oth-
erwise. The watch flag enables a client to set a
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watch on the znode;
getData(path, watch): Returns the data and

meta-data, such as version information, associated
with the znode. The watch flag works in the same
way as it does for exists(), except that Zoo-
Keeper does not set the watch if the znode does not
exist;

setData(path, data, version): Writes
data[] to znode path if the version number is
the current version of the znode;

getChildren(path, watch): Returns the set of
names of the children of a znode;

sync(path): Waits for all updates pending at the start
of the operation to propagate to the server that the
client is connected to. The path is currently ignored.

All methods have both a synchronous and an asyn-
chronous version available through the API. An applica-
tion uses the synchronous API when it needs to execute
a single ZooKeeper operation and it has no concurrent
tasks to execute, so it makes the necessary ZooKeeper
call and blocks. The asynchronous API, however, en-
ables an application to have both multiple outstanding
ZooKeeper operations and other tasks executed in par-
allel. The ZooKeeper client guarantees that the corre-
sponding callbacks for each operation are invoked in or-
der.

Note that ZooKeeper does not use handles to access
znodes. Each request instead includes the full path of
the znode being operated on. Not only does this choice
simplifies the API (no open() or close() methods),
but it also eliminates extra state that the server would
need to maintain.

Each of the update methods take an expected ver-
sion number, which enables the implementation of con-
ditional updates. If the actual version number of the zn-
ode does not match the expected version number the up-
date fails with an unexpected version error. If the version
number is −1, it does not perform version checking.

2.3 ZooKeeper guarantees

ZooKeeper has two basic ordering guarantees:
Linearizable writes: all requests that update the state

of ZooKeeper are serializable and respect prece-
dence;

FIFO client order: all requests from a given client are
executed in the order that they were sent by the
client.

Note that our definition of linearizability is different
from the one originally proposed by Herlihy [15], and
we call it A-linearizability (asynchronous linearizabil-
ity). In the original definition of linearizability by Her-
lihy, a client is only able to have one outstanding opera-
tion at a time (a client is one thread). In ours, we allow a

client to have multiple outstanding operations, and con-
sequently we can choose to guarantee no specific order
for outstanding operations of the same client or to guar-
antee FIFO order. We choose the latter for our property.
It is important to observe that all results that hold for
linearizable objects also hold for A-linearizable objects
because a system that satisfies A-linearizability also sat-
isfies linearizability. Because only update requests are A-
linearizable, ZooKeeper processes read requests locally
at each replica. This allows the service to scale linearly
as servers are added to the system.

To see how these two guarantees interact, consider the
following scenario. A system comprising a number of
processes elects a leader to command worker processes.
When a new leader takes charge of the system, it must
change a large number of configuration parameters and
notify the other processes once it finishes. We then have
two important requirements:
• As the new leader starts making changes, we do not

want other processes to start using the configuration
that is being changed;

• If the new leader dies before the configuration has
been fully updated, we do not want the processes to
use this partial configuration.

Observe that distributed locks, such as the locks pro-
vided by Chubby, would help with the first requirement
but are insufficient for the second. With ZooKeeper,
the new leader can designate a path as the ready znode;
other processes will only use the configuration when that
znode exists. The new leader makes the configuration
change by deleting ready, updating the various configu-
ration znodes, and creating ready. All of these changes
can be pipelined and issued asynchronously to quickly
update the configuration state. Although the latency of a
change operation is of the order of 2 milliseconds, a new
leader that must update 5000 different znodes will take
10 seconds if the requests are issued one after the other;
by issuing the requests asynchronously the requests will
take less than a second. Because of the ordering guaran-
tees, if a process sees the ready znode, it must also see
all the configuration changes made by the new leader. If
the new leader dies before the ready znode is created, the
other processes know that the configuration has not been
finalized and do not use it.

The above scheme still has a problem: what happens
if a process sees that ready exists before the new leader
starts to make a change and then starts reading the con-
figuration while the change is in progress. This problem
is solved by the ordering guarantee for the notifications:
if a client is watching for a change, the client will see
the notification event before it sees the new state of the
system after the change is made. Consequently, if the
process that reads the ready znode requests to be notified
of changes to that znode, it will see a notification inform-
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ing the client of the change before it can read any of the
new configuration.

Another problem can arise when clients have their own
communication channels in addition to ZooKeeper. For
example, consider two clients A and B that have a shared
configuration in ZooKeeper and communicate through a
shared communication channel. If A changes the shared
configuration in ZooKeeper and tells B of the change
through the shared communication channel, B would ex-
pect to see the change when it re-reads the configuration.
If B’s ZooKeeper replica is slightly behind A’s, it may
not see the new configuration. Using the above guar-
antees B can make sure that it sees the most up-to-date
information by issuing a write before re-reading the con-
figuration. To handle this scenario more efficiently Zoo-
Keeper provides the sync request: when followed by
a read, constitutes a slow read. sync causes a server
to apply all pending write requests before processing the
read without the overhead of a full write. This primitive
is similar in idea to the flush primitive of ISIS [5].

ZooKeeper also has the following two liveness and
durability guarantees: if a majority of ZooKeeper servers
are active and communicating the service will be avail-
able; and if the ZooKeeper service responds successfully
to a change request, that change persists across any num-
ber of failures as long as a quorum of servers is eventu-
ally able to recover.

2.4 Examples of primitives
In this section, we show how to use the ZooKeeper API
to implement more powerful primitives. The ZooKeeper
service knows nothing about these more powerful primi-
tives since they are entirely implemented at the client us-
ing the ZooKeeper client API. Some common primitives
such as group membership and configuration manage-
ment are also wait-free. For others, such as rendezvous,
clients need to wait for an event. Even though ZooKeeper
is wait-free, we can implement efficient blocking primi-
tives with ZooKeeper. ZooKeeper’s ordering guarantees
allow efficient reasoning about system state, and watches
allow for efficient waiting.

Configuration Management ZooKeeper can be used
to implement dynamic configuration in a distributed ap-
plication. In its simplest form configuration is stored in
a znode, zc. Processes start up with the full pathname
of zc. Starting processes obtain their configuration by
reading zc with the watch flag set to true. If the config-
uration in zc is ever updated, the processes are notified
and read the new configuration, again setting the watch
flag to true.

Note that in this scheme, as in most others that use
watches, watches are used to make sure that a process has

the most recent information. For example, if a process
watching zc is notified of a change to zc and before it
can issue a read for zc there are three more changes to
zc, the process does not receive three more notification
events. This does not affect the behavior of the process,
since those three events would have simply notified the
process of something it already knows: the information
it has for zc is stale.

Rendezvous Sometimes in distributed systems, it is
not always clear a priori what the final system config-
uration will look like. For example, a client may want to
start a master process and several worker processes, but
the starting processes is done by a scheduler, so the client
does not know ahead of time information such as ad-
dresses and ports that it can give the worker processes to
connect to the master. We handle this scenario with Zoo-
Keeper using a rendezvous znode, zr, which is an node
created by the client. The client passes the full pathname
of zr as a startup parameter of the master and worker
processes. When the master starts it fills in zr with in-
formation about addresses and ports it is using. When
workers start, they read zr with watch set to true. If zr

has not been filled in yet, the worker waits to be notified
when zr is updated. If zr is an ephemeral node, master
and worker processes can watch for zr to be deleted and
clean themselves up when the client ends.

Group Membership We take advantage of ephemeral
nodes to implement group membership. Specifically, we
use the fact that ephemeral nodes allow us to see the state
of the session that created the node. We start by designat-
ing a znode, zg to represent the group. When a process
member of the group starts, it creates an ephemeral child
znode under zg . If each process has a unique name or
identifier, then that name is used as the name of the child
znode; otherwise, the process creates the znode with the
SEQUENTIAL flag to obtain a unique name assignment.
Processes may put process information in the data of the
child znode, addresses and ports used by the process, for
example.

After the child znode is created under zg the process
starts normally. It does not need to do anything else. If
the process fails or ends, the znode that represents it un-
der zg is automatically removed.

Processes can obtain group information by simply list-
ing the children of zg . If a process wants to monitor
changes in group membership, the process can set the
watch flag to true and refresh the group information (al-
ways setting the watch flag to true) when change notifi-
cations are received.
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Simple Locks Although ZooKeeper is not a lock ser-
vice, it can be used to implement locks. Applications
using ZooKeeper usually use synchronization primitives
tailored to their needs, such as those shown above. Here
we show how to implement locks with ZooKeeper to
show that it can implement a wide variety of general syn-
chronization primitives.

The simplest lock implementation uses “lock files”.
The lock is represented by a znode. To acquire a lock,
a client tries to create the designated znode with the
EPHEMERAL flag. If the create succeeds, the client
holds the lock. Otherwise, the client can read the zn-
ode with the watch flag set to be notified if the current
leader dies. A client releases the lock when it dies or ex-
plicitly deletes the znode. Other clients that are waiting
for a lock try again to acquire a lock once they observe
the znode being deleted.

While this simple locking protocol works, it does have
some problems. First, it suffers from the herd effect. If
there are many clients waiting to acquire a lock, they will
all vie for the lock when it is released even though only
one client can acquire the lock. Second, it only imple-
ments exclusive locking. The following two primitives
show how both of these problems can be overcome.

Simple Locks without Herd Effect We define a lock
znode l to implement such locks. Intuitively we line up
all the clients requesting the lock and each client obtains
the lock in order of request arrival. Thus, clients wishing
to obtain the lock do the following:

Lock
1 n = create(l + “/lock-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if n is lowest znode in C, exit
4 p = znode in C ordered just before n
5 if exists(p, true) wait for watch event
6 goto 2

Unlock
1 delete(n)

The use of the SEQUENTIAL flag in line 1 of Lock
orders the client’s attempt to acquire the lock with re-
spect to all other attempts. If the client’s znode has the
lowest sequence number at line 3, the client holds the
lock. Otherwise, the client waits for deletion of the zn-
ode that either has the lock or will receive the lock be-
fore this client’s znode. By only watching the znode
that precedes the client’s znode, we avoid the herd effect
by only waking up one process when a lock is released
or a lock request is abandoned. Once the znode being
watched by the client goes away, the client must check
if it now holds the lock. (The previous lock request may
have been abandoned and there is a znode with a lower
sequence number still waiting for or holding the lock.)

Releasing a lock is as simple as deleting the zn-
ode n that represents the lock request. By using the

EPHEMERAL flag on creation, processes that crash will
automatically cleanup any lock requests or release any
locks that they may have.

In summary, this locking scheme has the following ad-
vantages:

1. The removal of a znode only causes one client to
wake up, since each znode is watched by exactly
one other client, so we do not have the herd effect;

2. There is no polling or timeouts;
3. Because of the way we have implemented locking,

we can see by browsing the ZooKeeper data the
amount of lock contention, break locks, and debug
locking problems.

Read/Write Locks To implement read/write locks we
change the lock procedure slightly and have separate
read lock and write lock procedures. The unlock pro-
cedure is the same as the global lock case.

Write Lock
1 n = create(l + “/write-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if n is lowest znode in C, exit
4 p = znode in C ordered just before n
5 if exists(p, true) wait for event
6 goto 2

Read Lock
1 n = create(l + “/read-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)
3 if no write znodes lower than n in C, exit
4 p = write znode in C ordered just before n
5 if exists(p, true) wait for event
6 goto 3

This lock procedure varies slightly from the previous
locks. Write locks differ only in naming. Since read
locks may be shared, lines 3 and 4 vary slightly because
only earlier write lock znodes prevent the client from ob-
taining a read lock. It may appear that we have a “herd
effect” when there are several clients waiting for a read
lock and get notified when the “write-” znode with the
lower sequence number is deleted; in fact, this is a de-
sired behavior, all those read clients should be released
since they may now have the lock.

Double Barrier Double barriers enable clients to syn-
chronize the beginning and the end of a computation.
When enough processes, defined by the barrier thresh-
old, have joined the barrier, processes start their compu-
tation and leave the barrier once they have finished. We
represent a barrier in ZooKeeper with a znode, referred
to as b. Every process p registers with b – by creating
a znode as a child of b – on entry, and unregisters – re-
moves the child – when it is ready to leave. Processes
can enter the barrier when the number of child znodes
of b exceeds the barrier threshold. Processes can leave
the barrier when all of the processes have removed their
children. We use watches to efficiently wait for enter and
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exit conditions to be satisfied. To enter, processes watch
for the existence of a ready child of b that will be cre-
ated by the process that causes the number of children to
exceed the barrier threshold. To leave, processes watch
for a particular child to disappear and only check the exit
condition once that znode has been removed.

3 ZooKeeper Applications

We now describe some applications that use ZooKeeper,
and explain briefly how they use it. We show the primi-
tives of each example in bold.

The Fetching Service Crawling is an important part of
a search engine, and Yahoo! crawls billions of Web doc-
uments. The Fetching Service (FS) is part of the Yahoo!
crawler and it is currently in production. Essentially, it
has master processes that command page-fetching pro-
cesses. The master provides the fetchers with configura-
tion, and the fetchers write back informing of their status
and health. The main advantages of using ZooKeeper
for FS are recovering from failures of masters, guaran-
teeing availability despite failures, and decoupling the
clients from the servers, allowing them to direct their re-
quest to healthy servers by just reading their status from
ZooKeeper. Thus, FS uses ZooKeeper mainly to man-
age configuration metadata, although it also uses Zoo-
Keeper to elect masters (leader election).
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Figure 2: Workload for one ZK server with the Fetching
Service. Each point represents a one-second sample.

Figure 2 shows the read and write traffic for a Zoo-
Keeper server used by FS through a period of three days.
To generate this graph, we count the number of opera-
tions for every second during the period, and each point
corresponds to the number of operations in that second.
We observe that the read traffic is much higher compared
to the write traffic. During periods in which the rate is
higher than 1, 000 operations per second, the read:write
ratio varies between 10:1 and 100:1. The read operations
in this workload are getData(), getChildren(),
and exists(), in increasing order of prevalence.

Katta Katta [17] is a distributed indexer that uses Zoo-
Keeper for coordination, and it is an example of a non-
Yahoo! application. Katta divides the work of indexing
using shards. A master server assigns shards to slaves
and tracks progress. Slaves can fail, so the master must
redistribute load as slaves come and go. The master can
also fail, so other servers must be ready to take over in
case of failure. Katta uses ZooKeeper to track the status
of slave servers and the master (group membership),
and to handle master failover (leader election). Katta
also uses ZooKeeper to track and propagate the assign-
ments of shards to slaves (configuration management).

Yahoo! Message Broker Yahoo! Message Broker
(YMB) is a distributed publish-subscribe system. The
system manages thousands of topics that clients can pub-
lish messages to and receive messages from. The topics
are distributed among a set of servers to provide scala-
bility. Each topic is replicated using a primary-backup
scheme that ensures messages are replicated to two ma-
chines to ensure reliable message delivery. The servers
that makeup YMB use a shared-nothing distributed ar-
chitecture which makes coordination essential for correct
operation. YMB uses ZooKeeper to manage the distribu-
tion of topics (configuration metadata), deal with fail-
ures of machines in the system (failure detection and
group membership), and control system operation.

broker domain

broker_disabledtopicsnodesshutdown migration_prohibited

<hos tname><hos tname> <hos tname>   .....

load
# of  topics

< t o p i c > < t o p i c > < t o p i c >....

pr imary backup

hostname

Figure 3: The layout of Yahoo! Message Broker (YMB)
structures in ZooKeeper

Figure 3 shows part of the znode data layout for YMB.
Each broker domain has a znode called nodes that has
an ephemeral znode for each of the active servers that
compose the YMB service. Each YMB server creates
an ephemeral znode under nodes with load and sta-
tus information providing both group membership and
status information through ZooKeeper. Nodes such as
shutdown and migration prohibited are mon-
itored by all of the servers that make up the service and
allow centralized control of YMB. The topics direc-
tory has a child znode for each topic managed by YMB.
These topic znodes have child znodes that indicate the
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primary and backup server for each topic along with the
subscribers of that topic. The primary and backup
server znodes not only allow servers to discover the
servers in charge of a topic, but they also manage leader
election and server crashes.

Request
Processor

Atomic
Broadcast

Replicated
Database

Write
Request

Response

ZooKeeper  Service

txn

txn

Read
Request

Figure 4: The components of the ZooKeeper service.

4 ZooKeeper Implementation

ZooKeeper provides high availability by replicating the
ZooKeeper data on each server that composes the ser-
vice. We assume that servers fail by crashing, and such
faulty servers may later recover. Figure 4 shows the high-
level components of the ZooKeeper service. Upon re-
ceiving a request, a server prepares it for execution (re-
quest processor). If such a request requires coordina-
tion among the servers (write requests), then they use an
agreement protocol (an implementation of atomic broad-
cast), and finally servers commit changes to the Zoo-
Keeper database fully replicated across all servers of the
ensemble. In the case of read requests, a server simply
reads the state of the local database and generates a re-
sponse to the request.

The replicated database is an in-memory database con-
taining the entire data tree. Each znode in the tree stores a
maximum of 1MB of data by default, but this maximum
value is a configuration parameter that can be changed in
specific cases. For recoverability, we efficiently log up-
dates to disk, and we force writes to be on the disk media
before they are applied to the in-memory database. In
fact, as Chubby [8], we keep a replay log (a write-ahead
log, in our case) of committed operations and generate
periodic snapshots of the in-memory database.

Every ZooKeeper server services clients. Clients con-
nect to exactly one server to submit its requests. As we
noted earlier, read requests are serviced from the local
replica of each server database. Requests that change the
state of the service, write requests, are processed by an
agreement protocol.

As part of the agreement protocol write requests are
forwarded to a single server, called the leader1. The
rest of the ZooKeeper servers, called followers, receive

1Details of leaders and followers, as part of the agreement protocol,
are out of the scope of this paper.

message proposals consisting of state changes from the
leader and agree upon state changes.

4.1 Request Processor
Since the messaging layer is atomic, we guarantee that
the local replicas never diverge, although at any point in
time some servers may have applied more transactions
than others. Unlike the requests sent from clients, the
transactions are idempotent. When the leader receives
a write request, it calculates what the state of the sys-
tem will be when the write is applied and transforms it
into a transaction that captures this new state. The fu-
ture state must be calculated because there may be out-
standing transactions that have not yet been applied to
the database. For example, if a client does a conditional
setData and the version number in the request matches
the future version number of the znode being updated,
the service generates a setDataTXN that contains the
new data, the new version number, and updated time
stamps. If an error occurs, such as mismatched version
numbers or the znode to be updated does not exist, an
errorTXN is generated instead.

4.2 Atomic Broadcast
All requests that update ZooKeeper state are forwarded
to the leader. The leader executes the request and
broadcasts the change to the ZooKeeper state through
Zab [24], an atomic broadcast protocol. The server that
receives the client request responds to the client when it
delivers the corresponding state change. Zab uses by de-
fault simple majority quorums to decide on a proposal,
so Zab and thus ZooKeeper can only work if a majority
of servers are correct (i.e., with 2f + 1 server we can
tolerate f failures).

To achieve high throughput, ZooKeeper tries to keep
the request processing pipeline full. It may have thou-
sands of requests in different parts of the processing
pipeline. Because state changes depend on the appli-
cation of previous state changes, Zab provides stronger
order guarantees than regular atomic broadcast. More
specifically, Zab guarantees that changes broadcast by a
leader are delivered in the order they were sent and all
changes from previous leaders are delivered to an estab-
lished leader before it broadcasts its own changes.

There are a few implementation details that simplify
our implementation and give us excellent performance.
We use TCP for our transport so message order is main-
tained by the network, which allows us to simplify our
implementation. We use the leader chosen by Zab as
the ZooKeeper leader, so that the same process that cre-
ates transactions also proposes them. We use the log to
keep track of proposals as the write-ahead log for the in-
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memory database, so that we do not have to write mes-
sages twice to disk.

During normal operation Zab does deliver all mes-
sages in order and exactly once, but since Zab does not
persistently record the id of every message delivered,
Zab may redeliver a message during recovery. Because
we use idempotent transactions, multiple delivery is ac-
ceptable as long as they are delivered in order. In fact,
ZooKeeper requires Zab to redeliver at least all messages
that were delivered after the start of the last snapshot.

4.3 Replicated Database
Each replica has a copy in memory of the ZooKeeper
state. When a ZooKeeper server recovers from a crash, it
needs to recover this internal state. Replaying all deliv-
ered messages to recover state would take prohibitively
long after running the server for a while, so ZooKeeper
uses periodic snapshots and only requires redelivery of
messages since the start of the snapshot. We call Zoo-
Keeper snapshots fuzzy snapshots since we do not lock
the ZooKeeper state to take the snapshot; instead, we do
a depth first scan of the tree atomically reading each zn-
ode’s data and meta-data and writing them to disk. Since
the resulting fuzzy snapshot may have applied some sub-
set of the state changes delivered during the generation of
the snapshot, the result may not correspond to the state
of ZooKeeper at any point in time. However, since state
changes are idempotent, we can apply them twice as long
as we apply the state changes in order.

For example, assume that in a ZooKeeper data tree two
nodes /foo and /goo have values f1 and g1 respec-
tively and both are at version 1 when the fuzzy snap-
shot begins, and the following stream of state changes
arrive having the form 〈transactionType, path,
value, new-version〉:

〈SetDataTXN, /foo, f2, 2〉
〈SetDataTXN, /goo, g2, 2〉
〈SetDataTXN, /foo, f3, 3〉

After processing these state changes, /foo and /goo
have values f3 and g2 with versions 3 and 2 respec-
tively. However, the fuzzy snapshot may have recorded
that /foo and /goo have values f3 and g1 with ver-
sions 3 and 1 respectively, which was not a valid state
of the ZooKeeper data tree. If the server crashes and
recovers with this snapshot and Zab redelivers the state
changes, the resulting state corresponds to the state of the
service before the crash.

4.4 Client-Server Interactions
When a server processes a write request, it also sends out
and clears notifications relative to any watch that corre-

sponds to that update. Servers process writes in order
and do not process other writes or reads concurrently.
This ensures strict succession of notifications. Note that
servers handle notifications locally. Only the server that
a client is connected to tracks and triggers notifications
for that client.

Read requests are handled locally at each server. Each
read request is processed and tagged with a zxid that cor-
responds to the last transaction seen by the server. This
zxid defines the partial order of the read requests with re-
spect to the write requests. By processing reads locally,
we obtain excellent read performance because it is just an
in-memory operation on the local server, and there is no
disk activity or agreement protocol to run. This design
choice is key to achieving our goal of excellent perfor-
mance with read-dominant workloads.

One drawback of using fast reads is not guaranteeing
precedence order for read operations. That is, a read op-
eration may return a stale value, even though a more
recent update to the same znode has been committed.
Not all of our applications require precedence order, but
for applications that do require it, we have implemented
sync. This primitive executes asynchronously and is
ordered by the leader after all pending writes to its lo-
cal replica. To guarantee that a given read operation re-
turns the latest updated value, a client calls sync fol-
lowed by the read operation. The FIFO order guarantee
of client operations together with the global guarantee of
sync enables the result of the read operation to reflect
any changes that happened before the sync was issued.
In our implementation, we do not need to atomically
broadcast sync as we use a leader-based algorithm, and
we simply place the sync operation at the end of the
queue of requests between the leader and the server ex-
ecuting the call to sync. In order for this to work, the
follower must be sure that the leader is still the leader.
If there are pending transactions that commit, then the
server does not suspect the leader. If the pending queue
is empty, the leader needs to issue a null transaction to
commit and orders the sync after that transaction. This
has the nice property that when the leader is under load,
no extra broadcast traffic is generated. In our implemen-
tation, timeouts are set such that leaders realize they are
not leaders before followers abandon them, so we do not
issue the null transaction.

ZooKeeper servers process requests from clients in
FIFO order. Responses include the zxid that the response
is relative to. Even heartbeat messages during intervals
of no activity include the last zxid seen by the server that
the client is connected to. If the client connects to a new
server, that new server ensures that its view of the Zoo-
Keeper data is at least as recent as the view of the client
by checking the last zxid of the client against its last zxid.
If the client has a more recent view than the server, the
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server does not reestablish the session with the client un-
til the server has caught up. The client is guaranteed to
be able to find another server that has a recent view of the
system since the client only sees changes that have been
replicated to a majority of the ZooKeeper servers. This
behavior is important to guarantee durability.

To detect client session failures, ZooKeeper uses time-
outs. The leader determines that there has been a failure
if no other server receives anything from a client ses-
sion within the session timeout. If the client sends re-
quests frequently enough, then there is no need to send
any other message. Otherwise, the client sends heartbeat
messages during periods of low activity. If the client
cannot communicate with a server to send a request or
heartbeat, it connects to a different ZooKeeper server to
re-establish its session. To prevent the session from tim-
ing out, the ZooKeeper client library sends a heartbeat
after the session has been idle for s/3 ms and switch to a
new server if it has not heard from a server for 2s/3 ms,
where s is the session timeout in milliseconds.

5 Evaluation

We performed all of our evaluation on a cluster of 50
servers. Each server has one Xeon dual-core 2.1GHz
processor, 4GB of RAM, gigabit ethernet, and two SATA
hard drives. We split the following discussion into two
parts: throughput and latency of requests.

5.1 Throughput

To evaluate our system, we benchmark throughput when
the system is saturated and the changes in throughput
for various injected failures. We varied the number of
servers that make up the ZooKeeper service, but always
kept the number of clients the same. To simulate a large
number of clients, we used 35 machines to simulate 250
simultaneous clients.

We have a Java implementation of the ZooKeeper
server, and both Java and C clients2. For these experi-
ments, we used the Java server configured to log to one
dedicated disk and take snapshots on another. Our bench-
mark client uses the asynchronous Java client API, and
each client has at least 100 requests outstanding. Each
request consists of a read or write of 1K of data. We
do not show benchmarks for other operations since the
performance of all the operations that modify state are
approximately the same, and the performance of non-
state modifying operations, excluding sync, are approx-
imately the same. (The performance of sync approxi-
mates that of a light-weight write, since the request must

2The implementation is publicly available at http://hadoop.
apache.org/zookeeper.

go to the leader, but does not get broadcast.) Clients
send counts of the number of completed operations ev-
ery 300ms and we sample every 6s. To prevent memory
overflows, servers throttle the number of concurrent re-
quests in the system. ZooKeeper uses request throttling
to keep servers from being overwhelmed. For these ex-
periments, we configured the ZooKeeper servers to have
a maximum of 2, 000 total requests in process.
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Figure 5: The throughput performance of a saturated sys-
tem as the ratio of reads to writes vary.

Servers 100% Reads 0% Reads
13 460k 8k
9 296k 12k
7 257k 14k
5 165k 18k
3 87k 21k

Table 1: The throughput performance of the extremes of
a saturated system.

In Figure 5, we show throughput as we vary the ratio
of read to write requests, and each curve corresponds to
a different number of servers providing the ZooKeeper
service. Table 1 shows the numbers at the extremes of
the read loads. Read throughput is higher than write
throughput because reads do not use atomic broadcast.
The graph also shows that the number of servers also has
a negative impact on the performance of the broadcast
protocol. From these graphs, we observe that the number
of servers in the system does not only impact the num-
ber of failures that the service can handle, but also the
workload the service can handle. Note that the curve for
three servers crosses the others around 60%. This situ-
ation is not exclusive of the three-server configuration,
and happens for all configurations due to the parallelism
local reads enable. It is not observable for other config-
urations in the figure, however, because we have capped
the maximum y-axis throughput for readability.

There are two reasons for write requests taking longer
than read requests. First, write requests must go through
atomic broadcast, which requires some extra processing
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and adds latency to requests. The other reason for longer
processing of write requests is that servers must ensure
that transactions are logged to non-volatile store before
sending acknowledgments back to the leader. In prin-
ciple, this requirement is excessive, but for our produc-
tion systems we trade performance for reliability since
ZooKeeper constitutes application ground truth. We use
more servers to tolerate more faults. We increase write
throughput by partitioning the ZooKeeper data into mul-
tiple ZooKeeper ensembles. This performance trade off
between replication and partitioning has been previously
observed by Gray et al. [12].
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Figure 6: Throughput of a saturated system, varying the
ratio of reads to writes when all clients connect to the
leader.

ZooKeeper is able to achieve such high throughput by
distributing load across the servers that makeup the ser-
vice. We can distribute the load because of our relaxed
consistency guarantees. Chubby clients instead direct all
requests to the leader. Figure 6 shows what happens if
we do not take advantage of this relaxation and forced
the clients to only connect to the leader. As expected the
throughput is much lower for read-dominant workloads,
but even for write-dominant workloads the throughput is
lower. The extra CPU and network load caused by ser-
vicing clients impacts the ability of the leader to coor-
dinate the broadcast of the proposals, which in turn ad-
versely impacts the overall write performance.

The atomic broadcast protocol does most of the work
of the system and thus limits the performance of Zoo-
Keeper more than any other component. Figure 7 shows
the throughput of the atomic broadcast component. To
benchmark its performance we simulate clients by gen-
erating the transactions directly at the leader, so there is
no client connections or client requests and replies. At
maximum throughput the atomic broadcast component
becomes CPU bound. In theory the performance of Fig-
ure 7 would match the performance of ZooKeeper with
100% writes. However, the ZooKeeper client commu-
nication, ACL checks, and request to transaction con-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2  4  6  8  10  12  14

R
e

q
u

e
s
ts

 p
e

r 
s
e

c
o

n
d

Size of ensemble

Atomic Broadcast Throughput

Figure 7: Average throughput of the atomic broadcast
component in isolation. Error bars denote the minimum
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versions all require CPU. The contention for CPU low-
ers ZooKeeper throughput to substantially less than the
atomic broadcast component in isolation. Because Zoo-
Keeper is a critical production component, up to now our
development focus for ZooKeeper has been correctness
and robustness. There are plenty of opportunities for im-
proving performance significantly by eliminating things
like extra copies, multiple serializations of the same ob-
ject, more efficient internal data structures, etc.
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Figure 8: Throughput upon failures.

To show the behavior of the system over time as fail-
ures are injected we ran a ZooKeeper service made up
of 5 machines. We ran the same saturation benchmark
as before, but this time we kept the write percentage at
a constant 30%, which is a conservative ratio of our ex-
pected workloads. Periodically we killed some of the
server processes. Figure 8 shows the system throughput
as it changes over time. The events marked in the figure
are the following:

1. Failure and recovery of a follower;
2. Failure and recovery of a different follower;
3. Failure of the leader;
4. Failure of two followers (a, b) in the first two marks,

and recovery at the third mark (c);
5. Failure of the leader.
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6. Recovery of the leader.
There are a few important observations from this

graph. First, if followers fail and recover quickly, then
ZooKeeper is able to sustain a high throughput despite
the failure. The failure of a single follower does not pre-
vent servers from forming a quorum, and only reduces
throughput roughly by the share of read requests that the
server was processing before failing. Second, our leader
election algorithm is able to recover fast enough to pre-
vent throughput from dropping substantially. In our ob-
servations, ZooKeeper takes less than 200ms to elect a
new leader. Thus, although servers stop serving requests
for a fraction of second, we do not observe a throughput
of zero due to our sampling period, which is on the order
of seconds. Third, even if followers take more time to re-
cover, ZooKeeper is able to raise throughput again once
they start processing requests. One reason that we do
not recover to the full throughput level after events 1, 2,
and 4 is that the clients only switch followers when their
connection to the follower is broken. Thus, after event 4
the clients do not redistribute themselves until the leader
fails at events 3 and 5. In practice such imbalances work
themselves out over time as clients come and go.

5.2 Latency of requests

To assess the latency of requests, we created a bench-
mark modeled after the Chubby benchmark [6]. We cre-
ate a worker process that simply sends a create, waits
for it to finish, sends an asynchronous delete of the new
node, and then starts the next create. We vary the number
of workers accordingly, and for each run, we have each
worker create 50,000 nodes. We calculate the throughput
by dividing the number of create requests completed by
the total time it took for all the workers to complete.

Number of servers
Workers 3 5 7 9

1 776 748 758 711
10 2074 1832 1572 1540
20 2740 2336 1934 1890

Table 2: Create requests processed per second.

Table 2 show the results of our benchmark. The cre-
ate requests include 1K of data, rather than 5 bytes in
the Chubby benchmark, to better coincide with our ex-
pected use. Even with these larger requests, the through-
put of ZooKeeper is more than 3 times higher than the
published throughput of Chubby. The throughput of the
single ZooKeeper worker benchmark indicates that the
average request latency is 1.2ms for three servers and
1.4ms for 9 servers.

# of clients
# of barriers 50 100 200

200 9.4 19.8 41.0
400 16.4 34.1 62.0
800 28.9 55.9 112.1

1600 54.0 102.7 234.4

Table 3: Barrier experiment with time in seconds. Each
point is the average of the time for each client to finish
over five runs.

5.3 Performance of barriers
In this experiment, we execute a number of barriers se-
quentially to assess the performance of primitives imple-
mented with ZooKeeper. For a given number of barriers
b, each client first enters all b barriers, and then it leaves
all b barriers in succession. As we use the double-barrier
algorithm of Section 2.4, a client first waits for all other
clients to execute the enter() procedure before mov-
ing to next call (similarly for leave()).

We report the results of our experiments in Table 3.
In this experiment, we have 50, 100, and 200 clients
entering a number b of barriers in succession, b ∈
{200, 400, 800, 1600}. Although an application can have
thousands of ZooKeeper clients, quite often a much
smaller subset participates in each coordination oper-
ation as clients are often grouped according to the
specifics of the application.

Two interesting observations from this experiment are
that the time to process all barriers increase roughly lin-
early with the number of barriers, showing that concur-
rent access to the same part of the data tree did not pro-
duce any unexpected delay, and that latency increases
proportionally to the number of clients. This is a con-
sequence of not saturating the ZooKeeper service. In
fact, we observe that even with clients proceeding in
lock-step, the throughput of barrier operations (enter and
leave) is between 1,950 and 3,100 operations per second
in all cases. In ZooKeeper operations, this corresponds
to throughput values between 10,700 and 17,000 opera-
tions per second. As in our implementation we have a
ratio of reads to writes of 4:1 (80% of read operations),
the throughput our benchmark code uses is much lower
compared to the raw throughput ZooKeeper can achieve
(over 40,000 according to Figure 5). This is due to clients
waiting on other clients.

6 Related work

ZooKeeper has the goal of providing a service that mit-
igates the problem of coordinating processes in dis-
tributed applications. To achieve this goal, its design uses
ideas from previous coordination services, fault tolerant
systems, distributed algorithms, and file systems.
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We are not the first to propose a system for the coor-
dination of distributed applications. Some early systems
propose a distributed lock service for transactional ap-
plications [13], and for sharing information in clusters
of computers [19]. More recently, Chubby proposes a
system to manage advisory locks for distributed appli-
cations [6]. Chubby shares several of the goals of Zoo-
Keeper. It also has a file-system-like interface, and it uses
an agreement protocol to guarantee the consistency of the
replicas. However, ZooKeeper is not a lock service. It
can be used by clients to implement locks, but there are
no lock operations in its API. Unlike Chubby, ZooKeeper
allows clients to connect to any ZooKeeper server, not
just the leader. ZooKeeper clients can use their local
replicas to serve data and manage watches since its con-
sistency model is much more relaxed than Chubby. This
enables ZooKeeper to provide higher performance than
Chubby, allowing applications to make more extensive
use of ZooKeeper.

There have been fault-tolerant systems proposed in
the literature with the goal of mitigating the problem of
building fault-tolerant distributed applications. One early
system is ISIS [5]. The ISIS system transforms abstract
type specifications into fault-tolerant distributed objects,
thus making fault-tolerance mechanisms transparent to
users. Horus [30] and Ensemble [31] are systems that
evolved from ISIS. ZooKeeper embraces the notion of
virtual synchrony of ISIS. Finally, Totem guarantees total
order of message delivery in an architecture that exploits
hardware broadcasts of local area networks [22]. Zoo-
Keeper works with a wide variety of network topologies
which motivated us to rely on TCP connections between
server processes and not assume any special topology or
hardware features. We also do not expose any of the en-
semble communication used internally in ZooKeeper.

One important technique for building fault-tolerant
services is state-machine replication [26], and Paxos [20]
is an algorithm that enables efficient implementations
of replicated state-machines for asynchronous systems.
We use an algorithm that shares some of the character-
istics of Paxos, but that combines transaction logging
needed for consensus with write-ahead logging needed
for data tree recovery to enable an efficient implementa-
tion. There have been proposals of protocols for practical
implementations of Byzantine-tolerant replicated state-
machines [7, 10, 18, 1, 28]. ZooKeeper does not assume
that servers can be Byzantine, but we do employ mech-
anisms such as checksums and sanity checks to catch
non-malicious Byzantine faults. Clement et al. dis-
cuss an approach to make ZooKeeper fully Byzantine
fault-tolerant without modifying the current server code
base [9]. To date, we have not observed faults in produc-
tion that would have been prevented using a fully Byzan-
tine fault-tolerant protocol. [29].

Boxwood [21] is a system that uses distributed lock
servers. Boxwood provides higher-level abstractions to
applications, and it relies upon a distributed lock service
based on Paxos. Like Boxwood, ZooKeeper is a com-
ponent used to build distributed systems. ZooKeeper,
however, has high-performance requirements and is used
more extensively in client applications. ZooKeeper ex-
poses lower-level primitives that applications use to im-
plement higher-level primitives.

ZooKeeper resembles a small file system, but it only
provides a small subset of the file system operations
and adds functionality not present in most file systems
such as ordering guarantees and conditional writes. Zoo-
Keeper watches, however, are similar in spirit to the
cache callbacks of AFS [16].

Sinfonia [2] introduces mini-transactions, a new
paradigm for building scalable distributed systems. Sin-
fonia has been designed to store application data,
whereas ZooKeeper stores application metadata. Zoo-
Keeper keeps its state fully replicated and in memory for
high performance and consistent latency. Our use of file
system like operations and ordering enables functionality
similar to mini-transactions. The znode is a convenient
abstraction upon which we add watches, a functionality
missing in Sinfonia. Dynamo [11] allows clients to get
and put relatively small (less than 1M) amounts of data in
a distributed key-value store. Unlike ZooKeeper, the key
space in Dynamo is not hierarchal. Dynamo also does
not provide strong durability and consistency guarantees
for writes, but instead resolves conflicts on reads.

DepSpace [4] uses a tuple space to provide a Byzan-
tine fault-tolerant service. Like ZooKeeper DepSpace
uses a simple server interface to implement strong syn-
chronization primitives at the client. While DepSpace’s
performance is much lower than ZooKeeper, it provides
stronger fault tolerance and confidentiality guarantees.

7 Conclusions

ZooKeeper takes a wait-free approach to the problem of
coordinating processes in distributed systems, by expos-
ing wait-free objects to clients. We have found Zoo-
Keeper to be useful for several applications inside and
outside Yahoo!. ZooKeeper achieves throughput val-
ues of hundreds of thousands of operations per second
for read-dominant workloads by using fast reads with
watches, both of which served by local replicas. Al-
though our consistency guarantees for reads and watches
appear to be weak, we have shown with our use cases that
this combination allows us to implement efficient and
sophisticated coordination protocols at the client even
though reads are not precedence-ordered and the imple-
mentation of data objects is wait-free. The wait-free
property has proved to be essential for high performance.

13
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Although we have described only a few applications,
there are many others using ZooKeeper. We believe such
a success is due to its simple interface and the powerful
abstractions that one can implement through this inter-
face. Further, because of the high-throughput of Zoo-
Keeper, applications can make extensive use of it, not
only course-grained locking.
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Abstract
DDT is a system for testing closed-source binary de-

vice drivers against undesired behaviors, like race con-
ditions, memory errors, resource leaks, etc. One can
metaphorically think of it as a pesticide against device
driver bugs. DDT combines virtualization with a spe-
cialized form of symbolic execution to thoroughly ex-
ercise tested drivers; a set of modular dynamic check-
ers identify bug conditions and produce detailed, exe-
cutable traces for every path that leads to a failure. These
traces can be used to easily reproduce and understand
the bugs, thus both proving their existence and helping
debug them. We applied DDT to several closed-source
Microsoft-certified Windows device drivers and discov-
ered 14 serious new bugs. DDT is easy to use, as it re-
quires no access to source code and no assistance from
users. We therefore envision DDT being useful not only
to developers and testers, but also to consumers who
want to avoid running buggy drivers in their OS kernels.

1 Introduction
Device drivers are one of the least reliable parts of an
OS kernel. Drivers and other extensions—which com-
prise, for instance, 70% of the Linux operating system—
have a reported error rate that is 3-7 times higher than the
rest of the kernel code [11], making them substantially
more failure-prone. Not surprisingly, 85% of Windows
crashes are caused by driver failures [27]. Moreover,
some drivers are vulnerable to malformed input from un-
trusted user-space applications, allowing an attacker to
execute arbitrary code with kernel privilege [5].

It is therefore ironic that most computer users place
full trust in closed-source binary device drivers: they
run drivers (software that is often outsourced by hard-
ware vendors to offshore programmers) inside the ker-
nel at the highest privilege levels, yet enjoy a false sense
of safety by purchasing anti-virus software and personal
firewalls. Device driver flaws are more dangerous than
application vulnerabilities, because device drivers can
subvert the entire system and, by having direct memory
access, can be used to overwrite both kernel and applica-
tion memory. Recently, a zero-day vulnerability within
a driver shipped with all versions of Windows allowed

non-privileged users to elevate their privileges to Local
System, leading to complete system compromise [24].

Our goal is to empower users to thoroughly test
drivers before installing and loading them. We wish that
the Windows pop-up requesting confirmation to install
an uncertified driver also offered a “Test Now” button.
By clicking that button, the user would launch a thor-
ough test of the driver’s binary; this could run locally or
be automatically shipped to a trusted Internet service to
perform the testing on behalf of the user. Such function-
ality would benefit not only end users, but also the IT
staff charged with managing corporate networks, desk-
tops, and servers using proprietary device drivers.

Our work applies to all drivers, including those for
which source code is not available, thus complementing
the existing body of driver reliability techniques. There
exist several tools and techniques that can be used to
build more reliable drivers [14, 23, 1] or to protect the
kernel from misbehaving drivers [30], but these are pri-
marily aimed at developers who have the driver’s source
code. Therefore, these techniques cannot be used (or
even adapted) for the use of consumers on closed-source
binary drivers. Our goal is to fill this gap.

We believe that the availability of consumer-side test-
ing of device drivers is essential. As of 2004, there were
800,000 different kinds of PnP devices at customer sites,
with 1,500 devices being added every day [26]. There
were 31,000 unique drivers, and 9 new drivers were re-
leased every day. Each driver had ∼3.5 versions in the
field, with 88 new driver versions being released every
day [26]. Faced with an increasing diversity of drivers,
consumers (end users and IT specialists alike) need a way
to perform end-to-end testing just before installation.

This paper describes DDT, a device driver testing sys-
tem aimed at addressing these needs. DDT uses selective
symbolic execution to explore the device driver’s exe-
cution paths, and checks whether these paths can cause
undesired behavior, such as crashing the kernel or over-
flowing a buffer. For each suspected case of bad behav-
ior, DDT produces a replayable trace of the execution
that led to the bug, providing the consumer irrefutable
evidence of the problem. The trace can be re-executed
on its own, or inside a debugger.
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DDT currently works for Windows device drivers. We
applied it to six popular binary drivers, finding 14 bugs
with relatively little effort. These include race condi-
tions, memory bugs, use of unchecked parameters, and
resource leaks, all leading to kernel crashes or hangs.
Since DDT found bugs in drivers that have successfully
passed Microsoft certification, we believe it could be
used to improve the driver certification process.

Our work makes two contributions: (1) The first sys-
tem that can thoroughly and automatically test closed-
source binary drivers, without access to the correspond-
ing hardware device; (2) The concept of fully symbolic
hardware—including symbolic interrupts—and demon-
stration of its use for testing kernel-mode binaries.

The rest of the paper is structured as follows: §2 pro-
vides a high-level overview of DDT, §3 describes the de-
sign in detail, §4 presents our current DDT prototype for
Windows drivers, §5 evaluates DDT on six closed-source
device drivers, §6 discusses limitations of our current
prototype, §7 reviews related work, and §8 concludes.

2 Overview
DDT takes as input a binary device driver and outputs
a report of found bugs, along with execution traces for
each bug. The input driver is loaded in its native, un-
modified environment, which consists of the OS kernel
and the rest of the software stack above it. DDT then ex-
ercises automatically the driver along as many code paths
as possible, and checks for undesired properties. When
an error or misbehavior is detected, DDT logs the details
of the path exploration along with an executable trace.
This can be used for debugging, or merely as evidence to
prove the presence of the bug.

DDT has two main components: a set of pluggable
bug checkers and a driver exerciser (Figure 1). The ex-
erciser is in charge of steering the driver down various
execution paths—just like a personal trainer, it forces the
driver to exercise all the various ways in which it can run.
The dynamic checkers watch the execution and flag un-
desired driver behaviors along the executed paths. When
they notice a bug, they ask the exerciser to produce in-
formation on how to reach that same situation again.

DDT provides a default set of checkers, and this set
can be extended with an arbitrary number of other check-
ers for both safety and liveness properties (see §3.1).
Currently, DDT detects the following types of bugs:
memory access errors, including buffer overflows; race
conditions and deadlocks; incorrectly handled interrupts;
accesses to pageable memory when page faults are not al-
lowed; memory leaks and other resource leaks; mishan-
dled I/O requests (e.g., setting various I/O completion
flags incorrectly); any action leading to kernel panic; and
incorrect uses of kernel APIs.
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Figure 1: DDT’s VM-based architecture.

These default checkers catch the majority of defects in
the field. Ganapathi et al. found that the top driver prob-
lems causing crashes in Windows were 45% memory-
related (e.g., bad pointers), 15% poorly handled excep-
tions, 13% infinite loops, and 3% unexpected traps [15].
A Microsoft report [26] found that, often, drivers crash
the system due to not checking for error conditions fol-
lowing a call to the kernel. It is hypothesized that this is
due to programmers copy-pasting code from the device
driver development kit’s succinct examples.

Black-box testing of closed-source binary device
drivers is difficult and typically has low code coverage.
This has two main reasons: First, it is hard to exercise the
driver through the many layers of the software stack that
lie between the driver’s interface and the application in-
terface. Second, closed-source programs are notoriously
hard to test as a black box. The classic approach to test-
ing such drivers is to try to produce inputs that exercise
as many paths as possible and (perhaps) check for high-
level properties (e.g., absence of kernel crashes) during
those executions. Considering the wide range of possi-
ble inputs and system events that are hard to control (e.g.,
interrupts), this approach exercises relatively few paths,
thus offering few opportunities to find bugs.

DDT uses selective symbolic execution [10] of the
driver binary to automatically take the driver down as
many paths as possible; the checkers verify desired prop-
erties along these paths. Symbolic execution [20, 6, 7]
consists of providing a program with symbolic inputs
(e.g., α or β ) instead of concrete ones (e.g., 6 or “abc”),
and letting these values propagate as the program exe-
cutes, while tracking path constraints (e.g., β = α + 5).
When a symbolic value is used to decide the direction
of a conditional branch, symbolic execution explores all
feasible alternatives. On each branch, a suitable path
constraint is added on the symbolic value to ensure its

set of possible values satisfies the branch condition (e.g.,
β < 0 and β >= 0, respectively). Selective symbolic ex-
ecution enables the symbolic execution of one piece of
the software stack (the device driver, in our case) while
the rest of the software runs concretely.

A key challenge is keeping the symbolic and the con-
crete portions of the execution synchronized. DDT sup-
plies the driver with symbolic values on the calls from the
kernel to the driver (§3.2) as well as on the returns from
the hardware to the driver (§3.3), thus enabling an un-
derlying symbolic execution engine to steer the driver on
the various possible paths. When the driver returns val-
ues to a kernel-originated call, or when the driver calls
into the kernel, parameters and driver are converted so
that execution remains consistent, despite the alternation
of symbolic and concrete execution.

DDT’s fully symbolic hardware enables testing
drivers even when the corresponding hardware device is
not available. DDT never calls the actual hardware, but
instead replaces all hardware reads with symbolic val-
ues, and discards all writes to hardware. Being able to
test a driver without access to the hardware is useful, for
example, for certification companies that cannot buy all
the hardware variants for the drivers they test, or for con-
sumers who would rather defer purchasing the device un-
til they are convinced the driver is trustworthy.

Symbolic hardware also enables DDT to explore
paths that are hard to test without simulators or spe-
cialized hardware. For example, many devices rely on
interrupts to signal completion of operations to the de-
vice driver. DDT uses symbolic interrupts to inject such
events at the various crucial points during the execution
of the driver. Symbolic interrupts allow DDT to test dif-
ferent code interleavings and detect bugs like the race
conditions described in §5.1.

DDT provides evidence of the bug and the means to
debug it: a complete trace of the execution plus concrete
inputs and system events that make the driver re-execute
the buggy path in a regular, non-DDT environment.

3 Design
We now present DDT’s design, starting with the types of
bugs DDT looks for (§3.1), an overview of how drivers
are exercised (§3.2), a description of fully symbolic hard-
ware (§3.3), the use of annotations to extend DDT’s
capabilities (§3.4), and finally we show how generated
traces are used to replay bugs and fix them (§3.5).

3.1 Detecting Undesired Behaviors
DDT uses two methods to detect failures along exercised
paths: dynamic verification done by DDT’s virtual ma-
chine (§3.1.1) and failure detection inside the guest OS
(§3.1.2). VM-level checks are targeted at properties that

require either instrumentation of driver code instructions
or reasoning about multiple paths at a time. Guest OS-
level checks leverage existing stress-testing and verifica-
tion tools to catch bugs that require deeper knowledge
of the kernel APIs. Most guest OS-level checks can be
performed at the VM level as well, but it is often more
convenient to write and deploy OS-level checkers.

3.1.1 Virtual Machine-Level Checks
Memory access verification in DDT is done at the VM
level. On each memory access, DDT checks whether the
driver has sufficient permissions to access that memory.
For the purpose of access verification, DDT treats the
following memory regions as accessible to drivers:

• Dynamically allocated memory and buffers;
• Buffers passed to the driver, such as network pack-

ets or strings from the Windows registry;
• Global kernel variables that are implicitly accessi-

ble to drivers;
• Current driver stack (accesses to memory locations

below the stack pointer are prohibited, because
these locations could be overwritten by an interrupt
handler that saves context on the stack);

• Executable image area, i.e., loadable sections of the
driver binary with corresponding permissions;

• Hardware-related memory areas (memory-mapped
registers, DMA memory, or I/O ranges).

In order to track these memory regions, DDT hooks
the kernel API functions and driver entry points. Ev-
ery time the hooked functions are called, DDT analyzes
their arguments to determine which memory was granted
to (or revoked from) the driver. The required knowl-
edge about specific kernel APIs can be provided through
lightweight API annotations (see §3.4).

Beyond memory safety, DDT’s simultaneous access
to multiple execution paths (by virtue of employing sym-
bolic execution) enables the implementation of bug de-
tection techniques that reason about the code globally in
terms of paths, such as infinite loop detection [34].

3.1.2 Guest Operating System-Level Checks
In addition to VM-level checkers, DDT can also reuse
off-the-shelf runtime verification tools. These tools per-
form in-guest checking, oblivious to exactly how the
driver is being driven along the observed execution paths.
Since these tools are usually written by OS developers
(e.g., for driver certification programs, like Microsoft’s
WHQL [25]), they can detect errors that require deep
knowledge of the OS and its driver API.

When they find a bug, these dynamic tools typically
crash the system to produce an error report containing
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a memory dump. DDT intercepts such premeditated
crashes and reports the bug information to the user. DDT
helps the runtime checkers find more bugs than they
would do under normal concrete execution, because it
symbolically execute the driver along many more paths.

DDT’s modular architecture (Figure 1) allows reusing
such tools without adaptation or porting. This means that
driver developers’ custom test suites can also be readily
employed. Moreover, given DDT’s design, such tools
can be inserted at any level in the software stack, either
in the form of device drivers or as software applications.

DDT can also automatically leverage kernel asser-
tion checks, when they are present. For example, the
checked build version of Windows contains many con-
sistency checks—with DDT, these assertions get a better
chance of being exercised along different paths.

3.2 Exercising the Driver: Kernel/Driver Interface

DDT implements selective symbolic execution [10], a
technique for seamless transfer of system state between
symbolic and concrete phases of execution. DDT ob-
taines similar properties to running the entire system
symbolically, while in fact only running the driver sym-
bolically. The transfer of state between phases is gov-
erned by a set of conversion hints (see §3.4). Using se-
lective symbolic execution enables DDT to execute the
driver within its actual environment, as opposed to re-
quiring potentially incomplete models thereof [1, 6].

A typical driver is composed of several entry points.
When the OS loads the driver, it calls its main entry
point, similarly to a shell invoking the main() function
of a program. This entry point registers with the kernel
the driver’s other entry points. For example, a typical
driver would register open, read, write, and close

entry points, which are then called by the OS when a
user-mode application makes use of the driver.

When the kernel calls a driver’s entry point, DDT
transfers system state to a symbolic execution engine. It
converts entry point arguments, and possibly other parts
of concrete system state, to symbolic values, according to
the annotations described in §3.4. For example, when the
kernel calls the SendPacket function in a NIC driver,
DDT makes the content of the network packet symbolic,
to explore all the paths that depend on the packet’s type.

When a driver calls a kernel function, DDT selects
feasible values (at random) for its symbolic arguments.
For example, if the driver calls the AllocatePool func-
tion with a symbolic length argument, DDT selects some
concrete value len for the length that satisfies current
constraints. However, this concretization subjects all
subsequent paths to the constraint that length must equal
len, and this may disable otherwise-feasible paths. Thus,
DDT keeps track of all such concretization-related con-

straints and, if at some point in the future this constraint
limits a choice of paths, DDT backtracks to the point of
concretization, forks the entire machine state, and repeats
the kernel call with different feasible concrete values,
which could re-enable the presently unexplorable path.

To minimize overhead, DDT does concretization on-
demand, i.e., delays it as long as possible by tracking
symbolic values when executing in concrete mode and
concretizing them only when they are actually read. This
way, symbolic values that are not accessed by concretely
running code are never concretized. In particular, all pri-
vate driver state and buffers that are treated as opaque by
the kernel end up being preserved in their symbolic form.

3.3 Exercising the Driver: Symbolic Hardware

DDT requires neither real hardware nor hardware models
to test drivers—instead, DDT uses symbolic hardware.
A symbolic device in DDT ignores all writes to its regis-
ters and produces symbolic values in response to reads.
These symbolic values cause drivers to explore paths that
depend on the device output.

Symbolic hardware produces symbolic interrupts, i.e.,
interrupts with a symbolic arrival time. Reasoning about
interrupt arrival symbolically offers similar benefits to
reasoning about program inputs symbolically: the major-
ity of interrupt arrival times are equivalent to each other,
so only one arrival time in each equivalence class need
be produced. If a block of code does not read/write sys-
tem state that is also read/written by the interrupt handler,
then executing the interrupt handler at any point during
the execution of that block has the same end result.

Currently, DDT implements a simplified model of
symbolic interrupts. It symbolically delivers interrupts
on each crossing of the kernel/driver boundary (i.e., be-
fore and after each kernel API call, and before and after
each driver entry point execution). While not complete,
we found that this strategy produces good results, be-
cause many important changes in driver state are related
to crossing the kernel/driver interface.

Symbolic hardware with symbolic interrupts may
force the driver on paths that are not possible in reality
with correct hardware. For example, a symbolic inter-
rupt may be issued after the driver instructed the device
not to issue interrupts (e.g., by writing a control register).
A correctly functioning device will therefore not deliver
that interrupt. The natural solution would be to include
the enabled/disabled interrupts status in the path con-
straints, and prevent interrupts from occurring when this
is not possible. However, recent work [19] has shown
that hardware often malfunctions, and that drivers must
be sufficiently robust to handle such behavior anyway.

More generally, DDT’s ability to test drivers against
hardware failures is important, because chipsets often get

revised without the drivers being suitably updated. Con-
sider a device that returns a value used by the driver as
an array index. If the driver does not check the bounds (a
common bug [19]) and a revised version of the chipset
later returns a greater value, then the obsolete driver
could experience an out-of-bounds error.

3.4 Enabling Rich Driver/Environment Interactions
Device drivers run at the bottom of the software stack,
sandwiched between the kernel and hardware devices.
The layers surrounding a driver are complex, and the dif-
ferent classes of device drivers use many different kernel
subsystems. For instance, network, audio, and graphics
drivers each use different kernel services and interfaces.

One may be tempted to run drivers in isolation for
purposes of testing. Unfortunately, this requires an ab-
straction layer between the drivers and the rest of the
stack, and building this layer is non-trivial. For exam-
ple, testing a network driver would require the testbed to
provide well-formed data structures when returning from
a packet allocation function called by the driver.

DDT tests drivers by symbolically executing them in
conjunction with the real kernel binary. By using the ac-
tual software stack (and thus the real kernel) instead of a
simplified abstract model of it, DDT ensures that the de-
vice drivers get tested with the exact kernel behavior they
would experience in reality. To this end, DDT needs to
mediate the interactions with the layers around the driver
in a way that keeps the symbolic execution of the driver
consistent with the concrete execution of the kernel.

DDT performs various conversions between the sym-
bolic and concrete domains. In its default mode, in which
no annotations are used, DDT converts symbolic argu-
ments passed to kernel functions into legal random con-
crete values and uses symbolic hardware, including sym-
bolic interrupts. Driver entry point arguments are not
touched. These conversions, however, can be fine-tuned
by annotating API functions and driver entry points.

3.4.1 Extending DDT with Interface Annotations
DDT provides ways for developers to encode their
knowledge of the driver/kernel API in annotations that
improve DDT’s achievable code coverage and bug find-
ing abilities. Annotations allow DDT to detect not only
low-level errors, but also logical bugs. Annotations are a
one-time effort on the part of OS developers, testers, or a
broader developer community.

The idea of encoding API usage rules in annotations
is often used by model checking tools, with a recent no-
table example being SLAM [1]. However, DDT’s anno-
tations are lighter weight and substantially easier to write
and keep up-to-date than the API models used by pre-
vious tools: preparing DDT annotations for the whole

NDIS API, which consists of 277 exported functions,
took about two weeks of on-and-off effort; preparing an-
notations for those 54 functions in the WDM API that
were used by our sound drivers took one day.

DDT annotations are written in C and compiled to
LLVM bitcode [22], which is then loaded by DDT at run-
time and run in the context of QEMU-translated code,
when necessary. The annotation code has direct access
to, and control over, the guest system’s state. Addition-
ally, it can use a special API provided by DDT to create
symbolic values and/or manipulate execution state.

The following annotation introduces positive integer
symbolic values when the driver reads a configuration
parameter from the Windows registry:

1 void NdisReadConfiguration_return(CPU* cpu){
2 if(*((PNDIS_STATUS) ARG(cpu, 0)) == 0
3 && ARG(cpu, 4) == 1) {
4 int symb = ddt_new_symb_int();
5 if(symb >= 0)
6 ((PNDIS_CONFIGURATION_PARAMETER)
7 ARG(cpu, 1))->IntegerData = symb;
8 else ddt_discard_state();
9 }

10 }

This sample annotation function is invoked on the
return path from NdisReadConfiguration (hence its
name—line 1). It checks whether the call returned suc-
cessfully (line 2) and whether the type of the value is
integer (line 3). It then creates an unconstrained sym-
bolic integer value using DDT’s special API (line 4), af-
ter which it checks the value (line 5) and discards the
path on which symb is not a positive integer (line 8).

DDT annotations fall into four categories:
Concrete-to-symbolic conversion hints apply to

driver entry points’ arguments and to return values from
kernel functions called by the driver. They encode con-
tracts about what constitute reasonable arguments or re-
turn values. For example, a memory allocation function
can either return a valid pointer or a null pointer, so the
annotation would instruct DDT to try both the originally
returned concrete pointer, as well as the null-pointer al-
ternative. The absence of this kind of conversion hints
will cause DDT not to try all reasonable classes of val-
ues, which results solely in decreased coverage, i.e., false
negatives.

Symbolic-to-concrete conversion hints specify the
allowed set of values for arguments to kernel API func-
tions called by drivers. They include various API usage
rules that, if violated, may lead to crashes or data cor-
ruption. When a call to such an annotated function oc-
curs, DDT verifies that all incorrect argument values are
ruled out by the constraints on the current path; if not,
it flags a potential bug. The absence of such annotations
can lead DDT to concretize arguments into some values
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that are consistent with the path constraints (thus feasi-
ble in a real execution) but not uncover potential bugs (if
the values happen to be OK according to the unspecified
API usage rules). In other words, they can lead to false
negatives, but not to false positives.

Resource allocation hints specify whether invoking
an entry point or calling a kernel function grants or re-
vokes the driver’s access to any memory or other re-
sources. This information is used to verify that the
driver accesses only resources that the kernel explicitly
allows it to access. It is also used to verify that all allo-
cated resources are freed on exit paths. The absence of
memory allocation hints can lead to false positives, but
can be avoided, if necessary, by switching to a coarse-
grained memory access verification scheme (as used, for
instance, in Microsoft’s Driver Verifier [25]).

Kernel crash handler hook: This annotation informs
DDT of the address of the guest kernel’s crash handler, as
well as how to extract the crash information from mem-
ory. This annotation enables DDT to intercept all crashes
when running the kernel concretely, such as the “blue
screen of death” (BSOD) on Windows. This annotation
is relied upon in our DDT prototype to cooperate with
the Microsoft Driver Verifier’s dynamic checkers.

3.4.2 Alternative Approaches

We have gone to great lengths to run the drivers in a real
environment and avoid abstract modeling. Is it worth it?

One classic approach to ensuring device driver qual-
ity is stress-testing, which is how Microsoft certifies its
third-party drivers [25]. However, this does not catch all
bugs. As we shall see in the evaluation, even Microsoft-
certified drivers shipped with Windows have bugs that
cause the kernel to crash. However, powerful static anal-
ysis tools [1] can reason about corner-case conditions by
abstracting the driver under test, without actually running
it. Since static analysis does not run any code per se, it
requires modeling the driver’s environment.

We believe environment modeling generally does not
scale, because kernels are large and evolve constantly.
Modeling the kernel/driver API requires manual effort
and is error prone. According to [1], developing around
60 API usage rules for testing Windows device drivers
took more than three years. It also required many itera-
tions of refinement based on false positives found during
evaluation. In the end, the resulting models are only an
approximation of the original kernel code, thus leading
to both false negatives and, more importantly, false pos-
itives. A test tool that produces frequent false positives
discourages developers from using it.

In contrast, we find DDT’s annotations to be straight-
forward and easy to maintain. Moreover, if they are per-
ceived by developers as too high of a burden, then DDT

can be used in its default mode, without annotations.
Testing device drivers often requires access to either

the physical device or a detailed model of it. For drivers
that support several physical devices, testing must be re-
peated for each such device. In contrast, symbolic hard-
ware enables not only testing drivers without a physical
device, but also testing them against hardware bugs or
corner cases that are hard to produce with a real device.

3.5 Verifying and Replaying Bugs

When DDT finishes testing a driver, it produces a de-
tailed report containing all the bugs it found. This re-
port consists of all faulty execution paths and contains
enough information to accurately replay the execution,
allowing the bug to be reproduced on the developer’s or
consumer’s machine.

DDT’s bug report is a collection of traces of the ex-
ecution paths leading to the bugs. These traces contain
the list of program counters of the executed instructions
up to the bug occurrence, all memory accesses done by
each instruction (address and value) and the type of the
access (read or write). Traces contain information about
creation and propagation of all symbolic values and con-
straints on branches taken. Each branch instruction has
a flag indicating whether it forked execution or not, thus
enabling DDT to subsequently reconstruct an execution
tree of the explored paths; each node in the tree cor-
responds to a machine state. Finally, DDT associates
with each failed path a set of concrete inputs and sys-
tem events (e.g., interrupts) that take the driver along that
path. The inputs are derived from the symbolic state by
solving the corresponding path constraints [16, 7].

A DDT trace has enough information to replay the
bug in the DDT VM. Each trace starts from an ini-
tial state (a “hibernated” snapshot of the system) and
contains the exact sequence of instructions and mem-
ory accesses leading to the crash or hang. The traces
are self-contained and directly executable. The size of
these traces rarely exceeds 1 MB per bug, and usu-
ally they are much smaller. We believe DDT traces
can easily be adapted to work with existing VM replay
tools [13, 29, 21].

DDT also post-processes these traces off-line, to pro-
duce a palatable error report. DDT reconstructs the tree
of execution paths and, for each leaf state that triggered
a bug, it unwinds the execution path by traversing the ex-
ecution tree to the root. Then it presents the correspond-
ing execution path to the developer. When driver source
code is available, DDT-produced execution paths can be
automatically mapped to source code lines and variables,
to help developers better visualize the buggy behavior.

For bugs leading to crashes, it is also possible to ex-
tract a Windows crash dump that can be analyzed with

WinDbg [25]—since each execution state maintained by
DDT is a complete snapshot of the system, this includes
the disk where the OS saved the crash dump. It is also
worth noting that DDT execution traces can help debug-
gers go backwards through the buggy execution.

In theory, DDT traces could be directly executed out-
side the VM (e.g., in a debugger) using a natively exe-
cuting OS, since the traces constitute slices through the
driver code. The problem, though, is that the physical
hardware would need to be coerced into providing the ex-
act same sequence of interrupts as in the trace—perhaps
this could be done with a PCI-based FPGA board that
plays back a trace of interrupts. Another challenge is
providing the same input and return values to kernel calls
made by the driver—here DDT could leverage existing
hooking techniques [4, 18] to intercept and modify these
calls during replay. Finally, replaying on a real machine
would involve triggering asynchronous events at points
equivalent to those saved in the traces [33].

3.6 Analyzing Bugs
Execution traces produced by DDT can also help under-
stand the cause of a bug. For example, if an assertion of
a symbolic condition failed, execution traces can identify
on what symbolic values the condition depended, when
during the execution were they created, why they were
created, and what concrete assignment of symbolic val-
ues would cause the assertion to fail. An assertion, bad
pointer access, or a call that crashes the kernel might de-
pend indirectly on symbolic values, due to control flow-
based dependencies; most such cases are also identifiable
in the execution traces.

Based on device specifications provided by hardware
vendors, one can decide whether a bug can only occur
when a device malfunctions. Say a DDT symbolic device
returned a value that eventually led to a bug; if the set of
possible concrete values implied by the constraints on
that symbolic read does not intersect the set of possible
values indicated by the specification, then one can safely
conclude that the observed behavior would not have oc-
curred unless the hardware malfunctioned.

One could write tools to automate the analysis and
classification of bugs found by DDT, even though do-
ing this manually is not hard. They could provide
both user-readable messages, like “driver crashes in low-
memory situations,” and detailed technical information,
like “AllocateMemory failed at location pc1 caused a
null pointer dereference at some other location pc2.

4 DDT Implementation
We now describe our implementation of a DDT proto-
type for Windows device drivers (§4.1), which can be
used by both developers and consumers to test binary

drivers before installing them. We also show how to
trick Windows into accepting DDT’s symbolic hardware
(§4.2) and how to identify and exercise the drivers’ entry
points (§4.3). Although Windows-specific, these tech-
niques can be ported to other platforms as well.

4.1 DDT for Microsoft Windows

DDT uses a modified QEMU [2] machine emulator to-
gether with a modified version of the Klee symbolic exe-
cution engine [6]. DDT can run a complete, unmodified,
binary software stack, comprising Windows, the drivers
to be tested, and all associated applications.

4.1.1 Doing VM-Based Symbolic Execution

QEMU is an open-source machine emulator that sup-
ports many different processor architectures, like x86,
SPARC, ARM, PowerPC, and MIPS. It emulates the
CPU, memory, and devices using dynamic binary trans-
lation. QEMU’s support of multiple architectures makes
DDT available to more than just x86-based platforms.

DDT embeds an adapted version of Klee. To symbol-
ically execute a program, one first compiles it to LLVM
bitcode [22], which Klee can then interpret. Klee em-
ploys various constraint solving optimizations and cov-
erage heuristics, which make it a good match for DDT.

To use Klee, we extendedQEMU’s back-end to gener-
ate LLVM bitcode. QEMU translates basic blocks from
the guest CPU instruction set to a QEMU-specific inter-
mediate representation—we translate from this interme-
diate representation to LLVM on the fly. The generated
LLVM bitcode can be directly interpreted by Klee.

QEMU and Klee have different representations of
program state, which have to be kept separate yet syn-
chronized. In QEMU, the state is composed of the virtual
CPU, VM physical memory, and various virtual devices.
We encapsulate this data in Klee memory objects, and
modified QEMU to use Klee’s routines to manipulate the
VM’s physical memory. Thus, whenever the state of the
CPU is changed (e.g., register written) or a device is ac-
cessed (e.g., interrupt controller registers are set), both
QEMU and Klee see it, and Klee can perform symbolic
execution in a consistent environment.

Symbolic execution generates path constraints that
also have to be synchronized. Since QEMU and Klee
keep a synchronized CPU, device, and memory state, any
write to the state by one of them will be reflected in the
path constraints kept by Klee. For example, when sym-
bolically executing driver code accesses concrete kernel
memory, it sees data consistent with its own execution so
far. Conversely, when concrete code attempts to access a
symbolic memory location, that location is automatically
concretized, and a corresponding constraint is added to
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the current path. Data written by concrete code is seen as
concrete by symbolically running driver code.

4.1.2 Symbolic Execution of Driver Code

QEMU runs in a loop, continuously fetching guest code
blocks, translating them, and running them on the host
CPU or in Klee. When a basic block is fetched, DDT
checks whether the program counter is inside the driver
of interest or not. If yes, QEMU generates a block
of LLVM code (or fetches the code from a translation
cache) and passes it to Klee; otherwise, it generates x86
machine code and sends it to the host processor.

DDT monitors kernel code execution and parses ker-
nel data structures to detect driver load attempts. DDT
catches the execution of the OS code responsible for in-
voking the load entry point of device drivers. For exam-
ple, on Windows XP SP3, DDT monitors attempts to ex-
ecute code at address 0x805A3990, then parses the stack
to fetch the device object. If the name of the driver cor-
responds to the one being monitored, DDT further parses
the corresponding data structures to retrieve the code and
data segment locations of the driver. Parsing the data
structures is done transparently, by probing the virtual
address space, without causing any side effects (e.g., no
page faults are induced).

When the driver is executed with symbolic inputs,
DDT forks execution paths as it encounters conditional
branches. Forking consists primarily of making a copy of
the contents of the CPU, the memory, and the devices, to
make it possible to resume the execution from that state
at a later time. In other words, each execution state con-
sists conceptually of a complete system snapshot.

4.1.3 Optimizing Symbolic Execution

Since symbolic execution can produce large execution
trees (exponential in the number of branches), DDT im-
plements various optimizations to handle the large num-
ber of states generated by Klee. Moreover, each state is
big, consisting of the entire physical memory and of the
various devices (such as the contents of the virtual disk).

DDT uses chained copy-on-write: instead of copying
the entire state upon an execution fork, DDT creates an
empty memory object containing a pointer to the parent
object. All subsequent writes place their values in the
empty object, while reads that cannot be resolved locally
(i.e., do not “hit” in the object) are forwarded up to the
parent. Since quick forking can lead to deep state hierar-
chies, we cache each resolved read in the leaf state with
a pointer to the target memory object, in order to avoid
traversing long chains of pointers through parent objects.

4.1.4 Symbolic Hardware

For PCI devices, the OS allocates resources (memory,
I/O regions, and interrupt line) for the device, as required
the device descriptor, prior to loading the driver, and then
writes the addresses of allocated resources to the device’s
registers. From that point, the device continuously mon-
itors all memory accesses on the memory and I/O buses;
when an address matches its allocated address range, the
device handles the access. In QEMU, such accesses are
handled by read/write functions specific to a each virtual
device. For DDT symbolic devices, the write functions
discard their arguments, and the read functions always
returns an unconstrained symbolic value. When DDT
decides to inject a symbolic interrupt, it calls the cor-
responding QEMU function to assert the right interrupt
assigned to the symbolic device by the OS.

The execution of the driver also depends on certain
parts of the device descriptor, not just on the device mem-
ory and I/O registers. For example, the descriptor may
contain a hardware revision number that triggers slightly
different behavior in the driver. Unfortunately, the de-
vice descriptor is parsed by the OS when selecting the
driver and allocating device resources, so DDT cannot
just make it symbolic. Instead, as the device drivers al-
ways accesses the descriptor through kernel API func-
tions, we use annotations to insert appropriately con-
strained symbolic results when the driver reads the de-
scriptor.

4.2 Fooling the OS into Accepting Symbolic Devices
Hardware buses like PCI and USB support Plug-and-
Play, which is a set of mechanisms that modern operating
systems use to detect insertion and removal of devices.
The bus interface notifies the OS of such events. When
the OS detects the presence of a new device, it loads
the corresponding driver. The right driver is selected by
reading the vendor and device ID of the inserted device.
If the driver is for a PCI device, it will typically need to
read the rest of the descriptor, i.e., the size of the register
space and various I/O ranges.

DDT provides a PCI descriptor for a fake device to
trick the OS into loading the driver to be tested. The fake
device is an empty “shell” consisting of a descriptor con-
taining the vendor and device IDs, as well as resource
information. The fake device itself does not implement
any logic other than producing symbolic values for read
requests. Support for USB is similar: a USB descriptor
pointing to a “shell” device is passed to the code imple-
menting the bus, causing the target driver to be loaded.

Hardware descriptors are simple and can be readily
obtained. If the actual hardware is available, the descrip-
tors can be read directly from it. If the hardware is not
present, it is possible to extract the information from pub-

Tested Driver Size of Driver Size of Driver Number of Functions Number of Called Source Code
Binary File Code Segment in Driver Kernel Functions Available ?

Intel Pro/1000 168 KB 120 KB 525 84 No
Intel Pro/100 (DDK) 70 KB 61 KB 116 67 Yes
Intel 82801AA AC97 39 KB 26 KB 132 32 No
Ensoniq AudioPCI 37 KB 23 KB 216 54 No
AMD PCNet 35 KB 28 KB 78 51 No
RTL8029 18 KB 14 KB 48 37 No

Table 1: Characteristics of Windows drivers used to evaluate DDT.

lic databases of hardware supported on Linux. If this in-
formation is not available, it can be extracted from the
driver itself. For example, Windows drivers come with
a .inf file specifying the vendor and device IDs of the
supported devices. The device resources (e.g., memory
or interrupt lines) are not directly available in the .inf

files, but can be inferred after the driver is loaded, by
watching for attempts to register the I/O space using OS
APIs. We are working on a technique to automatically
determine this information directly from the driver.

4.3 Exercising Driver Entry Points

DDT must detect that the OS has loaded a driver, deter-
mine the driver’s entry points, coerce the OS into invok-
ing them, and then symbolically execute them.

DDT automatically detects a driver’s entry points by
monitoring attempts of the driver to register such entry
points with the kernel. Drivers usually export only one
entry point, specified in the driver binary’s file header.
Upon invocation by the kernel, this routine fills data
structures with entry point information and calls a reg-
istration function (e.g., NdisMRegisterMiniport for
network drivers). In a similar way, DDT intercepts the
registration of interrupt handlers.

DDT uses Microsoft’s Device Path Exerciser as a con-
crete workload generator to invoke the entry points of
the drivers to be tested. Device Path Exerciser is shipped
with the Windows Driver Kit [25] and can be configured
to invoke the entry points of a driver in various ways,
testing both normal and error situations.

Each invoked entry point is symbolically executed by
DDT. To accomplish this, DDT returns symbolic values
on hardware register reads and, hooks various functions
to inject symbolic data. Since execution can fork on
branches within the driver, the execution can return to the
OS through many different paths. To save memory and
time, DDT terminates paths based on user-configurable
criteria (e.g., if the entry point returns with a failure).

DDT attempts to maximize driver coverage using
pluggable heuristics modules. The default heuristic at-
tempts to maximize basic block coverage, similar to the
one used in EXE [7]. It maintains a global counter for
each basic block, indicating how many times the block

was executed. The heuristic selects for the next execu-
tion step the basic block with the smallest value. This
avoids states that are stuck, for instance, in polling loops
(typical of device drivers). Depending on the driver, it is
possible to choose different heuristics dynamically.

DDT tests for concurrency bugs by injecting symbolic
interrupts before and after each kernel function called
by the driver. It asserts the virtual interrupt line, caus-
ing QEMU to interrupt the execution of the current code
and to invoke the OS’s interrupt handler. The injection
of symbolic interrupts is activated as soon as the target
driver registers an interrupt handler for the device.

Drivers may legitimately access the kernel’s data
structures, and this must be taken into account by DDT,
to avoid false reports of unauthorized memory accesses.
First, drivers access global kernel variables, which must
be explicitly imported by the driver; DDT scans the cor-
responding section of the loaded binary and grants the
driver access to them. Second, private kernel data may
be accessed via inlined functions (for example, NDIS
drivers use macros that access kernel-defined private data
fields in the NDIS_PACKET data structure). DDT pro-
vides annotations for identifying such data structures.

5 Evaluation
We applied DDT to six mature Microsoft-certified
drivers—DDT found 14 serious bugs (§5.1). We also
measured code coverage, and found that DDT achieves
good coverage within minutes (§5.2). All reported mea-
surements were done on an Intel 2 GHz Xeon CPU using
4 GB of RAM.

5.1 Effectiveness in Finding Bugs
We used DDT to test four network drivers and two sound
card drivers, which use different Windows kernel APIs
and are written in both C and C++ (Table 1). All drivers
are reasonably sized, using tens of API functions; DDT
scales well in this regard, mainly due to the fact that it
needs no kernel API models. Most of these drivers have
been tested by Microsoft as part of the WHQL certifica-
tion process [25] and have been in use for many years.

DDT found bugs in all drivers we tested: memory
leaks, memory corruptions, segmentation faults, and race
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Tested Driver Bug Type Description
RTL8029 Resource leak Driver does not always call NdisCloseConfigurationwhen initialization fails
RTL8029 Memory corruption Driver does not check the range for MaximumMulticastList registry parameter
RTL8029 Race condition Interrupt arriving before timer initialization leads to BSOD
RTL8029 Segmentation fault Crash when getting an unexpected OID in QueryInformation
RTL8029 Segmentation fault Crash when getting an unexpected OID in SetInformation
AMD PCNet Resource leak Driver does not free memory allocated with NdisAllocateMemoryWithTag
AMD PCNet Resource leak Driver does not free packets and buffers on failed initialization
Ensoniq AudioPCI Segmentation fault Driver crashes when ExAllocatePoolWithTag returns NULL
Ensoniq AudioPCI Segmentation fault Driver crashes when PcNewInterruptSync fails
Ensoniq AudioPCI Race condition Race condition in the initialization routine
Ensoniq AudioPCI Race condition Various race conditions with interrupts while playing audio
Intel Pro/1000 Memory leak Memory leak on failed initialization
Intel Pro/100 (DDK) Kernel crash KeReleaseSpinLock called from DPC routine
Intel 82801AA AC97 Race condition During playback, the interrupt handler can cause a BSOD

Table 2: Summary of previously unknown bugs discovered by DDT.

conditions. A summary of these findings is shown in Ta-
ble 2, which shows all bug warnings issued by DDT, not
just a subset. In particular, we encountered no false pos-
itives during testing.

The first two columns of the table are a direct output
from DDT. Additionally, DDT produced execution traces
that we manually analyzed (as per §3.6) in order to pro-
duce the last column of the table, explaining each bug.
The analyses took a maximum of 20 minutes per bug.
Testing each driver took a maximum of 4 hours, and this
time includes adding missing API annotations and occa-
sional debugging of the DDT prototype.

From among all bugs found by DDT, only one was re-
lated to improper hardware behavior: it was a subtle race
condition in the RTL8029 driver, occurring right after the
driver registered its interrupt handler, but before it initial-
ized the timer routine and enabled interrupts on the de-
vice. If the interrupt fires at this point, the interrupt han-
dler calls a kernel function to which it passes an uninitial-
ized timer descriptor, causing a kernel crash. From the
execution traces produced by DDT it was clear that the
bug occurred in the driver interrupt handler routine after
issuing a symbolic interrupt during driver initialization.
We checked the address of the interrupt control register
in the device documentation; since the execution traces
contained no writes to that register, we concluded that
the crash occurred before the driver enabled interrupts.

At the same time, if the device malfunctions and this
bug manifests in the field, it is hard to imagine a way in
which it could be fixed based on bug reports. It is hard
to find this kind of bugs using classic stress-testing tools,
even with malfunctioning hardware, because the inter-
rupt might not be triggered by the hardware at exactly
the right moment.

Another interesting bug involved memory corruption
after parsing parameters (obtained from the registry) in
the RTL8029 driver. The driver does not do any bounds
checking when reading the MaximumMulticastList pa-

rameter during initialization. Later, the value of this pa-
rameter is used as an index into a fixed-size array. If the
parameter has a large (or negative) value, memory cor-
ruption ensues and leads to a subsequent kernel panic.
This explanation was easily obtained by looking at the
execution traces: a faulty memory read was shown at an
address equal to the sum of the base address returned
by the memory allocator plus an unconstrained symbolic
value injected when reading the registry.

An example of a common kind of bug is the incor-
rect handling of out-of-memory conditions during driver
initialization. In the RTL8029, AMD PCNet, and In-
tel Pro/1000 drivers, such conditions lead to resource
leaks: when memory allocation fails, the drivers do not
release all the resources that were already allocated (heap
memory, packet buffers, configuration handlers, etc.). In
the Ensoniq AudioPCI driver, failed memory allocation
leads to a segmentation fault, because the driver checks
whether the memory allocation failed, but later uses the
returned null pointer on an error handling path, despite
the fact that the initial check failed.

An example of incorrectly used kernel API func-
tions is a bug in the Intel Pro/100 driver. In
its DPC (deferred procedure call) routine, the driver
uses the NdisReleaseSpinLock function instead of
NdisDprReleaseSpinLock (as it should for spinlocks
acquired using NdisDprAcquireSpinLock). This is
specifically prohibited by Microsoft documentation and
in certain conditions can lead to setting the IRQ level to
the wrong value, resulting in a kernel hang or panic.

We tried to find these bugs with the Microsoft Driver
Verifier [25] running the driver concretely, but did not
find any of them. Furthermore, since Driver Verifier
crashes by default on the first bug found, looking for the
next bug would typically require first fixing the found
bug. In contrast, DDT finds multiple bugs in one run.

To assess the influence that annotations have on
DDT’s effectiveness, we re-tested these drivers with all
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annotations turned off. We managed to reproduce all the
race condition bugs, because their detection does not de-
pend on the annotations. We also found the hardware-
related bugs, cased by improper checks on hardware reg-
isters. However, removing the annotations resulted in de-
creased code coverage, so we did not find the memory
leaks and the segmentation faults.

We initially wanted to compare DDT to the Microsoft
SDV tool [1], a state-of-the-art static analysis tool for
drivers. Since SDV requires source code, we used the
Intel Pro/100 network card driver, whose source code ap-
pears in the Windows Drivers Development Kit. Unfor-
tunately, we were not able to test this driver out-of-the-
box using SDV, because the driver uses older versions of
the NDIS API, that SDV cannot exercise. SDV also re-
quires special entry point annotations in the source code,
which were not present in the Intel Pro/100 driver. We re-
sorted to comparing on the sample drivers shipped with
SDV itself: SDV found the 8 sample bugs in 12 minutes,
while DDT found all of them in 4 minutes.

We additionally injected several synthetic bugs in the
sample driver (most of these hang the kernel): a dead-
lock, an out-of-order spinlock release, an extra release of
a non-acquired spinlock, a “forgotten” unreleased spin-
lock, and a kernel call at the wrong IRQ level. SDV did
not find the first 3 bugs, it found the last 2, and produced
1 false positive. DDT found all 5 bugs and no false posi-
tives in less than a third of the time that SDV ran.

We conclude that DDT can test drivers that existing
tools cannot handle, and can find more subtle bugs in
mature device drivers. In the next section, we evaluate
the efficiency of DDT and assess its scalability.

5.2 Efficiency and Scalability

We evaluated DDT on drivers ranging in size from 18
KB to 168 KB. In Figure 2 we show how code coverage
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Figure 3: Absolute coverage with time

(as a fraction of total basic blocks) varied with time for
a representative subset of the six drivers we tested. In
Figure 3 we show absolute coverage in terms of number
of basic blocks. We ran DDT until no more basic blocks
were discovered for some amount of time. In all cases, a
small number of minutes were sufficient to find the bugs
we reported. For the network drivers, the workload con-
sisted of sending one packet. For the audio drivers, we
played a small sound file. DDT’s symbolic execution ex-
plored paths starting from the exercised entry points. For
more complex drivers, workload can be generated with
the Device Path Exerciser (described in §4).

DDT has reasonable memory requirements. While
testing the drivers in Table 1, DDT used at most 4 GB
of memory, which is the current prototype’s upper limit.

The coverage graphs show long flat periods of exe-
cution during which no new basic blocks are covered.
These periods are delimited by the invocation of new
entry points. The explanation is that the driver-loading
phase triggers the execution of many new basic blocks,
resulting in a first step. Then, more paths are exercised
in it, without covering new blocks. Finally, the execution
moves to another entry point, and so on. Eventually, no
new entry points are exercised, and the curves flatten.

Overall, the results show that high coverage of binary
drivers can be achieved automatically in just a few min-
utes. This suggests that DDT can be productively used
even by end users on their home machines.

6 Discussion

Having seen that DDT is able to automatically find bugs
in a reasonable amount of time, we now discuss some
of DDT’s limitations (§6.1) and the tradeoffs involved in
testing binary drivers instead of their source code (§6.2).
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6.1 Limitations
DDT subsumes several powerful driver testing tools, but
still has limitations, which arise both from our design
choices, as well as from technical limitations of the
building blocks we use in the DDT prototype.

DDT uses symbolic execution, which is subject to
the path explosion problem [3]. In the worst case, the
number of states is exponential in the number of covered
branches, and this can lead to high memory consumption
and long running times for very large drivers. Moreover,
solving path constraints at each branch is CPU-intensive.
This limits DDT’s ability to achieve good coverage for
large drivers. We are exploring ways to mitigate this
problem by running symbolic execution in parallel [12],
and we are developing techniques for trimming the large
space of paths to be explored [10]. Any improvements in
the scalability of symbolic execution automatically im-
prove DDT’s coverage for very large drivers.

Like any bug finding tool, DDT might have false neg-
atives. There are two causes for this: not checking for
a specific kind of bug, or not covering a path leading
to the bug. Since DDT can reuse any existing dynamic
bug finding tool (by running it inside the virtual machine
along all explored paths) and can be extended with other
types of checkers, we expect that DDT can evolve over
time into a tool that achieves superior test completeness.

Since DDT does not use real hardware and knows lit-
tle about its expected behavior, DDT may find bugs that
can only be triggered by a malfunctioning device. Even
though it has been argued that such cases must be han-
dled in high-reliability drivers [19], for some domains
this may be too much overhead. In such cases, these false
positives can be weeded out by looking at the execution
traces, or by adding device-specific annotations.

Some driver entry points are triggered only when cer-
tain conditions hold deep within the execution tree. For
example, the TransferData entry point in an NDIS
driver is typically called when the driver receives a
packet and provides some look-ahead data from it to
the kernel and the kernel finds a driver that claims that
packet. Since the packet contains purely symbolic data,
and is concretized randomly when the kernel reads it, the
likelihood of invoking the required handler is low. An-
notating the function transmitting the look-ahead data to
the kernel can solve this problem.

While testing drivers with DDT can be completely au-
tomated, our current DDT prototype requires some man-
ual effort. A developer must provide DDT with PCI de-
vice information for the driver’s device, install the driver
inside a VM, and configureMicrosoft Driver Verifier and
a concrete workload generator. Once DDT runs, its out-
put is a list of bugs and corresponding execution traces;
the developer can optionally analyze the execution traces
to find the cause of the encountered bugs. Even though

this limits DDT’s immediate usefulness to end users,
DDT can be used today by hardware vendors to test
drivers before releasing them, by OS vendors to certify
drivers, and by system integrators to test final products
before deployment.

DDT does not yet support USB, AGP, and PCI-
express devices, partly due to the lack of such support
in QEMU. This limitation prevents DDT from loading
the drivers, but can be overcome by extending QEMU.

Finally, DDT currently has only a 32-bit implemen-
tation. This prevents DDT from using more than 4
GB of memory, thus limiting the number of explored
paths. Although we implemented various optimizations,
like swapping out unnecessary states to disk, memory is
eventually exhausted. We ported Klee to 64-bit architec-
tures and contributed it to the Klee mainline; we intend
to port DDT as well.

6.2 Source-Level vs. Binary-Level Testing
DDT is a binary-level testing tool, and this has both ben-
efits and drawbacks.

A binary tool can test the end result of a complex build
tool chain. Device drivers are built with special com-
pilers and linked to specific libraries. A miscompilation
(e.g., a wrong field alignment in the data structures), or
linking problems (e.g., a wrong library version), can be
more easily detected by a binary testing tool.

Binary drivers, however, have meager typing informa-
tion. The only types used by binaries are integers and
pointers, and it may be possible to infer some types by
looking at the API functions for which we have param-
eter information. Nevertheless, it is hard to find type-
related bugs that do not result in abnormal operations.
For example, a cast of a color value from the framebuffer
to the wrong size could result in incorrect colors. Such
bugs are more easily detected by source code analyzers.

7 Related Work
Two main approaches have been taken to improve the
safety and reliability of device drivers. Offline ap-
proaches, like testing, concentrate on finding bugs be-
fore the driver is shipped. However, thoroughly testing
a driver to the point of guaranteeing the absence of bugs
is still economically infeasible, so bugs frequently make
their way to the field. Online approaches aim to pro-
tect systems from bugs that are missed during the testing
phase, but typically at the expense of runtime overhead
and/or modifications to the OS kernel.

Testing device drivers can be done statically or dy-
namically. For example, SLAM [1] statically checks the
source code of a device driver for correct Windows API
usage. It uses a form of model checking combined with
an abstract representation of the source code, suitable for

the properties to be checked. However, it is subject to
false positives and false negatives stemming from incom-
plete and/or imprecise API models.

Microsoft provides various tools for stress-testing de-
vice drivers running in their real environment. For ex-
ample, Driver Verifier [25] provides deep testing of run-
ning device drivers, but it can miss rarely executed code
paths. DDT combines the power of both static and dy-
namic tools: it runs drivers in a real environment, and
combines its own checks with those of the Driver Veri-
fier. Moreover, DDT employs fully symbolic hardware,
leading to a more thorough exploration.

When testing is not enough, it is possible to contin-
uously monitor the drivers at runtime and provide in-
formation on the cause of the crashes. For example,
Nooks [31] combines in-kernel wrapping and hardware-
enforced protection domains to trap common faults and
recover from them. Nooks works with existing drivers,
but requires source code and incurs runtime overhead.

SFI [32] and XFI [14] use faster software isola-
tion techniques and provide fine grained isolation of the
drivers to protect the kernel from references outside their
logical protection domain. However, it can only protect
against memory failures and incurs runtime overhead.
XFI can work on binary drivers but still requires debug-
ging information for the binaries in order to reliably dis-
assemble them. SafeDrive [35] uses developer provided
annotations to enforce type-safety constraints and system
invariants for kernel-mode drivers written in C. Finally,
BGI [8] provides byte-granularity memory protection to
sandbox kernel extensions. BGI was also able to find
driver bugs that manifest when running the drivers with
BGI isolation. However BGI also requires access to the
source code and incurs runtime overhead.

Minix [17] explicitly isolate drivers by running them
in distinct address spaces; this approach is suitable for
microkernels. Vino [28] introduces an alternative OS
design, which combines software fault isolation with a
lightweight transactional system to protect against large
classes of problems in kernel extensions.

The idea of replacing reads from hardware with sym-
bolic values has been mentioned before [3]. With DDT,
we introduce the new concept of fully symbolic hard-
ware, which can interact both with concretely running
OSes and with symbolically running device drivers.
Fully symbolic hardware can also issue symbolic inter-
rupts, enabling the testing of various interleavings of de-
vice driver code and interrupt handlers.

Selective symbolic execution was first introduced
in [10] and later reused in [9]. DDT shares common ideas
with these, but is also distinguished by several aspects.

First, reverse engineering of a driver with RevNIC
does not require execution to be sound. For example,
RevNIC overwrites with unconstrained symbolic values

the concrete parameters passed by the OS to the driver.
In contrast, since DDT is a testing tool, it requires the ex-
ecution to be sound to avoid false positives. This intro-
duces additional requirements on injection of symbolic
values and on concretization. For example, the concrete
packet size must be replaced by a symbolic value con-
strained not to be greater than the original value, to avoid
buffer overflows.

Second, DDT introduces the use of lightweight API
annotations to describe the interface between a driver
and a kernel. Annotations encode developers’ knowledge
about a specific kernel API, and help improve code cov-
erage as well as detect more logic bugs. Such annotations
were not present in RevNIC.

Third, DDT mixes in-VM instrumentation (bug
checking) with instrumentation from outside the VM.
DDT can reuse existing bug-finding tools that run in the
guest OS, extending these tools with symbolic execution
to work on multiple paths.

Finally, during symbolic execution, RevNIC only
gathers executed LLVM code and traces of device ac-
cesses. In contrast, DDT analyzes the execution in order
to track the origin of symbolic values and control flow
dependencies through the path leading to a bug. DDT
generates annotated execution traces and input values
that help developers reproduce and understand the bugs.

8 Conclusion
We presented DDT, a tool for testing closed-source bi-
nary device drivers against undesired behaviors, like race
conditions, memory errors, and resource leaks. We eval-
uated DDT on six mature Windows drivers and found 14
serious bugs that can cause a system to freeze or crash.

DDT combines virtualization with selective symbolic
execution to thoroughly exercise tested drivers. A set of
modular dynamic checkers identify bug conditions and
produce detailed, executable traces for every path that
leads to a failure. We showed how these traces can be
used to provide evidence of the found bugs, as well as
help understand and fix them.

DDT does not require access to source code and needs
no assistance from users, thus making it widely applica-
ble. We envision DDT being used by IT staff responsible
for the reliability and security of desktops and servers,
by OS vendors and system integrators, as well as by con-
sumers who wish to avoid running buggy drivers in their
operating system kernels.
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Abstract

The metadata service of the Ursa Minor distributed

storage system scales metadata throughput as metadata

servers are added. While doing so, it correctly handles

metadata operations that involve items served by dif-

ferent metadata servers, consistently and atomically up-

dating the items. Unlike previous systems, it does so

by reusing existing metadata migration functionality to

avoid complex distributed transaction protocols. It also

assigns item IDs to minimize the occurrence of multi-

server operations. Ursa Minor’s approach allows one to

implement a desired feature with less complexity than al-

ternative methods and with minimal performance penalty

(under 1% in non-pathological cases).

1 Introduction

Ursa Minor is a scalable storage system designed to sup-

port automation [1]. It, like other direct-access storage

systems [14], is structured in two primary parts: a data

path for handling data access and a metadata path for

handling metadata access. This separation allows each

path to be optimized for its purpose. Modern scalable

storage systems are expected to scale to thousands of

storage nodes and tens or hundreds of metadata nodes,

so each part is a distributed system in its own right. This

paper explains the goals for the metadata path of Ursa

Minor, describes the design and implementation of a pro-

totype that fulfills them, and introduces and evaluates

a novel technique for handling multi-server operations

simply and efficiently.

As a whole, an Ursa Minor constellation, consisting of

data nodes and metadata nodes, is expected to be highly

available and durable, like other distributed storage sys-

tems. Ursa Minor is also intended to be incrementally

scalable, allowing nodes to be added to or removed from

the system as storage requirements change or hardware

replacement becomes necessary. To provide for this,

Ursa Minor must include a mechanism for migrating data

from one data node to another and metadata from one

metadata node to another.

The overall goals for Ursa Minor demand that the

metadata path be transparently scalable. That is, it

should be able to scale in capacity and throughput as

more nodes are added, while users and client applica-

tions should not have to be aware of the actions the

system takes to ensure scalability — the visible seman-

tics should be consistent regardless of how the system

chooses to distribute metadata across metadata nodes.

Several existing systems have demonstrated this design

goal (e.g., [3, 6, 36]).

The scalable part of the requirement implies that the

system will use multiple metadata nodes, with each stor-

ing some subset of the metadata and servicing some sub-

set of the metadata requests. In any system with multiple

servers, it is possible for the load across servers to be un-

balanced; therefore, some mechanism for load balancing

is desired. This can be satisfied by migrating some of the

metadata from an overloaded server to a less loaded one,

thus relocating requests that pertain to that metadata.

The transparent part implies that clients see the same

behavior regardless of how the system has distributed

metadata across servers. Any operation on any single ob-

ject should have the same result, no matter which server

happens to be responsible for that object at that time. The

same should hold for operations that involve more than

one object, even if the objects involved are distributed to

different servers, and even if some of those servers fail

during the operation. This is an area that many existing

systems leave unfinished for future work. Ursa Minor

correctly and efficiently handles multi-server operations

in a novel manner. The approach taken by Ursa Minor

reuses the mechanism for migrating object metadata to

implement multi-server operations by migrating the re-

quired metadata to a single metadata server and execut-

ing the operation on that server. This is a key contribu-

tion of our work because it simplifies the implementation

of the metadata path while still providing good perfor-

mance and the same failure semantics as a single server.

To prevent most multi-file operations from being multi-

server operations, Ursa Minor uses an object ID assign-

ment policy that translates namespace locality into object

ID locality.

Experimental results show that Ursa Minor scales lin-

early in metadata throughput when executing a variant of
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the SPECsfs97 benchmark. On workloads that contain

frequent multi-server operations, performance degrades

in proportion to the frequency of multi-server operations.

This slowdown is due to the overhead of migration and is

only 1.5% for workloads where multi-server operations

are 10× more frequent than the worst-case behavior in-

ferred from traces of deployed file systems.

The remainder of this paper is organized as follows:

Section 2 reviews scalable distributed file systems, cross-

server operations, and other related work. Section 3 de-

scribes the design of Ursa Minor’s metadata path. Sec-

tion 4 describes our evaluation of the prototype’s perfor-

mance and the trace analysis we performed in order to

characterize expected workloads.

2 Background

Many distributed file systems have been proposed and

implemented over the years. Architects usually aim to

scale the capacity and throughput of their systems by do-

ing one or more of the following:

• Increasing the capability of individual servers.

• Reducing the work each server performs per client.

• Increasing the number of servers in the system.

Each of these axes is largely independent of the oth-

ers. As a research platform for exploring the issues of

scaling distributed storage systems, Ursa Minor currently

focuses on the last approach. Any work done here will

still apply as the capability of each individual server im-

proves. Such improvements would, of course, increase

the capability of the entire constellation. Most existing

work on decreasing a server’s per-client workload fo-

cuses on the client-server protocols [18, 26, 32]. His-

torically, the adoption of improved protocols has been

slowed by the need to modify every client system to use

the new protocol. Recently, however, some of these tech-

niques have been incorporated into the NFSv4 standard

that is expected to be widely adopted [33]. Like the

SpinFS protocol [11], Ursa Minor’s internal protocol is

designed to efficiently support the semantics needed by

CIFS [27], AFS [18], NFSv4, and NFSv3 [8]. At present,

however, we have only implemented the subset needed to

support NFSv3.

As mentioned previously, challenges in scaling the

number of servers in a system include handling the infre-

quent operations that involve multiple servers and man-

aging the distribution of files across servers. The remain-

der of this section discusses operations that could in-

volve multiple servers, how close existing systems come

to being transparently scalable, how systems that handle

multi-server operations transparently do so, and the im-

portance of migration in a multi-server file system.

2.1 Multi-item operations

There are a variety of file system operations that manipu-

late multiple files, creating a consistency challenge when

the files are not all on the same server. Naturally, every

CREATE and DELETE involves two files: the parent direc-

tory and the file being created or deleted. Most systems,

however, assign a file to the server that owns its parent

directory. At some points in the namespace, of course,

a directory must be assigned somewhere other than the

home of its parent. Otherwise all metadata will be man-

aged by a single metadata server. Therefore, the CREATE

and DELETE of that directory will involve more than one

server, but none of the other operations on it will do so.

This section describes other significant sources of multi-

item operations.

The most commonly noted multi-item operation is RE-

NAME, which changes the name of a file. The new name

can be in a different directory, which would make the RE-

NAME operation involve both the source and destination

parent directories. Also, a RENAME operation can in-

volve additional files if the destination name exists (and

thus should be deleted) or if the file being renamed is a

directory (in which case, the ‘..’ entry must be modified

and the path between source and destination traversed

to ensure a directory will not become a child of itself).

Application programming is simplest when the RENAME

operation is atomic, and both the POSIX and the NFSv3

specifications call for atomicity.

Many applications rely on this specified atomicity as

a building-block to provide application-level guarantees.

For example, many document editing programs imple-

ment atomic updates by writing the new document ver-

sion into a temporary file and then using RENAME to

move it to the user-assigned name. Similarly, many email

systems write incoming messages to files in a tempo-

rary directory and then RENAME them into a user’s mail-

box directory. Without atomicity, applications and users

can see strange intermediate states, such as two identical

files (one with each name) existing or one file with both

names as hard links.

Creation and deletion of hard links (LINK and UN-

LINK) are also multi-item operations in the same way that

CREATE is. However, the directory the link is to be cre-

ated in may not be the parent of the the file being linked

to, making it more likely that the two are on different

servers than for a CREATE and UNLINK.

The previous examples assume that each directory is

indivisible. But a single heavily used directory might

have more traffic than a single server can support. Some

systems resolve this issue by splitting directories and as-

signing each part of the directory to a different server [37,

29]. In that case, simply listing the entire directory re-

quires an operation on every server across which it is

split, and renaming a file within a directory might re-

quire two servers if the source name is in one part of the

directory and the destination is in a different part.

Transactions are a very useful building block. Modern

file systems, such as NTFS [28] and Reiser4 [31], are

adding support for multi-request transactions. For exam-

ple, an application could update a set of files atomically,

rather than one at a time, and thereby preclude others

seeing intermediate forms of the set. This is particularly

useful for program installation and upgrade. The files in-

volved in such a transaction could very easily be spread

across servers.

Point-in-time snapshots [9, 17, 25, 30] have become

a mandatory feature of most storage systems, as a tool

for consistent backups, on-line integrity checking [25],

and remote mirroring of data [30]. Snapshot is usually

supported only for entire file system volumes, but some

systems allow snapshots of particular subtrees of the di-

rectory hierarchy. In any case, it is clearly a substantial

multi-item operation, with the expectation that the snap-

shot captures all covered files at a single point in time.

2.2 Transparent scalability

We categorize existing systems into three groups based

on how fully they provide transparent scalability as the

number of servers increases. Transparent scaling implies

scaling without client applications having to be aware

of how data is spread across servers; a distributed file

system is not transparently scalable if client applications

must be aware of capacity exhaustion of a single server or

different semantics depending upon which servers hold

accessed files.

No transparent scalability: Many distributed file sys-

tems, including those most widely deployed, do not scale

transparently. NFS, CIFS, and AFS all have the property

that file servers can be added, but each serves indepen-

dent file systems (called volumes, in the case of AFS). A

client can mount file systems from multiple file servers,

but must cope with each server’s limited capacity and

the fact that multi-file operations (e.g., RENAME) are not

atomic across servers.

Transparent data scalability: An increasingly popu-

lar design principle is to separate metadata management

(e.g., directories, quotas, data locations) from data stor-

age [6, 13, 14, 36, 38]. The latter can be transparently

scaled relatively easily, assuming all multi-object opera-

tions are handled by the metadata servers, since each data

access is independent of the others. Clients interact with

the metadata server for metadata activity and to discover

the locations of data. They then access data directly at the

appropriate data servers. Metadata semantics and policy

management stay with the metadata server, permitting

simple, centralized solutions. The metadata server can

limit throughput, of course, but off-loading data accesses

pushes the overall system’s limit much higher [14]. To

go beyond this point, the metadata service must also be

scalable.

Most modern storage systems designed to be scalable

fall into this category. Most are implemented initially

with a single metadata server, for simplicity. Examples

include Google FS [13], NASD [14], Panasas [38], Lus-

tre [24], prior versions of Ursa Minor [1], and most SAN

file systems. These systems are frequently extended to

support multiple metadata servers, each exporting a dis-

tinct portion of the namespace, and the ability to dynam-

ically migrate files from one metadata server to another.

Such a solution, however, is not transparently scalable

because clients see different semantics for operations that

cross metadata server boundaries.

Full transparent scalability: A few distributed file

systems offer full transparent scalability, including Far-

site [10], GPFS [32], Frangipani [36], and the version of

Ursa Minor described in this paper. Most use the data

scaling architecture above, separating data storage from

metadata management. Then, they add protocols for

handling metadata operations that span metadata servers.

Section 2.3 discusses these further.

Another way to achieve transparent scalability is to

use a virtualization appliance or “file switch” with a col-

lection of independent NFS or CIFS file servers [7, 19,

20, 39]. The file switch aggregates an ensemble of file

servers into a single virtual server by interposing on and

redirecting client requests appropriately. In the case of

multi-server operations, the file switch serves as a central

point for serialized processing and consistency mainte-

nance, much as a disk array controller does for a collec-

tion of disks. Thus, the virtual server remains a central-

ized, but much more capable, file system.

2.3 Multi-server operations

Traditionally, multi-server operations are implemented

using a distributed transaction protocol, such as a two-

phase commit [15]. Since each server already must im-

plement atomic single-server operations, usually by us-

ing write-ahead logging and roll-back, the distributed

transaction system can be built on top of the local trans-

action system. A transaction affecting multiple servers

first selects one to act as a coordinator. The coordinator

instructs each server to add a PREPARE entry, covering

that server’s updates, to their local logs. If all servers

PREPARE successfully, the transaction is finalized with a

COMMIT entry to all logs. If the PREPARE did not suc-

ceed on all servers, the coordinator instructs each server

to roll back its state to the beginning of the transaction.

With single-server transactions, recovering from a crash

requires a server to examine its log and undo any incom-

plete transactions. Recovery from a multi-server transac-

tion, however, is much more complicated.
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With more than one server, it is possible for some

servers to crash and others survive. If one crashed during

PREPARE, the coordinator will wait until a time-out, then

instruct the other servers to roll back their PREPAREs.

If one crashed between PREPARE and COMMIT, when

that server restarts, it needs to discover whether it missed

the instruction to either COMMIT or UNDO. To do so,

it needs to contact the coordinator or the other servers

to determine whether any of them committed (in which

case the coordinator must have successfully PREPAREd

at all servers). Any step involving communication with

other servers may fail, and if other servers have crashed,

it may not be possible to proceed until they are online.

Distributed transactions may complicate other aspects

of the system as well. Concurrency control within a sin-

gle server requires each transaction to acquire locks to

protect any state it operates on. The same is true for a

multi-server operation, but now it is possible for the lock

holder to crash independently of the server managing the

lock. While there are existing techniques, such as leases,

to handle this situation, a lock recovery scheme is sim-

ply not needed when locks can only be local to a server.

Considering other common faults, such as an intermittent

network failure, adds even more cases to handle.

As discussed, most of the additional complexity is in

the recovery path. Not only must the recovery path han-

dle recovery from a wide variety errors or crashes, it must

also handle errors during recovery. This leads to a large

number of cases that must be detected and handled cor-

rectly. Since errors in general are rare, and any particular

error is even rarer, bugs in the fault-handling path may

be triggered rarely and be even harder to reproduce. This

places more reliance on test harnesses, which must be

crafted to exercise each of the many error conditions and

combinations thereof.

In order to minimize the rarely-used additional com-

plexity of distributed transactions, Ursa Minor takes a

novel approach to implementing multi-server operations.

When a multi-server operation is required, the system

migrates objects so that all of the objects involved in an

operation are assigned to the same server, and the opera-

tion is then performed locally on that single server. This

scheme is discussed in more detail in Section 3.5 and re-

quires only single-server transactions and migration. Mi-

gration is itself a simplified distributed transaction, but it

must already be implemented in the system to provide

even non-transparent scalability.

2.4 Migration

In any system with many metadata servers, the ques-

tion arises as to which files should be assigned to which

servers. Some systems, such as AFS, NFS, Panasas,

and Lustre, split the file system namespace into several

volumes and assign each metadata server one or more

volumes whose boundaries cannot be changed after cre-

ation. Others, such as xFS, Ceph, and OntapGX, are able

to assign individual files to distinct servers. In general,

supporting finer granularities requires more complexity

in the mechanism that maps files to metadata servers.

Managing large-scale storage systems would be very

difficult without migration — at the very least, hardware

replacement and growth must be accounted for. Addi-

tionally, migration is a useful tool for addressing load or

capacity imbalances. Almost every storage system has

some way of performing migration, in the worst case by

backing up data on the original server, deleting it, and

restoring on the destination server.

Such offline migration, however, is obtrusive to

clients, which will notice periods of data unavailabil-

ity. If the need for migration is rare, it can be sched-

uled to happen during announced maintenance periods.

As a system gets larger, the need for migration increases,

while the tolerance for outages decreases. To address

this issue, many modern systems [11, 18, 37, 38] can

perform migration dynamically, while serving client re-

quests, leaving clients unaffected except for very brief

periods of unavailability. Any such system would be able

to utilize the same approach used in Ursa Minor to pro-

vide transparent scalability.

The process of assigning files to servers can be thought

of as analogous to lock management. A server that is

assigned responsibility for a file (or collection of files)

has effectively been granted an exclusive lock on that file

and migration changes the ownership of that lock. Given

the relative rarity and granularity of migration, the cen-

tralized migration managers used in AFS [18] and On-

tapGX [11] need not be as efficient or complex as the

distributed lock managers used for fine-grained locking

in GPFS [32], Slice [5], and Frangipani [36].

3 Design

Ursa Minor is a scalable storage system, designed to

scale to thousands of storage nodes. Ursa Minor is a

direct-access storage system [14], consisting of storage

nodes and metadata servers. The storage nodes, termed

workers, store byte streams named by Object ID, termed

SOID1. There are no restrictions on which objects can re-

side on which worker, and an object’s data can be repli-

cated or erasure-coded across multiple workers, allowing

the flexibility to tune an individual object’s level of fault-

tolerance and performance to its particular needs. Ac-

cessing a particular file’s data requires two steps: first,

the file name must be translated to a SOID, and sec-

ond, the workers(s) responsible for the file data must be

identified so that they can be contacted to retrieve the

data. In Ursa Minor, these functions are performed by

1A Self-⋆ Object ID is a 128 bit number analogous to an inode num-

ber and unique across an Ursa Minor constellation

the Namespace Service (NSS) and the Metadata Service

(MDS), respectively. This section describes the high-

level organization of these services and provides more

detail on the internal components that enable transparent

scalability.

3.1 Metadata Service (MDS)

The Metadata Service in Ursa Minor maintains infor-

mation on each object, similar to that maintained by

the inodes of a local-disk file system. For each object,

the MDS maintains a record that includes the object’s

size, link count, attributes, permissions, and the list of

worker(s) storing its data. Clients communicate with the

MDS via RPCs. Since clients are untrusted, the MDS

must verify that each request will result in a valid state

and that the client is permitted to perform that action.

Some requests, such as creating or deleting an object,

require the MDS to coordinate with workers. Others,

such as updating an attribute or timestamp, reside wholly

within the MDS. The semantics defined for the MDS im-

ply that individual requests are atomic (they either com-

plete or they don’t), consistent (the metadata transitions

from one consistent state to another), independent (si-

multaneous requests are equivalent to some sequential

order), and durable (once completed, the operation’s re-

sults will never be rolled back). The transaction mech-

anism used to ensure this is discussed in detail in Sec-

tion 3.6.

The MDS is responsible for all object metadata in Ursa

Minor. Individual object metadata records are stored in

metadata tables. Each table includes all records within a

defined range of SOIDs. The tables are internally struc-

tured as B-trees indexed by SOID and are stored as in-

dividual objects within Ursa Minor. The ranges can be

altered dynamically, with a minimum size of one SOID,

and a maximum of all possible SOIDS. Within those lim-

its, the MDS may use any number of tables, and, col-

lectively, the set of tables contains the metadata for all

objects. Storing the tables as objects in Ursa Minor al-

lows the MDS to benefit from the reliability and flexibil-

ity provided by Ursa Minor’s data path, and results in the

metadata path holding no hard system state.

Each Ursa Minor cluster includes one or more meta-

data servers. Each metadata server is assigned a number

of metadata tables, and each table is assigned to at most

one server at a time. Thus, accessing the metadata of any

particular object will only involve one server at a time.

Because the metadata tables are themselves objects, they

can be accessed by any metadata server using Ursa Mi-

nor’s normal data I/O facilities.

The assignment of tables to servers is recorded in a

Delegation Map that is persistently maintained by a Del-

egation Coordinator. The delegation coordinator is co-

located with one metadata server, termed the Root Meta-

data Server. This server is just like any other metadata

server, except it happens to host the metadata for the ob-

jects used by the metadata service. Clients request the

delegation map when they want to access an object for

which they do not know which metadata server to con-

tact. They cache the delegation map locally and inval-

idate their cached copy when following a stale cached

delegation map results in contacting the wrong metadata

server. Tables can be reassigned from one server to an-

other dynamically by the delegation coordinator, and this

process is discussed in Section 3.4.

3.2 Namespace Service (NSS)

The Namespace Service manages directory contents. Di-

rectories are optional in Ursa Minor — applications

satisfied with the MDS’s flat SOID namespace (e.g.:

databases, mail servers, scientific applications) need not

use directories at all. Other applications expect a tradi-

tional hierarchical directory tree, which the Namespace

Service provides.

Similarly to a local-disk file system, a directory entry

is a record that maps a filename to a SOID. Directories

are B-tree structured, indexed by name, and stored as or-

dinary objects, with their own SOIDs. At present, each

directory object contains all of the directory entries for

that directory, though there is no obstacle to splitting a

directory across multiple objects.

Namespace servers are tightly coupled with metadata

servers (in our implementation, both are combined in one

server process which exports both RPC interfaces). Each

namespace server is responsible for directories whose

SOIDs are within the range exported by its coupled meta-

data server. This ensures that a directory’s “inode” (the

attributes stored by the MDS) and its contents will al-

ways be served by the same process. For the rest of this

paper, we use the term “metadata server” to refer to the

combined MDS and NSS server.

The NSS aims to support directory semantics suffi-

cient to implement an overlying file system with POSIX,

NFS, CIFS, or AFS semantics. As such, it provides the

POSIX notions of hard links, including decoupling of un-

link and deletion, and the ability to select how already-

existing names are handled. Typical operations include

creating a file with a given name, linking an existing ob-

ject under a new name, unlinking an file, looking up the

SOID corresponding to a file name, and enumerating the

contents of directories.

3.3 SOID assignment

In Ursa Minor, the SOID of an object determines which

table, and thus which metadata server, that object is as-

signed to. It follows that there may be advantages in

choosing to use particular SOIDs for particular files. For

instance, the ls -al command will result in a series of
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requests, in sequential order, for the attributes of every

file in a given directory. If those files all had numeri-

cally similar SOIDs, their metadata would reside in the

same (or nearby) B-tree pages, making efficient use of

the server’s page cache. Similarly, most file systems

exhibit spatial locality, so an access to a file in one di-

rectory means an access to another file in that same di-

rectory is likely. Secondly, many directory operations

(CREATE, LINK) operate on both a parent directory and

a child inode at the same time. If the parent and child

had nearby SOID numbers, they would likely reside in

the same table, simplifying the transaction as discussed

in Section 3.5 and Section 3.6.

For these reasons, it would be useful to assign SOIDs

such that children of a directory receive SOIDs similar to

those of the directory itself. Applied over a whole direc-

tory tree, a namespace flattening policy would convert

“closeness” in the directory hierarchy to “closeness” in

SOID values. A number of algorithms could be used for

this task; we use a child-closest policy [16], which works

as follows.

First, the SOID is divided bitwise into a directory seg-

ment and a file segment. The directory segment is further

subdivided into a number of directory slots. Each slot

corresponds to a level in the directory hierarchy, and the

value in a slot identifies that directory within its parent.

The root directory uses the most significant slot, each of

its children the next most significant, and so on. When

creating a new directory, the child’s directory segment is

copied from its parent, with a new value chosen for the

most significant empty directory slot.

The file segment is simple sequential counter for files

created in that directory. A directory itself has a file seg-

ment of all 0s. The first child file of that directory has

the same directory segment, but file segment of 1. The

second has file segment of 2 and so on. Figure 1 shows

an example directory tree and the SOID the child-closest

policy assigns to each file or directory in the tree.

This scheme is similar to that used in Farsite, except

that the Farsite FileID is variable-length and grows with

with directory depth [10]. Supporting variable-length ob-

ject identifiers would unduly complicate the implemen-

tation of Ursa Minor’s protocols and components, so we

use a fixed-size SOID.

With a fixed-size SOID, the namespace may have both

more levels than there are directory slots and more files

in a directory than can be represented in the file segment

bits. To accommodate this, 2 prefix bits are used to fur-

ther split the SOID into 4 regions. The first, primary,

region, uses the assignment policy above. If the hierar-

chy grows too deep, the too-deep child directory is as-

signed a new top-level directory slot with a different pre-

fix (the too-deep region). Its children grow downwards

from there, as before.

Figure 1: Child-closest SOID assignment policy. The SOID chosen

for each element of this simple directory tree is shown. For clarity the

example uses a 16 bit SOID and a “.” is used to separate the value

of each 4 bit directory slot and file segment. The dashed lines show

a too-deep directory overflowing to a new “root” and a file in a large

directory overflowing to the too-wide region.

If there are too many files in a directory and the next

directory slot value is unused, the large directory takes

over the SOIDs reserved for its nonexistent sibling and

the new file is assigned a SOID that would used by its

nonexistent cousin. If cousins already exist, the new file

is assigned a SOID from the too-wide region. Within this

region, fewer bits are allocated to the directory segment,

and more to the file segment, so more files per directory

can be handled. Finally, if either of these additional re-

gions overflow, the catch-all prefix is used, and SOIDs

are assigned sequentially from this region.

In the case of any overflow, the additional children are

effectively created under new “roots” and thus have very

different SOIDs from their parents. However, those chil-

dren will still have locality with their own children (the

parent’s grandchildren). Thus, one large subtree will be

split into two widely separated subtrees, each with lo-

cality within itself. If the two subtrees are both large

enough, the loss of locality at the boundary between sub-

trees should not have a significant effect because most

operations will be local to one subtree or the other.

By tuning the bit widths of the directory segment,

file segment, and directory slots to match the system’s

workload, instances of overflow can be made extremely

rare [16]. Namespace manipulations, such as linking or

renaming files, however, will result in the renamed file

having a SOID that is not similar to the SOID of its new

parent or siblings. The similar situation happens in local

disk files systems: a renamed file’s inode still resides in

its original cylinder group after a rename.

The SOID of a deleted file is available for re-use as

soon as the file’s storage has been reclaimed from the

relevant workers (this step is performed lazily in most

cases). Thus, as long as a directory’s size does not

change over time, changing its contents does not affect

the chance of overflow. In fact, reusing a SOID as soon

as possible should provide for a slight efficiency gain, by

keeping the metadata B-tree compact.

In all of these cases, outside of the SOID selection pol-

icy, MDS treats the SOID as an opaque integer and will

operate correctly regardless of how much or little locality

the SOIDs preserve. Performance will be be better with

higher locality, however. The segment sizes do not need

to remain constant over the life of a constellation, or even

across the SOID namespace, so there is the potential to

adaptively tune them based on the observed workloads,

however we have not yet implemented this.

The net effect of combining namespace flattening with

SOID-range tables is that each table usually ends up con-

taining a subtree. This is somewhat analogous to the vol-

ume abstraction offered by systems like AFS but without

the predefined, rigid mapping of subtree to volume. Un-

like these systems, a too-large or too-deep subtree will

overflow into another table, quite possibly not one served

by the same server. One can think of these overflowed

subtrees as being split off into separate sub-volumes, as

is done in Ontap GX and Ceph.

3.4 Metadata migration

Ursa Minor includes the ability to dynamically migrate

objects from one metadata server to another. It does so

by reassigning responsibility for a metadata table from

one server to another. Because the metadata table (and

associated directories) are Ursa Minor data objects ac-

cessible to all metadata servers, the contents of the meta-

data table never need to be copied. The responsibility for

serving it is simply transferred to a different server. This

section describes the process for doing so in more detail.

Each metadata server exposes an RPC interface via

which the delegation coordinator can instruct it to ADD

or DROP a table. In order to migrate table T from server

A to server B, the coordinator first instructs server A to

DROP responsibility for the table. When that is complete,

the coordinator updates the delegation map to state that

B is responsible and instructs server B to ADD T. At all

times, at most one server is responsible.

When server A is instructed to DROP T, it may be in the

process of executing operations that use T. Those opera-

tions will be allowed to complete. Operations waiting for

T will be aborted with an error code of “wrong server”,

as will any new requests that arrive. Clients that receive

such a response will contact the coordinator for a new

delegation map. Once the table is idle, server A sets a

bit in the table header to indicate the table was cleanly

shut down, flushes the table from its in-memory cache,

and responds to the coordinator that the table has been

dropped.

Adding a table to server B is also simple. When in-

structed to ADD responsibility, server B first reads the

header page of table T. Since T’s header page indicates it

was shut down cleanly, no recovery or consistency check

procedure is necessary, so server B simply adds an en-

try for T to its in-memory mapping of SOID to table.

Any subsequent client requests for SOIDs within T will

fault in the appropriate pages of T. Before its first write

to T, server B will clear the “clean” bit in the header, so

any subsequent crash will cause the recovery procedure

to run.

3.5 Multi-object operations

For a server, performing a transaction on a single object

is simple: acquire a local lock on the SOID in question

and on the SOID’s table, perform the operation, and then

release all locks.

Performing a transaction with multiple objects or ta-

bles within a single server is similar, but complicated

by the need to avoid deadlocks between operations that

try to acquire the same locks in opposite orders. Each

server’s local lock manager avoids deadlock by tracking

all locks that are desired or in use. When all locks re-

quired for an operation are available, the lock manager

acquires all of them simultaneously and allows the oper-

ation to proceed.

In the more complicated case (shown in Figure 2) of a

multi-object and multi-server operation, the server’s lo-

cal lock manager will discover that all the required re-

sources are not local to the server. The lock manager

blocks the operation and sets out to acquire responsibil-

ity for the required additional tables. To do so, it sends

a BORROW request to the Delegation Coordinator. The

BORROW request includes the complete list of tables re-

quired by the operation; the coordinator’s lock manager

will serialize conflicting BORROWs. When none of the

tables required by a BORROW request are in conflict, the

coordinator issues a series of ADD and DROP requests

to move all the required tables to the requesting server

and returns control to it. Those tables will not be moved

again while as the transaction is executing.

When the transaction completes, the requesting server

sends a RETURN message to the coordinator, indicating

it no longer requires exclusive access to that combina-

tion of tables. The coordinator determines whether it can

now satisfy any other pending BORROW requests. If so,

the coordinator will migrate a RETURNed table directly

to the next server that needs it. Otherwise the coordi-

nator can choose to either migrate that table back to its

original server (the default action), leave it in place un-

til it is BORROWed in the future, or migrate it to some

other server. Note that, while waiting for a BORROW, a

server can continue executing other operations on any ta-
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Figure 2: Borrowing a table The sequence of operations required for

Server A to handle an operation requiring tables S and T, when table

T is initially assigned to server A and table S to server B. Returning to

the original state is similar.

bles it already has; only the operation that required the

BORROW is delayed.

3.6 Transactions

Underlying the Metadata and Namespace Services is a

transactional layer that manages updates to the B-tree

structures used for storing inodes and directories. These

B-trees are stored as data in Ursa Minor objects. The

data storage nodes and their access protocols guaran-

tee that individual B-tree pages are written atomically to

the storage nodes and that data accepted by the storage

nodes will be stored durably. The transaction system ex-

tends these guarantees to transactions involving multiple

B-tree pages spread across multiple B-trees.

Atomicity is provided using a simple shadow-paging

scheme. All updates to the B-tree data object are de-

ferred until commit time. The data object includes two

storage locations for each page, and the location written

alternates on every write of that page. Thus, one loca-

tion will contain the most recent version of that page,

and the other location will contain the next most recent

version. Each page includes a header that links it to all

the other pages written in the same transaction, which

will be used by the recovery mechanism to determine

whether the transaction committed or needs to be rolled

back. Reading a page requires reading both locations

and examining both headers to identify the latest version.

The server may cache this information, so subsequent re-

reads only need the location with the latest page contents.

Isolation is guaranteed by allowing only a single trans-

action to execute and commit on each B-tree at a time.

Every transaction must specify, when it begins, the set

of B-trees it will operate on. It acquires locks for all

of those B-trees from the local lock manager, and holds

them until it either commits or aborts. If, during exe-

cution, the transaction discovers it needs to operate on a

B-tree it does not hold a lock for, it aborts and restarts

with the new B-tree added to the set. This strategy is

similar to that used by Sinfonia mini-transactions, which

share the limitation of specifying their read and write sets

up front [4]. Most transactions require only a single ex-

ecution. The main sources of repeated executions are

operations that traverse a file system path: at each step,

the SOID of the next directory to read is determined by

reading the current directory.

Consistency is only enforced for the key field of the

B-tree records; maintaining the consistency of the data

fields is the responsibility of the higher level code that

modifies them.

Durability is provided by synchronously writing all

modified pages to the storage nodes at commit time. The

storage nodes may either have battery-backed RAM or

themselves synchronously write to their internal disk.

If the metadata server crashes while committing a

transaction, it is possible for the B-tree to be in an in-

consistent state: for example, only 2 of the 3 pages in

the last transaction may have been written to the stor-

age nodes before the crash. To resolve this condition,

the metadata server performs a recovery process when it

restarts after an unclean shutdown. First, it queries each

storage node to determine the location of the last write

to the B-tree object (the storage node must maintain this

information as part of the PASIS protocol [2]). The loca-

tion of the last write corresponds to the last page written.

Reading that page’s header will reveal the identity of all

other pages that were part of the same transaction. If all

the other pages have transaction numbers that match that

of the last written page, then we know that the transac-

tion completed successfully. If any of them has an ear-

lier transaction number, we know that not all page writes

were completed, and a rollback phase is performed: any

page with the latest transaction number is marked invalid,

and its alternate location is marked as the valid one. At

the end of rollback, the latest valid version of every page

is the same as it was before the start of the rolled-back

transaction. The recovery process can proceed in paral-

lel for B-trees with independent updates, whereas two B-

trees involved in the same transaction must be recovered

together. Because there is at most one transaction com-

mitting at a time on a given B-tree, at most one rollback

on a given B-tree will be necessary.

3.7 Handling failures

Any of the large number of components of the metadata

path can fail at any time, but all failures should be han-

dled quickly and without data loss. In general, our design

philosophy considers servers trustworthy; we are primar-

ily concerned with crashes or permanent failure and not

with faulty computations or malicious servers.

The most obvious components to consider for failure

are the metadata server software and the hardware that

it runs on. A constellation monitoring component polls

all metadata servers (as well as other components) pe-

riodically, and if the server does not respond within a

time-out interval, that metadata server instance is consid-

ered to have failed. The monitoring component will then

attempt to start a replacement metadata server instance,

either on the same hardware or on a different node. The

new instance queries the delegation coordinator to de-

termine the tables for which it is responsible and runs

the recovery process. After recovery completes, the new

instance is in exactly the same state as the previous in-

stance. While the new instance is starting and recover-

ing, client requests sent to the old instance will time-out

and be retried.

It is possible that, due to a network partition, a prop-

erly operating metadata server may be incorrectly de-

clared by the system monitor to have failed. Restarting a

new instance would result in two servers trying to serve

the same objects, violating the consistency assumptions.

To avoid this, the delegation coordinator revokes the ca-

pabilities used by the old instance to access its storage

nodes before granting capabilities to the new instance to

do the same. Thus, while the old instance may still be

running, it will not be able to access its backing store,

preserving consistency; nor will clients be able to use

capabilities granted by old the instance to access client

data. If the revocation attempt fails to reach a quorum

of storage nodes, perhaps because they are also on the

other side of the network partition, the coordinator will

not start a new server instance until the partition heals

and the old instance continues uninterrupted until then.

Not only does a failed metadata server affect clients,

but it may also affect another server if it failed in the

middle of a migration. The delegation coordinator will

see its ADD or DROP request time out and propagate this

error to any operation that depended on the migration.

The metadata being migrated will be unavailable until

the metadata server restarts, just like any other metadata

served by the failed server. It is reasonable for a multi-

server operation to fail because one of the servers it needs

is unavailable.

When the failed metadata server restarts, the delega-

tion map it receives from the coordinator will be un-

changed from when the server began its last ADD or

DROP: a failed ADD will be completed at this time, and

failed a DROP effectively never happened. Instead of

waiting for a server to restart, the tables assigned to the

failed server could simply be reassigned to other working

servers. Doing so, however, complicates the process of

recovering a table that was involved in a multi-table (but

same server) transaction: As described in Section 3.6,

both tables must be recovered together, which poses a

problem if the two tables have been reassigned to differ-

ent servers for recovery. Although it is possible to de-

tect and handle this case, in the interest of simplicity, we

avoid it by always trying to recover all the tables assigned

to a failed server as one unit.

A failed delegation coordinator will prevent the sys-

tem from performing any more delegation changes, al-

though all metadata servers and clients will continue to

operate. As the delegation map is stored in an object

and synchronously updated by the coordinator, the coor-

dinator is stateless and can simply be restarted the same

as metadata servers. There must be at most one delega-

tion coordinator in a constellation. One method to ensure

this, that we have not yet implemented, is to use a quo-

rum protocol to elect a new coordinator [21].

If the failure happened during a migration, the meta-

data table(s) being migrated will be in one of two states:

the delegation map says server A is responsible for table

T but server A does not think it is, or the delegation map

says no server is responsible for T. The delegation map is

always updated in an order such that a server will never

be responsible for a metadata table that is not recorded

in the delegation map. To handle the first case, a newly

started coordinator will contact all metadata servers to

determine which tables they are serving and issue the ap-

propriate ADD requests to make the server state match

the delegation map. In the second case, an appropriate

server is chosen for tables that have no assigned server,

and an ADD request is issued.

For storage node failures, we rely on the Ursa Minor

data storage protocol to provide fault tolerance by repli-

cating or erasure-coding object data across multiple stor-

age nodes. Since the contents of the metadata tables can-

not be reconstructed from any other source, they must be

configured with appropriately high fault tolerance.

4 Evaluation

Our goal was to construct a transparently scalable Meta-

data Service for Ursa Minor. To show we have suc-

ceeded, we evaluate the performance of Ursa Minor with

a standard benchmark as well as with a range of modified

workloads to reveal its sensitivity to workload character-

istics. Section 4.1 describes the benchmark’s workload,

Section 4.2 describes the hardware and software config-

urations used, Sections 4.3 and 4.4 discuss experimental

results, Section 4.5 contrasts these results with the work-

loads seen in traces of deployed file systems, and Sec-

tion 4.6 discusses additional observations.

4.1 Benchmark

The SPECsfs97 [35] benchmark is widely used for com-

paring the performance of NFS servers. It is based on

a survey of workloads seen by the typical NFS server

and consists of a number of client threads, each of which

emits NFS requests for file and directory operations ac-

cording to an internal access probability model. Each
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thread creates its own subdirectory and operates entirely

within it. Since each thread accesses a set of files inde-

pendent from all other threads, and each thread only has

a single outstanding operation, this workload is highly

parallelizable and contention-free.

In fact, using the namespace flattening policy de-

scribed in Section 3.3, Ursa Minor is trivially able to as-

sign each thread’s files to a distinct SOID range. Thus,

each metadata table consists of all the files belonging to a

number of client threads, and all multi-object operations

will only involve objects in the same table. While this

is very good for capturing spatial locality, it means that

multi-server operations will never occur for the default

SPECsfs97 workload.

Because the SPECsfs97 benchmark directly emits

NFS requests, these requests must be translated into the

Ursa Minor protocol by an NFS head-end. Each head-

end is an NFS server and an Ursa Minor client, and it

issues a sequence of Ursa Minor metadata and/or data re-

quests in order to satisfy each NFS request it receives. In

the default SPECsfs97 workload, 73% of NFS requests

will result in one or more Ursa Minor metadata opera-

tions, and the remaining 27% are NFS data requests that

may also require an Ursa Minor metadata operation. Like

any Ursa Minor client, the head-end can cache meta-

data, so some metadata operations can be served from

the head-end’s client-side metadata cache, resulting in

a lower rate of outgoing Ursa Minor metadata requests

than incoming NFS requests. Each head-end is allocated

a distinct range of SOIDs for its use, and it exports a

single NFS filesystem. Thus, different head-ends will

never contend for the same objects, but the client threads

connected to a head-end may access distinct objects that

happen to be in the same metadata table.

In order to use SPECsfs97 to benchmark Ursa Mi-

nor, we found it necessary to make a number of practical

modifications to the benchmark parameters and method-

ology specified by SPEC. First, we modified the con-

figuration file format to allow specifying operation per-

centages in floating point as necessary for Section 4.4.

Second, we doubled the warmup time for each run to

10 minutes to ensure the measured portion of the run did

not benefit from startup effects. Neither of these changes

should affect the workload presented during the timed

portion of the run.

Because we are interested in exploring the scalability

of the MDS, we must provision the Ursa Minor constel-

lation so that the MDS is always the bottleneck. Doing

so requires enough storage nodes to collectively hold the

metadata objects in their caches — otherwise, the storage

nodes become the bottleneck. The number of files used

by SPECsfs97 is a function of the target throughput and,

at high load levels, would require more storage nodes

than we have available. Additionally, as the number of

files varies, so will the miss-rate of the fixed-size head-

end caches, changing the workload seen by the MDS. To

avoid these two effects, we use a constant 8 million or

4 million files, requiring 26 GB or 13 GB of metadata.

To avoid confusion, we refer to this modified benchmark

as SFS-fixed.

To maximize MDS load, we configured the NFS head-

ends to discard any file data written to them and to substi-

tute zeroes for any file data reads. The Ursa Minor meta-

data operations associated with the file read and writes

are still performed, but the Ursa Minor data operations

are not, so we can omit storage nodes for holding file

data. In all other regards, including uniform access, we

comply with the SPECsfs97 run reporting rules.

4.2 Experimental setup

Table 1(a) lists the hardware used for all experiments,

and Table 1(b) lists the assignment of Ursa Minor com-

ponents to physical machines. This particular assign-

ment was chosen to ensure as uniform hardware and ac-

cess paths as possible for each instance of a component

— every storage node was the same number of network

hops away from each metadata server, and each head-end

was the same distance from each metadata server.

We configured the test constellations with the goal of

ensuring that the MDS was always the bottleneck. The

root metadata server was only responsible for objects in-

ternal to the MDS (i.e., the metadata for the metadata

table objects themselves). The large constellation had 48

NFS head-ends, each serving 20 SFS-fixed client threads

(960 in total), and the SOID range assigned to each head-

end was split across 8 tables. The resulting 384 tables

were assigned in round-robin fashion across metadata

servers, such that every head-end used some object on

each metadata server. Similarly, tables were stored on 24

storage nodes such that each metadata server used every

storage node. These choices increase the likelihood of

multi-table operations and contention and are intended to

be pessimistic. For small experiments, we used 24 head-

ends, 12 storage nodes, and 480 client threads. The SOID

assignment policy was configured to support a maximum

of 4095 files per directory and 1023 subdirectories per

directory, which was sufficient to avoid overflow in all

cases. Each storage node used 1.6 GB of battery-backed

memory as cache. In addition, 256 MB at each meta-

data server was used for caching B-tree pages, and the

head-ends had 256MB each for their client-side caches.

4.3 Scalability

Figure 3 shows that the Ursa Minor MDS is transpar-

ently scalable for the SFS-fixed workload. Specifically,

the throughput of the system for both NFS and MDS

operations increases linearly as the number of metadata

servers increases. This is as expected, because the ba-

Type Type A Type B

Count 38 75

RAM 2 GB 1 GB

CPU 3.0 Ghz Xeon 2.8 Ghz Pentium 4

Disk 4× ST3250823AS 1× WD800J

NIC Intel Pro/1000 MT Intel Pro/1000 XT

OS Linux 2.6.26

Switch 3× HP ProCurve 2848

(a) Hardware configuration.

Component Hardware Large Small

Storage nodes Type A 24 12

Metadata servers Type B 8-32 4-16

NFS head-ends Type B 48 24

Load generators Type A 5 2

Root metadata server

Type A 1 1Root storage node

Constellation manager

(b) Ursa Minor configuration.

Table 1: Hardware and software configuration used for large and small experiments. The number of metadata servers used varied; all other

components remained constant. The root metadata server and its storage node only stored metadata for objects used by the metadata service.

Metadata accessible by clients was spread across the remaining storage nodes and metadata servers.

sic SPECsfs97 and SFS-fixed workloads cause no multi-

server operations. Thus, adding additional servers evenly

divides the total load across servers. Because the head-

end servers include caches and because the SFS opera-

tion rate includes NFS data requests, the number of re-

quests that reach the metadata servers is lower than that

seen by the head-end servers. However, the workload

presented to the MDS is much more write-heavy — 26%

of requests received by the MDS modify metadata, com-

pared the 7% of NFS requests that definitely will modify

metadata and 9% that possibly will.

4.4 Multi-server operations

Since Ursa Minor uses a novel method of implement-

ing multi-server operations, it is important to consider

its performance on workloads that are are less trivially

parallelizable. To do, so we modified the base SFS-

fixed workload to include a specified fraction of cross-

directory LINK operations. To keep the total number

of operations constant, we reduce the number of CRE-

ATE operations by one for every LINK operation we add.

Thus, the sum of LINK and CREATE is a constant 1% of

the NFS workload. The resulting MDS workload con-

tains a higher fraction of both, because the head-end

cache absorbs many of the LOOKUP requests.

We also modify the namespace flattening policy so

each client thread’s directories are spread across all the

tables used by that head-end, giving a 1− (1/N) chance

any LINK being multi-server. Both LINK and CREATE

modify one directory and one inode, so any performance

difference between the two can be attributed to the over-

head of performing a multi-server operation. A RE-

NAME, however, modifies two directories and their in-

odes, and is slower than a CREATE even on a single

server, which is why we use LINK as the source of cross-

directory operations in this experiment.

Figure 4 shows the reduction in MDS throughput

for SFS-fixed with multi-server operations compared to

SFS-fixed without multi-server operations. Workloads

in which 0.05% to 1.00% of NFS operations were cross-

directory LINKs resulted 0.07% to 4.75% of MDS op-

erations involving multiple servers. Separate curves are

shown for Ursa Minor configurations where each head-

end’s metadata is split across 16, 8, or 4 tables for a total

of 384, 192, or 96 tables in the system. As expected,

throughput decreases as the percentage of multi-server

ops increases, since each multi-server op requires a table

migration. Accordingly, the latency of LINKs are up to

3.5 × that of CREATEs (120 ms vs. 35 ms). Furthermore,

when the table is RETURNed to its original server, that

server’s cache will not contain any of the migrated ta-

ble’s contents. The resulting increase in cache miss rate

decreases the throughput of subsequent single-server op-

erations [34].

Additionally, migrating a table makes it unavailable

for serving other operations while the migration is in

progress. When a single table represents a small frac-

tion of the total metadata in the system, making one table

unavailable has a small impact on overall performance.

However, if we configure the system to fit the same meta-

data into fewer tables, the penalty increases, as shown

in Figure 4. This is exacerbated in Ursa Minor because

threads within the metadata server frequently contend for

table-level locks in addition to CPU and I/O. Given that

small tables permit finer-grained load balancing, a rea-

sonable Ursa Minor configuration might place 1%-10%

of a server’s capacity in a single table as suggested for

other systems [6]. The major penalty of having far too

many tables is that the delegation map will be large, pos-

sibly requiring a more efficient means of storing and dis-

tributing it.

4.5 Trace analysis

To put the performance of Ursa Minor under multi-server

operations into context, we examined two sets of well-

studied distributed file system traces to determine what

rates of multi-server operations are seen in real-world

workloads. Table 2 classifies the operations in each trace
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Figure 3: Throughput vs. number of metadata servers. The num-

ber of NFS and MDS operations completed per second are shown sep-

arately for the SFS-fixed workload. The difference between NFS and

MDS operation rates is due to data-only requests and the head-end’s

metadata cache. The three benchmark runs performed for each config-

uration are plotted individually. The lines show a linear fit with corre-

lation coefficient of > 0.995. All runs used 8 million files on the large

constellation. Our present implementation is limited to about 1 million

files per server; plots with fewer files and servers are similar [34].

by the Ursa Minor metadata operation that would be re-

quired to service it. While all operations except for UP-

DATEs and some LOOKUPs involve more than one object,

those objects are almost always in a parent-child relation-

ship. In any system that preserves namespace locality (as

the child-closest SOID assignment policy in Ursa Minor

does), both objects will be served by the same metadata

server. The exceptions are operations on mountpoints,

operations on directories that are extremely large, and

operations that involve more than one directory. Since

the first case should be extremely rare, we expect that

cross-directory operations will be the major source of

multi-server metadata operations.

The first set of traces are of 3 departmental NFS

servers at Harvard University. The workload of each

server varied significantly and is described by Ellard et

al. [12]. In these traces, RENAME operations may involve

more than one directory, and we count cross-directory

RENAMEs separately from RENAMEs of a file to a dif-

ferent name in the same directory. Additionally, a LINK

operation, while only involving a single file and single

directory, might be adding a link in one directory to a

file originally created in a different directory. While the

original directory does not matter to a traditional NFS

server, in Ursa Minor, the file’s SOID will be similar to

that of its original parent directory, while the new par-

ent directory may have a very different SOID and per-

haps be on a different server. Unfortunately, unlike RE-

NAMEs, the LINK RPC does not contain enough infor-

mation to reliably identify the original parent directory,
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Figure 4: Slowdown vs. percentage of multi-server ops. The

slowdown in MDS throughput (compared to a workload with no multi-

server ops) is shown for SFS-fixed workloads with varying percentages

of multi-server LINKs. The actual percentage achieved in a given run

varies from the target percentage; the actual percentage is plotted for

each run, and the lines connect the average of all runs with the same

target percentage. All runs use 4 million files on the small constellation

with 12 metadata servers. The solid line uses the same configuration of

384 total tables used in Figure 3, additional lines use 192 and 96 tables.

so we cannot separate these cases. The highest fraction

of cross-directory RENAME operations occurred in the

DEAS trace and represented only 0.005% of operations

in that trace.

The second set of traces are of CIFS traffic to two

enterprise-class filers in NetApp’s corporate data center.

One was used by their engineering department, the other

by the their marketing, sales, and finance departments.

The fraction of RENAME operations in these traces is

similar to those from Harvard, though the distribution of

other operations is very different. In the CIFS protocol,

the equivalent of the RENAME RPC includes the path of

the source and destination directories, so it is possible to

determine not only that the the directories are different,

but how far apart the source and destination directories

are in the directory tree. We were able to analyze a seg-

ment of the trace from the Corporate server to calculate

rename distances for operations within that segment. Of

the 80 cross-directory RENAMEs we found, 56% had a

destination directory that was either the immediate par-

ent or child of the source directory.

For comparison, we also show the distribution of op-

erations in the default configuration of SPECsfs97 in

Table 2. In all of these workloads, the percentage of

cross-directory operations is very low. And, of those

cross-directory operations, only a fraction will be multi-

server. If directories were assigned randomly to servers,

the probability both directories will happen to be on the

same server is 1/N. If the directories involved exhibit

spatial locality, as the CIFS traces do, and the OID as-

EECS DEAS CAMPUS Engineering Corporate SPECsfs97

Total operations 180M NFS 770M NFS 672M NFS 352M CIFS 228M CIFS 12.5M CIFS 4.9M NFS

LOOKUP 93.113% 98.621% 97.392% 87.1% 73.2% 62.417% 83.000%

CREATE 0.772% 0.243% 0.286% 0.7% 6.7% 13.160% 1.000%

DELETE 0.810% 0.431% 0.555% 0.006% 0.03% 0.030% 1.000%

UPDATE 5.250% 0.683% 1.766% 1.24% 2.2% 14.282% 14.606%

RENAME (all) 0.054% 0.022% < 0.001% 0.02% 0.04% 0.036% 0.000%

RENAME (cross-dir) 0.0012% 0.005% < 0.001% NA NA < 0.001% 0.000%

Table 2: Metadata operation breakdowns for various distributed filesystem traces. The percentage of operations in the original trace that

incur each type of Ursa Minor metadata operation is shown. This represents the workload that would seen by the Ursa Minor head-end’s metadata

cache. Only LOOKUP requests are cacheable, thus we expect the workload seen by the metadata servers to have fewer LOOKUPS. The columns do

not sum to 100% because of not all CIFS or NFS operations require Ursa Minor metadata. For the large CIFS traces, the values are calculated from

CIFS operation statistics provided by Leung et al. [23] and represent an upper bound for each operation. For the NFS trace and the small CIFS

trace, we scan the trace and count the resulting operations. The operations generated by a 5 minute run of SPECsfs97 at 16000 ops/sec are shown

for comparison. In all workloads, RENAMES that involve two directories are shown separately and are extremely rare.

signment policy can preserve spatial locality, then both

directories are far more likely to be on the same server.

Even pessimistically assuming that all cross-directory

operations are multi-server, Ursa Minor’s approach to

multi-server operations can handle an order of magnitude

more multi-server operations (.06%) with only a 1.5%

decrease in overall throughput compared to a workload

with only single-server operations. A system that could

execute multi-server operations as fast as single-server

ones would be optimal. Even if the workload contains

1% multi-server operations, the slowdown is 7.5%, but

such a high rate seems unrealistic, given the rarity of even

potentially multi-server operations.

4.6 Additional observations

Our motivation for using migration to handle multi-

server operations was that it was the simple solution for

the problem at hand. From the starting point of a meta-

data service that supported migration and single-server

operations (over 47000 lines of C code), it only required

820 additional lines of code to support multi-server oper-

ations. Of these 820 lines, the global lock manager (nec-

essary for avoiding deadlock) accounted for 530 lines,

while the remainder were additional RPC handlers and

modifications to the local transaction layer to trigger a

BORROW when necessary. In contrast, implementing mi-

gration correctly represented 9000 lines of the original

metadata server and several months of work.

To provide a basis for comparison, we created a ver-

sion of Ursa Minor that implements multi-server opera-

tions using the traditional 2-phase commit protocol. This

version is not nearly as robust or stable as the main ver-

sion, particularly with regard to handling and recovering

from failures, so the 2587 lines required to implement it

represent a lower bound. The code to implement a write-

ahead log is not included in this total because most other

systems include one as part of their basic functionality.

Many of the choices we made in designing the MDS

were guided by the properties of the rest of Ursa Minor.

Other systems with different underlying storage or fail-

ure models might choose to store metadata on the local

disks or NVRAM of each metadata server. Migration in

such a system would be much more expensive because it

requires copying metadata from server to server.

The single delegation coordinator is involved in every

multi-server operation, and could become a bottleneck as

the constellation scales. We found the coordinator was

capable of up to 3500 migrations per second, which is

reached with 32 metadata servers and a workload with

1% multi-server ops. Scaling beyond this point would

require moving to a hierarchy of coordinators rather than

a single one. More details, along with discussion of other

workloads and system parameters, are presented in an

additional technical report [34].

5 Conclusion

Transparent scalability for metadata is a desirable feature

in a large storage system. Unfortunately, it is a difficult

feature to provide because it introduces the possibility of

multi-server operations, which in turn require relatively

complex distributed protocols. By reusing metadata mi-

gration to reduce multi-server operations to single-server

ones, we were able to implement a transparently scal-

able metadata service for Ursa Minor with only 820 ad-

ditional lines of code. Although this approach is more

heavyweight than a dedicated cross-server update proto-

col, the performance penalty is negligible if cross-server

operations are are as rare as trace analysis suggests —

less than 0.005% of client requests could possibly be

cross-server in the traces analyzed. Even if all of those

requests were in fact cross-server, Ursa Minor can toler-

ate an order of magnitude more cross-server operations

(.06%) with only a 1.5% decrease in overall through-

put. We believe that this approach to handling infrequent

cross-server operations is very promising for distributed

file systems and, perhaps, for other scalable distributed

systems as well.
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Abstract

With the decreasing price of flash memory, systems will
increasingly use solid-state storage for virtual-memory
paging rather than disks. FlashVM is a system architec-
ture and a core virtual memory subsystem built in the
Linux kernel that uses dedicated flash for paging.

FlashVM focuses on three major design goals for
memory management on flash: high performance, re-
duced flash wear out for improved reliability, and ef-
ficient garbage collection. FlashVM modifies the pag-
ing system along code paths for allocating, reading and
writing back pages to optimize for the performance char-
acteristics of flash. It also reduces the number of page
writes using zero-page sharing and page sampling that
prioritize the eviction of clean pages. In addition, we
present the first comprehensive description of the usage
of the discard command on a real flash device and show
two enhancements to provide fast online garbage collec-
tion of free VM pages.

Overall, the FlashVM system provides up to 94% re-
duction in application execution time and is four times
more responsive than swapping to disk. Furthermore, it
improves reliability by writing up to 93% fewer pages
than Linux, and provides a garbage collection mecha-
nism that is up to 10 times faster than Linux with discard
support.

1 Introduction
Flash memory is one of the largest changes to storage
in recent history. Solid-state disks (SSDs), composed of
multiple flash chips, provide the abstraction of a block
device to the operating system similar to magnetic disks.
This abstraction favors the use of flash as a replacement
for disk storage due to its faster access speeds and lower
energy consumption [1, 25, 33].

In this paper, we present FlashVM, a system architec-
ture and a core virtual memory subsystem built in the
Linux kernel for managing flash-backed virtual mem-
ory. FlashVM extends a traditional system organization
with dedicated flash for swapping virtual memory pages.
Dedicated flash allows FlashVM software to use seman-
tic information, such as the knowledge about free blocks,
that is not available within an SSD. Furthermore, dedi-
cating flash to virtual memory is economically attractive,

because small quantities can be purchased for a few dol-
lars. In contrast, disks ship only in large sizes at higher
initial costs.

The design of FlashVM focuses on three aspects of
flash: performance, reliability, and garbage collection.
We analyze the existing Linux virtual memory imple-
mentation and modify it to account for flash character-
istics. FlashVM modifies the paging system on code
paths affected by the performance differences between
flash and disk: on the read path during a page fault, and
on the write path when pages are evicted from memory.
On the read path, FlashVM leverages the low seek time
on flash to prefetch more useful pages. The Linux VM
prefetches eight physically contiguous pages to minimize
disk seeks. FlashVM uses stride prefetching to minimize
memory pollution with unwanted pages at a negligible
cost of seeking on flash. This results in a reduction in
the number of page faults and improves the application
execution time. On the write path, FlashVM throttles the
page write-back rate at a finer granularity than Linux.
This allows better congestion control of paging traffic to
flash and improved page fault latencies for various appli-
cation workloads.

The write path also affects the reliability of FlashVM.
Flash memory suffers from wear out, in that a single
block of storage can only be written a finite number of
times. FlashVM uses zero-page sharing to avoid writing
empty pages and uses page sampling, which probabilisti-
cally skips over dirty pages to prioritize the replacement
of clean pages. Both techniques reduce the number of
page writes to the flash device, resulting in improved re-
liability for FlashVM.

The third focus of FlashVM is efficient garbage col-
lection, which affects both reliability and performance.
Modern SSDs provide a discard command (also called
trim) for the OS to notify the device when blocks no
longer contain valid data [30]. We present the first com-
prehensive description of the semantics, usage and per-
formance characteristics of the discard command on a
real SSD. In addition, we propose two different tech-
niques, merged and dummy discards, to optimize the use
of the discard command for online garbage collection of
free VM page clusters on the swap device. Merged dis-
card batches requests for discarding multiple page clus-
ters in a single discard command. Alternatively, dummy



188 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 189

discards implicitly notify the device about free VM pages
by overwriting a logical flash block.

We evaluate the costs and benefits of each of these de-
sign techniques for FlashVM for memory-intensive ap-
plications representing a variety of computing environ-
ments including netbooks, desktops and distributed clus-
ters. We show that FlashVM can benefit a variety of
workloads including image manipulation, model check-
ing, transaction processing, and large key-value stores.
Our results show that:

• FlashVM provides up to 94% reduction in applica-
tion execution time and up to 84% savings in mem-
ory required to achieve the same performance as
swapping to disk. FlashVM also scales with in-
creased degree of multiprogramming and provides
up to four times faster response time to revive sus-
pended applications.

• FlashVM provides better flash reliability than Linux
by reducing the number of page writes to the swap
device. It uses zero-page sharing and dirty page
sampling for preferential eviction of clean pages,
which result in up to 93% and 14% fewer page
writes respectively.

• FlashVM optimizes the performance for garbage
collection of free VM pages using merged and
dummy discard operations, which are up to 10 times
faster than Linux with discard support and only 15%
slower than Linux without discard support.

The remainder of the paper is structured as follows.
Section 2 describes the target environments and makes
a case for FlashVM. Section 3 presents FlashVM design
overview and challenges. We describe the design in Sec-
tions 4.1, covering performance; 4.2 covering reliability;
and 4.3 on efficient garbage collection using the discard
command. We evaluate the FlashVM design techniques
in Section 5, and finish with related work and conclu-
sions.

2 Motivation
Application working-set sizes have grown many-fold in
the last decade, driving the demand for cost-effective
mechanisms to improve memory performance. In this
section, we motivate the use of flash-backed virtual
memory by comparing it to DRAM and disk, and not-
ing the workload environments that benefit the most.

2.1 Why FlashVM?
Fast and cheap flash memory has become ubiquitous.
More than 2 exabytes of flash memory were manufac-
tured worldwide in 2008. Table 1 compares the price
and performance characteristics of NAND flash memory
with DRAM and disk. Flash price and performance are
between DRAM and disk, and about five times cheaper
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Figure 1: Cost/Benefit Analysis: Application execution
time plot comparing the performance of disk and flash
backed virtual memory with variable main memory sizes.
∆M is the memory savings to achieve the same perfor-
mance as disk and ∆T is the performance improvement
with FlashVM for the same memory size.

Device Read Latencies (µs) Write Latencies (µs) Price
Random Seq Random Seq $/GB

DRAM 0.05 0.05 0.05 0.05 $15
Flash 100 85 2,000 200-500 $3
Disk 5,000 500 5,000 500 $0.3

Table 1: Device Attributes: Comparing DRAM, NAND
flash memory and magnetic disk. Both price and perfor-
mance for flash lie between DRAM and disk (some values
are roughly defined for comparison purposes only).

than DRAM and an order of magnitude faster than disk.
Furthermore, flash power consumption (0.06 W when
idle and 0.15–2 W when active) is significantly lower
than both DRAM (4–5 W/DIMM) and disk (13–18 W).
These features of flash motivate its adoption as second-
level memory between DRAM and disk.

Figure 1 illustrates a cost/benefit analysis in the form
of two simplified curves (not to scale) showing the exe-
cution times for an application in two different systems
configured with variable memory sizes, and either disk or
flash for swapping. This figure shows two benefits to ap-
plications when they must page. First, FlashVM results
in faster execution for approximately the same system
price without provisioning additional DRAM, as flash is
five times cheaper than DRAM. This performance gain
is shown in Figure 1 as ∆T along the vertical axis. Sec-
ond, a FlashVM system can achieve performance sim-
ilar to swapping to disk with lower main memory re-
quirements. This occurs because page faults are an or-
der of magnitude faster with flash than disk: a program
can achieve the same performance with less memory by
faulting more frequently to FlashVM. This reduction in
memory-resident working set is shown as ∆M along the

horizontal axis.
However, the adoption of flash is fundamentally an

economic decision, as performance can also be improved
by purchasing additional DRAM or a faster disk. Thus,
careful analysis is required to configure the balance of
DRAM and flash memory capacities that is optimal for
the target environment in terms of both price and perfor-
mance.

2.2 Where FlashVM?
Both the price/performance gains for FlashVM are
strongly dependent on the workload characteristics and
the target environment. In this paper, we target FlashVM
against the following workloads and environments:
Netbook/Desktop. Netbooks and desktops are usually
constrained with cost, the number of DIMM slots for
DRAM modules and DRAM power-consumption. In
these environments, the large capacity of disks is still
desirable. Memory-intensive workloads, such as image
manipulation, video encoding, or even opening multi-
ple tabs in a single web browser instance can consume
hundreds of megabytes or gigabytes of memory in a
few minutes of usage [4], thereby causing the system to
page. Furthermore, end users often run multiple pro-
grams, leading to competition for memory. FlashVM
meets the requirements of such workloads and environ-
ments with faster performance that scales with increased
multiprogramming.
Distributed Clusters. Data-intensive workloads such
as virtualized services, key-value stores and web caches
have often resorted to virtual or distributed memory solu-
tions. For example, the popular memcached [17] is used
to increase the aggregate memory bandwidth. While disk
access is too slow to support page faults during request
processing, flash access times allow a moderate num-
ber of accesses. Fast swapping can also benefit virtual
machine deployments, which are often constrained by
the main memory capacities available on commonly de-
ployed cheap servers [19]. Virtual machine monitors can
host more virtual machines with support for swapping
out nearly the entire guest physical memory. In such
cluster scenarios, hybrid alternatives similar to FlashVM
that incorporate DRAM and large amounts of flash are
an attractive means to provide large memory capacities
cheaply [6].

3 Design Overview
The FlashVM design, shown in Figure 2, consists of ded-
icated flash for swapping out virtual memory pages and
changes to the Linux virtual memory hierarchy that opti-
mize for the characteristics of flash. We target FlashVM
against NAND flash, which has lower prices and better
write performance than the alternative, NOR flash. We
propose that future systems be built with a small multi-

ple of DRAM size as flash that is attached to the mother-
board for the express purpose of supporting virtual mem-
ory.
Flash Management. Existing solid-state disks (SSD)
manage NAND flash memory packages internally for
emulating disks [1]. Because flash devices do not sup-
port re-writing data in place, SSDs rely on a translation
layer to implement block address translation, wear lev-
eling and garbage collection of free blocks. The trans-
lation from this layer raises three problems not present
with disks: write amplification, low reliability, and ag-
ing.

Write amplification occurs when writing a single block
causes the SSD to re-write multiple blocks, and leads
to expensive read-modify-erase-write cycles (erase la-
tency for a typical 128–512 KB flash block is as high
as 2 milliseconds) [1, 26]. SSDs may exhibit low reli-
ability because a single block may only be re-written a
finite number of times. This limit is around 10,000 and
is decreasing with the increase in capacity and density
of MLC flash devices. Above this limit, devices may
exhibit unacceptably high bit error rates [18]. For a 16
GB SSD written at its full bandwidth of 200 MB/sec, er-
rors may arise in as little as a few weeks. Furthermore,
SSDs exhibit aging after extensive use because fewer
clean blocks are available for writing [24, 26]. This can
lead to performance degradation, as the device continu-
ously copies data to clean pages. The FlashVM design
leverages semantic information only available within the
operating system, such as locality of memory references,
page similarity and knowledge about deleted blocks, to
address these three problems.
FlashVM Architecture. The FlashVM architecture tar-
gets dedicated flash for virtual memory paging. Dedi-
cating flash for virtual memory has two distinct advan-
tages over traditional disk-based swapping. First, ded-
icated flash is cheaper than traditional disk-based swap
devices in price per byte only for small capacities re-
quired for virtual memory. A 4 GB MLC NAND flash
chip costs less than $6, while the cheapest IDE/SCSI
disk of similar size costs no less than $24 [5, 32]. Sim-
ilarly, the more common SATA/SAS disks do not scale
down to capacities smaller than 36 GB, and even then
are far more expensive than flash. Furthermore, the pre-
mium for managed flash, which includes a translation
layer, as compared to raw flash chips is dropping rapidly
as SSDs mature. Second, dedicating flash for virtual
memory minimizes the interference between the file sys-
tem I/O and virtual-memory paging traffic. We proto-
type FlashVM using MLC NAND flash-based solid-state
disks connected over a SATA interface.
FlashVM Software. The FlashVM memory manager,
shown in Figure 2, is an enhanced version of the mem-
ory management subsystem in the Linux 2.6.28 kernel.
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Figure 2: FlashVM Memory Hierarchy: FlashVM
manager controls the allocation, read and write-back
of pages swapped out from main memory. It hands the
pages to the block layer for conversion into block I/O re-
quests, which are submitted to the dedicated flash device.

Since NAND flash is internally organized as a block de-
vice, the FlashVM manager enqueues the evicted pages
at the block layer for scheduling. The block layer is re-
sponsible for the conversion of pages into block I/O re-
quests submitted to the device driver. At a high-level,
FlashVM manages the non-ideal characteristics of flash
and exploits its useful attributes. In particular, our design
goals are:

• High performance by leveraging the unique perfor-
mance characteristics of flash, such as fast random
reads (discussed in Section 4.1).

• Improved reliability by reducing the number of page
writes to the swap device (discussed in Section 4.2).

• Efficient garbage collection of free VM pages by
delaying, merging, and virtualizing discard opera-
tions (discussed in Section 4.3).

The FlashVM implementation is not a singular addi-
tion to the Linux VM. As flash touches on many as-
pects of performance, FlashVM modifies most compo-
nents of the Linux virtual memory hierarchy, including
the swap-management subsystem, the memory allocator,
the page scanner, the page-replacement and prefetching
algorithms, the block layer and the SCSI subsystem. In
the next section, we identify and describe our changes
to each of these subsystems for achieving the different
FlashVM design goals.

4 Design and Implementation
This section discusses the FlashVM implementation to
improve performance, reliability, and to provide efficient

garbage collection.

4.1 FlashVM Performance
Challenges. The virtual-memory systems of most oper-
ating systems were developed with the assumption that
disks are the only swap device. While disks exhibit a
range of performance, their fundamental characteristic is
the speed difference between random and sequential ac-
cess. In contrast, flash devices have a different set of
performance characteristics, such as fast random reads,
high sequential bandwidths, low access and seek costs,
and slower writes than reads. For each code path in
the VM hierarchy affected by these differences between
flash and disk, we describe our analysis for tuning pa-
rameters and our implementation for optimizing perfor-
mance with flash. We analyze three VM mechanisms:
page pre-cleaning, page clustering and disk scheduling,
and re-implement page scanning and prefetching algo-
rithms.

4.1.1 Page Write-Back
Swapping to flash changes the performance of writing
back dirty pages. Similar to disk, random writes to flash
are costlier than sequential writes. However, random
reads are inexpensive, so write-back should optimize for
write locality rather than read locality. FlashVM accom-
plishes this by leveraging the page pre-cleaning and clus-
tering mechanisms in Linux to reduce page write over-
heads.
Pre-cleaning. Page pre-cleaning is the act of eagerly
swapping out dirty pages before new pages are needed.
The Linux page-out daemon kswapd runs periodically to
write out 32 pages from the list of inactive pages. The
higher write bandwidth of flash allows FlashVM write
pages more aggressively, and without competing file sys-
tem traffic, use more I/O bandwidth.

Thus, we investigate writing more pages at a time to
achieve sequential write performance on flash. For disks,
pre-cleaning more pages interferes with high-priority
reads to service a fault. However, with flash, the lower
access latency and higher bandwidths enable more ag-
gressive pre-cleaning without affecting the latency for
handling a page-fault.
Clustering. The Linux clustering mechanism assigns lo-
cations in the swap device to pages as they are written
out. To avoid random writes, Linux allocates clusters,
which are contiguous ranges of page slots. When a clus-
ter has been filled, Linux scans for a free cluster from the
start of the swap space. This reduces seek overheads on
disk by consolidating paging traffic near the beginning of
the swap space.

We analyze FlashVM performance for a variety of
cluster sizes from 8 KB to 4096 KB. In addition, for clus-
ters at least the size of an erase block, we align clusters

Linux Prefetching

FlashVM Prefetching

F F T X

Figure 3: Virtual Memory Prefetching: Linux reads-
around an aligned block of pages consisting of the target
page and delimited by free or bad blocks to minimize disk
seeks. FlashVM skips the free and bad blocks by seeking
to the next allocated page and reads all valid pages. (T,
F and X represent target, free and bad blocks on disk re-
spectively; unfilled boxes represent the allocated pages).

with erase-block boundaries to ensure minimum amount
of data must be erased.

4.1.2 Page Scanning
A virtual memory system must ensure that the rate at
which it selects pages for eviction matches the write
bandwidth of the swap device. Pages are selected by two
code paths: memory reclaim during page allocation; and
the page-out daemon that scan the inactive page list for
victim pages. The Linux VM subsystem balances the
rate of scanning with the rate of write-back to match the
bandwidth of the swap device. If the scanning rate is too
high, Linux throttles page write-backs by waiting for up
to 20–100 milliseconds or until a write completes. This
timeout, appropriate for disk, is more than two orders of
magnitude greater than flash access latencies.

FlashVM controls write throttling at a much finer
granularity of a system jiffy (one clock tick). Since mul-
tiple page writes in a full erase block on flash take up to
two milliseconds, FlashVM times-out for about one mil-
lisecond on our system. These timeouts do not execute
frequently, but have a large impact on the average page
fault latency [29]. This enables FlashVM to maintain
higher utilization of paging bandwidth and speeds up the
code path for write-back when reclaiming memory.

4.1.3 Prefetching on Page Fault
Operating systems prefetch pages after a page fault to
benefit from the sequential read bandwidth of the de-
vice [12]. The existing Linux prefetch mechanism reads
in up to 8 pages contiguous on disk around the target
page. Prefetching is limited by the presence of free or
bad page slots that represent bad blocks on disk. As
shown in Figure 3, these page slots delimit the start or
the end of the prefetched pages. On disk, this approach
avoids the extra cost of seeking around free and bad
pages, but often leads to fetching fewer than 8 pages.

FlashVM leverages fast random reads on flash with

two different prefetching mechanisms. First, FlashVM
seeks over the free/bad pages when prefetching to re-
trieve a full set of valid pages. Thus, the fast random ac-
cess of flash medium enables FlashVM to bring in more
pages with spatial locality than native Linux.

Fast random access on flash also allows prefetching of
more distant pages with temporal locality, such as stride
prefetching. FlashVM records the offsets between the
current target page address and the last two faulting ad-
dresses. Using these two offsets, FlashVM computes the
strides for the next two pages expected to be referenced
in the future. Compared to prefetching adjacent pages,
stride prefetching reduces memory pollution by reading
the pages that are more likely to be referenced soon.

We implement stride prefetching to work in conjunc-
tion with contiguous prefetching: FlashVM first reads
pages contiguous to the target page and then prefetches
stride pages. We find that fetching too many stride pages
increases the average page fault latency, so we limit the
stride to two pages. These two prefetching schemes re-
sult in a reduction in the number of page faults and im-
prove the total execution time for paging.

4.1.4 Disk Scheduling

The Linux VM subsystem submits page read and write
requests to the block-layer I/O scheduler. The choice
of the I/O scheduler affects scalability with multipro-
grammed workloads, as the scheduler selects the order
in which requests from different processes are sent to the
swap device.

Existing Linux I/O schedulers optimize performance
by (i) merging adjacent requests, (ii) reordering requests
to minimize seeks and to prioritize requests, and (iii)
delaying requests to allow a process to submit new re-
quests. Work-conserving schedulers, such as the NOOP
and deadline schedulers in Linux, submit pending re-
quests to the device as soon as the prior request com-
pletes. In contrast, non-work-conserving schedulers may
delay requests for up to 2–3 ms to wait for new requests
with better locality or to distribute I/O bandwidth fairly
between processes [9]. However, these schedulers opti-
mize for the performance characteristics of disks, where
seek is the dominant cost of I/O. We therefore analyze
the impact of different I/O schedulers on FlashVM.

The Linux VM system tends to batch multiple read re-
quests on a page fault for prefetching, and multiple write
requests for clustering evicted pages. Thus, paging traf-
fic is more regular than file system workloads in general.
Further, delaying requests for locality can lead to lower
device utilization on flash, where random access is only a
small component of the page transfer cost. Thus, we ana-
lyze the performance impact of work conservation when
scheduling paging traffic for FlashVM.
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4.2 FlashVM Reliability
Challenges. As flash geometry shrinks and MLC tech-
nology packs more bits into each memory cell, the prices
of flash devices have dropped significantly. Unfortu-
nately, so has the erasure limit per flash block. A sin-
gle flash block can typically undergo between 10,000
and 100,000 erase cycles, before it can no longer reliably
store data. Modern SSDs and flash devices use inter-
nal wear-leveling to spread writes across all flash blocks.
However, the bit error rates of these devices can still be-
come unacceptably high once the erasure limit is reached
[18]. As the virtual memory paging traffic may stress
flash storage, FlashVM specially manages page writes
to improve device reliability. It exploits the informa-
tion available in the OS about the state and content of a
page by employing page sampling and page sharing re-
spectively. FlashVM aims to reduce the number of page
writes and prolong the lifetime of the flash device dedi-
cated for swapping.

4.2.1 Page Sampling
Linux reclaims free memory by evicting inactive pages
in a least-recently-used order. Clean pages are simply
added to the free list, while reclaiming dirty pages re-
quires writing them back to the swap device.

FlashVM modifies the Linux page replacement algo-
rithm by prioritizing the reclaim of younger clean pages
over older dirty pages. While scanning for pages to re-
claim, FlashVM skips dirty pages with a probability de-
pendent on the rate of pre-cleaning. This policy increases
the number of clean pages that are reclaimed during each
scan, and thus reduces the overall number of writes to the
flash device.

The optimal rate for sampling dirty pages is strongly
related to the memory reference pattern of the applica-
tion. For applications with read-mostly page references,
FlashVM can find more clean pages to reclaim. How-
ever, for applications that frequently modify many pages,
skipping dirty pages for write-back leads to more fre-
quent page faults, because younger clean pages must be
evicted.

FlashVM addresses workload variations with adap-
tive page sampling: the probability of skipping a dirty
page also depends on the write rate of the application.
FlashVM predicts the average write rate by maintaining
a moving average of the time interval tn for writing n
dirty pages. When the application writes to few pages
and tn is large, FlashVM more aggressively skips dirty
pages. For applications that frequently modify many
pages, FlashVM reduces the page sampling probability
unless n pages have been swapped out. The balance
between the rate of page sampling and page writes is
adapted to provide a smooth tradeoff between device life-
time and application performance.

4.2.2 Page Sharing
The Linux VM system writes back pages evicted from
the LRU inactive list without any knowledge of page
content. This may result in writing many pages to the
flash device that share the same content. Detecting iden-
tical or similar pages may require heavyweight tech-
niques like explicitly tracking changes to each and every
page by using transparent page sharing [3] or content-
based page sharing by maintaining hash signatures for all
pages [8]. These techniques reduce the memory-resident
footprint and are orthogonal to the problem of reducing
the number of page write-backs.

We implement a limited form of content-based shar-
ing in FlashVM by detecting the swap-out of zero pages
(pages that contain only zero bytes). Zero pages form
a significant fraction of the memory-footprint of some
application workloads [8]. FlashVM intercepts paging
requests for all zero pages. A swap-out request sets a
zero flag in the corresponding page slot in the swap map,
and skips submitting a block I/O request. Similarly, a
swap-in request verifies the zero flag, which if found set,
allocates a zero page in the address space of the appli-
cation. This extremely lightweight page sharing mecha-
nism saves both the memory allocated for zero pages in
the main-memory swap cache and the number of page
write-backs to the flash device.

4.3 FlashVM Garbage Collection
Challenges. Flash devices cannot overwrite data in
place. Instead, they must first erase a large flash block
(128–512 KB), a slow operation, and then write to pages
within the erased block. Lack of sufficient pre-erased
blocks may result in copying multiple flash blocks for
a single page write to: (i) replenish the pool of clean
blocks, and (ii) ensure uniform wear across all blocks.
Therefore, flash performance and overhead of wear man-
agement are strongly dependent on the number of clean
blocks available within the flash device. For example,
high-end enterprise SSDs can suffer up to 85% drop in
write performance after extensive use [24, 26]. As a re-
sult, efficient garbage collection of clean blocks is neces-
sary for flash devices, analogous to the problem of seg-
ment cleaning for log-structured file systems [28].

For virtual memory, sustained paging can quickly age
the dedicated flash device by filling up all free blocks.
When FlashVM overwrites a block, the device can re-
claim the storage previously occupied by that block.
However, only the VM system has knowledge about
empty (free) page clusters. These clusters consist of
page slots in the swap map belonging to terminated pro-
cesses, dirty pages that have been read into the memory
and all blocks on the swap device after a reboot. Thus,
a flash device that implements internal garbage collec-
tion or wear-leveling may unnecessarily copy stale data,
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blocks discarded on the average latency of a single dis-
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reducing performance and reliability when not informed
about invalid pages.

FlashVM addresses this problem by explicitly noti-
fying the flash device of such pages by using the dis-
card command (also called trim introduced in the recent
SATA SSDs [30]). The discard command has the follow-
ing semantics:

discard( dev, rangelist[ (sector, nsectors), .... ] )

where rangelist is the list of logical block address
ranges to be discarded on the flash device dev. Each
block range is represented as a pair of the starting sec-
tor address and the number of following sectors.

Free blocks can be discarded offline by first flushing
all in-flight read/write requests to the flash device, and
then wiping the requested logical address space. How-
ever, offline discard typically offers very coarse-grain
functionality, for example in the form of periodic disk
scrubbing or disk format operations [20]. Therefore,
FlashVM employs online cleaning that discards a smaller
range of free flash page clusters at runtime.

Linux implements rudimentary support for online
cleaning in recent kernel versions starting in 2.6.28.
When it finds 1 MB of free contiguous pages, it submits a
single discard request for the corresponding page cluster.
However, Linux does not fully support discard yet: the
block layer breaks discard requests into smaller requests
of no more than 256 sectors, while the ATA disk driver
ignores them. Thus, the existing Linux VM is not able to
actually discard the free page clusters. FlashVM instead
bypasses the block and ATA driver layers and sends dis-
card commands directly to the flash device through the
SCSI layer [14, 16]. Thus, FlashVM has the ability to
discard any number of sectors in a single command.

We next present an experimental analysis of the cost of
discard on current flash devices. Based on these results,

which show that discard is expensive, we describe two
different techniques that FlashVM uses to improve the
performance of garbage collection: merged discard and
dummy discard.

4.3.1 Discard Cost
We measure the latency of discard operations on the
OCZ-Vertex SSD, which uses the Indilinx flash con-
troller used by many SSD manufacturers. Figure 4 shows
the overheads for discard commands issued over block
address ranges of different sizes. Based on Figure 4, we
infer the cost of a single discard command for cleaning B
flash blocks in one or more address ranges, each having
an average utilization u of valid (not previously cleaned)
pages:

costM =
{

co if B ≤ Bo

co + m · u · (B − Bo) otherwise

In this equation, co is the fixed cost of discarding up
to Bo blocks and m is the marginal cost of discarding
each additional block. Interestingly, the fixed cost of a
single discard command is 55 milliseconds! We spec-
ulate that this overhead occurs because the SSD con-
troller performs multiple block erase operations on dif-
ferent flash channels when actually servicing a discard
command [15]. The use of an on-board RAM buffer con-
ceals the linear increase only up to a range of Bo blocks
lying between 10–100 megabytes.

The cost of discard is exacerbated by the effect of com-
mand queuing: the ATA specification defines the discard
commands as untagged, requiring that every discard be
followed by an I/O barrier that stalls the request queue
while it is being serviced. Thus, the long latency of dis-
cards requires that FlashVM optimize the use of the com-
mand, as the overhead incurred may outweigh the perfor-
mance and reliability benefits of discarding free blocks.

4.3.2 Merged Discard
The first optimization technique that FlashVM uses is
merged discard. Linux limits the size of each discard
command sent to the device to 128 KB. However, as
shown in Figure 4, discards get cheaper per byte as range
sizes increase. Therefore, FlashVM opportunistically
discards larger block address ranges. Rather than discard
pages on every scan of the swap map, FlashVM defers
the operation and batches discards from multiple scans.
It discards the largest possible range list of free pages up
to a size of 100 megabytes in a single command.

This approach has three major benefits. First, delay-
ing discards reduces the overhead of scanning the swap
map. Second, merging discard requests amortizes the
fixed discard cost co over multiple block address ranges.
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Third, FlashVM merges requests for fragmented and
non-contiguous block ranges. In contrast, the I/O sched-
uler only merges contiguous read/write requests.

4.3.3 Dummy Discard
Discard is only useful when it creates free blocks that
can later be used for writes. Overwriting a block also
causes the SSD to discard the old block contents, but
without paying the high fixed costs of the discard com-
mand. Furthermore, overwriting a free block removes
some of the benefit of discarding to maintain a pool of
empty blocks. Therefore, FlashVM implements dummy
discard to avoid a discard operation when unnecessary.

Dummy discard elides a discard operation if the block
is likely to be overwritten soon. This operation implic-
itly informs the device that the old block is no longer
valid and can be asynchronously garbage collected with-
out incurring the fixed cost of a discard command. As
FlashVM only writes back page clusters that are inte-
gral multiples of erase-block units, no data from partial
blocks needs to be relocated. Thus, the cost for a dummy
discard is effectively zero.

Unlike merged discards, dummy discards do not make
new clean blocks available. Rather, they avoid an inef-
fective discard, and can therefore only replace a fraction
of all discard operations. FlashVM must therefore de-
cide when to use each of the two techniques. Ideally,
the number of pages FlashVM discards using each oper-
ation depends on the available number of clean blocks,
the ratio of their costs and the rate of allocating free page
clusters. Upcoming and high-end enterprise SSDs ex-
pose the number of clean blocks available within the de-
vice [24]. In the absence of such functionality, FlashVM
predicts the rate of allocation by estimating the expected
time interval ts between two successive scans for find-
ing a free page cluster. When the system scans fre-
quently, recently freed blocks are overwritten soon, so
FlashVM avoids the extra cost of discarding the old con-
tents. When scans occur rarely, discarded clusters remain
free for an extended period and benefit garbage collec-
tion. Thus, when ts is small, FlashVM uses dummy dis-
cards, and otherwise applies merged discards to a free
page cluster in the swap map.

4.4 Summary
FlashVM architecture improves performance, reliability
and garbage collection overheads for paging to dedicated
flash. Some of the techniques incorporated in FlashVM,
such as zero-page sharing, also benefit disk-backed vir-
tual memory. However, the benefit of sharing is more
prominent for flash, as it provides both improved perfor-
mance and reliability.

While FlashVM is designed for managed flash, much
of its design is applicable to unmanaged flash as well. In

Device Sequential (MB/s) Random 4K-IO/s Latency
Read Write Read Write ms

Seagate Disk 80 68 120-300/s 4-5
IBM SSD 69 20 7K/s 66/s 0.2
OCZ SSD 230 80 5.5K/s 4.6K/s 0.2
Intel SSD 250 70 35K/s 3.3K/s 0.1

Table 2: Device Characteristics: First-generation IBM
SSD is comparable to disk in read bandwidth but excels
for random reads. Second-generation OCZ-Vertex and
Intel SSDs provide both faster read/write bandwidths and
IOPS. Write performance asymmetry is more prominent
in first-generation SSDs.

such a system, FlashVM would take more control over
garbage collection. With information about the state of
pages, it could more effectively clean free pages with-
out an expensive discard operation. Finally, this design
avoids the cost of storing persistent mappings of logi-
cal block addresses to physical flash locations, as virtual
memory is inherently volatile.

5 Evaluation
The implementation of FlashVM entails two compo-
nents: changes to the virtual memory implementation in
Linux and dedicated flash for swapping. We implement
FlashVM by modifying the memory management sub-
system and the block layer in the x86-64 Linux 2.6.28
kernel. We focus our evaluation on three key questions
surrounding these components:

• How much does the FlashVM architecture of ded-
icated flash for virtual memory improve perfor-
mance compared to traditional disk-based swap-
ping?

• Does FlashVM software design improve perfor-
mance, reliability via write-endurance and garbage
collection for virtual memory management on
flash?

• Is FlashVM a cost-effective approach to improving
system price/performance for different real-world
application workloads?

We first describe our experimental setup and method-
ology and then present our evaluation to answer these
three questions in Section 5.2, 5.3 and 5.4 respectively.
We answer the first question by investigating the bene-
fits of dedicating flash for paging in Section 5.2. In Sec-
tion 5.3 and 5.4, we isolate the impact of FlashVM soft-
ware design by comparing against the native Linux VM
implementation.

5.1 Methodology
System and Devices. We run all tests on a 2.5 GHz
Intel Core 2 Quad system configured with 4 GB DDR2

DRAM and 3 MB L2 cache per core, although we reduce
the amount of memory available to the OS for our tests,
as and when mentioned. We compare four storage de-
vices: an IBM first generation SSD, a trim-capable OCZ-
Vertex SSD, an Intel X-25M second generation SSD,
and a Seagate Barracuda 7200 RPM disk, all using native
command queuing. Device characteristics are shown in
Table 2.
Application Workloads. We evaluate FlashVM per-
formance with four memory-intensive application work-
loads with varying working set sizes:

1. ImageMagick 6.3.7, resizing a large JPEG image by
500%,

2. Spin 5.2 [31], an LTL model checker for testing mu-
tual exclusion and race conditions with a depth of
10 million states,

3. pseudo-SpecJBB, a modified SpecJBB 2005 bench-
mark to measure execution time for 16 concurrent
data warehouses with 1 GB JVM heap size using
Sun JDK 1.6.0,

4. memcached 1.4.1 [17], a high-performance object
caching server bulk-storing or looking-up 1 million
random 1 KB key-value pairs.

All workloads have a virtual memory footprint large
enough to trigger paging and reach steady state for our
analysis. For all our experiments, we report results av-
eraged over five different runs. While we tested with all
SSDs, we mostly present results for the second genera-
tion OCZ-Vertex and Intel SSDs for brevity.

5.2 Dedicated Flash
We evaluate the benefit of dedicating flash to virtual
memory by: (i) measuring the costs of sharing storage
with the file system, which arise from scheduling com-
peting I/O traffic, and (ii) comparing the scalability of
virtual memory with traditional disk-based swapping.

5.2.1 Read/Write Interference
With disk, the major cost of interference is the seeks
between competing workloads. With an SSD, however,
seek cost is low and the cost of interference arises from
interleaving reads and writes from the file and VM sys-
tems. Although this cost occurs with disks as well, it is
dominated by the overhead of seeking. We first evaluate
the performance loss from interleaving, and then mea-
sure the actual amount of interleaving with FlashVM.

We use a synthetic benchmark that reads or writes a
sequence of five contiguous blocks. Figure 5(a) shows
I/O performance as we interleave reads and writes for
disk, IBM SSD and Intel SSD. For disk, I/O performance
drops from its sequential read bandwidth of 80 MB/s to
8 MB/s when the fraction of interleaved writes reaches
60% because the drive head has to be repositioned be-

tween read and write requests. On flash, I/O performance
also degrades as the fraction of writes increase: IBM
and Intel SSDs performance drops by 10x and 7x respec-
tively when 60 percent of requests are writes. Thus, in-
terleaving can severely reduce system performance.

These results demonstrate the potential improvement
from dedicated flash, because, unlike the file system, the
VM system avoids interleaved read and write requests.
To measure this ability, we traced the block I/O requests
enqueued at the block layer by the VM subsystem us-
ing Linux blktrace. Page read and write requests are
governed by prefetching and page-out operations, which
batch up multiple read/write requests together. On ana-
lyzing the average length of read request streams inter-
leaved with write requests for ImageMagick and Spin,
we found that FlashVM submits long strings of read and
write requests. The average length of read streams ranges
between 138–169 I/O requests, and write streams are be-
tween 170–230 requests. Thus, the FlashVM system ar-
chitecture benefits from dedicating flash without inter-
leaved reads and writes from the file system.

5.2.2 Scaling Virtual Memory
Unlike flash, dedicating a disk for swapping does not
scale with multiple applications contending for memory.
This scalability manifests in two scenarios: increased
throughput as the number of threads or programs in-
creases, and decreased interference between programs
competing for memory.
Multiprogramming. On a dedicated disk, competing
programs degenerate into random page-fault I/O and
high seek overheads. Figure 5(b) compares the paging
throughput on different devices as we run multiple in-
stances of ImageMagick. Performance, measured by the
rate of page faults served per second, degrades for both
disk and the IBM SSD with as few as 3 program in-
stances, leading to a CPU utilization of 2–3%. For the
IBM SSD, performance falls largely due to an increase
in the random write traffic, which severely degrades its
performance.

In contrast, we find improvement in the effective uti-
lization of paging bandwidth on the Intel SSD with an
increase in concurrency. At 5 instances, paging traffic al-
most saturates the device bandwidth: for each page fault
FlashVM prefetches an additional 7 pages, so it reads
96 MB/s to service 3,000 page faults per second. In ad-
dition, it writes back a proportional but lower number
of pages. Above 5 instances of ImageMagick, the page
fault service rate drops because of increased congestion
for paging traffic: CPU utilization falls from 54% with
5 concurrent programs to 44% for 8 programs, and write
traffic nears the bandwidth of the device. Nevertheless,
these results demonstrate that performance scales sig-
nificantly as multiprogramming increases on flash when
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Figure 5: Dedicated Flash: Impact of dedicating flash for VM on performance for read/write interference with file
system traffic, paging throughput for multiprogrammed workloads and response time for increased memory contention.

compared to disk. We find similar increase in paging
throughput on dedicated flash for multithreaded applica-
tions like memcached. FlashVM performance and device
utilization increase when more threads generate more si-
multaneous requests. This is much the same argument
that exists for hardware multithreading to increase paral-
lelism in the memory system.
Response Time. The second scalability benefit of ded-
icated flash is faster response time for demand pag-
ing when multiple applications contend for memory.
Figure 5(c) depicts the phenomena frequently observed
on desktops when switching to inactive applications.
We model this situation with two processes each hav-
ing working-set sizes of 512 MB and 1.5 GB, that con-
tend for memory on a system configured with 1 GB
of DRAM. The curves show the resident set sizes (the
amount of physical memory in use by each process) and
the aggregate number of page faults in the system over
a time interval of 140 seconds. The first process is ac-
tive for the first 10 seconds and is then swapped out by
the Linux VM to accommodate the other process. When
120 seconds have elapsed, the second process terminates
and the first process resumes activity.

Demand paging the first process back into memory
incurs over 16,000 page faults. With disk, this takes
11.5 seconds and effectively prevents all other applica-
tions from accessing the disk. In contrast, resuming the
first process takes only 3.5 seconds on flash because of
substantially lower flash access latency. Thus, perfor-
mance degrades much more acceptably with dedicated
flash than traditional disk-based swapping, leading to
better scalability as the number of processes increase.

5.3 FlashVM Software Evaluation

FlashVM enhances the native Linux virtual memory sys-
tem for improved performance, reliability and garbage
collection. We first analyze our optimizations to the ex-
isting VM mechanisms required for improving flash per-
formance, followed by our enhancements for wear man-
agement and garbage collection of free blocks.

5.3.1 Performance Analysis

We analyze the performance of different codes paths that
impact the paging performance of FlashVM.

Page pre-cleaning. Figure 6(a) shows the performance
of FlashVM for ImageMagick, Spin and memcached as
we vary the number of pages selected for write-back
(pre-cleaned) on each page fault. Performance is poor
when only two pages are written back because the VM
system frequently scans the inactive list to reclaim pages.
However, we find that performance does not improve
when pre-cleaning more than 32 pages, because the over-
head of scanning is effectively amortized at that point.
Page clustering. Figure 6(b) shows FlashVM perfor-
mance as we vary the cluster size, the number of pages
allocated contiguously on the swap device, while keep-
ing pre-cleaning constant at 32 pages. When only two
pages are allocated contiguously (cluster size is two),
overhead increases because the VM system wastes time
finding free space. Large cluster sizes lead to more se-
quential I/O, as pages are allocated sequentially within
a cluster. However, our results show that above 32 page
clusters, performance again stabilizes. This occurs be-
cause 32 pages, or 128 KB, is the size of a flash erase
block and is enough to obtain the major benefits of se-
quential writes on flash. We tune FlashVM with these
optimal values for pre-cleaning and cluster sizes for all
our further experiments.
Congestion control. We evaluate the performance of
FlashVM congestion control by comparing it against na-
tive Linux on single- and multi-threaded workloads. We
separately measured the performance of changing the
congestion timeout for the page allocator and for both
the page allocator and the kswapd page-out daemon for
ImageMagick. With the native Linux congestion control
timeout tuned to disk access latencies, the system idles
even when there is no congestion.

For single-threaded programs, reducing the timeout
for the page allocator from 20ms to 1ms improved per-
formance by 6%, and changing the timeout for kswapd

Read-Ahead Native Stride
(# of pages) PF Time PF Time

2 139K 103.2 118K / 15% 88.5 / 14%
4 84K 96.3 70K / 17% 85.7 / 11%
8 56K 91.5 44K / 21% 85.1 / 7%

16 43K 89.0 28K / 35% 83.5 / 6%

Table 3: VM Prefetching: Impact of native Linux and
FlashVM prefetching on the number of page faults and
application execution time for ImageMagick. (PF is
number of hard page faults in thousands, Time is elapsed
time in seconds, and percentage reduction and speedup
are shown for the number of page faults and application
execution time respectively.)

in addition leads to a 17% performance improvement.
For multithreaded workloads, performance improved 4%
for page allocation and 6% for both page allocation and
the kswapd. With multiple threads, the VM system is
less likely to idle inappropriately, leading to lower ben-
efits from a reduced congestion timeout. Nevertheless,
FlashVM configures lower timeouts, which better match
the latency for page access on flash.
Prefetching. Along the page-fault path, FlashVM
prefetches more aggressively than Linux by reading
more pages around the faulting address and fetching
pages at a stride offset. Table 3 shows the benefit of these
two optimizations for ImageMagick. The table lists the
number of page faults and performance as we vary the
number of pages read-ahead for FlashVM prefetching
against native Linux prefetching, both on the Intel SSD.

We find that FlashVM outperforms Linux for all val-
ues of read-ahead. The reduction in page faults improves
from 15% for two pages to 35% for 16 pages, because
of an increase in the difference between the number of
pages read for native Linux and FlashVM. However, the
speedup decreases because performance is lost to ran-
dom access that results in increased latency per page
fault. More sophisticated application-directed prefetch-
ing can provide additional benefits by exploiting a more
accurate knowledge of the memory reference patterns
and the low seek costs on flash.
Disk Scheduling. FlashVM depends on the block layer
disk schedulers for merging or re-ordering I/O requests
for efficient I/O to flash. Linux has four standard sched-
ulers, which we compare in Figure 6(c). For each sched-
uler, we execute 4 program instances concurrently and
report the completion time of the last program. We scale
the working set of the program instances to ensure rele-
vant comparison on each individual device, so the results
are not comparable across devices.

On disk, the NOOP scheduler, which only merges ad-
jacent requests before submitting them to the block de-
vice driver in FIFO order, performs worst, because it re-
sults in long seeks between requests from different pro-

cesses. The deadline scheduler, which prioritizes syn-
chronous page faults over asynchronous writes, performs
best. The other two schedulers, CFQ and anticipatory,
insert delays to minimize seek overheads, and have in-
termediate performance.

In contrast, for both flash devices the NOOP scheduler
outperforms all other schedulers, outperforming CFQ
and anticipatory scheduling by as much as 35% and the
deadline scheduler by 10%. This occurs because there is
no benefit to localizing seeks on an SSD. We find that
average page access latency measured for disk increases
linearly from 1 to 6 ms with increasing seek distance.
In contrast, for both SSDs, seek time is constant and
less than 0.2 ms even for seek distances up to several
gigabytes. So, the best schedule for SSDs is to merge
adjacent requests and queue up as many requests as
possible to obtain the maximum bandwidth. We find that
disabling delaying of requests in the anticipatory sched-
uler results in a 22% performance improvement, but it
is still worse than NOOP. Thus, non work-conserving
schedulers are not effective when swapping to flash,
and scheduling as a whole is less necessary. For the
remaining tests, we use the NOOP scheduler.

5.3.2 Wear Management

FlashVM reduces wear-out of flash blocks by write re-
duction using dirty page sampling and zero-page sharing.

Page Sampling. For ImageMagick, uniformly skipping
1 in 100 dirty pages for write back results in up to 12%
reduction in writes but a 5% increase in page faults and
a 7% increase in the execution time. In contrast, skip-
ping dirty pages aggressively only when the program has
a lower write rate better prioritizes the eviction of clean
pages. For the same workload, adaptively skipping 1 in
20 dirty pages results in a 14% write reduction without
any increase in application execution time. Thus, adap-
tive page sampling better reduces page writes with less
affect on application performance.

Page Sharing. The number of zero pages swapped out
from the inactive LRU list to the flash device is de-
pendent on the memory-footprint of the whole system.
Memcached clients bulk-store random keys, leading to
few empty pages and only 1% savings in the number of
page writes with zero-page sharing. In contrast, both Im-
ageMagick and Spin result in substantial savings. Im-
ageMagick shows up to 15% write reduction and Spin
swaps up to 93% of zero pages. We find that Spin pre-
allocates a large amount of memory and zeroes it down
before the actual model verification phase begins. Zero-
page sharing improves both the application execution
time as well as prolongs the device lifetime by reducing
the number of page writes.
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Figure 6: Performance Analysis: Impact of page pre-cleaning, page clustering and disk scheduling on FlashVM
performance for different application workloads.

5.3.3 Garbage Collection

FlashVM uses merged and dummy discards to optimize
garbage collection of free VM pages on flash. We com-
pare the performance of garbage collection for FlashVM
against native Linux VM on an SSD. Because Linux can-
not currently execute discards, we instead collect block-
level I/O traces of paging traffic for different applica-
tions. The block layer breaks down the VM discard I/O
requests into 128 KB discard commands, and we emu-
late FlashVM by merging multiple discard requests or re-
placing them with equivalent dummy discard operations
as described in Section 4.3. Finally, we replay the pro-
cessed traces on an aged trim-capable OCZ-Vertex SSD
and record the total trace execution time.
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Figure 7: Garbage Collection Performance: Impact
of merged and dummy discards on application perfor-
mance for FlashVM. y-axis is log-scale for application
execution time.

Figure 7 compares the performance of four different
systems: FlashVM with merged discards over 100 MB
ranges, FlashVM with dummy discards, native Linux
VM with discard support and baseline Linux VM with-
out discard support. Linux with discard is 12 times
slower than the baseline system, indicating the high cost
for inefficient use of the discard command. In contrast,

Workload DiskVM FlashVM
Const Mem Const Runtime

Runtime Mem Rel. Runtime Rel. Memory
ImageMagick 207 814 31% 51%

Spin 209 795 11% 16%
SpecJBB 275 710 6% 19%

memcached-store 396 706 18% 60%
memcached-lookup 257 837 23% 50%

Table 4: Cost/Benefit Analysis: FlashVM analysis for
different memory-intensive application workloads. Sys-
tems compared are DiskVM with disk-backed VM, a
FlashVM system with the same memory (Const Mem)
and one with the same performance but less memory
(Const Runtime). FlashVM results show the execution
time and memory usage, both relative to DiskVM. Ap-
plication execution time Runtime is in seconds; memory
usage Mem is in megabytes.

FlashVM with merged discard, which also has the re-
liability benefits of Linux with discard, is only 15 per-
cent slower than baseline. With the addition of adap-
tive dummy discards, which reduces the rate of discards
when page clusters are rapidly allocated, performance is
11% slower than baseline. In all cases, the slowdown is
due to the long latency of discard operations, which have
little direct performance benefit. These results demon-
strate that naive use of discard greatly degrades perfor-
mance, while FlashVM’s merged and dummy discard
achieve similar reliability benefits at performance near
native speeds.

5.4 FlashVM Application Performance

Adoption of FlashVM is fundamentally an economic de-
cision: a FlashVM system can perform better than a
DiskVM system even when it is provisioned with more
expensive DRAM. Therefore, we evaluate the perfor-
mance gains and memory savings when replacing disk
with flash for paging. Our results reflect estimates for
absolute memory savings in megabytes.

Table 4 presents the performance and memory usage
of five application workloads on three systems:

1. DiskVM with 1 GB memory and a dedicated disk for
swapping;

2. FlashVM - Const Mem with the same DRAM size
as DiskVM, but improved performance;

3. FlashVM - Const Runtime with reduced DRAM
size, but same performance as DiskVM.

Our analysis in Table 4 represents configurations that
correspond to the three data points shown in Figure 1.
System configurations for workloads with high locality
or unused memory do not page and show no benefit from
FlashVM. Similarly, those with no locality or extreme
memory requirements lie on the far left in Figure 1 and
perform so poorly as to be unusable. Such data points
are not useful for analyzing virtual memory performance.
The column in Table 4 titled DiskVM shows the execu-
tion time and memory usage of the five workloads on a
system swapping to disk. Under FlashVM - Const Mem
and FlashVM - Const Runtime, we show the percentage
reduction in the execution time and memory usage re-
spectively, both when compared to DiskVM. The reduc-
tion in memory usage corresponds to the potential price
savings by swapping to flash rather than disk for achiev-
ing similar performance.

For all applications, a FlashVM system outperforms
a system configured with the same amount of DRAM
and disk-backed VM (FlashVM - Const Mem against
DiskVM). FlashVM’s reduction in execution time varies
from 69% for ImageMagick to 94% for the modified
SpecJBB, a 3-16x speedup. On average, FlashVM re-
duces run time by 82% over DiskVM. Similarly, we find
that there is a potential 60% reduction in the amount of
DRAM required on the FlashVM system to achieve sim-
ilar performance as DiskVM (FlashVM - Const Runtime
against DiskVM). This benefit comes directly from the
lower access latency and higher bandwidth of flash, and
results in both price and power savings for the FlashVM
system.

Overall, we find that applications with poor locality
have higher memory savings because the memory saved
does not substantially increase their page fault rate. In
contrast, applications with good locality see proportion-
ally more page faults from each lost memory page. Fur-
thermore, applications also benefit differently depending
on their access patterns. For example, when storing ob-
jects, memcached server performance improves 5x on a
FlashVM system with the same memory size, but only
4.3x for a lookup workload. The memory savings differ
similarly.

6 Related Work
The FlashVM design draws on past work investigating
the use of solid-state memory for storage. We categorize
this work into the following four classes:

Persistent Storage. Flash has most commonly been pro-
posed as a storage system to replace disks. eNVy pre-
sented a storage system that placed flash on the mem-
ory bus with a special controller equipped with a battery-
backed SRAM buffer [33]. File systems, such as YAFFS
and JFFS2 [27], manage flash to hide block erase la-
tencies and perform wear-leveling to handle bad blocks.
More recently, TxFlash exposes a novel transactional in-
terface to use flash memory by exploiting its copy-on-
write nature [25]. These systems all treat flash as per-
sistent storage, similar to a file system. In contrast,
FlashVM largely ignores the non-volatile aspect of flash
and instead focuses on the design of a high-performance,
reliable and scalable virtual memory.
Hybrid Systems. Guided by the price and performance
of flash, hybrid systems propose flash as a second-level
cache between memory and disk. FlashCache uses flash
as secondary file/buffer cache to provide a larger caching
tier than DRAM [10]. Windows and Solaris can use
USB flash drives and solid-state disks as read-optimized
disk caches managed by the file system [2, 7]. All these
systems treat flash as a cache of the contents on a disk
and mainly exploit its performance benefits. In contrast,
FlashVM treats flash as a backing store for evicted pages,
accelerates both read and write operations, and provides
mechanisms for improving flash reliability and efficiency
of garbage collection by using the semantic information
about paging only available within the OS.
Non-volatile Memory. NAND flash is the only mem-
ory technology after DRAM that has become cheap
and ubiquitous in the last few decades. Other non-
volatile storage class memory technologies like phase-
change memory (PCM) and magneto-resistive memory
(MRAM) are expected to come at par with DRAM prices
by 2015 [21]. Recent proposals have advocated the use
of PCM as a first-level memory placed on the memory
bus alongside DRAM [11, 19]. In contrast, FlashVM
adopts cheap NAND flash and incorporates it as swap
space rather than memory directly addressable by user-
mode programs.
Virtual Memory. Past proposals on using flash as virtual
memory focused on new page-replacement schemes [23]
or providing compiler-assisted, energy-efficient swap
space for embedded systems [13, 22]. In contrast,
FlashVM seeks more OS control for memory manage-
ment on flash, while addressing three major problems
for paging to dedicated flash. Further, we present the
first description of the usage of the discard command on
a real flash device and provide mechanisms to optimize
the performance of garbage collection.

7 Conclusions
FlashVM adapts the Linux virtual memory system for
the performance, reliability, and garbage collection char-
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acteristics of flash storage. In examining Linux, we find
many dependencies on the performance characteristics of
disks, as in the case of prefetching only adjacent pages.
While the assumptions about disk performance are not
made explicit, they permeate the design, particularly re-
garding batching of requests to reduce seek latencies and
to amortize the cost of I/O. As new storage technologies
with yet different performance characteristics and chal-
lenges become available, such as memristors and phase-
change memory, it will be important to revisit both oper-
ating system and application designs.
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Abstract

Dyson is a new software architecture for building cus-
tomizable WLANs. While research in wireless networks
has made great strides, these advancements have not seen
the light of day in real WLAN deployments. One of the
key reasons is that today’s WLANs are not architected
to embrace change. For example, system administrators
cannot fine-tune the association policy for their particular
environment: an administrator may know certain nodes
in certain locations interfere with each other and cause
a severe degradation in throughput, and hence, such as-
sociations must be avoided in the particular deployment.
Dyson defines a set of APIs that allow clients and APs to
send pertinent information such as radio channel condi-
tions to a central controller. The central controller pro-
cesses this information, to form a global view of the net-
work. This global view, combined with historical infor-
mation about spatial and temporal usage patterns, allows
the central controller enact a rich set of policies to control
the network’s behavior. Dyson provides a Python-based
scripting API that allows the central controller’s poli-
cies to be extended for site-specific customizations and
new optimizations that leverage historical knowledge. We
have built a prototype implementation of Dyson, which
currently runs on a 28-node testbed distributed across one
floor of a typical academic building. Using this testbed,
we examine various aspects of the architecture in detail,
and demonstrate the ease of implementing a wide range of
policies. Using Dyson, we demonstrate optimizing asso-
ciations, handling VoIP clients, reserving airtime for spe-
cific users, and optimizing handoffs for mobile clients.

1 Introduction

Wireless networks are struggling to keep up with the
demands of new applications, such as media streaming,
voice over IP, and the increasing use of mobile devices,
such as Wi-Fi enabled smartphones. Researchers have
proposed numerous ways to cope with these changing
demands, including new approaches to association and
handoff control [22], channel allocation strategies [20,
17], and centralized packet transmission scheduling [26].
However, deploying these innovations in real wireless
LANs remains a significant challenge. Enterprises wish-
ing to roll out new applications, services, or policies in
a wireless LAN are faced with ossified standards and a

wide variety of software, device driver, and hardware im-
plementations of these standards by many different ven-
dors. Compounding this problem is the fact that existing
WLAN standards generally do not allow for much cus-
tomization. In this paper, we argue that it is time to rethink
the architecture of wireless networks from the ground up,
to enable greater observability, control, and extensibility
to meet future needs.

Today, WLAN vendors offer few knobs to customize
network operation. A case in point is the Microsoft cam-
pus enterprise wireless network, which uses access points
supplied a single vendor. These access points are man-
aged by a central controller, which attempts to dynami-
cally tune the assignments for channel selection and trans-
mit power to improve performance. Shortly after these
new APs were deployed, the WLAN administrators re-
alized that the transmit power control algorithm was not
suitable for our campus. Because the algorithm was
geared towards avoiding interference, many APs reduced
their transmit power to such an extent that it left large
holes in coverage. The controller offered no knobs to
allow administrators to customize the power assignment
algorithm; the only option was to disable it entirely.

In the above example, the lack of flexibility does not
arise from the 802.11 standard, which is in fact quite flex-
ible in many respects: it imposes no specific policies on
association, channel assignment, or power control. The
problem is that there is no agreed-upon framework to con-
trol these knobs. Moreover, there are no explicit mecha-
nisms for stations to coordinate with each other to observe
the state of the network, requiring nodes to take a purely
local “every station for itself” point-of-view. This local
viewpoint then encourages vendors to hard-code impor-
tant algorithms into device drivers and firmware that af-
fect WLAN performance, such as those that control AP
associations, PHY data rates, and transmission power.

In this paper, we present a new WLAN architecture,
called Dyson, that is designed to enable extensive cus-
tomization and control over many aspects of network op-
eration and performance. The Dyson architecture is de-
signed to support global network observation, deep con-
trol, and extensibility to meet future needs. In Dyson,
both clients and access points coordinate with the net-
work infrastructure to provide detailed measurements on
location, radio channel conditions, connectivity, and ob-
served performance. Measurements are stored in a per-
sistent database, allowing the infrastructure to adapt its
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behavior based on historical knowledge of network state.
Dyson defines a set of APIs that allow clients and APs to
share pertinent performance information such as packet
loss rates and radio channel conditions. Dyson also de-
fines a control interface, supported by both clients and
APs, that permits the infrastructure to manage many as-
pects of their operation, including associations, channel
selection, PHY rate, and transmission throttling. The cen-
tral controller can enact a rich set of policies to control
the WLAN behavior. These polices are built, customized
and extended using a Python-based scripting API. Even
though Dyson benefits when all clients in the WLAN sup-
port the control interface, it can still work with a mix of
legacy and controllable clients.

Dyson’s design hinges on the use of a centralized net-
work controller, a common feature in recent research [22,
26, 11] and commercial [1, 2] WLANs for enterprises.
None of the previous centralized WLAN systems have
considered flexibility and evolvability as their primary de-
sign requirement. Dyson focuses on providing a rich set
of APIs that allow the network’s operation to be extended
to embrace new application demands and site-specific
customizations. Dyson’s Python programming interface
makes it easy to develop new policies and experiment
with a wide range of behaviors. To demonstrate Dyson’s
flexibilty, we have implemented a range of policies for op-
timizing associations, handling VoIP clients, and reserv-
ing airtime for specific users.

This paper makes the following contributions. First,
Dyson is the first wireless LAN architecture that di-
rectly addresses the need for extensibility and evolvabil-
ity, leveraging both centralized control and client-side in-
strumentation to enable a wide range of new policies to be
layered on the existing network. Second, Dyson enables
more efficient use of radio spectrum by taking measure-
ments gathered from both clients and APs into account.
Third, we have implemented Dyson on a 28-node testbed
distributed over one floor of an office building, which we
use to evaluate the system in detail using a range of poli-
cies. We demonstrate how WLAN behavior can be easily
customized via Dyson’s policies to provide better perfor-
mance overall.

2 Dyson Architecture

The Dyson network architecture, shown in Figure 2, con-
sists of a number of wireless clients, access points (APs),
and a single central controller (CC). As described below,
both APs and Dyson-enabled clients report measurements
to the infrastructure, which are used to construct a dy-
namic network map representing the state of the network.
Measurements are also logged to a database for historical
analysis, and static information on AP location and MAC
addresses are stored in a separate AP database. Extensi-
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Figure 1: The Dyson network architecture.

bility is enabled through policies that are used to trigger
network configuration changes via commands delivered
by the central controller to APs and clients.

Dyson builds upon existing 802.11 standards, including
CSMA MAC and the format of the data and management
frames. As a result, Dyson can be implemented entirely
using existing 802.11-compatible hardware. The key dif-
ference between Dyson and existing enterprise WLANs
is the manner in which network management and con-
trol is performed. The Dyson architecture requires APs to
be Dyson-aware. Dyson-aware clients support enhanced
functionality for measurement collection and control, as
described below. Legacy 802.11 clients can be supported
by Dyson, although with reduced functionality. Note
that Dyson-enabled clients remain compatible with legacy
802.11 networks.

The use of a central controller in enterprise WLANs
is widespread.1 For example, in Aruba [1] networks, the
CC is responsible for assigning radio channels and trans-
mission power levels to individual APs based on global
observation of the network traffic. Dyson significantly
augments this design by extending both observation and
control to the wireless clients as well as the APs. Dyson
clients are responsible for collecting periodic measure-
ments of channel and traffic conditions and reporting them
to the CC, as well as responding to commands from the
CC that control many aspects of transmission parameters,
as described below.

A key question that arises in this regime is how much
control clients should yield to the infrastructure. At one
extreme, the CC could control clients at a very fine-
grained level, for example, by dictating individual packet
transmission timings [26]. However, this design would
require substantial control overhead, and would fail to re-

1Note that the CC need not be physically centralized, as this func-
tionality can be replicated across multiple physical hosts for reliability
and scalability.

spond rapidly to local changes in channel conditions (e.g.,
interference) at the client. In Dyson, we opt to affect con-
trol at a higher level, via channel allocations, client-AP
associations and throttling. Although cruder than packet-
level control, this design strikes a balance between the
overhead for command issue and the ability of the net-
work to drive towards more efficient configurations.

One implication of this design is that we assume that
Dyson clients are willing participants in the system,
and are capable of accurately and truthfully responding
to measurement requests and commands. There is, of
course, the potential that malicious or buggy clients could
misbehave and degrade network performance. However,
we argue that the degree of trust that Dyson places in
clients is not substantially greater than that in conven-
tional 802.11 networks, in which it must be assumed that
clients correctly obey the protocol. We assume that Dyson
clients are authenticated using 802.1x.

The power of the CC is derived from its global knowl-
edge of the state of the network and ability to control both
APs and clients at fine granularity. It also maintains a
database to store received measurements, permitting long-
term historical analysis of network performance.

A key benefit in Dyson is the ability to collect client-
side measurements, providing the CC with greater visi-
bility and control over the network state. Client-side in-
formation can be used to resolve sources of ambiguity
that would arise with AP-only observations. Examples
include detection of hidden terminals, awareness of mu-
tual connectivity between APs and clients, and mapping
channel airtime utilization. While client participation has
been explored by several previous systems [11, 6], Dyson
provides a flexible framework in which a wide range of
policies can be specified programmatically.

2.1 Measurement collection

In Dyson, both clients and APs are responsible for col-
lecting passive measurements on the state of the network,
reporting measurements to the CC, and responding to
commands issued by the CC to modify local parameters.
As described above, the granularity of measurements and
commands is chosen to avoid high overheads for clien-
t/CC interactions, but still yield adequate control over
client behavior by the infrastructure.

Measurement collection in Dyson supports network-
wide optimizations based on both AP and client-side
knowledge of the network state. This provides the CC
with global information on various factors that affect
client performance, such as traffic patterns, interference,
hidden terminals, and congestion. This approach obvi-
ates the need for a separate wireless monitoring infras-
tructure [13, 7].

Each client and AP in the system records a set of statis-

Measurement Description
numPackets Number of pkts received
totalBytes Total bytes received
totalRSSI Total RSSI of received pkts
connectivity[] List of tuples

〈srcmac,numPkts, totalRSSI 〉
packetsPerPhyRate[]One counter for each PHY rate
totalAirtime Airtime used by packets (size ×

PHY rate)
numTxFailures Number of Tx failures
numRetransmissions Number of ARQ retransmis-

sions
airtimeUtil Channel airtime utilization

Table 1: Measurements collected by Dyson nodes.

tics, summarized in Table 2.1. For each received packet, a
set of counters are incremented to track the total number
of packets, total packet size, total airtime utilization, and
other measures. Dividing counters by the number of re-
ceived packets can be used to calculate mean values over
a measurement window. Clients maintain a single set of
these counters, whereas the AP maintains these counters
on a per-associated-client basis, allowing measurements
to be collected for each separate uplink. In addition to the
these statistics, nodes also record the mean airtime utiliza-
tion (reported by the radio hardware) of the radio channel.

APs periodically query their associated clients to col-
lect their measurements, after which clients reset their
counters. The AP then pushes the collected client mea-
surements, as well as its own, to the CC. The AP’s mea-
surement collection period can be adjusted by the CC to
tradeoff reporting latency and measurement traffic over-
head. Our measurements in Section 4.8 show that for
moderate-sized networks, this overhead is less than 1%.

2.2 Network map
The central controller uses collected measurements to
maintain a network map representing the global state of
the Dyson network. The network map is the key data
structure accessed by Dyson’s policies (Section 4) in or-
der to drive reconfiguration. The network map is updated
each time new measurements are pushed to the CC by an
AP. Policies can read the complete network map and push
new information into the network map. This allows indi-
vidual policies to augment the global state maintained by
the CC, as well as enabling policies to be composed.

The map consists of several components:
Node location: A table of the physical location of each
AP and client in the system, indexed by MAC address.
AP locations are static, whereas client locations are com-
puted using the algorithm described in [12]. This infor-
mation can be used for determining the physical location
of network hotspots, and by policies that consider client
mobility.
Connectivity: A directed connectivity graph is main-
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SetRate(r) Set PHY rate
SetChannel(c) Set channel
SetTxLevel(t) Set transmission power level
SetCCAThresh(t) Set CCA threshold
SetPriority(p) Set 802.11e priority
Throttle(r) Throttle outgoing traffic at the spec-

ified rate r
Handoff (c, ap, chan) Handoff client c to AP ap on chan-

nel chan
AcceptClient (c) Associate AP with client c
EjectClient (c) Disassociate client c

Table 2: The Dyson command API. Commands in bold are applica-
ble to APs only.

tained, where vertices represent nodes (clients or APs)
and edges represent the ability of one node to overhear
packets of another node. For each unique MAC address
that a node overhears during a measurement interval, the
mean RSSI value of packets from that MAC address are
reported to the CC. The connectivity graph contains a di-
rected edge for each pair of MAC addresses. While clients
are only capable of reporting links on their current chan-
nel, APs can use a secondary radio to perform background
scanning and report observed connectivity on every chan-
nel. An edge is removed from the graph if no packets
are observed on the link for 30 seconds. The connectivity
graph is used in client-AP associations, detecting hidden
terminals, and managing handoffs.
Airtime utilization: Each node measures the airtime uti-
lization of the radio channel in its vicinity. The network
map includes a hash table mapping a node’s MAC ad-
dress and channel number to its airtime utilization esti-
mate. This information can be used by a wide range of
policies to detect congestion, balance uplink and down-
link fairness, and optimize client/AP associations. APs
can measure airtime on every channel using the secondary
scanning radio.
Historical measurements: Collected measurements are
also stored in a persistent database, permitting policies
to make use of historical information when making de-
cisions about network reconfiguration. As an example,
a policy may wish to consider the historical interference
pattern between two APs, or variance in the network con-
gestion at different hours of the day, when driving net-
work reconfigurations.

The network map serves primarily as input to the vari-
ous policies for driving network configurations. However,
it can also serve an auxiliary role to assist a network ad-
ministrator in understanding AP coverage and sources of
performance degradation. For example, visualizing the
airtime utilization graph as well as the associated client
and AP locations can provide real-time information on
network hotspots.

2.3 Central controller

The central controller is responsible for managing the
entire Dyson network based on collected measurements
from clients and APs. Its job is to apply administrator-
defined policies to the current network map, and issue
commands to set parameters of clients and APs accord-
ing to the policy decisions.

The Dyson command API is shown in Table 2. These
commands are intended to provide a rich set of knobs
for controlling the network’s operation while limiting
overheads for command issue. Commands set parame-
ters such as the transmission power level, CCA thresh-
old, 802.11e priority levels, and PHY data rate. The
Handoff, AcceptClient, and EjectClient com-
mands control client-AP associations, as described in the
next section. Note that clients do not decide themselves
which AP to associate with; this is under the control of
the Dyson infrastructure.

The CC sends commands to APs directly. Commands
to clients are relayed via the AP that the client is currently
associated with; in this way the client need not be aware
of the CC’s identity, and the CC’s functionality can be de-
centralized. Commands are exchanged using MAC-layer
control messages which are ACKed by the receiving node.
For AP-client commands, ARQ is used to ensure com-
mands are delivered reliably.

Support for legacy clients: Dyson can support legacy
802.11 clients without the extensions described above. Of
course, this implies reduced functionality as it is not pos-
sible to directly obtain client-side measurements, nor con-
trol many aspects of client operation. The CC is able
to control client-AP associations for legacy clients, giv-
ing the infrastructure control over at least which APs and
channels those clients occupy. AP-side measurements can
account for any associated legacy clients allowing the sys-
tem to have visibility into the impact of legacy client traf-
fic. Dyson policies use a reduced control API (that only
contains the relevant calls) to interact with legacy clients.

2.4 Policy Engine

Dyson’s architecture is designed to support extensibil-
ity, composability, and separation of concerns, in order
to tune network performance as well as impose site- and
client-specific policies. Each policy is encapsulated in a
software module that runs on the CC, takes the network
map as input, and issues commands to APs and clients as
output. As described above, policies can also update and
augment the network map itself.

Dyson has a predefined set of policy modules providing
commonly-used functionality, but it is possible for new
policies to be implemented and loaded into the central
controller as needed. Policies are implemented in Python

Figure 2: Dyson testbed deployment

and are relatively easy to write, as we will show below.
This approach enables network designers to update the
policies used by a Dyson network installation over time in
response to new demands or shifting priorities. We also
envision third parties developing new policies for Dyson
that can be readily plugged into an existing deployment.

In our current design, policy composition and depen-
dencies must be handled manually by policy designers.
There is nothing to prevent two policies from “compet-
ing” (say, by issuing conflicting commands in response to
the same event in the network); each policy should clearly
document its own behavior to avoid unexpected results.

Each policy runs as a separate thread on the CC and
is responsible for its own scheduling. Typically, a policy
will run with some predefined period, but a policy can
also trigger execution on some condition being met (for
example, an update to some element in the network map).
Standard thread synchronization primitives can be used to
implement more sophisticated cross-policy interactions.

In Section 4, we demonstrate a set of policies that high-
light different aspects of Dyson’s global network visibility
and deep control over both APs and clients.

3 Implementation and Testbed

We have implemented a prototype of the Dyson ar-
chitecture using the ALIX 2c2 single-board computer
(500 MHz AMD Geode processor with 256 MB DRAM)
running FreeBSD 7, coupled with dual CM 9 Atheros-
based 802.11a/b/g radios. Each node can act as either a
Dyson client or an AP; only APs make use of the second
radio for collecting channel utilization measurements.

We have deployed a testbed of 28 nodes across one
floor of an academic office building, as shown in Figure 2.
Each node is connected to an Ethernet network for con-
trol. The central controller is implemented on a separate
machine running FreeBSD with 2 GB of RAM. All exper-
iments presented in this paper use 802.11a to avoid inter-
ference with existing 802.11b/g networks in the building.

To support Dyson, we modified the FreeBSD Atheros
driver to add support for statistics collection and the
Dyson command API, as well as to disable local rate
adaptation. Each node runs a Python-based daemon that

exposes the Dyson measurements and command API via
an XML-RPC interface, and communicates with the mod-
ified Atheros driver through ioctl calls. The central con-
troller is also implemented in Python; policies are loaded
as Python modules at startup time.

The commands listed in Table 2 were implemented via
modifications to the Atheros driver. Most of the com-
mands (such as SetTxLevel, SetChannel, and so
forth) simply set driver parameters. Handoff informs
a client to switch channels and associate with the spec-
ified AP. This eliminates the need for scanning, pro-
vided the destination AP is still on the specified chan-
nel. The Throttle command makes use of dummynet, a
FreeBSD traffic shaping tool, to limit the rate of outgoing
traffic. Throttle simply sets the dummynet outgoing
bandwidth limit on the radio interface to the specific rate.

4 Policies and Evaluation

The primary goal of this section is to demonstrate that the
extensibility afforded by the Dyson architecture is both
desirable and feasible. To do so, we focus on five inter-
related issues.

First, we show that the Dyson architecture enables in-
teresting, non-trivial customizations of WLAN deploy-
ment that either improve performance, or enable new fea-
tures. This is our key contribution.

Second, we show that the customizations are easy to re-
alize. Unless Dyson makes it easy to customize WLANs,
the fact that it enables interesting customizations is of lit-
tle practical value. Also, demonstrating the ease of cus-
tomization reaffirms our programming model, and val-
idates our contention that our chosen API provides the
right level of control for our purposes.

To address these two issues, we demonstrate a set of
four policies that customize WLAN deployments in a va-
riety of ways. We show how these policies can be re-
alized via simple Python scripts, and illustrate how our
APIs provide the right level of abstraction to achieve this.

Third, we discuss how multiple policies co-exist within
the Dyson framework. We will show how Dyson allows
different policies to be run in different parts of the net-
work. Dyson requires policies to document their behavior
and it lets the system administrator decide which polices
can run safely together.

Fourth, we show that Dyson can operate at a suffi-
ciently large scale to be of practical use. We demonstrate
this via large-scale experiments with one of our policies,
and also by careful micro-benchmarking of several as-
pects of the Dyson architecture.

Fifth, we show although Dyson can operate without
client-side modifications, using Dyson-enabled clients
significantly improves performance, and enables features
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# Input: client MAC, list of (AP MAC, RSSI) for
# each received probe request
# Output: client MAC, AP with highest
# available capacity
def (clientmac, heard_list):
global ap_list, ap_list_lock, ratemap
best_ap = None
max_ac = -1

# Compute available capacity for each AP
# Pick AP with the highest value
for (apmac, rssi) in heard_list:
ap_list_lock.acquire()
data_rate = ratemap.get_rate(rssi)
airtime = ap_list[apmac].airtime
avail_capacity = data_rate * (1.0 - airtime)
if avail_capacity > max_ac:
max_ac = avail_capacity
best_ap = ap_list[apmac]

ap_list_lock.release()

# Assign channel if no clients already
if (best_ap.channel == -1):
best_ap.assign_channel()

# Associate client
best_ap.AcceptClient(clientmac)

def run(self):
global pending_associations
global pending_associations_lock

while (True):
pending_associations_lock.acquire()
map(compute_ac, pending_associations)
pending_associations = []
pending_associations_lock.release()
time.sleep(5)

Figure 3: The Dyson capacity-aware association policy.

that would not otherwise be possible. This is essential be-
cause client modifications are generally considered to be
disruptive and expensive. We illustrate this by running
one of the policies both with and without client modifica-
tions.

4.1 Customizing associations
We begin with a simple demonstration of Dyson’s exten-
sibility mechanisms at work. In Figure 3, we present a
policy that associates clients with access points based on
the estimated channel capacity at each AP. This policy is
similar to the one proposed in DenseAP [22], but rather
than being implemented as a complete, standalone sys-
tem, using Dyson we implement it in approximately 40
lines of Python code.

The key idea is to use information on airtime utilization
and an estimate of the feasible PHY rates to determine the
best AP with which to associate a given client. The pol-
icy runs every 5 seconds. On each iteration, it scans over
a list of probe requests received from clients. A given
probe request may have been overheard by multiple APs.
For each AP, the available channel capacity is computed,
which is the product of the estimated PHY rate at which
the client and AP will communicate, and the inverse of the
AP’s measured airtime utilization. The PHY rate is deter-
mined using a rate map that maps the RSSI of the received

# Compute available capacity for each AP
# Pick AP with the highest value. But ensure
# this association is not an exception
for (apmac, rssi) in heard_list:
ap_list_lock.acquire()
data_rate = ratemap.get_rate(rssi)
airtime = ap_list[apmac].airtime
avail_capacity = data_rate * (1.0 - airtime)

#Check if this association is prohibited
# (Code not shown ... )
if is_exception(clientmac, apmac):

if avail_capacity > max_ac:
max_ac = avail_capacity
best_ap = ap_list[apmac]

ap_list_lock.release()

Figure 4: A snippet of modifications necessary to the capacity-aware
association to account for interference.

probe request to the maximum feasible PHY rate for that
client/AP pair. The rate map computation is performed
separately and is not shown in the code in Figure 3.

The AP with the maximum available capacity is se-
lected as the one that the client should associate with. If
the AP currently has no clients, a channel is assigned to it,
and the AP is then instructed to accept the client’s probe
request, by sending a probe response. This policy is used
as the default association policy in Dyson and is used by
the subsequent policies unless otherwise specified. We
have performed experiments to confirm that its perfor-
mance is similar to DenseAP’s association scheme [22].
The key takeaway from this example is the ease and con-
ciseness of writing a Dyson policy whose functionality
mimics that of a system proposed earlier.

4.2 Interference-aware association policy
The association policy described in the previous section
does not explicitly take interference into account. Recent
research [26] has shown the benefits of explicitly account-
ing for interference between clients. A system administra-
tor may wish to utilize such knowledge to improve associ-
ations in the WLAN. Prior systems [26, 22] do not permit
such rapid changes to the WLAN.

However, due to the flexibility of Dyson, as seen in Fig-
ure 4, we can easily modify the basic policy shown in Fig-
ure 3 to account for interference. The change to the policy
is minor because it checks if a particular client associating
with an AP is part of the same exception.

A simple case of interference is when two clients, asso-
ciated with different APs, can hear each other. The Dyson
central controller can easily detect such cases (see Fig-
ure 5, based on information reported by clients and can
take remedial action if necessary. For example, it can
change the channel of one of the APs.

The interference-aware association policy periodically
scans the global connectivity graph and detects cases in
which two APs and two clients form an interference rela-
tionship similar to that in Figure 5. The policy changes the

C1AP 1

C2

AP 2

Figure 5: Interference example. The two clients determine they in-
terfere with each other, despite being associated with different APs.
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Figure 6: Impact of interference mitigation policy on throughput of
nodes across the entire floor across 20 separate runs.

channel of the particular AP (and its clients) with fewer
associated clients. The affected nodes are informed of the
channel switch directly via a command, thereby avoiding
the overhead of re-discovery and re-association if the pol-
icy were to simply change the channel of the AP. Note that
this simple greedy algorithm might induce a new inter-
ference condition elsewhere in the network, necessitating
another channel switch. To avoid oscillations, we do not
change an AP’s channel more than once every 10 minutes.

To demonstrate the impact of this policy, we ran an ex-
periment with 5 of the testbed nodes acting as APs and
16 nodes acting as clients. The APs and clients were dis-
tributed roughly evenly across the testbed. The clients
generated uplink traffic using greedy TCP flows for 5 min-
utes. We first ran the experiment using the association
policy described in Figure 3, and then repeated the exper-
iment using the modification described in Figure 4. We
repeated the entire experiment 20 times.

For each run, we obtained the total capacity of the net-
work by summing up the total throughput achieved via
each AP. The results, as seen in Figure 6 show that the in-
terference aware association policy significantly improves
the capacity of the network.

There are two key takeaways from this example. First,
we show how interesting performance optimizations can
be enabled in Dyson with just a few lines of Python code.
Second, we show the usefulness of modifying clients:

#Returns clients whose airtime reservations
#have not been met
def cull_special_clients(clients):
resv_clients = []
resv_count = 0
for c in clients:
if is_reserved(c)
resv_count = resv_count + 1
if c.get_airtime() < c.res_airtime:
resv_clients[] = c

return (resv_clients, resv_count)

#Throttle other clients as necessary
def throttle (ap, c,f):
for client in ap.clients:
if client.mac != c.mac and

!is_reserved(c):

#throttle/de-throttle by f%
throttle(client.mac, f)

#Returns residual airtime at ap
def get_residual_at(ap):
# (Code not shown ... )

def run(self):
global ap_list, ap_list_lock
global client_list, client_list_lock
while (True):
ap_list_lock.acquire()
for ap in apmap:
residual_at = get_residual_at(ap)
(res_clients, resv_count) =

cull_special_clients(ap.clients,
residual_at)

if len(l) > 0:
#For each special client, throttle other
#associated APs until targets are met
for c in res_clients: throttle(ap, c, F)

elif resv_count > 0:
#needs of special client are met
#de-throttle other clients
for c in res_clients: throttle(ap, c, -F)

ap_list_lock.release()

Figure 7: The air-time reservation policy

without detailed measurements from the clients, it would
not have been possible to identify interfering pairs.

A more complex version of this policy can take histori-
cal knowledge of the network into account. For example,
once an interference pattern between locations is deter-
mined, the system can proactively assign APs and clients
in those locations to different channels.

4.3 User-specific airtime reservation
We now demonstrate that the Dyson architecture can en-
able new functionality that is not available in traditional
WLAN systems, namely, reserving airtime for a specific
user or group of users. Note, while some Wi-Fi networks
do enable 802.11e for prioritization, 11e lacks the ability
to reserve a certain fraction of airtime for a given station.

The network designer can easily accomplish this task
with Dyson using the policy shown in Figure 7. A high-
priority client ch is identified by its MAC address. For all
other clients {c1, c2, ...ck} associated with the same AP,
the residual airtime R = 1 −

∑
i ATU (ci) is computed.
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If R is less than the target airtime for ch, the policy iter-
ates through the list of low-priority clients, and throttles
each of their transmission rates by a fraction f of their
current throughput. This is performed using the Dyson
Throttle command, shown in Table 2. Throttling is
performed periodically until the residual airtime exceeds
the target. On the other hand, if there are special users
and their needs are being met, the policy then attempts to
de-throttle other clients which may have been throttled.

This approach makes no assumptions about the nature
of client traffic, and simply “searches” for the throttle
setpoints that yield adequate airtime to the high-priority
client. It is also conservative in the sense that clients
are throttled equally, without regards to their load. A
straightforward enhancement would throttle higher-load
clients first. Note that when ch disassociates with the AP,
the low-priority clients are unthrottled; likewise, when a
client moves to another AP is throttle is released. Multi-
ple high-priority clients can also be supported on a single
AP as long as their airtime targets do not exceed 100%;
in that case, each high-priority client receives a weighted
proportional share of the airtime. Note that this policy re-
quires the ability to control clients directly, and hence is
not possible to implement without client modifications.

We demonstrate this policy using the following exper-
iment. The setup consists of four APs and 11 clients.
One of the clients is given an airtime reservation of 50%.
For this experiment, we manually set the APs to differ-
ent channels, and associate one non-privileged client with
AP1, two non-privileged clients with AP2, and so on. The
privileged client is nomadic. It associates with each of the
four APs in turn for 10 minutes each. All clients down-
load data as fast as they can using iperf UDP flows. We
first perform the experiment without any reservation pol-
icy, and then repeat it after reserving 50% of the airtime
for the privileged user. We repeat the entire experiment
10 times for statistical significance.

The impact of the policy is shown in Figure 4.3. In
the absence of the reservation policy, the fraction of air-
time received by the privileged user drops as the number
of non-privileged clients increases. However, when the
reservation policy is in force, the privileged user always
receives the 50% reserved fraction of the airtime.

As a side note, remember that providing guaranteed
airtime does not translate to guaranteed throughput, be-
cause of the variability in radio link quality of the link
between the privileged client and each of the APs. The
throughput received by the privileged client in the previ-
ous experiment is shown in Figure 8(b). Even though the
privileged client receives a fixed amount of airtime, the
throughput it achieves varies for different APs. We can
easily modify the policy described above to ensure that the
reserved airtime varies in inverse proportion to the quality
of the channel seen by the privileged user, to ensure that
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Figure 8: Impact of airtime reservation policy on the airtime and
throughput received by a single privileged user competing with sev-
eral other clients. Error bars represent 10th and 90th percentiles.
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policies: one that exercises control over clients (airtime reservation)
to one that only controls APs (channel reservation) only. Node 5 is
the special user guaranteed at least 50% of the airtime. Client-side
throttling leads to a more fair distribution of airtime across clients
than reserving channels alone.

the bulk transfers done by the user receive certain guaran-
teed target throughput. Though we have implemented and
tested this policy, we elide details due to lack of space.

There are two key takeaways from this example. First,
we show that Dyson can enable novel functionality, that
is not otherwise available. Second, this example also
demonstrates that certain kinds of functionality can only
be enabled via client modifications.

Benefits of client-side control: Throttling airtime us-
age at the client gives Dyson direct control over client be-
havior. The question that arises is whether such client
control is strictly necessary. As an alternative, consider
a policy that does not assume any client extensions. As
opposed to reserving airtime, the policy reserves an en-
tire channel on a given AP for special users, requiring
changes to client-AP associations in order to avoid inter-
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Figure 10: Large-scale load balancing experiment.

ference between special users and regular users. We have
implemented such a policy and compared it against the
airtime reservation policy. The setup consists of two APs
and four clients (two associated with each AP) performing
uplink TCP traffic. A fifth client arrives, one of which is
guaranteed 50% of the airtime. In the channel reservation
policy, clients from one AP are moved to the other, which
has four clients contending. The fifth user is given exclu-
sive access to the vacated AP. With the airtime reservation
policy, the fifth user associates with one of the APs where
the other clients are throttled (the clients at the other AP
are left untouched). The results are shown in Figure 4.3,
which shows that the channel reservation policy leads to
a less fair distribution of airtime than the airtime reser-
vation policy. This experiment demonstrates the added
value of control over both clients and the infrastructure.
Note, another possible approach here would have been to
enable 802.11e priority queues. However, our intention
is to demonstrate the ease with which different kinds of
policies, each offering a different degree of control, can
be implemented and deployed in Dyson.

4.4 Uplink/downlink load balancing
In this section, we show how Dyson can be used to correct
a basic flaw in the 802.11 architecture, called the upload-
download anomaly [24]. The 802.11 MAC ensures that
each node with pending packets gets equal opportunity to
access the channel. Consider a WLAN with ten clients
associated with a single AP. Nine of these clients down-
load data from the network, while one client uploads data
to the network. Because the AP and the upload client are

the only two nodes that have pending data to send, they
share the airtime equally. The upload client gets to trans-
mit roughly half the time, while the nine download clients
together share the remaining time!

Although traditionally the majority of the traffic in
WLANs has been download traffic [4], this pattern is ex-
pected to change as WLANs become more popular as ac-
cess networks. As the above example shows, only a few
upload clients are needed to cause significant unfairness.

In a Dyson-enabled network, we can easily address this
problem via the following simple policy. The policy at-
tempts to balance the total volume of uplink and downlink
traffic handled by an AP. For each AP, associated clients
are classified as either predominantly upload or download,
based on the ratio of their throughput in each direction.
We then compute the ratio of the mean throughput for up-
load and download clients. If the ratio exceeds a specified
threshold, it suggests that upload clients are dominant and
that rebalancing is required for this AP.

As a simple approach, the policy throttles upload
clients in an attempt to bring the upload/download ratio
closer to 1. Upload clients are ordered by decreasing up-
link throughput, and the “heaviest” upload client is throt-
tled to 50% of its current throughput. The policy then
sleeps for 10 sec and re-evaluates the upload/download
ratio, iteratively throttling the highest-throughput upload
client until the ratio between the mean upload and mean
download throughput at the AP falls to less than 1.5.

This policy relies on client cooperation to solve the
problem. This is not strictly necessary, but other reme-
dies are more disruptive. For example, the policy could
attempt to modify client-AP associations to balance the
number of download clients across APs. However, such
a policy is not always guaranteed to achieve the correct
distribution of clients required. The client-throttling ap-
proach described above is much simpler to implement.

To demonstrate this policy, we performed an experi-
ment with 4 APs and 15 client nodes. Client-AP associ-
ations were determined using the capacity-aware associ-
ation policy (Section 4.1). Note that different APs have
a different number of associated clients. Each AP is as-
signed to a different channel by the policy.

One client associated with each AP generates upload
traffic, while others generate download traffic. We ran the
experiment twice, first without the uplink/downlink load
balancing policy running, and then with the policy en-
abled. Figure 10(a) shows the distribution of the through-
put obtained by each of the clients with and without the
policy running. There is a clear bandwidth inequity in the
default case, but the policy produces a much more bal-
anced distribution of network capacity to each client.

Of course, achieving fairness is often at odds with max-
imizing overall network capacity. Figure 10(b) shows the
aggregate throughput at each AP before and after the pol-
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icy was enabled. As the figure shows, there is a slight dip
in overall bandwidth usage at each AP: 5.7% on average.

This example illustrates that a simple Dyson policy can
correct problems inherent in the 802.11 architecture by
using feedback from the client and by exercising control
over clients.

4.5 VoIP-aware handoffs

As a another example of Dyson’s ability to enable
network-wide optimizations, we present an example pol-
icy that assigns VoIP clients to a different set of APs
than other clients, to increase overall VoIP call capacity
and avoid bulk transfers from impacting VoIP call qual-
ity. This policy assumes that clients have been classified
as VoIP or non-VoIP clients, for example, based on the
client’s MAC address (e.g., for WiFi VoIP handsets). Due
to lack of space, we omit the python code for this policy.

For each VoIP client that is assigned to a non-VoIP AP,
the policy identifies a new VoIP-specific AP with which
to associate. For each VoIP AP that the client can po-
tentially connect to (based on the connectivity graph), the
available capacity metric is computed, as described ear-
lier. The client is simply handed off to the VoIP AP with
the highest available capacity.

Although there are more sophisticated techniques to
improve VoIP capacity in WiFi networks [29], this pol-
icy is simply intended to demonstrate Dyson’s interfaces
and programmability. This simple policy can be extended
in various ways. For example, the assignment of APs as
VoIP or non-VoIP (which is currently static) can be per-
formed in a dynamic fashion based on VoIP call load.
Likewise, the number of VoIP clients assigned to each AP
could be taken into consideration. We elide the details due
to lack of space.

We carry out the following experiment. We config-
ured two nodes near each other as APs, and another four
nodes as clients. The capacity-aware association policy
described in Section 4.1 was used, resulting in two clients
being associated with each AP. The APs were assigned to
different channels by the association policy.

Two clients, on separate APs, initiated a bidirectional
VoIP flow while the other two clients began large saturat-
ing download traffic using iperf. The VoIP flows each use
a standard g729 VoIP codec that generates 50-byte pack-
ets at a rate of 31.2 Kbps.

The bulk flows adversely affect the VoIP flows in terms
of introducing increased packet jitter, which causes the
quality of the VoIP call to degrade. A common require-
ment for VoIP calls is that jitter should be no greater than
2ms [3]. Figure 4.5 shows that with the default configu-
ration, up to 2.17 ms of jitter is induced by the bulk flows
on each VoIP call. Note, this is done with a few clients.
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Figure 11: Effect of 802.11e prioritization and VoIP-aware handoffs
on VoIP jitter. This is an experiment with two VoIP clients competing
with two bulk-download clients, with two APs on different channels.
Using the default policy, one VoIP client and one bulk client are as-
signed to each AP. The 11e(VO+BE) policy uses 802.11e prioritization,
assigning bulk clients to the best effort queue. 11e(VO+BK) assigns
bulk clients to the background queue.

Next, we enabled the VoIP handoff policy, which mi-
grates VoIP clients to one of the APs and the bulk flows to
the other. As Figure 4.5 shows, this substantially reduces
the jitter to a mean of 0.02 ms. This also causes the bulk
transfers to share the channel on a single AP, causing their
throughputs to degrade; prior to migration, each bulk flow
obtained 24 Mbps of throughput. After migration, each
bulk flow degrades to 12 Mbps. This is an explicit trade-
off between providing good service to VoIP clients versus
the (arguably less severe) impact on bulk flows.

As an alternative, we also experimented with using
802.11e priority levels, with a simple policy that uses
the SetPriority command. We set up one experi-
ment in which the VoIP clients were configured to use
the 802.11 voice priority and the bulk clients to use the
802.11e best effort priority, while maintaining the origi-
nal AP associations. Another experiment uses the 802.11e
background priority, which is lower than best-effort. As
the figure shows, 802.11e priorities do mitigate some of
the jitter effects, but do not operate as well as the handoff
policy. Each bulk client received 24 Mbps of through-
put using the best-effort priority, and 18 MBps using the
background priority. In general, it will not always be pos-
sible to cleanly separate VoIP clients from others in the
network, so in general a combination of migration (where
possible) and 802.11e priority levels is likely to be the
most effective solution.

Note this policy could have been implemented in
prior systems, such as SMARTA [6], MDG [11], or
DenseAP [22]. Note, however, that this is easy to do so in
Dyson via the exposed API. The key takeaway from this
example is the platform Dyson provides to develop and
deploy such polices very quickly.

4.6 Running multiple policies together

So far, we have demonstrated each policy in isolation.
However, a network administrator will often want to run
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Figure 12: The floor map for our testbed, which was divided into
four regions. Each region is configured to run a different set of poli-
cies.

multiple policies simultaneously and compose their be-
havior. For example, different types of traffic may need to
be given different priorities in different parts of the build-
ing, or at different times of day.

Dyson supports running multiple policies on different
spatial regions of the network, and varying the set of poli-
cies that are active over time. Furthermore, Dyson can
track client locations, and ensure that appropriate polices
are applied depending on the client’s location.

To illustrate the use of multiple policies, we ran the fol-
lowing experiment on our testbed. We divide our floor
into four regions as shown in Figure 4.6. Regions 1, 3, and
4 do not overlap with each other, whereas region 2 over-
laps with 1 and 3. For each region, we configure Dyson
to run the following policies.
Region 1: We reserve one of the APs (and one of the
channels) for VoIP traffic and enable the VoIP sifting pol-
icy described in Section 4.5. This ensures we dedicate
resources to VoIP clients in this area.
Region 2: In this region, we run the interference-aware
association policy described in Section 4.2.
Region 3: In this region, we reserve 80% of the airtime
for a set of users. For example, the administrator may
want to deploy such a policy in a region where faculty
offices are located, giving faculty members preferential
treatment.
Region 4: In this region, we disable all VoIP calls using a
policy that dissociates any client that is transmitting VoIP
traffic.

Each region contains at least two APs, and each AP
has anywhere between 2–4 clients associated with them
performing variable bit rate UDP traffic. In addition,
there are two nomadic users, whose behavior we monitor.
User 1 is a VoIP client who starts walking in region 1, 2, 3,
and finally ends in 4. User 2 is another nomadic user who
is performing bulk TCP transfers. This user is a faculty
member who is guaranteed by the policy in Region 3 to
get 80% of the airtime. Each user spends approximately
60 seconds in each location.

The jitter for User 1 and airtime for User 2 are shown
in Figure 4.6. As the figure shows, the VoIP user expe-
riences significantly less jitter when she is in Region 1,
compared to other regions, because an AP and a channel
are reserved for VoIP calls in this region. Furthermore,
when she enters Region 4, her service is cut off. We also
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Figure 13: Time series graphs for the two different nomadic users as
they walk through the various regions.

see that User 2 gets her reserved airtime only when she is
in Region 3, as expected.

The key takeaway from this example is that Dyson can
successfully run multiple policies in a single network and
apply policies in a location-specific manner.

This example does not address how multiple polices
may interact with each other. In our current implemen-
tation, we rely on the network administrator to determine
if policies may have adverse interactions or may simply
cancel out each other’s decisions. It is assumed that poli-
cies themselves are well-documented and that the admin-
istrator can reason about the possible interactions between
multiple policies running on the same parts of the net-
work. In our future work, we plan to build tools to help
administrators detect and resolve such conflicts.

4.7 Other Policies
Due to a lack of space, we are unable to present results
from other policies we have implemented and experi-
mented with, in the Dyson system. One such policiy is a
one that reduces the cumulative handoffs for certain mo-
bility paths. Dyson can use historical knowledge of client
mobility patterns to optimize AP handoffs. Since mobile
handoffs are expensive and can lead to temporary connec-
tivity loss, it is important to avoid redundant or poorly-
chosen handoffs. The key idea is to predict the next AP
a client will encounter while roaming, in order to avoid
handing off to a different AP that will quickly go out of
range. This is possible, since in many workplaces, users
are more likely to travel along certain paths than others.
We built and deployed this policy on our floorwide testbed
and we found, on average it halves the number of handoffs
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Stats interval (s) 10th Median 90th
1 3.5% 4.3% 9.3%
5 0.8% 3.9% 6.1%
10 0.0% 3.5% 6.2%

Table 3: CPU utilization at an AP with eight clients measured over a
period of 10 minutes, for various statistics reporting intervals.

for well traversed paths.
Along the lines of the airtime reservation policy, we

have also implemented a bandwidth reservation policy
whereby we guarantee a certain bandwidth to a user, and
we throttle other clients nearby until we reach the desired
target. There are host of other policies that are variants of
the policies described in this paper, that we are currently
working in the Dyson system.

4.8 Microbenchmarks
In this section, we study the overheads imposed by the
Dyson architecture on clients and APs and the amount of
control traffic generated by Dyson nodes. We will also
study the performance penalty caused by client handoffs,
as Dyson uses this mechanism often.
AP and client overheads: We examine the CPU utiliza-
tion of the AP. Recall that we use an ALIX 2c2 with a
500 MHz AMD Geode, and the Dyson software is imple-
mented in Python. We configured an AP with eight clients
and varied the intervals at which the AP reported statistics
to the CC. As seen in Table 3 the median utilization is still
low. Since clients are periodically sending statistics to the
AP, we also measured the CPU utilization at a client over
a period of ten minutes. We found the modified Dyson
drivers added negligible overhead in terms of CPU and
memory utilization (< 1%).
Traffic overhead for measurments collection: We also
measured the traffic sent by clients and APs to the CC.
The AP’s measurement collection period can be adjusted
by the CC to tradeoff reporting latency and measurement
traffic overhead. As an estimate of this overhead, each
client measurement packet requires at most 850 bytes, in-
cluding MAC headers. At the lowest OFDM PHY rate
of 6 Mbps, this requires 1184µs to transmit (accounting
for MAC and framing overheads). Therefore, an AP with
20 clients will require less than 1% of the radio channel
for statistics collection. The AP sends all client statistics
as well its own statistics to the CC. We measured the traf-
fic sent by an AP with six clients to the CC. With a statis-
tics reporting interval of 5 sec, the AP generates 1638
bytes/sec in traffic to the CC, which includes overheads
induced by the use of XML-RPC. This is a small fraction
of the backhaul wired network capacity.
Handoff overhead: We measured the time taken for a
MAC-layer handoff of a client from one AP to another.
We configured two APs (on different channels) and a sin-
gle client, which was initially associated with AP1. The

Step Time(ms)
Handoff command executed 0
Message reception (at client) 0.120

Channel change 5.6
Authentication 0.159

Association 0.359
Total 6.238

Table 4: Handoff overhead in Dyson.

CC then issued a Handoff command to migrate the
client to AP2. AP1 receives this command and relays it
to the client who quickly switches channels and associa-
tions. This process also includes informing AP2 to permit
the new association.

The MAC-layer handoff overhead includes the time for
the command transmission to the client, the time for the
client to switch channels (between to 5 to 7 ms on the
Atheros chipset), and the client’s reassociation with the
new AP. The end-to-end delay experienced by an applica-
tion may be longer, for example, due to the settling time
of the spanning-tree algorithm on the wired backbone.

The results are shown in Table 4, which shows that a
MAC-layer handoff requires approximately 6.2 ms in our
current prototype. This process can be further optimized,
as demonstrated in [25]. Also, the use of protocols such
as IAPP (Inter-Access Point Protocol) at a higher layer,
in which APs cache packets during a handoff and forward
them to the destination AP, can mitigate the packet loss
incurred during a handoff. We have not yet implemented
this approach in Dyson.
Central controller scalability: Dyson uses a central con-
troller to control the APs and the clients. This raises ques-
tions about the scalability and fault tolerance of our archi-
tecture. If necessary, fault tolerance can be achieved using
standard techniques such as primary-backup. We believe
that scalability is not a concern, since the processing done
at the central controller is not CPU or memory intensive
for most polices that we envision. In all our experiments,
the load on the central controller was negligible. How-
ever, it may be the case that certain policies or certain de-
ployments may require extensive processing capabilities
at the central controller. In such a case, it may be possible
to use multiple machines to act as central controllers and
use standard load balancing techniques to prevent any one
machine from becoming a bottleneck. We plan to study
these issues in detail as part of our future work.

5 Related Work

Dyson is complementary to a broad class of prior work
on improving the performance and scalability of wireless
networks through new techniques at the MAC and PHY
layers [28, 9]. Our focus is on the higher-level aspects of
network management that can be obtained through global
observation and deep control.

Dyson is inspired by the same vision that inspired
projects such as OpenFlow [19] and 4D [14], where sig-
nificant intelligence resides in a central controller. The
central controller makes use of global knowledge to make
network-wide decisions. We note that the Dyson archi-
tecture is quite compatible with the overall OpenFlow de-
sign. We are currently investigating whether some parts
of Dyson functionality (especially AP controls) can be re-
cast in the OpenFlow model.

Several commercial systems use some form of global
knowledge or a central controller for managing WLAN
deployments. Aruba [1] uses central controller to do
network-wide channel and power management to mitigate
interference, while Meru [2] uses a central controller to
speed up handoffs for mobile clients. Detailed informa-
tion on how these systems work is difficult to come by -
the marketing literature does not reveal much. However,
commercial vendors are hampered by the need to maintain
backwards compatibility with existing 802.11 networks.
To the best of our knowledge, no commercial system in-
cludes a client component.

Research systems such as DenseAP [22] and
DIRAC [32] also propose a centralized architecture.
However, both systems explicitly assume that no special
software can be run on clients, and thus are limited in
what they can accomplish. Centaur [26] does use some
form of client modifications, along with centralized
control. However, Centaur has a narrow goal: to avoid
hidden and exposed terminal issues. Dyson is a much
more general system. In fact, in Section 4.2, we have
shown how Dyson can find and avoid certain kinds of
interference and hidden terminal problems.

Several research systems use a limited form of client
cooperation. In MDG [11], clients get information from
APs via special fields in the Beacon packets, and the client
driver uses this information to make various decisions
(e.g. associations). However, the specified interface is
quite limited, and is more akin to the one proposed in the
802.11k standard [15]. Similarly, [21] uses feedback from
clients to enable use of partially overlapping channels, [6]
uses client-cooperation via micro-probing [5] to construct
a conflict graphs [23] of the network.

The Dyson architecture, on the other hand, provides a
general-purpose API for managing clients and APs, and
can be viewed as a generalized version of these systems.

Systems such as SoftRepeater [8] and CMAP [30]
specifically focus on client cooperation to improve
WLAN performance. In SoftRepeater, clients with good
connections relay packets for poorly-connected clients.
Similar functionality can be implemented as a policy in
the Dyson framework. In CMAP, clients collaborate to
build an interference map of the network, which is used to
schedule transmissions. Dyson’s network map is a gener-
alized version of CMAP’s interference graph.

Another interesting design point is explored in [27].
The idea is to use bare-bones APs with analog-to-digital
converters such that they are oblivious to the PHY/MAC
layers being used at the client. As a result, all intelligence
in the network is pushed to the clients. The Dyson ap-
proach is practical, and can be deployed with off-the-shelf
802.11 hardware.

Outside of the networking space, many systems have
explored the use of extensibility via add-on modules with
a well-defined programmatic interface. SPIN [10] and Ex-
okernel [16] are classic examples of opening up the op-
erating system interface to permit greater flexibility and
application-specific control. Likewise, Lance [31] pro-
vides a policy module interface to customize data collec-
tion from a wireless sensor network.

6 Discussion and Future Work

Our prototype of Dyson has shed light on several direc-
tions for future work. First, our current design assumes
that Dyson-enabled clients will be able to provide peri-
odic measurement reports regardless of their power state.
Power-constrained clients such as mobile phones rou-
tinely turn off their Wi-Fi interfaces (power save mode),
and hence may not always be able to collect or report
these measurements. This raises the question of what
the impact of intermittent measurements collection will
have on efficacy of Dyson policies. If the density of non-
power-constrained clients (e.g. laptops on people’s desks)
is sufficiently high, good measurements can still be col-
lected. Alternatively, a separate monitoring system like
DAIR [7] can be used. In some cases, the design of po-
lices itself will have to change to deal with partial infor-
mation. We are exploring these alternatives further.

We have designed Dyson primarily for enterprise net-
works, where clients are under the control of a central
IT department and do not need incentives for running the
measurement software. We have also not considered the
impact of malicious users reporting false measurements
or not responding to commands. These concerns are ad-
dressed partially by the fact that in most enterprise net-
works, WLAN users are explicitly authenticated using
protocols such as 802.1x. Another interesting possibility
is to identify malicious users by comparing measurement
reports from different clients [18].

In the current Dyson prototype, clients perform only
passive measurements. This was done for the sake of sim-
plicity. We plan to explore the possibility of asking clients
to perform active measurements, e.g., asking a client to
transmit a series of probe packets to measure loss rate
more accurately. Concerns about overhead and battery
drain will likely limit how often such active measurements
are carried out. In the same vein, one may also ask certain
clients to relay packets for other clients [8]. We have not
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considered such possibilities in the current prototype.
Finally, we note that while it is easy to write new Dyson

policies, it does require some expert knowledge, espe-
cially to avoid unwanted interactions between polices that
run simultaneously. We do not expect an average system
administrator to have the requisite skill set. We believe if
Dyson is deployed in a widespread manner, a new class of
experts in programmable network management will arise
who will write and distribute pre-packaged policies.

7 Conclusions

We have presented Dyson, a new architecture for extensi-
ble wireless LANs. Dyson provides an extensible network
architecture that evolves with new challenges and applica-
tion demands. Dyson’s programmable policy framework
makes it easy to customize the network’s operation for
site-specific needs and new services. The framework also
makes it easy to store historical information about net-
work performance, and leverage it to fine-tune network
parameters. By “opening up” clients for measurements
collection and control, Dyson breaks down the traditional
barrier between the infrastructure and its clients, offering
substantial benefits for network management.

We demonstrated how Dyson can support a wide range
of policies for managing associations, specialized traffic
classes (such as VoIP), mitigating interference and airtime
reservations for specific users. We demonstrated the ben-
efits of these policies using our 28-node testbed.
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Abstract

Storage deduplication has received recent interest in the
research community. In scenarios where the backup pro-
cess has to complete within short time windows, inline
deduplication can help to achieve higher backup through-
put. In such systems, the method of identifying duplicate
data, using disk-based indexes on chunk hashes, can cre-
ate throughput bottlenecks due to disk I/Os involved in
index lookups. RAM prefetching and bloom-filter based
techniques used by Zhu et al. [42] can avoid disk I/Os on
close to 99% of the index lookups. Even at this reduced
rate, an index lookup going to disk contributes about
0.1msec to the average lookup time – this is about 1000
times slower than a lookup hitting in RAM. We propose
to reduce the penalty of index lookup misses in RAM
by orders of magnitude by serving such lookups from a
flash-based index, thereby, increasing inline deduplica-
tion throughput. Flash memory can reduce the huge gap
between RAM and hard disk in terms of both cost and
access times and is a suitable choice for this application.

To this end, we design a flash-assisted inline dedu-
plication system using ChunkStash1, a chunk metadata
store on flash. ChunkStash uses one flash read per chunk
lookup and works in concert with RAM prefetching
strategies. It organizes chunk metadata in a log-structure
on flash to exploit fast sequential writes. It uses an in-
memory hash table to index them, with hash collisions
resolved by a variant of cuckoo hashing. The in-memory
hash table stores (2-byte) compact key signatures instead
of full chunk-ids (20-byte SHA-1 hashes) so as to strike
tradeoffs between RAM usage and false flash reads. Fur-
ther, by indexing a small fraction of chunks per con-
tainer, ChunkStash can reduce RAM usage significantly
with negligible loss in deduplication quality. Evaluations
using real-world enterprise backup datasets show that
ChunkStash outperforms a hard disk index based inline
deduplication system by 7x-60x on the metric of backup
throughput (MB/sec).

1 Introduction

Deduplication is a recent trend in storage backup systems
that eliminates redundancy of data across full and incre-
mental backup data sets [30, 42]. It works by splitting
files into multiple chunks using a content-aware chunk-

1stash: A secret place where something is hidden or stored.

ing algorithm like Rabin fingerprinting and using 20-byte
SHA-1 hash signatures [34] for each chunk to determine
whether two chunks contain identical data [42]. In inline
storage deduplication systems, the chunks arrive one-at-
a-time at the deduplication server from client systems.
The server needs to lookup each chunk hash in an index
it maintains for all chunks seen so far for that storage
location (dataset) instance. If there is a match, the in-
coming chunk contains redundant data and can be dedu-
plicated; if not, the (new) chunk needs to be added to
the system and its hash and metadata inserted into the
index. The metadata contains information like chunk
length and location and can be encoded in up to 44 bytes
(as in [42, 30]). The 20-byte chunk hash (also referred
to as chunk-id) is the key and the 44-byte metadata is the
value, for a total key-value pair size of 64 bytes.

Because deduplication systems currently need to scale
to tens of terabytes to petabytes of data volume, the
chunk hash index is too big to fit in RAM, hence it is
stored on hard disk. Index operations are thus through-
put limited by expensive disk seek operations which are
of the order of 10msec. Since backups need to be com-
pleted over tight windows of few hours (over nights and
weekends), it is desirable to obtain high throughput in in-
line storage deduplication systems, hence the need for a
fast index for duplicate chunk detection. The index may
be used in other portions of the deduplication pipeline
also. For example, a recently proposed algorithm for
chunking the data stream, called bimodal chunking [27],
requires access to the chunk index to determine whether
an incoming chunk has been seen earlier or not. Thus,
multiple functionalities in the deduplication pipeline can
benefit from a fast chunk index.

RAM prefetching and bloom-filter based techniques
used by Zhu et al. [42] can avoid disk I/Os on close
to 99% of the index lookups and have been incorpo-
rated in production systems like those built by Data Do-
main. Even at this reduced rate, an index lookup going
to disk contributes about 0.1msec to the average lookup
time – this is about 103 times slower than a lookup hit-
ting in RAM. We propose to reduce the penalty of index
lookup misses in RAM by orders of magnitude by serv-
ing such lookups from a flash memory based key-value
store, thereby, increasing inline deduplication through-
put. Flash memory is a natural choice for such a store,
providing persistency and 100-1000 times lower access
times than hard disk. Compared to DRAM, flash access
times are about 100 times slower. Flash stands in the
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middle between DRAM and disk also in terms of cost
[29] – it is about 10x cheaper than DRAM, while about
10x more expensive than disk – thus, making it an ideal
gap filler between DRAM and disk and a suitable choice
for this application.

1.1 Estimating Index Lookup Speedups us-
ing Flash Memory

We present a back-of-the-envelope calculation for de-
crease in average chunk index lookup time when flash
memory is used as the metadata store for chunk-id
lookups. This can be viewed as a necessary sanity check
that we undertook before plunging into a detailed de-
sign and implementation of a flash-assisted inline storage
deduplication system. We use the fundamental equation
for average access time in multi-level memory architec-
tures. Let the hit ratio in RAM be hr. Let the lookup
times in RAM, flash, and hard disk be tr, tf , and td re-
spectively.

In the hard disk index based deduplication system de-
scribed in Zhu et al. [42], prefetching of chunk index por-
tions into RAM is shown to achieve RAM hit ratios of
close to 99% on the evaluated datasets. Lookup times
in RAM can be estimated at tr = 1µsec, as validated
in our system implementation (since it involves several
memory accesses, each taking about 50-100nsec). Hard
disk lookup times are close to td = 10msec, composed
of head seek and platter rotational latency components.
Hence, the average lookup time in this case can be esti-
mated as

tr + (1− hr) ∗ td = 1µsec + 0.01 ∗ 10msec = 101µsec

Now let us estimate the average lookup time when flash
is used to serve index lookups that miss in RAM. Flash
access times are around tf = 100µsec, as obtained
through measurement in our system. Hence, the aver-
age lookup time in a flash index based system can be
estimated as

tr + (1 − hr) ∗ tf = 1µsec + 0.01 ∗ 100µsec = 2µsec

This calculation shows a potential speedup of 50x using
flash for serving chunk metadata lookups vs. a system
that uses hard disk for the same. That is a speedup of
more than one order of magnitude. At 50x index lookup
speedups, other parts of the system could become bot-
tlenecks, e.g., operating system and network/disk bottle-
necks for data transfer. So we do not expect the overall
system speedup (in terms of backup throughput MB/sec)
to be 50x in a real implementation. However, the point
we want to drive home here is that flash memory tech-
nology can help to get the index lookup portion of in-
line storage deduplication systems far out on the scaling
curve.

1.2 Flash Memory and Our Design

There are two types of popular flash devices, NOR and
NAND flash. NAND flash architecture allows a denser
layout and greater storage capacity per chip. As a result,
NAND flash memory has been significantly cheaper than
DRAM, with cost decreasing at faster speeds. NAND
flash characteristics have led to an explosion in its us-
age in consumer electronic devices, such as MP3 players,
phones, and cameras.

However, it is only recently that flash memory, in the
form of Solid State Drives (SSDs), is seeing widespread
adoption in desktop and server applications. For exam-
ple, MySpace.com recently switched from using hard
disk drives in its servers to using PCI Express (PCIe)
cards loaded with solid state flash chips as primary stor-
age for its data center operations [6]. Also very recently,
Facebook announced the release of Flashcache, a sim-
ple write back persistent block cache designed to accel-
erate reads and writes from slower rotational media (hard
disks) by caching data in SSDs [7]. These applications
have different storage access patterns than typical con-
sumer devices and pose new challenges to flash media to
deliver sustained and high throughput (and low latency).

These challenges arising from new applications of
flash are being addressed at different layers of the storage
stack by flash device vendors and system builders, with
the former focusing on techniques at the device driver
software level and inside the device, and the latter driv-
ing innovation at the operating system and application
layers. The work in this paper falls in the latter cate-
gory. To get the maximum performance per dollar out of
SSDs, it is necessary to use flash aware data structures
and algorithms that work around constraints of flash me-
dia (e.g., avoid or reduce small random writes that not
only have a higher latency but also reduce flash device
lifetimes through increased page wearing).

To this end, we present the design and evaluation of
ChunkStash, a flash-assisted inline storage deduplication
system incorporating a high performance chunk meta-
data store on flash. When a key-value pair (i.e., chunk-
id and its metadata) is written, it is sequentially logged
in flash. A specialized RAM-space efficient hash table
index employing a variant of cuckoo hashing [35] and
compact key signatures is used to index the chunk meta-
data stored in flash memory and serve chunk-id lookups
using one flash read per lookup. ChunkStash works in
concert with existing RAM prefetching strategies. The
flash requirements of ChunkStash are well within the
range of currently available SSD capacities – as an exam-
ple, ChunkStash can index order of terabytes of unique
(deduplicated) data using order of tens of gigabytes of
flash. Further, by indexing a small fraction of chunks
per container, ChunkStash can reduce RAM usage sig-
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nificantly with negligible loss in deduplication quality.
In the rest of the paper, we use NAND flash based

SSDs as the architectural choice and simply refer to it
as flash memory. We describe the internal architecture of
SSDs in Section 2.

1.3 Our Contributions

The contributions of this paper are summarized as fol-
lows:

• Chunk metadata store on flash: ChunkStash or-
ganizes key-value pairs (corresponding to chunk-id
and metadata) in a log-structured manner on flash
to exploit fast sequential write property of flash de-
vice. It serves lookups on chunk-ids (20-byte SHA-
1 hash) using one flash read per lookup.

• Specialized space efficient RAM hash table in-
dex: ChunkStash uses an in-memory hash table to
index key-value pairs on flash, with hash collisions
resolved by a variant of cuckoo hashing. The in-
memory hash table stores compact key signatures
instead of full keys so as to strike tradeoffs between
RAM usage and false flash reads. Further, by in-
dexing a small fraction of chunks per container,
ChunkStash can reduce RAM usage significantly
with negligible loss in deduplication quality.

• Evaluation on enterprise datasets: We compare
ChunkStash, our flash index based inline dedupli-
cation system, with a hard disk index based sys-
tem as in Zhu et al. [42]. For the hard disk in-
dex based system, we use BerkeleyDB [1], an em-
bedded key-value store application that is widely
used as a comparison benchmark for its good per-
formance. For comparison with the latter system,
we also include “a hard disk replacement with SSD”
for the index storage, so as to bring out the perfor-
mance gain of ChunkStash in not only using flash
for chunk metadata storage but also in its use of
flash aware algorithms. We use three enterprise
backup datasets (two full backups for each) to drive
and evaluate the design of ChunkStash. Our evalua-
tions on the metric of backup throughput (MB/sec)
show that ChunkStash outperforms (i) a hard disk
index based inline deduplication system by 7x-60x,
and (ii) SSD index (hard disk replacement but flash
unaware) based inline deduplication system by 2x-
4x.

The rest of the paper is organized as follows. We pro-
vide an overview of flash-based SSD in Section 2. We
develop the design of ChunkStash in Section 3. We eval-
uate ChunkStash on enterprise datasets and compare it

with our implementation of a hard disk index based in-
line deduplication system in Section 4. We review related
work in Section 5. Finally, we conclude in Section 6.

2 Flash-based SSD

A Solid State Drive(SSD) consists of flash chip(s) and
flash translation layer (FTL). In a flash chip, data is
stored in an array of flash memory blocks. Each block
spans 32-64 pages, where a page is the smallest unit of
read and write operations. In flash memory, unlike disks,
random read operations are as fast as sequential read op-
erations as there is no mechanical head movement. How-
ever, unlike disk, read and write operations do not ex-
hibit symmetric behavior. This asymmetry arises as flash
memory does not allow in-place update (i.e., overwrite)
operations. Page write operations in a flash memory must
be preceded by an erase operation and within a block
pages need to be written sequentially. Read and write
operations are performed in page-level, while erase op-
erations are performed in block-level. In addition, before
the erase is being done on a block, the valid (i.e., not
over-written) pages from that block need to be moved
to a new pre-erased blocks. Thus, a page update oper-
ation incurs lot of page read and write operations. The
typical access latencies for read, write, and erase opera-
tions are 25 microseconds, 200 microseconds, and 1500
microseconds, respectively [9]. Besides the in-place up-
date problem, flash memory exhibits another limitation
– a flash block can only be erased for limited number of
times (e.g., 10K-100K) [9].

The Flash Translation layer (FTL) is an intermediate
software layer inside an SSD, which hides the limitations
of flash memory and provides a disk like interface. FTL
receives logical read and write commands from the ap-
plications and converts them to the internal flash memory
commands. To emulate disk like in-place update opera-
tion for a logical page (Lp), the FTL writes data into a
new physical page (Pp), maintains a mapping between
logical pages and physical pages, and marks the previ-
ous physical location of Lp as invalid for future garbage
collection. FTL uses various wear leveling techniques
to even out the erase counts of different blocks in the
flash memory to increase its overall longevity [20]. Thus,
FTL allows current disk based application to use SSD
without any modifications. However, it needs to inter-
nally deal with current limitations of flash memory (i.e.,
constraint of erasing a block before overwriting a page
in that block). Recent studies show that current FTL
schemes are very effective for the workloads with se-
quential access write patterns. However, for the work-
loads with random access patterns, these schemes show
very poor performance [21, 23, 26, 28, 32]. One of the
design goals of ChunkStash is to use flash memory in an
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FTL friendly manner.

3 Flash-assisted Inline Deduplication Sys-
tem

We follow the overall framework of production storage
deduplication systems currently in the industry [42, 30].
Data chunks coming into the system are identified by
their SHA-1 hash [34] and looked up in an index of cur-
rently existing chunks in the system (for that storage lo-
cation or stream). If a match is found, the metadata for
the file (or, object) containing that chunk is updated to
point to the location of the existing chunk. If there is
no match, the new chunk is stored in the system and
the metadata for the associated file is updated to point
to it. (In another variation, the chunk hash is included
in the file/object metadata and is translated to chunk lo-
cation during read access.) Comparing data chunks for
duplication by their 20-byte SHA-1 hash instead of their
full content is justified by the fact that the probability of
SHA-1 hash match for non-identical chunks is less by
many orders of magnitude than the probability of hard-
ware error [37]. We allocate 44 bytes for the metadata
portion. The 20-byte chunk hash is the key and the 44-
byte metadata is the value, for a total key-value pair size
of 64 bytes.

Similar to [42] and unlike [30], our system targets
complete deduplication and ensures that no duplicate
chunks exist in the system after deduplication. However,
we also provide a technique for RAM usage reduction in
our system that comes at the expense of marginal loss in
deduplication quality.

We summarize the main components of the system
below and then delve into the details of the chunk
metadata store on flash which is a new contribution of
this paper.

Data chunking: We use Rabin fingerprinting based
sliding window hash [38] on the data stream to identify
chunk boundaries in a content dependent manner. A
chunk boundary is declared when the lower order bits of
the Rabin fingerprint match a certain pattern. The length
of the pattern can be adjusted to vary the average chunk
size. The average chunk size in our system is 8KB as
in [42]. Ziv-Lempel compression [43] on individual
chunks can achieve an average compression ratio of 2:1,
as reported in [42] and also verified on our datasets, so
that the size of the stored chunks on hard disk averages
around 4KB. The SHA-1 hash of a chunk serves as its
chunk-id in the system.

On-disk Container Store: The container store on hard
disk manages the storage of chunks. Each container
stores at most 1024 chunks and averages in size around

4MB. (Because of the law of averages for this large
number (1024) of chunks, the deviation of container size
from this average is relatively small.) As new (unique)
chunks come into the system, they are appended to the
current container buffered in RAM. When the current
container reaches the target size of 1024 chunks, it
is sealed and written to hard disk and a new (empty)
container is opened for future use.

Chunk Metadata Store on Flash (ChunkStash): To
eliminate hard disk accesses for chunk-id lookups, we
maintain, in flash, the metadata for all chunks in the
system and index them using a specialized RAM index.
The chunk metadata store on flash is a new contribution
of this paper and is discussed in Section 3.1.

Chunk and Container Metadata Caches in RAM: A
cache for chunk metadata is also maintained in RAM
as in [42]. The fetch (prefetch) and eviction policies
for this cache are executed at the container level (i.e.,
metadata for all chunks in a container). To implement
this container level prefetch and eviction policy, we
maintain a fixed size container metadata cache for the
containers whose chunk metadata are currently held in
RAM – this cache maps a container-id to the chunk-ids
it contains. The size of the chunk metadata cache is
determined by the size of the container metadata cache,
i.e., for a container metadata cache size of C containers,
the chunk metadata cache needs to hold 1024*b chunks.
A distinguishing feature of ChunkStash (compared to
the system in [42] is that it does not need to use bloom
filters to avoid secondary storage (hard disk or flash)
lookups for non-existent chunks.

Prefetching Strategy: We use the basic idea of
predictability of sequential chunk-id lookups during
second and subsequent full backups exploited in [42].
Since datasets do not change much across consecutive
backups, duplicate chunks in the current full backup are
very likely to appear in the same order as they did in the
previous backup. Hence, when the metadata for a chunk
is fetched from flash (upon a miss in the chunk metadata
cache in RAM), we prefetch the metadata for all chunks
in that container into the chunk metadata cache in RAM
and add the associated container’s entry to the container
metadata cache in RAM. Because of this prefetching
strategy, it is quite likely that the next several hundreds
or thousand of chunk lookups will hit in the RAM chunk
metadata cache.

RAM Chunk Metadata Cache Eviction Strategy: The
container metadata cache in RAM follows a Least Re-
cently Used (LRU) replacement policy. When a con-
tainer is evicted from this cache, the chunk-ids of all the

4

chunks it contains are removed from the chunk metadata
cache in RAM.

3.1 ChunkStash: Chunk Metadata Store
on Flash

As a new contribution of this paper, we present the ar-
chitecture of ChunkStash, the on-flash chunk metadata
store, and the rationale behind some design choices. The
design of ChunkStash is driven by the need to work
around two types of operations that are not efficient on
flash media, namely:

1. Random Writes: Small random writes effectively
need to update data portions within pages. Since
a (physical) flash page cannot be updated in place,
a new (physical) page will need to be allocated and
the unmodified portion of the data on the page needs
to be relocated to the new page.

2. Writes less than flash page size: Since a page
is the smallest unit of write on flash, writing an
amount less than a page renders the rest of the
(physical) page wasted – any subsequent append to
that partially written (logical) page will need copy-
ing of existing data and writing to a new (physical)
page.

Given the above, the most efficient way to write flash
is to simply use it as an append log, where an append
operation involves one or more flash pages worth of
data (current flash page size is typically 2KB or 4KB).
This is the main constraint that drives the rest of our
key-value store design. Flash has been used in a log-
structured manner and its benefits reported in earlier
work ([22, 41, 33, 15, 11]. We organize chunk metadata
storage on flash into logical page units of 64KB which
corresponds to the metadata for all chunks in a single
container. (At 1024 chunks per container and 64 bytes
per chunk-id and metadata, a container’s worth of chunk
metadata is 64KB in size.)

ChunkStash has the following main components, as
shown in Figure 1:

RAM Chunk Metadata Write Buffer: This is a
fixed-size data structure maintained in RAM that buffers
chunk metadata information for the currently open
container. The buffer is written to flash when the current
container is sealed, i.e., the buffer accumulates 1024
chunk entries and reaches a size of 64KB. The RAM
write buffer is sized to 2-3 times the flash page size so
that chunk metadata writes can still go through when
part of the buffer is being written to flash.

Figure 1: ChunkStash architectural overview.

RAM Hash Table (HT) Index: The index structure, for
chunk metadata entries stored on flash, is maintained in
RAM and is organized as a hash table with the design
goal of one flash read per lookup. The index maintains
pointers to the full (chunk-id, metadata) pairs stored on
flash. Key features include resolving collisions using
a variant of cuckoo hashing and storing compact key
signatures in memory to tradeoff between RAM usage
and false flash reads. We explain these aspects shortly.

On-Flash Store: The flash store provides persistent stor-
age for chunk metadata and is organized as an append
log. Chunk metadata is written (appended) to flash in
units of a logical page size of 64KB, corresponding to
the chunk metadata of a single container.

3.2 Hash Table Design for ChunkStash
We outline the salient aspects of the hash table design
for ChunkStash.

Resolving hash collisions using cuckoo hashing: Hash
function collisions on keys result in multiple keys map-
ping to the same hash table index slot – these need
to be handled in any hashing scheme. Two common
techniques for handling such collisions include linear
probing and chaining [25]. Linear probing can increase
lookup time arbitrarily due to long sequences of colliding
slots. Chaining hash table entries in RAM, on the other
hand, leads to increased memory usage, while chaining
buckets of key-value pairs is not efficient for use with
flash, since partially filled buckets will map to partially
filled flash pages that need to be appended over time,
which is not an efficient flash operation. Moreover, the
latter will result in multiple flash page reads during key
lookups and writes, which will reduce throughput.

ChunkStash structures the HT index as an array of
slots and uses a variant of cuckoo hashing [35] to resolve
collisions. Cuckoo hashing provides flexibility for each
key to be in one of n ≥ 2 candidate positions and for
later inserted keys to relocate earlier inserted keys to any
of their other candidate positions – this keeps the linear
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probing chain sequence upper bounded at n. In fact, the
value proposition of cuckoo hashing is in increasing hash
table load factors while keeping lookup times bounded to
a constant. A study [44] has shown that cuckoo hashing
is much faster than chained hashing as hash table load
factors increase. The name “cuckoo” is derived from the
behavior of some species of the cuckoo bird – the cuckoo
chick pushes other eggs or young out of the nest when it
hatches, much like the hashing scheme kicks previously
inserted items out of their location as needed.

In the variant of cuckoo hashing we use, we work with
n random hash functions h1, h2, . . . , hn that are used to
obtain n candidate positions for a given key x. These
candidate position indices for key x are obtained from
the lower-order bit values of h1(x), h2(x), . . . , hn(x)
corresponding to a modulo operation. During insertion,
the key is inserted in the first available candidate slot.
When all slots for a given key x are occupied during in-
sertion (say, by keys y1, y2, . . . , yn), room can be made
for key x by relocating keys yi in these occupied slots,
since each key yi has a choice of (n − 1) other locations
to go to.

In the original cuckoo hashing scheme [35], a recur-
sive strategy is used to relocate one of the keys yi – in the
worst case, this strategy could take many key relocations
or get into an infinite loop, the probability for which can
be shown to be very small and decreasing exponentially
in n [35]. In our design, the system attempts a small
number of key relocations after which it makes room by
picking a key to move to an auxiliary linked list (or, hash
table). In practice, by dimensioning the HT index for a
certain load factor and by choosing a suitable value of n,
such events can be made extremely rare, as we investi-
gate in Section 4.4. Hence, the size of this auxiliary data
structure is small. The viability of this approach has also
been verified in [24], where the authors show, through
analysis and simulations, that a very small constant-sized
auxiliary space can dramatically reduce the insertion fail-
ure probabilities associated with cuckoo hashing. (That
said, we also want to add that the design of ChunkStash
is amenable to other methods of hash table collision res-
olution.)

The number of hash function computations during
lookups can be reduced from the worst case value of
n to 2 using the standard technique of double hashing
from the hashing literature [25]. The basic idea is that
two hash functions g1 and g2 can simulate more than
two hash functions of the form hi(x) = g1(x) + ig2(x).
In our case, i will range from 0 to n − 1. Hence, the use
of higher number of hash functions in cuckoo hashing
does not incur additional hash function computation
overheads but helps to achieve higher hash table load
factors.

Reducing RAM usage per slot by storing compact key
signatures: Traditional hash table designs store the re-
spective key in each entry of the hash table index [25].
Depending on the application, the key size could range
from few tens of bytes (e.g., 20-byte SHA-1 hash as
in storage deduplication) to hundreds of bytes or more.
Given that RAM size is limited (commonly in the order
of few to several gigabytes in servers) and is more expen-
sive than flash (per GB), if we store the full key in each
entry of the RAM HT index, it may well become the bot-
tleneck for the maximum number of entries on flash that
can be indexed from RAM before flash storage capacity
bounds kick in. On the other hand, if we do not store the
key at all in the HT index, the search operation on the HT
index would have to follow HT index pointers to flash to
determine whether the key stored in that slot matches the
search key – this would lead to many false flash reads,
which are expensive, since flash access speeds are 2-3
orders of magnitude slower than that of RAM.

To address the goals of maximizing HT index capacity
(number of entries) and minimizing false flash reads,
we store a compact key signature (order of few bytes)
in each entry of the HT index. This signature is derived
from both the key and the candidate position number
that it is stored at. In ChunkStash, when a key x is
stored in its candidate position number i, the signature
in the respective HT index slot is derived from the
higher order bits of the hash value hi(x). During a
search operation, when a key y is looked up in its
candidate slot number j, the respective signature is
computed from hj(y) and compared with the signature
stored in that slot. Only if a match happens is the
pointer to flash followed to check whether the full key
matches. We investigate the percentage of false reads
as a function of the compact signature size in Section 4.4.

Storing key-value pairs on flash: Chunk-id and meta-
data pairs are organized on flash in a log-structure in the
order of the respective write operations coming into the
system. The HT index contains pointers to (chunk-id,
metadata) pairs stored on flash. We use a 4-byte pointer,
which is a combination of a logical page pointer and a
page offset. With 64-byte key-value pair sizes, this is
sufficient to index 256GB of chunk metadata on flash –
for an average chunk size of 8KB, this corresponds to
a maximum (deduplicated) storage dataset size of about
33TB. (ChunkStash reserves the all-zero pointer to indi-
cate an empty HT index slot.)

3.3 Putting It All Together

To understand the hierarchical relationship of the differ-
ent storage areas in ChunkStash, it is helpful to under-
stand the sequence of accesses during inline deduplica-

6

Figure 2: Flowchart of deduplication process in
ChunkStash.

tion. A flowchart for this is provided in Figure 2. Recall
that when a new chunk comes into the system, its SHA-1
hash is first looked up to determine if the chunk is a du-
plicate one. If not, the new chunk-id is inserted into the
system.

A chunk-id lookup operation first looks up the RAM
chunk metadata cache. Upon a miss there, it looks up the
RAM chunk metadata write buffer. Upon a miss there,
it searches the RAM HT Index in order to locate the
chunk-id on flash. If the chunk-id is present on flash,
its metadata, together with the metadata of all chunks in
the respective container, is fetched into the RAM chunk
metadata cache.

A chunk-id insert operation happens when the chunk
coming into the system has not been seen earlier. This
operation writes the chunk metadata into the RAM chunk
metadata write buffer. The chunk itself is appended to
the currently open container buffered in RAM. When the
number of chunk entries in the RAM chunk metadata
write buffer reaches the target of 1024 for the current
container, the container is sealed and written to the con-
tainer store on hard disk, and its chunk metadata entries
are written to flash and inserted into the RAM HT index.

3.4 RAM and Flash Capacity Considera-
tions

The indexing scheme in ChunkStash is designed to use a
small number of bytes in RAM per key-value pair so as to
maximize the amount of indexable storage on flash for a
given RAM usage size. The RAM HT index capacity de-

compact key signature pointer to key-value pair on flash
≈

≈
≈ ≈

≈ ≈2-byte  4-byte  

Figure 3: RAM HT Index entry and example sizes in
ChunkStash. (The all-zero pointer is reserved to indicate
an empty HT index slot.)

termines the number of chunk-ids stored on flash whose
metadata can be accessed with one flash read. The RAM
size for the HT index can be determined with application
requirements in mind. With a 2-byte compact key signa-
ture and 4-byte flash pointer per entry, the RAM usage
in ChunkStash is 6 bytes per entry as shown in Figure 3.
For a given average chunk size, this determines the rela-
tionship among the following quantities – RAM and flash
usage per storage dataset and associated storage dataset
size.

For example, a typical RAM usage of 4GB per ma-
chine for the HT index accommodates a maximum of
about 716 million chunk-id entries. At an average of
8KB size per data chunk, this corresponds to about 6TB
of deduplicated data, for which the chunk metadata occu-
pies about 45GB on flash. This flash usage is well within
the capacity range of SSDs shipping in the market today
(from 64GB to 640GB). When there are multiple such
SSDs attached to the same machine, additional RAM is
needed to fully utilize their capacity for holding chunk
metadata. Moreover, RAM usage by the HT index in
ChunkStash can be further reduced using techniques dis-
cussed in Section 3.5.

To reap the full performance benefit of ChunkStash for
speeding up inline deduplication, it is necessary for the
entire chunk metadata for the (current) backup dataset
to fit in flash. Otherwise, when space on flash runs out,
the append log will need to be recycled and written from
the beginning. When a page on the flash log is rewrit-
ten, the earlier one will need to be evicted and the meta-
data contained therein written out to a hard disk based
index. Moreover, during the chunk-id lookup process, if
the chunk is not found in flash, it will need to be looked
up in the index on hard disk. Thus, both the chunk-id
insert and lookup pathways would suffer from the same
bottlenecks of disk index based systems that we sought
to eliminate in the first place.

ChunkStash uses flash memory to store chunk meta-
data and index it from RAM. It provides flexibility for
flash to serve, or not to serve, as a permanent abode for
chunk metadata for a given storage location. This deci-
sion can be driven by cost considerations, for example,
because of the large gap in cost between flash memory
and hard disk. When flash is not the permanent abode for
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chunk metadata for a given storage location, the chunk
metadata log on flash can be written to hard disk in one
large sequential write (single disk I/O) at the end of the
backup process. At the beginning of the next full backup
for this storage location, the chunk metadata log can be
loaded back into flash from hard disk in one large se-
quential read (single disk I/O) and the containing chunks
can be indexed in RAM HT index. This mode of op-
eration amortizes the storage cost of metadata on flash
across many backup datasets.

3.5 Reducing ChunkStash RAM Usage

The largest portion of RAM usage in ChunkStash comes
from the HT index. This usage can be reduced by in-
dexing in RAM only a small fraction of the chunks in
each container (instead of the whole container). Flash
will continue to hold metadata for all chunks in all con-
tainers, not just the ones indexed in RAM; hence when
a chunk in the incoming data stream matches an indexed
chunk, metadata for all chunks in that container will be
prefetched in RAM. We use an uniform chunk sampling
strategy, i.e., we index every i-th chunk in every con-
tainer which gives a sampling rate of 1/i.

Because only a subset of chunks stored in the system
are indexed in the RAM HT index, detection of dupli-
cate chunks will not be completely accurate, i.e., some
incoming chunks that are not found in the RAM HT in-
dex may, in fact, have appeared earlier and are already
stored in the system. This will lead to some loss in dedu-
plication quality, and hence, some amount of duplicate
data chunks will be stored in the system. In Section 4.6,
we study the impact of this on deduplication quality (and
backup throughput). We find that the loss in deduplica-
tion quality is marginal when about 1% of the chunks
in each container are indexed and becomes negligibly
small when about 10% of the chunks are indexed. The
corresponding RAM usage reductions for the HT index
are appreciable at 99% and 90% respectively. Hence, in-
dexing chunk subsets in ChunkStash provides a powerful
knob for reducing RAM usage with only marginal loss in
deduplication quality.

In an earlier approach for reducing RAM usage re-
quirements of inline deduplication systems, the method
of sparse indexing [30] chops the incoming data into
multiple megabyte segments, samples chunks at random
within a segment (based on the most significant bits of
the SHA-1 hash matching a pattern, e.g., all 0s), and uses
these samples to find few segments seen in the recent
past that share many chunks. In contrast, our sampling
method is deterministic and samples chunks at uniform
intervals in each container for indexing. Moreover, we
are able to match incoming chunks with sampled chunks
in all containers stored in the system, not just those seen

in the recent past. In our evaluations in Section 4.6,
we show that our uniform sampling strategy gives bet-
ter deduplication quality than random sampling (for the
same sampling rate).

4 Evaluation

We evaluate the backup throughput performance of a
ChunkStash based inline deduplication system and com-
pare it with our implementation of a disk index based
system as in [42]. We use three enterprise datasets and
two full backups for our evaluations.

4.1 C# Implementation
We have prototyped ChunkStash in approximately 8000
lines of C# code. MurmurHash [5] is used to realize the
the hash functions used in our variant of cuckoo hash-
ing to compute hash table indices and compact signa-
tures for keys; two different seeds are used to generate
two different hash functions in this family for use with
the double hashing based simulation of n hash func-
tions, as described in Section 3.2. In our implementa-
tion, writes to the on-disk container store are performed
in a non-blocking manner using a small pool of file
writer worker threads. The metadata store on flash is
maintained as a log file in the file system and is cre-
ated/opened in non-buffered mode so that there are no
buffering/caching/prefetching effects in RAM from within
the operating system.

4.2 Comparison with Hard Disk Index
based Inline Deduplication

We compare ChunkStash, our flash index based inline
deduplication system, with a hard disk index based sys-
tem as in Zhu et al. [42]. The index used in [42] appears
to be proprietary and no details are provided in the paper.
Hence, for purposes of comparative evaluation, we have
built a hard disk index based system incorporating the
ideas in [42] with the hard disk index implemented by
BerkeleyDB [1], an embedded key-value database that
is widely used as a comparison benchmark for its good
performance. For comparison with the latter system, we
also include a “hard disk replacement with SSD” for the
index storage, so as to bring out the performance gain of
ChunkStash in not only using flash for chunk metadata
storage but also in its use of flash aware algorithms.

BerkeleyDB does not use flash aware algorithms but
we used the parameter settings recommended in [3] to
improve its performance with flash. We use BerkeleyDB
in its non-transactional concurrent data store mode that
supports a single writer and multiple readers [40]. This
mode does not support a transactional data store with the
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Trace Size (GB) Total Chunks #Full Backups
Dataset 1 8GB 1.1 million 2
Dataset 2 32GB 4.1 million 2
Dataset 3 126GB 15.4 million 2

Table 1: Properties of the three traces used in the per-
formance evaluation of ChunkStash. The average chunk
size is 8KB.

ACID properties, hence provides a fair comparison with
ChunkStash . BerkeleyDB provides a choice of B-tree
and hash table data structures for building indexes – we
use the hash table version which we found to run faster.
We use the C++ implementation of BerkeleyDB with C#
API wrappers [2].

4.3 Evaluation Platform and Datasets
We use a standard server configuration to evaluate the in-
line deduplication performance of ChunkStash and com-
pare it with the disk index based system that uses Berke-
leyDB. The server runs Windows Server 2008 R2 and
uses an Intel Core 2 Duo E6850 3GHz CPU, 4GB RAM,
and fusionIO 160GB flash drive [4] attached over PCIe
interface. Containers are written to a RAID4 system us-
ing five 500GB 7200rpm hard disks. A separate hard
disk is used for storing disk based indexes. For the fusio-
nIO drive, write buffering inside the device is disabled
and cannot be turned on through operating system set-
tings. The hard drives used support write buffering inside
the device by default and this setting was left on. This
clearly gives some advantage to the hard disks for the
evaluations but makes our comparisons of flash against
hard disk more conservative.

To obtain traces from backup datasets, we have built a
storage deduplication analysis tool that can crawl a root
directory, generate the sequence of chunk hashes for a
given average chunk size, and compute the number of
deduplicated chunks and storage bytes. The enterprise
data backup traces we use for evaluations in this paper
were obtained by our storage deduplication analysis tool
using 8KB (average) chunk sizes (this is also the chunk
size used in [30]). We obtained two full backups for three
different storage locations, indicated as Datasets 1, 2, and
3 in Table 1. The number of chunks in each dataset (for
each full backup) are about 1 million, 4 million, and 15
million respectively.

We compare the throughput (MB/sec processed from
the input data stream) on the three traces described in Ta-
ble 1 for the following four inline deduplication systems:

• Disk based index (BerkeleyDB) and RAM bloom
filter [42] (Zhu08-BDB-HDD),

• Zhu08-BDB system with SSD replacement for

BerkeleyDB index storage (Zhu08-BDB-SSD),

• Flash based index using ChunkStash (ChunkStash-
SSD),

• ChunkStash with the SSD replaced by hard disk
(ChunkStash-HDD).

Some of the design decisions in ChunkStash also work
well when the underlying storage is hard disk and not
flash (e.g., log structured data organization and sequen-
tial writes). Hence, we have included Chunkstash run-
ning on hard disk as a comparison point so as to bring
out the impact of log structured organization for a store
on hard disk for the storage deduplication application.
(Note that BerkeleyDB does not use a log structured stor-
age organization.)

All four systems use RAM prefetching techniques for
the chunk index as described in [42]. When a chunk hash
lookup misses in RAM (but hits the index on hard disk or
flash), metadata for all chunks in the associated container
are prefetched into RAM. The RAM chunk metadata
cache size for holding chunk metadata is fixed at 20 con-
tainers, which corresponds to a total of 20,480 chunks.
In order to implement the prefetching of container meta-
data in a single disk I/O for Zhu08-BDB, we maintain, in
addition to the BerkeleyDB store, an auxiliary sequential
log of chunk metadata that is appended with container
metadata whenever a new container is written to disk.

Note that unlike in [42], our evaluation platform is
not a production quality storage deduplication system but
rather a research prototype. Hence, our throughput num-
bers should be interpreted in a relative sense among the
four systems above, and not used for absolute compari-
son with other storage deduplication systems.

4.4 Tuning Hash Table Parameters
Before we make performance comparisons of
ChunkStash with the disk index based system, we
need to tune two parameters in our hash table design
from Section 3.2, namely, (a) number of hash functions
used in our variant of cuckoo hashing, and (b) size of
compact key signature. These affect the throughput of
read key and write key operations in different ways that
we discuss shortly. For this set of experiments, we use
one of the storage deduplication traces in a modified
way so as to study the performance of hash table insert
and lookup operations separately. We pre-process the
trace to extract a set of 1 million unique keys, then insert
all the key-value pairs, and then read all these key-value
pairs in random order.

As has been explained earlier, the value proposition of
cuckoo hashing is in accommodating higher hash table
load factors without increasing lookup time. It has been
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Figure 4: Tuning hash table parameters in ChunkStash: (a) Average number of relocations per insert as keys are
inserted into hash table; (b) Average number of relocations per insert, and (c) Average lookup time (µsec), vs. number
of hash functions (n), averaged between 75%-90% load factors.

shown mathematically that with 3 or more hash functions
and with load factors up to 91%, insertion operations
succeed in expected constant time [35]. With this prior
evidence in hand, we target a maximum load factor of
90% for our cuckoo hashing implementation. Hence,
for the dedup trace used in this section with 1 million
keys, we fix the number of hash table slots to 1.1 million.

Number of Hash Functions. When the number of hash
functions n is small, the performance of insert operations
can be expected to degrade in two ways as the hash ta-
ble loads up. First, an insert operation will find all its n
slots occupied by other keys and the number of cascaded
key relocations required to complete this insertion will
be high. Since each key relocation involves a flash read
(to read the full key from flash and compute its candi-
date positions), the insert operation will take more time
to complete. Second, with an upper bound on the num-
ber of allowed key relocations (which we set to 100 for
this set of experiments), the insert operation could lead
to a key being moved to the auxiliary linked list – this in-
creases the RAM space usage of the linked list as well
as its average search time. On the other hand, as the
number of hash functions increase, lookup times will in-
crease because of increasing number of hash table posi-
tions searched. However, the latter undesirable effect is
not expected to be as degrading as those for inserts, since
a lookup in memory takes orders of magnitude less time
than a flash read. We study these effects to determine a
suitable number of hash functions for our design. (Note
that because of our use of double hashing, the number of
hash function computations per lookup does not increase
with n.)

In Figure 4(a), we plot the average number of key re-
locations (hence, flash reads) per insert operation as keys
are inserted into the hash table (for n = 24 hash func-
tions). We see that the performance of insert operations
degrades as the hash table loads up, as expected because
of the impact of the above effect. Accordingly, for the
following plots in this section, we present average num-
bers between 75% and 90% load factors as the insert op-

erations are performed.
In Figure 4(b), we plot the average number of key re-

locations per insert operation as the number of hash func-
tions n is varied, n = 4, 8, 16, 24, 32. Beyond n = 16
hash functions, the hash table incurs less than 0.1 key
relocations (hence, flash reads) per insert operation. Fig-
ure 4(c) shows that there is no appreciable increase in
average lookup time as the number of hash functions in-
crease. (The slight decrease in average lookup time with
increasing number of hash functions can be attributed to
faster search times in the auxiliary linked list, whose size
decreases as number of hash functions increases.)

Based on these effects, we choose n = 24 hash
functions in the RAM HT Index for our ChunkStash
implementation. Note that during a key lookup, all n
hash values on the key need not be computed, since the
lookup stops at the candidate position number the key
is found in. Moreover, because of the use of double
hashing, at most two hash function computations are
incurred even when all candidate positions are searched
for a key. We want to add that using fewer hash functions
may be acceptable depending on overall performance
requirements, but we do not recommend a number
below n = 8. Also, with n = 24 hash functions, we
observed that it is sufficient to set the maximum number
of allowed key relocations (during inserts) to 5-10 to
keep the number of inserts that go to the linked list very
small.

Compact Key Signature Size. As explained in Section
3.1, we store compact key signatures in the HT index
(instead of full keys) to reduce RAM usage. However,
shorter signatures lead to more false flash reads during
lookups (i.e., when a pointer into flash is followed be-
cause the signature in HT index slot matches, but the full
key on flash does not match with the key being looked
up). Since flash reads are expensive compared to RAM
reads, the design should strike a balance between reduc-
ing false flash reads and RAM usage. We observe that the
fraction of false reads is about 0.01% when the number
of signature bytes is fixed at 2, and we use this signature
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Trace RAM Hit Rate
1st Full Backup 2nd Full Backup

Dataset 1 20% 97%
Dataset 2 2% 88%
Dataset 3 23% 80%

Table 2: RAM hit rates for chunk hash lookups on the
three traces for each full backup.

size in our implementation. Even a 1-byte signature size
may be acceptable given that only 0.6% of the flash reads
are false in that case.

4.5 Backup Throughput

We ran the chunk traces from the the three datasets out-
lined in Table 1 on ChunkStash and our implementation
of the system in [42] using BerkeleyDB as the chunk
index on either hard disk or flash. We log the backup
throughput (MB of data backed up per second) at a pe-
riod of every 10,000 input chunks during each run and
then take the overall average over a run to obtain through-
put numbers shown in Figures 5, 6, and 7.

ChunkStash achieves average throughputs of about
190 MB/sec to 265 MB/sec on the first full backups
of the three datasets. The throughputs are about 60%-
140% more for the second full backup compared to the
first full backup for the datasets – this reflects the effect
of prefetching chunk metadata to exploit sequential pre-
dictability of chunk lookups during second full backup.
The speedup of ChunkStash over Zhu08-BDB-HDD is
about 30x-60x for the first full backup and 7x-40x for
the second full backup. Compared to the Zhu08-BDB-
SSD in which the hard disk is replaced by SSD for in-
dex storage, the speedup of ChunkStash is about 3x-4x
for the first full backup and about 2x-4x for the second
full backup. The latter reflects the relative speedup of
ChunkStash due to the use of flash-aware data structures
and algorithms over BerkeleyDB which is not optimized
for flash device properties.

We also run ChunkStash on hard disk (instead of flash)
to bring out the performance impact of a log-structured
organization on hard disk. Sequential writes of container
metadata to the end of the metadata log is a good de-
sign for and benefits hard disks also. On the other hand,
lookups in the log from the in-memory index may in-
volve random reads in the log which are expensive on
hard disks due to seeks – however, container metadata
prefetching helps to reduce the number of such ran-
dom reads to the log. We observe that the throughput
of ChunkStash-SSD is more than that of ChunkStash-
HDD by about 50%-80% for the first full backup and by
about 10%-20% for the second full backup for the three
datasets.

In Table 2, we show the RAM hit rates for chunk hash
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based indexes for inline storage deduplication.

lookups on the three traces for each full backup. The
RAM hit rate for the first full backup is indicative of the
redundancy (duplicate chunks) within the dataset – this
is higher for Datasets 1 and 3 and is responsible for their
higher backup throughputs. The RAM hit rate for the
second full backup is indicative of its similarity with the
first full backup – this manifests itself during the second
full backup through fewer containers written and through
sequential predictability of chunk hash lookups (which is
exploited by the RAM prefetching strategy).

When compared to ChunkStash, the relatively worse
performance of a BerkeleyDB based chunk metadata in-
dex can be attributed to the increased number of disk I/Os
(random reads and writes). We measured the number of
disk I/Os for Zhu08-BDB and ChunkStash systems us-
ing Windows Performance Analysis Tools (xperf) [8].
In Figure 8, we observe that the number of read I/Os in
BerkeleyDB is 3x-7x that of ChunkStash and the num-
ber of write I/Os is about 600-1000x that of ChunkStash.
Moreover, these writes I/Os in BerkeleyDB are all ran-
dom I/Os, while ChunkStash is designed to use only
sequential writes (appends) to the chunk metadata log.
Because there is no locality in the key space in an ap-
plication like storage deduplication, container metadata
writes to a BerkeleyDB based index lead to in-place up-
dates (random writes) to many different pages (on disk
or flash) and appears to be one of the main reasons for its
worse performance.
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4.6 Impact of Indexing Chunk Subsets
In Section 3.5, we saw that RAM usage in ChunkStash
can be reduced by indexing a small fraction of the chunks
in each container. In this section, we study the impact
of this on deduplication quality and backup throughput.
Because only a subset of the chunks are indexed in the
RAM HT index, detection of duplicate chunks will not
be completely accurate, i.e., some incoming chunks that
are not found in the RAM HT index may have appeared
earlier and are already stored in the system. Hence, some
amount of duplicate data chunks will be stored in the
system. We compare two chunk sampling strategies –
uniform chunk sampling strategy (i.e., index every i-th
chunk) and random sampling (based on the most signif-
icant bits of the chunk SHA-1 hash matching a pattern,
e.g., all 0s), the latter being used as part of a sparse in-
dexing scheme in [30].

In Figure 9, we plot the fraction of chunks that are
declared as new by the system during the second full
backup of Dataset 2 as a percentage of the total number
of chunks in the second full backup. The lower the value
of this fraction, the better is the deduplication quality (the
baseline for comparison being the case when all chunks
are indexed). The fraction of chunks indexed in each
container is varied as 1.563% = 1/64, 6.25% = 1/16,
12.5% = 1/8, and 100% (when all chunks are indexed).
We choose sampling rates that are reciprocals of pow-
ers of 2 because those are the types of sampling rates

12.5% 12.2% 12.1%

18.0%

13.5%
12.7% 12.0%

0%

5%

10%

15%

20%

1.563% 6.250% 12.500% 100%

%
C
h
u
n
k
s
 d
e
te
c
te
d
 a
s
 n
e
w

%Chunks in ChunkStash RAM HT Index

Dataset 2, 2nd Full Backup Uniform sampling

Random sampling

Figure 9: Dataset 2: Number of chunks detected as new
as a fraction of the total number of chunks (indicating
deduplication quality) vs. fraction of chunks indexed
in ChunkStash RAM HT index in second full backup.
(When 100% of the chunks are indexed, all duplicate
chunks are detected accurately.) The x-axis fractions cor-
respond to sampling rates of 1/64, 1/16, and 1/8. For a
sampling rate of 1/2n, uniform sampling indexes every
2n-th chunk in a container, whereas random sampling in-
dexes chunks with first n bits of SHA-1 hash are all 0s.

possible in the random sampling scheme – when n most
significant bits of the SHA-1 hash are matched to be all
0s, the sampling rate is 1/2n.

We observe that when 1.563% of the chunks are in-
dexed, the uniform chunk sampling strategy results in
only a 0.5% increase in the number of chunks detected
as new (as a fraction of the whole dataset). This loss
in deduplication quality could be viewed as an accept-
able tradeoff in exchange for a 98.437% reduction in
RAM usage of ChunkStash HT index. When 12.5% of
the chunks are indexed, the loss in deduplication quality
is almost negligible at 0.1% (as a fraction of the whole
dataset), but the reduction in RAM usage of ChunkStash
HT index is still substantial at 87.5%. Hence, index-
ing chunk subsets provides a powerful knob for reduc-
ing RAM usage in ChunkStash with only marginal loss
in deduplication quality.

We also note that the loss in deduplication quality with
random sampling is worse than that with uniform sam-
pling, especially at lower sampling rates. An intuitive
explanation for this is that uniform sampling gives bet-
ter coverage of the input stream at regular intervals of
number of chunks (hence, data size intervals), whereas
random sampling (based on some bits in the chunk SHA-
1 hash matching a pattern) could lead to large gaps be-
tween two successive chunk samples in the input stream.

An interesting side-effect of indexing chunk subsets is
the increase in backup throughput – this is shown in Fig-
ure 10 for the first and second full backups for Dataset
2. The effects on first and second full backups can be
explained separately. When a fraction of the chunks are
indexed, chunk hash keys are inserted into the RAM HT
index at a lower rate during the first full backup, hence
the throughput increases. (Note, however, that writes to
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the metadata log on flash are still about the same, but
possibly slightly higher due to less accurate detection
of duplicate chunks within the dataset.) During the sec-
ond full backup, fewer chunks from the incoming stream
are found in the ChunkStash RAM HT index, hence the
number of flash reads during the backup process are re-
duced, leading to higher throughput. Both of these ben-
efits drop gradually as more chunks are indexed but still
remain substantial at a sampling rate of 12.5% – with
the loss in deduplication quality being negligible at this
point, the tradeoff is more of a win-win situation than a
compromise involving the three parameters of RAM us-
age (low), deduplication throughput (high), and loss is
deduplication quality (negligible).

4.7 Flash Memory Cost Considerations

Because flash memory is more expensive per GB than
hard disk, we undertake a performance/dollar analysis in
an effort to mitigate cost concerns about a flash-assisted
inline deduplication system like ChunkStash. In our sys-
tem, we use 8KB (average) chunk sizes and store them
compressed on hard disk – with an average compres-
sion ratio of 2:1 (which we verified for our datasets), the
space occupied by a data chunk on hard disk is about
4KB. With chunk metadata size of 64 bytes, the meta-
data portion is about 64/(4 ∗ 1024) = 1/64 fraction of
the space occupied by chunk data on hard disk. With
flash being currently 10 times more expensive per GB
than hard disk, the cost of metadata storage on flash is
about 10/64 = 16% that of data storage on HDD. Hence,
the overall increase in storage cost is about 1.16x.

Using a ballpark improvement of 25x in backup
throughput for ChunkStash over disk based indexes
for inline deduplication (taken from our evaluations re-
ported in Section 4.5), the gain in performance/dollar for
ChunkStash over disk based indexes is about 25/1.16 =
22x. We believe that this justifies the additional capital
investment in flash for inline deduplication systems that
are hard-pressed to meet short backup window deadlines.

Moreover, the metadata storage cost on flash can be

amortized across many backup datasets by storing a
dataset’s chunk metadata on hard disk and loading to
flash just before the start of the backup process for the
respective dataset – this reduces the flash memory in-
vestment in the system and makes the performance-cost
economics even more compelling.

5 Related Work

We review related work that falls into two categories,
namely, storage deduplication and key-value store on
flash. The use of flash memory to speed up inline dedu-
plication is a unique contribution of our work – their is no
prior research that overlaps both of these areas. We also
make new contributions in the design of ChunkStash, the
chunk metadata store on flash which can be used as a
key-value store for other applications as well.

5.1 Storage Deduplication
Zhu et al.’s work [42] is among the earliest research in
the inline storage deduplication area and provides a nice
description of the innovations in Data Domain’s produc-
tion storage deduplication system. They present two
techniques that aim to reduce lookups on the disk-based
chunk index. First, a bloom filter [13] is used to track the
chunks seem by the system so that disk lookups are not
made for non-existing chunks. Second, upon a chunk
lookup miss in RAM, portions of the disk-based chunk
index (corresponding to all chunks in the associated con-
tainer) are prefetched to RAM. The first technique is ef-
fective for new data (e.g., first full backup) while the
second technique is effective for little or moderately
changed data (e.g., subsequent full backups). Their sys-
tem provides perfect deduplication quality. Our work
aims to reduce the penalty of index lookup misses in
RAM that go to hard disk by orders of magnitude by de-
signing a flash-based index for storing chunk metadata.

Lillibridge et al. [30] use the technique of sparse in-
dexing to reduce the in-memory index size for chunks in
the system at the cost of sacrificing deduplication quality.
The system chunks the data into multiple megabyte seg-
ments, which are then lightly sampled (at random based
on the chunk SHA-1 hash matching a pattern), and the
samples are used to find a few segments seen in the recent
past that share many chunks. Obtaining good deduplica-
tion quality depends on the chunk locality property of the
dataset – whether duplicate chunks tend to appear again
together with the same chunks. When little or no chunk
locality is present, the authors recommend an approach
based on file similarity [12] that achieves significantly
better deduplication quality. In our work, the memory
usage of ChunkStash can be reduced by indexing only a
subset of the chunk metadata on flash (using an uniform
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sampling strategy, which we found gives better dedupli-
cation quality than random sampling).

DEDE [16] is a decentralized deduplication system
designed for SAN clustered file systems that supports
a virtualization environment via a shared storage sub-
strate. Each host maintains a write-log that contains the
hashes of the blocks it has written. Periodically, each
host queries and updates a shared index for the hashes in
its own write-log to identify and reclaim storage for du-
plicate blocks. Unlike inline deduplication systems, the
deduplication process is done out-of-band so as to mini-
mize its impact on file system performance. In this paper,
we focus on inline storage deduplication systems.

HYDRAstor [17] discusses architecture and imple-
mentation of a commercial secondary storage system,
which is content addressable and implements a global
data deduplication policy. Recently, a new file system,
called HydraFS [39], has been designed for HYDRAs-
tor. In order to reduce the disk accesses, HYDRAstor
uses bloom filter [13] in RAM. In contrast, we aim to
eliminate disk seek/access (and miss) overheads by us-
ing a flash-based chunk metadata store.

Deduplication systems differ in the granularity at
which they detect duplicate data. EMC’s Centera [18]
uses file level duplication, LBFS [31] uses variable-
sized data chunks obtained using Rabin fingerprint-
ing, and Venti [36] uses individual fixed size disk
blocks. Among content-dependent data chunking meth-
ods, Two-Threshold Two-Divisor (TTTD) [19] and bi-
modal chunking algorithm [27] produce variable-sized
chunks.

5.2 Key-Value Store on Flash

Flash memory has received lots of recent interest as a
stable storage media that can overcome the access bottle-
necks of hard disks. Researchers have considered mod-
ifying existing applications to improve performance on
flash as well as providing operating system support for
inserting flash as another layer in the storage hierarchy.
In this section, we briefly review work that is related to
key-value store aspect of ChunkStash and point out its
differentiating aspects.

MicroHash [41] designs a memory-constrained index
structure for flash-based sensor devices with the goal of
optimizing energy usage and minimizing memory foot-
print. This work does not target low latency operations
as a design goal – in fact, a lookup operation may need
to follow chains of index pages on flash to locate a key,
hence involving multiple flash reads.

FlashDB [33] is a self-tuning B+-tree based index that
dynamically adapts to the mix of reads and writes in
the workload. Like MicroHash, this design also targets
memory and energy constrained sensor network devices.

Because a B+-tree needs to maintain partially filled leaf-
level buckets on flash, appending of new keys to these
buckets involves random writes, which is not an efficient
flash operation. Hence, an adaptive mechanism is also
provided to switch between disk and log-based modes.
The system leverages the fact that key values in sensor
applications have a small range and that at any given
time, a small number of these leaf-level buckets are ac-
tive. Minimizing latency is not an explicit design goal.

The benefits of using flash in a log-like manner have
been exploited in FlashLogging [15] for synchronous
logging. This system uses multiple inexpensive USB
drives and achieves performance comparable to flash
SSDs but with much lower price. Flashlogging assumes
sequential workloads.

Gordon [14] uses low power processors and flash
memory to build fast power-efficient clusters for data-
intensive applications. It uses a flash translation layer
design tailored to data-intensive workloads. In contrast,
ChunkStash builds a persistent key-value store using ex-
isting flash devices (and their FTLs) with throughput
maximization as the main design goal.

FAWN [11] uses an array of embedded processors
equipped with small amounts of flash to build a power-
efficient cluster architecture for data-intensive comput-
ing. Like ChunkStash, FAWN also uses an in-memory
hash table to index key-value pairs on flash. The dif-
ferentiating aspects of ChunkStash include its adaptation
for the specific server-class application of inline storage
deduplication and in its use of a specialized in-memory
hash table structure with cuckoo hashing to achieve high
hash table load factors (while keeping lookup times
bounded) and reduce RAM usage.

BufferHash [10] builds a content addressable mem-
ory (CAM) system using flash storage for networking
applications like WAN optimizers. It buffers key-value
pairs in RAM, organized as a hash table, and flushes the
hash table to flash when the buffer is full. Past copies of
hash tables on flash are searched using a time series of
Bloom filters maintained in RAM and searching keys on
a given copy involve multiple flash reads. Moreover, the
storage of key-value pairs in hash tables on flash wastes
space on flash, since hash table load factors need to be
well below 100% to keep lookup times bounded. In con-
trast, ChunkStash is designed to access any key using
one flash read, leveraging cuckoo hashing and compact
key signatures to minimize RAM usage of a customized
in-memory hash table index.

6 Conclusion

We designed ChunkStash to be used as a high through-
put persistent key-value storage layer for chunk metadata
for inline storage deduplication systems. To this end, we
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incorporated flash aware data structures and algorithms
into ChunkStash to get the maximum performance bene-
fit from using SSDs. We used enterprise backup datasets
to drive and evaluate the design of ChunkStash . Our
evaluations on the metric of backup throughput (MB/sec)
show that ChunkStash outperforms (i) a hard disk in-
dex based inline deduplication system by 7x-60x, and
(ii) SSD index (hard disk replacement but flash unaware)
based inline deduplication system by 2x-4x. Building
on the base design, we also show that the RAM usage
of ChunkStash can be reduced by 90-99% with only a
marginal loss in deduplication quality.
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Abstract  
Detecting execution anomalies is very important to the 
maintenance and monitoring of large-scale distributed 
systems. People often use console logs that are pro-
duced by distributed systems for troubleshooting and 
problem diagnosis. However, manually inspecting con-
sole logs for the detection of anomalies is unfeasible 
due to the increasing scale and complexity of distri-
buted systems. Therefore, there is great demand for 
automatic anomaly detection techniques based on log 
analysis. In this paper, we propose an unstructured log 
analysis technique for anomaly detection, with a novel 
algorithm to automatically discover program invariants 
in logs. At first, a log parser is used to convert the un-
structured logs to structured logs. Then, the structured 
log messages are further grouped to log message groups 
according to the relationship among log parameters. 
After that, the program invariants are automatically 
mined from the log message groups. The mined inva-
riants can reveal the inherent linear characteristics of 
program work flows. With these learned invariants, our 
technique can automatically detect anomalies in logs. 
Experiments on Hadoop show that the technique can 
effectively detect execution anomalies. Compared with 
the state of art, our approach can not only detect nu-
merous real problems with high accuracy but also pro-
vide intuitive insight into the problems. 

1 Introduction 

Most software systems generate console log messages 
for troubleshooting. The console log messages are 
usually unstructured free-form text strings, which are 
used to record events or states of interest and to capture 
the system developers‟ intent. In general, when a job 
fails, experienced system operators examine recorded 
log files to gain insight about the failure, and to find the 
potential root causes. Especially for debugging distri-
buted systems, checking the console logs to locate sys-
tem problems is the most applicable way because the 
instrumentation or dump based approaches may make a 
system behave differently from its daily execution and 
introduce overhead. 

We are now facing an explosive growth of large-scale 
Internet services that are supported by a set of large 
server clusters. The trend of cloud computing also 
drives the deployment of large-scale data centers. Typi-
cal systems such as those of Google, Amazon and Mi-
crosoft consist of thousands of distributed components 
including servers, network devices, distributed compu-
ting software components, and operating systems. Due 
to the increasing scale and complexity of these distri-
buted systems, it becomes very time consuming for a 
human operator to diagnose system problems through 
manually examining a great amount of log messages. 
Therefore, automated tools for problem diagnosis 
through log analysis are essential for many distributed 
systems. 

Several research efforts have been made in the design 
and development of automatic tools for log analysis. 
Most of the traditional automatic tools detect system 
problems by checking logs against a set of rules that 
describe normal system behaviors. Such rules are ma-
nually predefined by experts according to their know-
ledge about system design and implementation. SEC 
[1], Logsurfer [2] and Swatch [3] are three typical ex-
amples of a rule-based log analysis tool. However, it is 
very expensive to manually define such rules because a 
great amount of system experts‟ efforts are required. 
Besides, a modern system often consists of multiple 
components developed by different groups or even dif-
ferent companies, and a single expert may not have 
complete knowledge of the system; therefore, con-
structing the rules needs close cooperation of multiple 
experts, which brings more difficulties and costs. Fur-
thermore, after each upgrade of the system, the experts 
need to check or modify the predefined rules again. In 
summary, manually defining rules for detecting prob-
lems from logs is expensive and inefficient.  

Recently, there have appeared some statistic learning 
based automatic tools that analyze console logs, profiles 
and measurements for system monitoring and trouble 
shooting. Such approaches extract features from logs, 
traces or profiles, then use statistical techniques, such as 
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subspace analysis [5, 6, 13], clustering and classifica-
tion algorithms [7, 8], to automatically build models, 
and then identify failures or problems according to the 
learned models. However, most of the learned models 
are black box models that cannot be easily understood 
by human operators [5]. They may detect anomalies in 
a high dimensional feature space, but can hardly pro-
vide intuitive and meaningful explanations for the de-
tected anomalies. 

In this paper, we aim to automatically mine constant 
linear relationships from console logs based on a statis-
tical learning technique. Such relationships that always 
hold in system logs under different inputs and work-
loads are considered as program invariants. These linear 
relationships can capture the normal program execution 
behavior. If a new log breaks certain invariants, we say 
an anomaly occurs during the system execution. Here is 
a simple example of invariant: in the normal executions 
of a system, the number of log messages indicating 
“Open file” is usually equal to the number of log mes-
sages corresponding to “Close file”, because each 
opened file will be closed at some stage eventually. 
Such relationships are often well utilized when we ma-
nually check problems in log files. If it is broken, the 
operator can know there must be a system anomaly of 
the file operation (e.g. file handler leak) and safely spe-
culate where the problem is. With this observation, we 
propose an approach to automatically detect system 
anomalies based on mining program invariants from 
logs. Unlike other statistical based approaches, program 
invariant has a very clear physical meaning that can be 
easily understood by human operators. It can not only 
detect system anomalies but also give a meaningful 
interpretation for each detected anomaly. Such interpre-
tation associates the anomaly with the execution logic, 
which can significantly help system operators to diag-
nose system problems. 

In our approach, we first convert unstructured log mes-
sages to structured information, including message sig-
natures and parameters, by using a log parser. Then, the 
messages are grouped based on the log parameters. 
Based on the message groups, we discover sparse and 
integer invariants through a hypothesis and testing 
framework. In addition, the scalability and efficiency 
issues of the invariant search algorithm are discussed, 
and some techniques to reduce the computational cost 
are introduced. In brief, the main contribution of our 
work can be summarized as follows: 

 We propose a method to automatically identify a 
set of parameters that correspond to the same pro-
gram variable (namely cogenetic) based on the pa-

rameter value range analysis. 
 We propose a method to discover sparse and integ-

er invariants that have very clear physical mean-
ings associated with system execution. The compu-
tational complexity of our algorithm can be signifi-
cantly reduced to fit real-world large-scale applica-
tions. 

 We apply the mined invariants to detect system 
anomalies. By checking the broken invariants, our 
method can provide helpful insights about execu-
tion problems. 

The paper is organized as follows. In Section 2, we 
briefly introduce the previous work that is closely re-
lated to ours. Section 3 provides the basic idea and an 
overview of our approach. In Section 4, we briefly de-
scribe the log parsing method that we have used. In 
Section 5, we first relate multiple parameters to a pro-
gram variable, and then group log messages to obtain 
message count vectors. In Section 6, we mainly present 
the invariant searching algorithm. We give a simple 
anomaly detection method in Section 7. Section 8 gives 
some experimental results on two large scale systems. 
Finally, we conclude the paper in Section 9. 

2 Related Work 

Recently, statistical machine learning and data mining 
techniques have shown great potential in tackling the 
scale and complexity of the challenges in monitoring 
and diagnosis of large scale systems. Several learning 
based approaches have been proposed to detect system 
failures or problems by statistically analyzing console 
logs, profiles, or system measurements. For example, 
Dickenson et al. [7] use classification techniques to 
group similar log sequences to a set of classes based on 
some string distance metrics. A human analyst ex-
amines one or several profiles from each class to de-
termine whether the class represents an anomaly. Mir-
gorodskiy et al. [8] also use string distance metrics to 
categorize function-level traces, and identify outlier 
traces as anomalies that substantially differ from the 
others. Yuan et al. [9] first extract n-grams as features 
of system call sequences, and then use Support Vector 
Machine (SVM, a supervised classification algorithm) 
to classify traces based on the similarity of the traces of 
known problems. Xu et al. [5, 6] preprocess log mes-
sages to extract message count vectors as the log fea-
tures, and detect anomalies using Principal Component 
Analysis (PCA). From the point of view of a human 
operator, the above statistical tools build models of a 
black box style, and they can hardly provide human 
operators with intuitive insights about abnormal jobs 
and anomalies. In [5, 6], the authors try to remedy the 
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defect by learning a decision tree and to visualize the 
detection results. However, the decision tree is still 
somehow incomprehensible to human operators, be-
cause it does not directly relate to execution flow me-
chanisms. In this paper, we use program invariants to 
characterize the behavior of a system. Unlike the black 
box models, program invariants often provide intuitive 
interpretations of the detected anomalies. 

Another set of algorithms [15, 16, 17] use Finite State 
Automaton (FSA) models to represent log sequences, 
which is more easily understood by operators. For ex-
ample, SALSA [15] examines Hadoop logs to construct 
FSA models of the Datanode module and TaskTracker 
module. In the work of Cotroneo et al. [16], FSA mod-
els are first derived from the traces of Java Virtual Ma-
chine. Then, logs of unsuccessful jobs are compared 
with the inferred FSA models to detect anomalies. In 
[17], the authors also construct a FSA to characterize 
the normal system behaviors. A new trace is compared 
against the learned FSA to detect whether it is abnor-
mal. However, these papers do not discuss interleaved 
logs which are prevalent in distributed systems. It is 
much more difficult to learn state machines from inter-
leaved logs. Our analysis is based on message groups, 
which is not affected by the interleaving patterns. 

Mining program invariants is a very important step in 
our approach. There are some research efforts related to 
this subject. Ernst et al. developed Daikon [10] to dis-
cover program invariants for supporting program evolu-
tion. Daikon can dynamically discover invariants at 
specific source code points by checking the values of 
all program variables in the scope. Jiang et al. proposed 
a search algorithm to infer likely invariants in distri-
buted systems [12]. Rather than searching the invariants 
of program variables, their algorithm searches invariant 
pair-wise correlations between two flow intensities, 
such as traffic volume and CPU usage that are moni-
tored in distributed systems. They also proposed an EM 
algorithm in [11], and extended their work to mine cor-
relations among multiple flow intensities. In contrast 
with these methods, we mine invariant relationships 
among the counts of log message types, which present 
the characteristics of the program execution flow. In 
addition, we focus on sparse and integer invariants that 
can reveal the essential relations of the system execu-
tion logic and are easily understood by human opera-
tors.  

3 The Approach 

3.1 Invariants in textual logs 

In general, a program invariant is a predicate that al-
ways holds the same value under different workloads or 
inputs. Program invariants can be defined from various 
aspects of a system, including system measurements 
(e.g. CPU and network utilization [11]) and program 
variables [10]. Besides the program variables and sys-
tem measurements, program execution flows can also 
introduce invariants. With the assumption that log se-
quences provide enough information for the system 
execution paths, we can obtain invariants of program 
execution flows through analyzing log sequences. A 
simple example of program execution flow is shown in 
Fig. 1. At each stage of A, B, C, D, and E, the system 
prints a corresponding log message. We assume that 
there are multiple running instances that follow the ex-
ecution flow shown in Figure 1. Even different in-
stances may execute different branches and their pro-
duced logs may interleave together; the following equa-
tions should always be satisfied:  

𝑐𝑐 𝐴𝐴 𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐸𝐸   (1) 
𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐶𝐶 𝑐𝑐 𝐷𝐷   (2) 

where 𝑐𝑐 𝐴𝐴 , 𝑐𝑐 𝐵𝐵 , 𝑐𝑐 𝐶𝐶 , 𝑐𝑐 𝐷𝐷 , 𝑐𝑐 𝐸𝐸  denote the number 
of log messages A, B, C, D, and E in the logs respec-
tively. Each equation corresponds to a specific invariant 
of the program execution flow, and the validity of such 
invariants is not affected by the dynamics of the work-
loads, the difference of system inputs or the interleav-
ing of multiple instances. In this paper, we call them 
execution flow invariants. There are mainly two reasons 
that we look at linear invariants among the counts of 
different type of log messages. First, linear invariants 
encode meaningful characteristics of system execution 
paths. They universally exist in many standalone or 
distributed systems. Second, an anomaly often mani-
fests a different execution path from the normal ones. 
Therefore, a violation of such relations (invariants) 
means a program execution anomaly. Because log se-
quences record the underlying execution flow of the 
system components, we believe there are many such 
linear equations, i.e. invariants, among the log se-
quences. If we can automatically discover all such inva-
riants from the collected historical log data, we can 
facilitate many system management tasks. For example, 

 By checking whether a log sequence violates the 
invariants, we can detect system problems. As 
mentioned above, a violation of an invariant often 
means an anomaly in the program‟s execution. 

 Each invariant contains a constraint or an attribute 
of a system component‟s execution flow. Based on 
the related execution flow properties of the broken 
invariants, system operators can find the potential 
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causes of failure. 
 The invariants can help system operators to better 

understand the structure and behavior of a system. 

3.2 Invariant as a Linear Equation 
An invariant linear relationship can be presented as a 
linear equation. Given m different types of log messag-
es, a linear relationship can be written as follows: 

𝑎𝑎 𝑎𝑎 𝑥𝑥 𝑎𝑎 𝑥𝑥 ⋯ 𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚  

where 𝑥𝑥𝑗𝑗  is the number of the log messages whose type 
index is j; 𝜃𝜃  ⋯   is the vector that 
represents the coefficients in the equation. So, an inva-
riant can be represented by the vector 𝜃𝜃. For example, 
the invariant of equation (2) can be represented by the 
vector 𝜃𝜃  [0,0,1,-1,-1,0]T. Here, the message type in-
dexes of A to E are 1 to 5 respectively. Obviously, in-
dependent vectors correspond to different linear rela-
tions, so represent different invariants. Given a group of 
log sequences 𝐿𝐿𝑖𝑖 , 𝑖𝑖 … 𝑛𝑛, that are produced by past 
system executions, we count the number of every type 
of log messages in every log sequence, 𝑥𝑥𝑖𝑖𝑗𝑗 𝑗𝑗

… 𝑚𝑚. Here, 𝑥𝑥𝑖𝑖𝑗𝑗  is the number of log messages of the 
jth log message type in the ith log sequence. If none of 
those log sequences contains failures or problems, and 
all of log sequences satisfy the invariant, then we have 
the following linear equations: 

𝑎𝑎 𝑎𝑎 𝑥𝑥𝑖𝑖 ⋯ 𝑎𝑎𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚 ∀𝑖𝑖 … 𝑛𝑛    (3) 

Let us denote  

𝑿𝑿  
𝑥𝑥 𝑥𝑥 … 𝑥𝑥 𝑚𝑚
𝑥𝑥 𝑥𝑥 ⋱ 𝑥𝑥 𝑚𝑚

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛 ⋯ 𝑥𝑥𝑛𝑛𝑚𝑚

  

Then the formula (3) can be reformed as a matrix ex-
pression (4). That is to say, every invariant vector 𝜃𝜃 
should be a solution of the equation: 

𝑿𝑿𝜃𝜃    (4) 

Formula (4) shows the principle characteristic of the 
invariants under the condition that all collected history 
logs do not contain any failure or problem. In practice, 
a few collected log sequences may contain failures or 
problems, which will make equation (4) not be precise-
ly satisfied. We will discuss how to deal with such a 
problem in Section 6. Currently, we just focus on ex-
plaining the basic ideas and key concepts related to the 
execution flow invariant.  

We derive two sub-spaces according to the matrix 𝑿𝑿: 
the row space of matrix 𝑿𝑿, which is the span of the row 

vectors of 𝑿𝑿, and the null space of matrix 𝑿𝑿, which is 
the orthogonal complement space to the row space. 
Formula (4) tells us that an invariant 𝜃𝜃 can be any vec-
tor in the null space of matrix 𝑿𝑿. In this paper, we call 
the null space of matrix 𝑿𝑿 the invariant space of the 
program. Each vector in the invariant space represents 
an execution flow invariant, and we call the vector in 
the invariant space the invariant vector. On the other 
hand, any linear combination of the invariant vectors is 
also an invariant vector.  

A B

C

D

ECond.

X!=0

X==0

 

Figure 1. An execution flow example. 

Sparseness: Although any vector in the invariant space 
represents an execution flow invariant, an arbitrary in-
variant vector with many non-zero coefficients often 
does not directly correspond to the meaningful work 
flow structures of a program and cannot be well unders-
tood by system operators.  

Generally, the whole work flow of a program consists 
of a lot of elementary work flow structures, such as 
sequential structures, branched structures, and looping 
structures. The elementary work flow structures are 
often much simpler than the whole work flow structures 
and can be easily understood by system operators. As in 
the example shown in Figure 1, the sequential structure 
of A to B, the branch structure of B to C or D, and the 
joint structure of C or D to E are elementary work flow 
structures that compose the whole work flow. The inva-
riants corresponding to the elementary work flow struc-
tures can usually give system operators intuitive inter-
pretations of the system execution flow. For example, 
the invariant of 𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐶𝐶 𝑐𝑐 𝐷𝐷  tells us that there 
may be a join or branch structure in the workflow. 

Because the elementary work flow structures in the 
program are often quite simple, the invariants corres-
ponding to such elementary work flow structures may 
involve only a few types of log messages. Therefore, 
compared to the number of all log message types, the 
number of message types involved in an elementary 
invariant is often very small, that is, the vector repre-
sentations of such elementary invariants are often very 
sparse. Accordingly, the sparse vectors in the invariant 
space may correspond to elementary invariants, and 
general vectors in the invariant space may be linear 
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combinations of the elementary invariant vectors. For 
example, the equations (1) and (2) represent the ele-
mentary invariants that can directly reflect the elemen-
tary work flow structures in Figure 1. Each of them 
involves only two or three types of log messages. How-
ever, their linear combination, i.e. the invariant 
𝑐𝑐 𝐴𝐴 𝑐𝑐 𝐵𝐵 − 𝑐𝑐 𝐸𝐸 − 𝑐𝑐 𝐶𝐶 − 𝑐𝑐 𝐷𝐷  does 
not directly correspond to a concrete work flow struc-
ture in Figure 1 and is not easily understood by system 
operators. 

In this paper, we assume that the number of log se-
quences is larger than the number of log message types. 
This assumption is reasonable because the number of 
log message types is constant and limited, while many 
logs can be collected while the system is running. If the 
dimension of the invariant space is 𝑟𝑟, then the dimen-
sion of the row space is 𝑚𝑚 − 𝑟𝑟  because the di-
mension of the whole space is 𝑚𝑚 . Therefore, we 
can always find a vector with no more than 𝑚𝑚 −
𝑟𝑟  non-zero coefficients in the invariant space. That is 
to say, the number of non-zero coefficients in a sparse 
invariant vector should be at most 𝑚𝑚 − 𝑟𝑟 , or it is 
not viewed as sparse because we can always find out an 
invariant vector with 𝑚𝑚 − 𝑟𝑟  non-zero coeffi-
cients. We denote the upper bound of the number of 
non-zero coefficients for sparse invariant vectors 
as 𝐾𝐾 𝑿𝑿 , and 𝐾𝐾 𝑿𝑿 𝑚𝑚 − 𝑟𝑟. In real systems, the 
dimension of the row space is often quite small, so 
𝐾𝐾 𝑿𝑿  is small too. For example, by investigating a lot 
of software systems, the authors of [5] observed that the 
effective dimensions of all row spaces are less than 4.  

Compactness: For a set of invariant vectors, it is called 
a redundant invariant vector set if there is at least one 
invariant vector in the set that can be a linear combina-
tion of the other invariant vectors in the same set. On 
the other hand, if the set does not contain any invariant 
vector that can be a linear combination of the other in-
variant vectors in the same set, we call the set a com-
pact invariant vector set. Because invariant vectors are 
essentially equivalent to invariants, it is natural to say 
that an invariant set is compact if its corresponding in-
variant vector set is compact, and vice versa. For exam-
ple, the set 𝑐𝑐 𝐴𝐴 𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐴𝐴 𝑐𝑐 𝐸𝐸 𝑐𝑐 𝐸𝐸 𝑐𝑐 𝐵𝐵  
is a redundant set, because the invariant 𝑐𝑐 𝐸𝐸 𝑐𝑐 𝐵𝐵  
can be deduced from the other two invariants in the set. 
On the other hand, the set 𝑐𝑐 𝐴𝐴 𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐴𝐴 
𝑐𝑐 𝐸𝐸 𝑐𝑐 𝐵𝐵 𝑐𝑐 𝐶𝐶 𝑐𝑐 𝐷𝐷  is a compact invariant set. 
Obviously, a redundant invariant set contains redundant 
information. If the dimension of the invariant space is 
𝑟𝑟, there exists at most 𝑟𝑟 different invariants satisfying 
that each of them cannot be a linear combination of the 
others. Therefore, for any compact invariant set 𝐶𝐶, the 

number of invariants in the set, i.e.  𝐶𝐶 ., is not larger 
than r.  

Integer constraint: Another important property of the 
program execution flow invariants is that all coeffi-
cients are integer values. The reason is that all elemen-
tary work flow structures, such as sequence, branch, 
and join, can be interpreted by the invariant vectors 
whose elements are all integers. For example, the inva-
riant vectors represented in equations (1) and (2) are all 
integer values, i.e. [0,1,-1,0,0,0]T, [0,0,1,0,0,-1]T and 
[0,0,1,-1,-1,0]T. At the same time, integer invariants are 
easily understood by human operators. In this paper, we 
aim to automatically mine the largest compact sparse 
integer invariant set of a program. In the remainder of 
this paper, the term “invariant” is used to refer to 
“sparse integer invariant” unless otherwise stated. 

3.3 Practical Challenges 
In real world systems, some collected historical log 
sequences contain failures or noise, i.e. they are abnor-
mal log sequences. There also may be some partial log 
sequences, which are generally caused by inconsistent 
log data cuts from continuously running system (such 
as large-scale Internet Services). An invariant may be 
broken by these log sequences, because the abnormal 
execution flows are different from the normal execution 
flows. The results of this are that some of the equations 
in formula (3) may be not satisfied. With the assump-
tion that failure logs and noise polluted logs only take 
up a small portion of the historical log sequences (e.g. 
<5%), we can find all invariants by searching the sparse 
resolutions of Equ. (4). This can be realized by mini-
mizing the value of  𝑿𝑿𝜃𝜃 𝟎𝟎 . Here,  𝑿𝑿𝜃𝜃 𝟎𝟎  equals the 
number of log sequences that violates the invariant 𝜃𝜃. 

Generally speaking, minimizing the value of  𝑿𝑿𝜃𝜃 𝟎𝟎 is an 
NP-Hard problem [19]. To find a sparse invariant with 
𝑘𝑘 non-zero coefficients, the computational cost is about 
𝑂𝑂 𝐶𝐶𝑚𝑚𝑘𝑘 . Fortunately, in many systems, log messages may 
form some groups in which the log messages contain 
the same program variable value. Such groups usually 
represent meaningful workflows related to the specific 
program variable. For example, log messages contain-
ing an identical user request ID can form a group that 
represents the request handling execution flow in the 
program; there is a strong and stable correlation among 
log messages within the same group. On the other hand, 
inter-group log message types are often not obviously 
correlated. Furthermore, the number of log message 
types in each message group is usually much smaller 
than the total number of log message types. If we can 
divide all log messages into different groups properly 
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and mine the invariants on different kinds of groups 
respectively, the search space of the algorithm can be 
largely reduced. There are some systems in which log 
messages do not contain such parameters. Just as prior 
work [5], our approach does not target these systems. 

Even with the grouping strategy, the computational cost 
of invariant searching is still quite large. We try to fur-
ther reduce the computational cost by introducing early 
termination and pruning strategies which will be dis-
cussed in Section 6.3. 

3.4 Workflow of our approach 
Figure 2 shows the overall framework of our approach, 
which consists of four steps: log parsing, log message 
grouping, invariant mining, and anomaly detection.  We 
will provide further explanation in the corresponding 
sections.  

 

Figure 2. The overall framework of our approach. 

Log parsing. In most systems, log messages are usually 
unstructured free-form text messages, and are difficult 
to be directly processed by a computer. In the log pars-
ing step, we convert a log message from an unstruc-
tured text string to a tuple-form representation that con-
sists of a timestamp, a message signature (i.e. a constant 
free form text string to represent a log message type), 
and a list of message parameter values. 

Log message grouping and counting. Once parameter 
values and log message signatures are separated from 
all log messages, we first automatically discover 
whether a set of parameters correspond to the same 
program variable. Then, we group log messages that 
contain the same value of the same program variable 
together. For example, the log messages containing the 
same request ID value are grouped together. As men-
tioned above, dividing log messages into some close 
inner-related groups can largely reduce the computa-
tional cost. For each message group, we count the num-
ber of log messages for each message type to obtain a 
message count vector for further processing. 

Invariant mining. Next, we try to find a compact 
sparse integer invariant set for each type of the log mes-

sage groups. Message groups extracted according to the 
same program variable are considered as the same type 
of group. For example, the group of log messages with 
request ID #1# and the group of log messages with re-
quest ID #2# are the same type of message groups. In 
this paper, we combine a brute force searching algo-
rithm and a greedy searching algorithm to make the 
searching process tractable.  

Anomaly detection. We apply the obtained set of inva-
riants to detect anomalies. A log sequence that violates 
an invariant is labeled as an anomaly. 

4 Log Parsing 

Each log message often contains two types of informa-
tion: a free-form text string that is used to describe the 
semantic meaning of the recorded program event and 
parameters that are often used to identify the specific 
system object or to record some important states of the 
current system. 

New job added to schedule, jobid = 8821, priority = 64

Message Signature

Parameters

 

Figure 3.  A log message contains two types of infor-
mation: a message signature and parameters. 

In general, log messages printed by the same log-print 
statement in the source code are the same type of mes-
sages because they all correspond to the same execution 
point and record the same kind of program events with 
the same semantic meaning. Different types of log mes-
sages are usually used to record different program 
events with different semantic meanings, and printed by 
different log-printed statements. Naturally, we can use 
the free-form text string in the log-print statement as a 
signature to represent the log message type. Therefore, 
a message signature corresponds to the constant content 
of all log messages that are printed by the same log-
print statement. Parameter values are the recorded vari-
able values in the log-print statement, and they may 
vary in different executions. For example, in Figure 3, 
the log message signature is the string “New job added 
to schedule, jobId =, priority =”, and the parameter val-
ues are “8821” and “64”.  

The log parsing aims to extract message signatures and 
parameters from the original log messages. If the source 
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code of the target program is available, the method pro-
posed in [5] can automatically parse the log messages 
with a very high precision. However, in some systems, 
the source code is not available because it is usually 
stripped of programs' distribution packages. Therefore, 
it is still necessary to design a log parser that does not 
depend on any source code. In this paper, we use the 
algorithm that we have previously published [14] to 
extract message signatures and parameter values from 
log messages. It can achieve an accuracy of more than 
95% [14]. Because the log parser is not the focus of this 
paper, we do not discuss the details of the algorithm. 

Once the message signatures and parameter values are 
extracted from the original log messages, we can con-
vert the unstructured log messages to their correspond-
ing structured representations. For a log message 𝑚𝑚, we 
denote the extracted message signature as 𝐾𝐾 𝑚𝑚 , the 
number of parameters as 𝑃𝑃𝑁𝑁 𝑚𝑚 , and the ith parame-
ter‟s value as 𝑃𝑃𝑉𝑉 𝑚𝑚 𝑖𝑖 . After message signature and 
parameter value extraction, each log message 𝑚𝑚 with its 
time stamp 𝑇𝑇 𝑚𝑚  can be represented by a tuple  𝑇𝑇 𝑚𝑚 
𝐾𝐾 𝑚𝑚 𝑃𝑃𝑉𝑉 𝑚𝑚  𝑃𝑃𝑉𝑉 𝑚𝑚  … 𝑃𝑃𝑉𝑉 𝑚𝑚 𝑃𝑃𝑁𝑁 𝑚𝑚    we 
call such tuples the tuple-form representations of the 
log messages. 

5 Log Message Grouping 

The above log parsing procedure helps us to extract the 
message signature and parameter values for each log 
message. Each parameter is uniquely defined by a pair 
consisting of a message signature and a position index. 
Taking Figure 3 as an example, the pair (“New job add-
ed to schedule, jobid=[],priority=[] ”, 1) defines a pa-
rameter, and its value is 8821 in the log messages. Note 
that a parameter is an abstract representation of a 
printed variable in the log-print statement, while a pa-
rameter value is the concrete value in a specific log 
message.  

Developers often print out the same important program 
variable in multiple log-print statements. Therefore, 
multiple parameters may correspond to the same pro-
gram variable, and we call these parameters cogenetic 
parameters. For example, a program variable, i.e. re-
quest ID, can appear as a parameter in different log 
message types, and these message types are often re-
lated to the execution flow of the request processing. 
Traditional log analysis tools heavily depend on appli-
cation specific knowledge to determine whether a set of 
parameters correspond to the same program variable. 
However, in practice, most operators may not have 
enough knowledge about the implementation details. In 
this paper, we automatically determine whether two 

parameters are cogenetic. Our algorithm is based on the 
following observations: 

 In a log bunch1, if two parameters (e.g. 𝑃𝑃𝑎𝑎  and 𝑃𝑃𝑏𝑏 ) 
either have the same value ranges (i.e. 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎
𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  ), or one parameter‟s value range is a sub-
set of the other‟s (e.g. 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ⊆ 𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏 ), then they 
are cogenetic (denoted as 𝑃𝑃𝑎𝑎 ≅ 𝑃𝑃𝑏𝑏 ). Here, the value 
range of a parameter (𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ) is defined by the set 
of all distinct values of the parameter in the log 
bunch. 

 Two parameters with a large joint set 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ∩
𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  (namely the overlapped value range) will 
have a high probability to be cogenetic. For two 
parameters that are not cogenetic, they may have a 
few identical values in log messages by chance. 
However, if they have a lot of identical values, it is 
unlikely that it happens by chance. Therefore, a 
large overlapped value range often means that two 
parameters are likely cogenetic. 

 The larger the length of each parameter value (i.e. 
the number of characters of the value in a log mes-
sage) in the joint set 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ∩ 𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  is, the higher 
the probability the parameters are cogenetic. Intui-
tively, it will be more difficult for two parameter 
values with a large length to be identical by chance. 

For each parameter, we first count its value range in 
each historical log bunch through scanning log messag-
es one by one. Then, we check whether there are pair 
wise cogenetic relationships using Algorithm 1. For two 
parameters, if the size of the overlapped value range is 
larger than a threshold, and the minimal length of the 
parameter value is larger than 3 characters (Note that 
we use the text string form of the parameter values in 
the log messages for analysis), we can determine that 
the parameters are cogenetic. Finally, based on the ob-
tained pair-wise cogenetic relationships, we can gather 
a set of parameters that are cogenetic into a parameter 
group. The detail of the algorithm is described in Algo-
rithm 1.  

According to the above algorithm, we obtain a set of 
parameter groups, with the parameters in each group 
being cogenetic. Intuitively speaking, each parameter 
                                                           

1  In this paper, we can collect log messages several 
times as the target program runs under different work-
loads. At each time, one or more log files may be col-
lected from distributed machines. The set of all the col-
lected log messages at one time of collection are de-
fined as a log bunch. 
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group corresponds to a program variable. We group log 
messages with the same program variable values to-
gether. Specifically, for each group of cogenetic para-
meters denoted as A, we group together the log messag-
es that satisfy the following condition: the messages 
contain the parameters belonging to the specified para-
meter group A, and the parameter‟s values in the log 
messages are all the same. 

Algorithm 1. Log parameter grouping 

1. For each log parameter (defined by its message 
signature and its position index), we enumerate its 
value range (i.e. all distinct values) within each log 
bunch. 

2. For every two parameters (e.g. 𝑃𝑃𝑎𝑎  and 𝑃𝑃𝑏𝑏 )  that 
satisfy the following rules, we conclude that they 
are cogenetic parameters. 
o For every log bunch, we have 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ⊆ 𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  

or 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎 ⊇ 𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏 . 
o 𝑚𝑚𝑖𝑖𝑛𝑛 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎  𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  ≥  
o Each value in 𝑉𝑉𝑟𝑟 𝑃𝑃𝑎𝑎  and 𝑉𝑉𝑟𝑟 𝑃𝑃𝑏𝑏  contains at 

least 3 characters. 
3. We use the following rules to identify the group of 

cogenetic parameters: 
o If 𝑃𝑃𝑎𝑎 ≅ 𝑃𝑃𝑏𝑏  and 𝑃𝑃𝑎𝑎 ≅ 𝑃𝑃𝑐𝑐 , we can conclude that 

𝑃𝑃𝑎𝑎 , 𝑃𝑃𝑏𝑏 , and 𝑃𝑃𝑐𝑐  are cogenetic parameters. 

 

6 Invariant Mining 

After the log message grouping step, we can obtain a 
set of log message groups for each program variable. 
Each message group describes a program execution 
path related to the program variable. Since the logging 
points are chosen by developers, log messages are often 
very important for problem diagnosis. We collect the 
log message groups corresponding to the same program 
variable together and discover their invariants as de-
scribed in Algorithm 2. At first, for each log message 
group, we count the number of log messages for each 
log message type in the message group to obtain one 
message count vector. For all log messages groups that 
are related to the same program variable, we can extract 
a set of message count vectors. The message count vec-
tors that correspond to the same program variable form 
the count matrix 𝑿𝑿 (Eq. 4). Then, we need to identify 
the invariant space and the row space of X by using 
singular value decomposition and analysis. Next, we 
find the sparse invariant vectors in the invariant space. 
To find a sparse invariant vector with 𝑘𝑘 non-zero coef-
ficients with a small value of 𝑘𝑘 (e.g, <5 in most cases), 

we can use a brute force search algorithm to obtain the 
optimal solution. However, when k is large, the brute 
force algorithm has to search in a huge searching space. 
In this case, we use a greedy algorithm [19] to obtain an 
invariant candidate. Finally, we validate the found inva-
riants using the collected historical logs. 

6.1 Estimate the invariant space 
Once we have constructed the matrix 𝑿𝑿 from the col-
lected historical logs, we can estimate the invariant 
space by singular value decomposition (SVD) opera-
tion.  

Instead of the energy ratio, we use the support ratio as a 
criterion to determine the invariant space (and, at the 
same time, the row space). It can directly measure the 
matching degree between the collected logs and the 
invariants. For an invariant, the support ratio is defined 
as the percentage of the log message groups that do not 
break the invariant. Specifically, we first use SVD to 
obtain the right-singular vectors. After that, we evaluate 
the right-singular vectors one by one in increasing order 
of singular values to check whether they are a part of 
the invariant space. For a right-singular vector 𝑣𝑣𝑖𝑖 , if 
there are more than 98% log message groups satisfying 
the condition  𝑋𝑋𝑗𝑗 𝑣𝑣𝑖𝑖  𝜖𝜖, we treat 𝑣𝑣𝑖𝑖  as a validated inva-
riant. Otherwise, it is an invalidated invariant. Here 𝑋𝑋𝑗𝑗  
is a message count vector of the message group 𝑗𝑗, 𝜖𝜖 is a 
threshold. The right-singular vector with the smallest 
singular value is evaluated first. Then, the vector with 
the second smallest singular value is evaluated, and so 
on. If a singular vector is verified as an invalidated in-
variant, the evaluation process is terminated. The inva-
riant space is a span of all right-singular vectors that 
have been validated during this process. In our imple-
mentation, the threshold 𝜖𝜖 is selected as 0.5 (≈   ) 
because most of our invariants at most contain 4 non-
zero coefficients. 

6.2 Invariant searching 
In this section, we introduce an invariant searching al-
gorithm which aims to find a compact set of program 
invariants based on a log message count matrix 𝑿𝑿. Be-
cause we have little knowledge about the relationship 
between different log message types, we try any hypo-
theses of non-zero coefficients in different dimensions 
to construct a potential sparse invariant, and then con-
tinue to validate whether it fits with the historical log 
data. 

Specifically, we define an invariant hypothesis as its 
non-zero coefficient pattern 𝑝𝑝𝑗𝑗 𝑗𝑗 ⋯ 𝑘𝑘 , where 
𝑝𝑝𝑗𝑗  is the index of the non-zero coefficient of the inva-
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riant hypothesis, and ≤ 𝑝𝑝𝑗𝑗 𝑝𝑝𝑗𝑗 ≤ 𝑚𝑚. For any non-
zero coefficient pattern, we check whether there is an 
invariant, i.e. 𝑎𝑎𝑝𝑝𝑗𝑗 𝑗𝑗 ⋯ 𝑘𝑘 . There are two steps. 
At first, we try to obtain an invariant candidate 𝜃𝜃  that 
satisfies the given non-zero coefficient pattern and mi-
nimizes the value of  𝑿𝑿 𝜃𝜃  𝟎𝟎  namely 
𝜃𝜃 𝜃𝜃  𝑿𝑿 𝜃𝜃 𝟎𝟎 . Here, 𝑿𝑿  is a matrix that con-
tains only 𝑘𝑘 column vectors of matrix 𝑿𝑿 whose column 
indexes are 𝑝𝑝𝑗𝑗 𝑗𝑗 ⋯ 𝑘𝑘 . We ignore other col-
umns in X for constructing 𝑿𝑿  because those columns 
correspond to zero coefficients of the invariant vectors. 
Because an optimization operation over zero norm is 
often not tractable, we estimate 𝜃𝜃  through 𝜃𝜃 

𝜃𝜃  𝑿𝑿 𝜃𝜃 𝟐𝟐 . The coefficients of the estimated 𝜃𝜃  
are often within the range of − . In order to 
obtain integer invariant candidates, we scale up 𝜃𝜃  to 
make its minimal non-zero coefficient equal to an in-
teger 𝑙𝑙 , and round other non-zero coefficients to an 
integer accordingly. In this paper, we set  𝑙𝑙 ⋯ 𝑝𝑝 
respectively. Therefore, we obtain 𝑝𝑝  integer invariant 
candidates. Then, we verify each of them by checking 
its support ratio based on the log message groups. If 
there is an invariant whose support ratio is larger than 
𝛾𝛾, we set it as a validated invariant, otherwise, we con-
clude that there is no invariant that satisfies the non-
zero coefficients pattern 𝑝𝑝𝑗𝑗 𝑗𝑗 ⋯ 𝑘𝑘}. Here, 𝛾𝛾 is 
a user defined threshold, which is set as 98% in our 
experiments. In our implementation, we can handle all 
cases that we have studied by selecting 𝑝𝑝 . A large 
value of 𝑝𝑝 is often not necessary, because most com-
plex invariants are linear combinations of simple local 
invariants.  

Algorithm 2. Mining Invariants 

1. For all message groups related to a specific para-
meter group, we construct the matrix 𝑋𝑋 using their 
message count vectors, and estimate the dimension 
of the invariant space (denoted as 𝑟𝑟). 

2. We use a brute force algorithm to search invariants 
that contains 𝑘𝑘  non-zero coefficients, where 𝑘𝑘  in-
creases from  to 5 in turn. The algorithm exits 
when one of following conditions is satisfied: 
o 𝑟𝑟 independent invariants have been obtained. 
o 𝑘𝑘 𝑚𝑚 − 𝑟𝑟  

3. If  𝑚𝑚 − 𝑟𝑟   and no early terminate condi-
tion has be satisfied, we use a greedy algorithm 
[19] to find potential invariants for k >5.  

 

6.3 Computational Cost and Scalability 
In general, it is an NP-Hard problem to find a sparse 

invariant vector. The computational complexity of the 
above search algorithm is about 𝑂𝑂  𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚−𝑟𝑟

𝑖𝑖  . Al-
though it has been largely reduced from the computa-
tional cost of full search space (i.e. 𝑂𝑂  𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚

𝑖𝑖  ), it is 
still not a trivial task if the number of dimensions of 
matrix 𝑿𝑿‟s row space (i.e. 𝑚𝑚 − 𝑟𝑟  is large. Fortu-
nately, in real world systems, the dimensions of the row 
spaces are often very small, which helps us to avoid the 
problem of combinatorial explosion. For example, in 
Table 1, we list the row space dimensions of different 
types of log message groups. Many of them are not 
larger than 4. Therefore, the computational cost can 
usually be controlled below 𝑂𝑂  𝐶𝐶𝑚𝑚𝑖𝑖𝑖𝑖  .  

In addition, most real world sparse invariants often only 
contain 2 or 3 non-zero coefficients. Because we can 
obtain at most 𝑟𝑟 independent invariants, we do not need 
to search the combinations of 5 or more non-zero coef-
ficients if we have obtained r independent invariants 
when k<5. For example, the 4th row of Table 3 is such a 
case. This allows us to terminate the search process 
early, and to reduce the computational cost. 

Table 1. Low dimensionality of row space 
Message group of related object iden-
tifier 

m 𝒎𝒎− 𝒓𝒓
𝟏𝟏 

Hadoop logs with MapTask ID 7 3 
Hadoop logs with ReduceTask ID 3 2 
Hadoop logs with MapTask Attempt 
ID 

28 4 

Hadoop logs with ReduceTask At-
tempt ID 

25 6 

Hadoop logs with JVM ID 7 2 
 

Table 2. Reduce computational cost 
Message group of re-
lated object identifier 

Original 
search space 

Result 
search space 

Hadoop logs with 
MapTask ID 

63 37 

Hadoop logs with Re-
duceTask ID 

6 6 

Hadoop logs with 
MapTask Attempt ID 

24157 3310 

Hadoop logs with Re-
duceTask Attempt ID 

15275 730 

Hadoop logs with JVM 
ID 

28 16 

 
Furthermore, we can reduce the computational cost by 
skipping the searching on some hypothesis candidates. 
As discussed in Section 3, any linear combination of 
invariants is also an invariant. Therefore, we need not 
search the invariants that can be a linear combination of 



240 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 241

 

10 

the detected ones. Then, the search space can be largely 
reduced by skipping the search on such combinations. 
At the same time, the skipping strategy also guarantees 
the compactness of our discovered invariants. Table 2 
shows the effectiveness of our early termination and 
skipping strategy. The numbers of hypotheses in the 
original search space (i.e. 𝑂𝑂  𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚−𝑟𝑟

𝑖𝑖  ) are listed in 
the second column. The third column contains the size 
of the search space after applying the early termination 
and the skipping strategy. By comparing the search 
space size in the two columns, we can find that the ear-
ly termination and the skipping strategy largely reduce 
the search space, especially for the message groups 
with high dimension values. 

In our implementation, we only search the invariant 
hypotheses up to 5 non-zero coefficients. If no early 
termination condition is met, we then find potential 
invariants by using a greedy algorithm [19] on the mes-
sage types that do not appear in the existing invariants. 
However, the greedy algorithm cannot guarantee to find 
all invariants in logs. The overall algorithm is presented 
in Algorithm 2. 

From the view of scalability, there are a huge amount of 
log messages in a large scale system with thousands of 
machines. Therefore, the row number 𝑛𝑛 of matrix 𝑋𝑋 is 
often very large. Directly applying SVD on matrix 𝑋𝑋 is 
often not scalable. Fortunately, the number of message 
types (i.e. 𝑚𝑚) is usually limited, and it does not increase 
as the system scales up. We can replace the SVD opera-
tion by an Eigen Value Decomposition (EVD) opera-
tion to calculate the right-singular vectors, because 
𝑿𝑿 𝑈𝑈𝛬𝛬𝑉𝑉𝑇𝑇 ⇒  𝑿𝑿𝑇𝑇𝑿𝑿 𝑉𝑉𝛬𝛬𝑇𝑇𝛬𝛬𝑉𝑉𝑇𝑇  Here, matrix 
 𝑿𝑿𝑇𝑇𝑿𝑿 is a 𝑚𝑚 𝑚𝑚 matrix. It can be easily calculated 
by a MapReduce-like distributed program. Similarly, 
we can also use an EVD operation to estimate 𝜃𝜃  based 
on a matrix   𝑿𝑿 𝑇𝑇𝑿𝑿  for each invariant hypothesis. 
The matrix    can directly be calculated from the matrix 
 . At the same time, the support ratio counting proce-
dure can also be easily performed in a distributed man-
ner. Therefore, our algorithm can be easily scaled up. In 
addition, most program invariants do not depend on the 
scale of the system. We can learn invariants from the 
logs of a small scale system deployment, and then use 
these invariants to detect problems of a large scale dep-
loyment. 

7 Problem Detection 

Once the program invariants are discovered, it is 
straightforward to detect problems from console logs. 
For a new input console log, we first convert the un-
structured log messages to tuple-form representations 

using the log parser, and then group log messages and 
calculate a count vector for each message group. After 
that, we check every message count vector with its re-
lated learned invariants. The message group whose 
message count vector violates any one of its related 
invariants is considered as an anomaly. 

The automatically mined invariants by our approach 
reflect the elementary execution flows. These program 
invariants often provide intuitive and meaningful in-
formation to human operators, and help them to locate 
problems on the fine granularity. Therefore, we relate 
each detected anomaly with the invariants that it breaks 
so as to provide insight cues for problem diagnosis. 
Operators can check which invariants are broken by an 
anomaly, and how many anomalies are raised by the 
violation of a specific invariant.  

8 Case Study and Comparision 

In this section, we evaluate the proposed approach 
through case studies on two typical distributed compu-
ting systems: Hadoop and CloudDB, a structured data 
storage service developed by Microsoft. We first set up 
a testing environment and collect console logs. And 
then, we begin our experiments of anomaly detection 
on these two systems. The detection results are pre-
sented and analyzed in the following subsections. Un-
like CloudDB, Hadoop is a publicly available open-
source project. The results on Hadoop are easy to be 
verified and reproduced by third parties. Therefore, we 
give more details about the results on Hadoop. 

8.1 Case Study on Hadoop 
Test Environment Setup: Hadoop [18] is a well-
known open-source implementation of Google‟s Map-
Reduce framework and distributed file system (GFS). It 
enables distributed computing of large scale, data-
intensive and stage-based parallel applications.  

Our test bed of Hadoop (version 0.19) contains 15 slave 
workstations (with 3 different hardware configurations) 
and a master workstation, and all these machines are 
connected to the same 1G Ethernet switch. We run dif-
ferent Hadoop jobs including some simple sample ap-
plications, such as WordCount and Sort, on the test bed. 
The WordCount job counts the word frequency in some 
random generated input text files, and the Sort job sorts 
the numbers in the input files. During the running of 
these jobs, we randomly run some resource intensive 
programs (e.g. CPUEater) on the slave machines to 
compete for CPU, memory and network resources with 
Hadoop jobs. Rather than active error injection, we 
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hope such intensive resource competition can expose 
inherent bugs in Hadoop. We collect the produced log 
files of these jobs 4 times at different time points. Each 
time, we put the collected log files into a single file 
folder. The log data is not uniformly distributed in these 
folders. The smallest folder contains about 116 mega-
bytes, and the largest folder contains about 1.3 giga-
bytes. The log messages in each folder are considered 
as a log bunch. There are totally about 24 million lines 
of log messages. 

Results of Parameter Grouping: Our parameter 
grouping algorithm identifies several parameter groups 
as meaningful program variables. By manually check-
ing the log messages and the parameters, we find that 
they corresponded to the following meaningful program 
variables: Map/Reduce Task ID, Map/Reduce Task 
Attempt ID, Block ID, and JVM ID, Storage ID, IP 
address and port, and write data size of task shuffling. 
These variables include both object identifiers (such as 
Task ID) and system states (such as IP address and 
Port). It is interesting that the packet size during shuf-
fling operations is also detected as a parameter group. 
We discover one invariant from its related message 
group, and learn that the number of MA-
PRED_SHUFFLE operations is equal to the number of 
messages of “Sent out bytes for reduce:## from map:## 
given from with (#,#)”.  

Table 3. Invariants found in Hadoop logs 
Message groups of related 
object identifiers 

Invariants 
(≤3 coef.) 

Invariants 
(≥4 coef.) 

Hadoop logs with Map-
Task ID 

3 0 

Hadoop logs with Redu-
ceTask ID 

1 0 

Hadoop logs with Map-
Task Attempt ID 

21 3 

Hadoop logs with Redu-
ceTask Attempt ID 

17 0 

Hadoop logs with Data 
Block ID 

9 0 

Hadoop logs with JVM ID 5 0 
Hadoop Logs with Sto-
rage ID 

3 0 

Logs with IP/port 4 0 
Logs with task write 
packet size 

1 0 

 
Learned Invariants: In the Hadoop experiments, we 
discover 67 invariants in total. 64 of them only contain 
at most three non-zero coefficients, and 3 invariants 
have 4 non-zero coefficients. Table 3 shows the num-

bers of the learned invariants for different program va-
riables. To validate our learned invariants, we manually 
verify our learned program invariants by carefully stud-
ying the Hadoop source code, the documents on Ma-
pReduce, and the sample logs. By comparing with the 
real program work flows, we find that our discovered 
invariants correctly describe the inherent linear rela-
tionships in the work flow. No false positive invariant is 
found. To vividly illustrate our discovered invariants, 
we present an example - the learned ternary invariant of 
the MapTask log group. The invariant equation is 
𝑐𝑐 𝐿𝐿  𝑐𝑐 𝐿𝐿  𝑐𝑐 𝐿𝐿 , where 𝐿𝐿 , 𝐿𝐿 , and 𝐿𝐿  
are the log message types of “Choosing data-local task 
##”, “Choosing rack-local task ##”, and “Adding task 
'##' to tip ##, for tracker '##'” respectively. In our test 
environment, all 16 machines are connected to a single 
Ethernet switch, and they are configured as one rack. 
Therefore, for each MapTask, it selects its data source 
from either local disc or local rack. The above invariant 
correctly reflects this property because the equation 
shows that each “Adding task” corresponds to either a 
“data-local” or a “rack-local”. This proves our claim in 
Section 3 that invariants encode the properties of work 
flow structures. 

Table 4. Detected true problems in Hadoop 
Anomaly Description PCA based 

Method 
Our 
Method 

Tasks fail due to heart beat 
lost. 

397 779 

A killed task continued to be 
in RUNNING state in both the 
JobTracker and that 
TaskTracker for ever 

730 1133 

Ask more than one node to 
replicate the same block to a 
single node simultaneously 

26 26 

Write a block already existed 25 25 
Task JVM hang 204 204 
Swap a JVM, but mark it as 
unknown. 

87 87 

Swap a JVM, and delete it 
immediately 

211 211 

Try to delete a data block 
when it is opened by a client 

3 6 

JVM inconsistent state 73 416 
The pollForTaskWithClosed-
Job call from a Jobtracker to a 
task tracker times out when a 
job completes. 

3 3 

 
Anomaly Detection: We use the learned invariants to 
detect anomalies by checking whether a log sequence 
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breaks a program invariant. By manually checking 
these detected anomalies, we find that there are 10 
types of different execution anomalies, which are listed 
in Table 4. Note that each anomaly in Table 4 corres-
ponds to a specific pattern corresponding to a certain 
set of violated invariants, and its description is manual-
ly labeled by our carefully studying the source code and 
documents of Hadoop. Many of them are caused by the 
loss of the heart beat message from Tasktracker to Job-
tracker. Our method also detects some subtle anomalies 
in Hadoop. For example (the 4th row of Table 4), we 
detect that Hadoop DFS has a bug that asks more than 
one node to send the same data block to a single node 
for data replication. This problem is detected because it 
violates a learned invariant of “count(„Receiving block 
##‟) = count(„Deleting block file ##‟)”. A node receives 
more blocks than it finally deletes, and some duplicated 
received blocks are dropped. 

At the same time, we find that our approach can well 
handle the problems that cause the confusion in the 
traditional keyword based log analysis tools. Here is 
one typical example. In Hadoop, TaskTracker often 
logs many non-relevant logs at info level for Disk-
Checker$DiskErrorException. According to Apache 
issue tracking HADOOP-4936, this happens when the 
map task has not created an output file, and it does not 
indicate a running anomaly. Traditional keyword-based 
tools may detect these logs as anomalies, because they 
find the word Exception. This confused many users. 
Unlike keyword-based tools, our approach can avoid 
generating such false positives. 

Table 5. False positives 
False Positive Description PCA 

Method 
Our 
Method 

Killed speculative tasks 585 1777 
Job cleanup and job setup tasks 323 778 
The data block replica of Java 
execution file 

56 0 

Unknown Reason 499 0 
 
Just like all unsupervised learning algorithms, our ap-
proach does detect some false positives. As shown in 
Table 5, we detect two types of false positives. Hadoop 
has a scheduling strategy to run a small number of spe-
culative tasks. Therefore, there may be two running 
instances of the same task at the same time. If one task 
instance finishes, the other task instance will be killed 
no matter which stage the task instance is running at. 
Some log groups produced by the killed speculative 
task instances are detected as anomalies by our ap-
proach, because their behaviors are largely different 

from normal tasks. The other false positives come from 
job cleanup and setup tasks. Hadoop schedules two 
tasks to handle job setup and cleanup related opera-
tions. Since these two tasks, i.e. job setup task and job 
cleanup task, print out the same type of log messages as 
map tasks. Many users are confused by these logs. Be-
cause their behaviors are quite different from the nor-
mal worker map tasks, our approach also detects them 
as anomalies.  

Comparison with the PCA Based Algorithm: We 
compared our approach with the PCA based algorithm 
of [5]. Because our running environment, work load 
characteristics, and Hadoop version are different from 
the experiments in [5], we cannot directly compare our 
results with theirs. We implement their algorithm and 
test it on our data set. From Table 4 and Table 5, we 
can find that both algorithms can detect the same types 
of anomalies, which is reasonable because both ap-
proaches utilize the inherent linear characteristics of the 
console logs. In some cases, our approach can detect 
more anomalies than the PCA based approach. If a set 
of log messages appear in almost all log message 
groups, the PCA based algorithm will ignore them by 
giving a very small TF/IDF weight. Therefore, the PCA 
based algorithm cannot detect the anomalies exposed as 
abnormal relationships among the log message types. 
For example, in a case of “JVM inconsistent state” (re-
fer to the 10th row of Table 4), our algorithm detects the 
anomaly because the message “Removed completed 
task ## from” abnormally appears twice for the same 
task instance (i.e. breaking an invariant of one message 
for each task). However, the PCA based algorithm can-
not detect these anomalies because it ignores the mes-
sage. On the whole, in our test data, our approach can 
detect all the anomalies that can be detected by the PCA 
based method.  

Unlike the PCA based approach, our invariant based 
approach can give human operators intuitive insight of 
an anomaly, and help them to locate anomalies in finer 
granularity. For example, the fact that an anomaly of “a 
task JVM hang” (refer to the 5th row of Table 4) breaks 
the invariant of “count(„JVM spawned‟) = count(„JVM 
exited‟)” can give operators a very useful cue to the 
understanding of the anomaly: a JVM spawned but does 
not exit, which may indicate the JVM is hung. At the 
same time, because the anomaly does not break 
“count(„JVM spawned‟) = count(„JVM with ID:# given 
task:#‟)”, we can conclude that the JVM got hung after 
it was assigned a MapReduce task. However, the PCA 
based approach can only tell operators that the feature 
vector of the anomaly is far away from the normal fea-
ture space, i.e. the residential value of the feature vector 
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is larger than a certain threshold value. This can hardly 
help operators to diagnose the problems, and they have 
to check the original log sequence carefully for problem 
analysis. In the PCA based approach, the decision tree 
technique makes its decision based on the count of one 
type of log messages at each step of the decision tree 
[5]. In contrast, our invariant based approach utilizes 
the numerical relationships among different types of log 
messages. 

The 4th row of Table 5 shows another advantage of our 
approach. In order to rapidly distribute the Java execut-
able files (e.g. JAR file) of jobs, Hadoop sets the replica 
number of these files according to the number of slave 
machines. For example, in our test environment, the 
replica number of a job JAR file is set as 15. The PCA 
based algorithm detects them as anomalies, because 15 
is far from the normal replica number (e.g. 3 in most 
systems) of the data block. Our approach does not 
detect them as anomalies because their work flows do 
not break any invariant. There are some other false pos-
itive cases (refer to the 5th row of Table 5), e.g. some 
log groups of successful tasks, in the results of PCA 
based algorithm. We speculate that these false positives 
may be caused by the different characteristics of work 
load (WordCount and Sort are different), but currently, 
we do not know the exact reason. It seems that the PCA 
based method is more sensitive to the workload and 
environment. Our algorithm is much more robust. Fur-
thermore, our algorithm only detects two types of false 
positives, while the PCA based method detects more 
than 4 types (we believe that the unknown reason false 
positives belong to many different types.). We argue 
that, rather than the number of false positives, the num-
ber of false positive types is more important for a prob-
lem detection tool. In fact, when the tool detects an 
anomaly, if a human operator marks it as a false posi-
tive, the tool can automatically suppress to pop up false 
positives of the same type. Therefore, a tool with few 
types of false positives can reduce the operator‟s work-
load. 

8.2 Case Study on CloudDB 
MS CloudDB is a structured data storage service devel-
oped for internal usage in Microsoft. It can scale up to 
tens of thousands of servers and runs on commodity 
hardware. It is capable of auto-failover, auto-load ba-
lancing, and auto-partitioning. In our experiments, we 
use the log messages of Fabric and CASNode levels, 
which implement the protocols and life cycles of distri-
buted storage nodes, to learn invariants and detect po-
tential anomalies. About 12 million log messages are 
analyzed in the experiment. We first manually construct 

some work flow models based on the documents pro-
vided by the product group. Due to the insufficiency of 
documents, not all work flows involved in these two 
levels are constructed. Then, we compare the invariants 
automatically mined by our approach (266 invariants 
are learned in this experiment) with the manually con-
structed work flow models. The mined invariants not 
only correctly reflect the real work flows, but also help 
us to find out some mistakes in the manually con-
structed work flow models that are caused by the mi-
sunderstanding of some content in the documents. 

Table 6. Detected anomalies in CloudDB 
Anomaly Description PCA 

Method 
Our 
Method 

Data store operation finished 
without client response 

0 2 

Service message lost 8 8 
Refresh config message lost 0 2 
LookupTableUpdate message 
lost 

0 1 

AddReplicaCompleted mes-
sage lost 

1 8 

Fail to close channel 2 67 
No response for an introduce 
request 

0 2 

Send depart message excep-
tion 

0 2 

Add primary failed 0 2 
 
After that, we also use the learned invariants to perform 
anomaly detection. Table 6 summarizes the detected 
anomalies in the experiment. By comparing Table 6 and 
Table 4, we can obtain a similar conclusion as that in 
Section 8.1 about the performances of the two methods. 
As mentioned in Section 8.1, the PCA based algorithm 
fails to detect lots of anomalies because it gives a very 
small TF/IDF weight to each routine message. 

9 Conclusions 

In this paper, we propose a general approach to detect-
ing system anomalies through the analysis of console 
logs. Because the log messages are usually free form 
text strings that can hardly be analyzed directly, we first 
convert unstructured log messages to structured logs in 
tuple-form representations. The parameters that 
represent the same program variable are classified into 
a parameter group. We identify parameter groups by 
analyzing the relationships among the value ranges of 
the parameters. Then, according to these parameter 
groups, we classify the log messages to log message 
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groups, and construct message count vectors. After that, 
we mine the sparse, integer valued invariants from the 
message count vectors. The mined invariants can reflect 
the elementary work flow structures in the program. 
They have physical meanings, and can be easily unders-
tood by operators. Finally, we use the discovered inva-
riants to detect anomalies in system logs. Experiments 
on large scale systems such as Hadoop and CloudDB 
have shown that our algorithm can detect numerous real 
problems with high accuracy, which is comparable with 
the state of art approach [5]. In particular, our approach 
can detect anomalies with finer granularity and provide 
human operators with insight cues for problem diagno-
sis. We believe that this approach can be a powerful 
tool for system monitoring, problem detection, and 
management. 
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Abstract
Wide-area network (WAN) accelerators operate by com-
pressing redundant network traffic from point-to-point
communications, enabling higher effective bandwidth.
Unfortunately, while network bandwidth is scarce and
expensive in the developing world, current WAN accel-
erators are designed for enterprise use, and are a poor fit
in these environments.

We present Wanax, a WAN accelerator designed for
developing-world deployments. It uses a novel multi-
resolution chunking (MRC) scheme that provides high
compression rates and high disk performance for a vari-
ety of content, while using much less memory than ex-
isting approaches. Wanax exploits the design of MRC to
perform intelligent load shedding to maximize through-
put when running on resource-limited shared platforms.
Finally, Wanax exploits the mesh network environments
being deployed in the developing world, instead of just
the star topologies common in enterprise branch offices.

1 Introduction
While low-cost laptops may soon improve computer ac-
cess for the developing world, their widespread deploy-
ment will increase the demands on local networking in-
frastructure. Locally caching static Web content can al-
leviate some of this demand, but this approach has limits
on its effectiveness, especially in smaller environments.

We propose to augment these caches with integrated
wide area network (WAN) accelerators that have been
specifically designed to operate in developing-world en-
vironments. WAN accelerators are deployed near edge
routers, and work by compressing redundant traffic des-
tined to locations with other WAN accelerators. To com-
press traffic, the accelerators break the data stream into
smaller chunks, store these chunks at each accelerator,
and then replace future instances of this data with ref-
erence to the cached chunks. By passing references to
the chunks rather than the full data, the accelerator com-
presses the data stream.

Current WAN accelerators are not well-suited for the
developing world. While they typically require server-
class machines with a set of fast disks and a large pool
of dedicated memory, the average school targeted by the
One Laptop Per Child (OLPC) project will have 100 lap-

†Work partly done while at University of Pittsburgh.

tops in the price range of US $100-$200 each, for a total
cost of $10K-$20K [22]. Requiring special server-class
hardware for WAN acceleration alone could increase de-
ployment cost. Other options would be to share the ma-
chine with other services (e.g, mail servers, Web servers,
and proxies) or to use cheap, laptop-class hardware, both
of which would reduce the RAM and disk available to the
WAN accelerator. In addition, existing designs cannot
exploit the mesh network environments being deployed
in the developing world, limiting their potential utility.

We have developed a new WAN accelerator, Wanax,
that is designed to meet these challenges in the devel-
oping world. Our technical contributions are the fol-
lowings: (1) a novel multi-resolution chunking (MRC)
technique, which provides high compression rates and
high disk performance across workloads while having a
small memory footprint; (2) an intelligent load shedding
technique that exploits MRC to maximize effective band-
width by adjusting disk and WAN usage as appropriate;
and (3) a mesh peering protocol that exploits higher-
speed local peers when possible, instead of fetching only
over slow WAN links. The combination of these design
techniques makes it possible to achieve high effective
bandwidth even with resource-limited shared machines.

The rest of this paper is organized as follows: §2 pro-
vides background on WAN accelerators and new chal-
lenges in the developing world. §3 describes the design
of Wanax, and we show the trace-based simulation anal-
ysis in §4. In § 5, we detail the prototype implementation,
and §6 presents the experimental results. Finally, we dis-
cuss related work in §7, and conclude in §8.

2 Background and Motivation
Our goal is to improve Internet access in the developing
world using WAN accelerators designed to use low-end
hardware. We primarily focus on increasing the effec-
tive bandwidth (or throughput) of the expensive, low-
bandwidth WAN link in the region. We first provide a
brief introduction to WAN accelerators, and then discuss
the specific problems.
2.1 WAN Accelerators
Content Fingerprinting Content fingerprinting (CF)
forms the basis for WAN acceleration, since it provides a
position-independent and history-independent technique
for breaking a stream of data into smaller pieces, or
chunks, based only on their content.
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Figure 1: WAN Accelerator Architecture

While early systems used Manber’s anchor technique
to determine chunk boundaries [18], Rabin’s fingerprint-
ing technique is now widely used for its efficiency and
flexibility [29]. It continuously generates integer values,
or fingerprints, over a sliding window (e.g., 48 bytes) of
a byte stream. When a fingerprint matches a specified
global constant K , that region constitutes a chunk bound-
ary. The average chunk size can be controlled with a pa-
rameter n, that defines howmany low-order bits ofK are
used to determine chunk boundaries. In the average case,
the expected chunk size is 2n bytes. To prevent chunks
from being too large or too small, minimum and maxi-
mum chunk sizes can be specified as well. Since Rabin
fingerprinting determines chunk boundaries by content,
rather than offset, localized changes in the data stream
only affect chunks that are near the changes.

Once a stream has been chunked, the WAN accelerator
can cache the chunks and pass references to previously
cached chunks, regardless of their origin. As a result,
WAN accelerators can compress within a stream, across
streams, and even across files and protocols.
Performance Trade-offs Figure 1 depicts the general
architecture of modern WAN accelerators. Chunk data
is stored on disk due to cost and capacity, but an in-
dex of chunk metadata is partially or completely kept
in memory to avoid disk accesses. Memory also serves
as a cache for chunk data, to reduce disk access for
commonly-used content.

The performance of WAN accelerators is mainly de-
termined by three factors - (1) compression rate, (2)
disk performance, and (3) memory pressure. Compres-
sion rate refers to the fraction of the original data actu-
ally gets sent, and reflects network bandwidth savings
by receiver-side caching. Disk performance determines
the cached chunk access time (seek time) while mem-
ory pressure affects the efficiency of the chunk index and
in-memory caching. These three factors affect the to-
tal latency, which is the time to reconstruct and deliver
the original data. Delivering high effective bandwidth
requires reducing the total latency – having high com-
pression, low disk seeks, and low memory pressure si-
multaneously.

Chunk size directly impacts all three factors, and con-

sequently the effective bandwidth as well. Small chunks
can lead to better compression if changes are fine-
grained, such as a word being changed in a paragraph.
Only the chunk containing the word is modified, and the
rest of the paragraph can be compressed. However, for
the same storage size, smaller chunks create more total
chunks, increasing the metadata index size, and increas-
ing the memory pressure and disk seeks. Large chunks
yield fewer chunks in total, reducing memory pressure
from indexing and providing better disk usage since each
read can provide more data. Large chunks, however, can
miss fine-grained changes, leading to lower compression.
No chunk size is standard in systems that use content
fingerprinting – for example, VBWC [30] uses a 2KB
chunk size, LBFS [21] uses 8KB, and Shark [5] uses
16KB.
2.2 Developing World Challenges
Our target environment, schools in the developing world,
is very different from enterprise branch offices, the typi-
cal candidate for WAN accelerators.

Limited RAM Due to cost, schools want a shared ma-
chine or a cheap laptop with limited RAM running the
WAN accelerator and other services, instead of using a
dedicated server appliance. Also, school children may
want to access any content on the Internet, rather than
just a smaller set of work-related documents in the en-
terprise environment. This larger working set requires
more disk storage, more chunks, and more metadata en-
tries, increasing memory pressure.

Poor Disk Performance While disk capacity is cheap
and large (1TB SATA per $100), disk seek performance
is still limited and is often the bottleneck. Modern desk-
top drives typically perform roughly 100 seeks/second,
but cheaper laptop/external drives we may expect in the
developing world are even slower, and are much slower
than the high-RPM SCSI disks commercial WAN accel-
erators use. Also, the larger working set and other ser-
vices sharing the disks further increase the disk load.

Low Compression Rate To handle poor disk perfor-
mance in the developing world, one choice is to use large
chunks to reduce the number of disk accesses, but this re-
duces the compression rate, limiting bandwidth gains.

Mesh Topology Enterprise branch offices typically
communicate with a central office in a star topology,
whereas many schools in a local region may prefer to get
content from each other over cheaper local links rather
than over the WAN link. Current WAN accelerators are
not designed to exploit this opportunity.

3 Wanax Design
Motivated by the challenges in the developing world, we
design Wanax around four goals - (1) maximize com-
pression, (2) minimize disk seeks, (3) minimize memory

Figure 2: Wanax System Overview

pressure, and (4) exploit local resources.
Wanax works by compressing redundant traffic be-

tween a pair of servers – one near the clients, called a
R-Wanax, and one closer to the content, called an S-
Wanax. For developing regions, the S-Wanax is likely to
be placed where bandwidth is cheaper. For example, in
Africa, where Internet connectivity is often backhauled
to Europe via slow and expensive satellite, the S-Wanax
may reside in Europe.

Since we expect most Wanax usage will be Web-
related, Wanax operates on TCP streams rather than IP
packets since buffering TCP flows can yield larger re-
gions for content fingerprinting. The remote Wanax di-
vides the incoming TCP stream into chunks and sends
chunk identifiers (such as SHA-1 hashes) to the local
Wanax. If the local Wanax has the chunks cached, the
data is reassembled and delivered to the client. Any
chunks that are not cached can be fetched from the re-
mote Wanax or other nearby peer. Figure 2 shows the
overall system architecture. Each machine is capable of
acting as both S-Wanax and R-Wanax, based on the di-
rection of communication.
3.1 Basic Protocol
Wanax uses three kinds of communication channels be-
tween the accelerators – control, data, and monitoring
channels. The control channel is used for connection
management and chunk name exchange. The data chan-
nels are used to request and deliver uncached chunks,
so it is stateless and implemented as a simple request-
reply protocol. Finally, the monitoring channel is used
for checking the liveness and load levels of the peers us-
ing a simple heartbeat protocol. Figure 3 shows typical
data transfer between two Wanax gateways.
Control Channel When client A initiates a TCP con-
nection to client B in the WAN, that connection is trans-
parently intercepted by the Wanax gateway accelerator 1,
R-Wanax. R-Wanax selects S-Wanax which is network
topologically closer to B, and sends it an open connection
message with the IP and the port number of B. S-Wanax
then opens a TCP connection to B and a logical end-to-
end user connection between A and B is established.

1Non-cacheable protocols(e.g., SSH, HTTPS) are bypassed.

Figure 3: Basic Protocol

When the client B sends data back to S-Wanax, S-
Wanax generates chunk names from the data and sends
them to R-Wanax in a chunk name message. Each
chunk name message contains a sequence number so
that R-Wanax can reconstruct the original content in the
right order. After R-Wanax reconstructs and delivers the
chunk data to the original client, it sends a chunk ac-
knowledgment (ACK) message to S-Wanax. S-Wanax
can then safely discard the delivered chunks from its
memory, and proceed with sending more chunk names.

When the sender or receiver closes the connection,
the corresponding Wanax sends a close connection mes-
sage to other gateway and the connections between the
gateways and the clients are closed once all the data is
delivered. The control channel, however, remains con-
nected. All control messages carry flow identifiers, so
one control channel can be multiplexed for many data
flows. Control messages can be batched for efficiency.

Data and Monitoring Channels The data channel
uses chunk request and chunk response messages to de-
liver the actual chunk content in case of a cache miss at
R-Wanax. We also have the chunk peek message which
is used to query if a given chunk is cached, which is used
in our load shedding system.

Each Wanax accelerator monitors the status of its
peers by exchanging heartbeats on the monitoring chan-
nel. The heartbeat response carries the load level of disk
and network I/Os of the peer so that we can balance the
request load among peers.
3.2 Multi-Resolution Chunking
MRC combines the advantages of both large and small
chunks by allowing multiple chunk sizes to co-exist in
the system. Wanax uses MRC to achieve (1) high com-
pression rate, (2) low disk seeks, and (3) low memory
pressure. When content overlap is high, Wanax can use
larger chunks to reduce disk seeks and memory pres-
sure. However, when larger chunks miss compression
opportunities, Wanax uses smaller chunk sizes to achieve
higher compression. In contrast, existing WAN accel-
erators typically use a fixed chunk size, which we term
single-resolution chunking, or SRC.
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Figure 4: Multi-Resolution Chunking

Generating Chunks Generating multiple chunk sizes
requires careful processing, not only for efficiency, but
also to ensure that chunk boundaries are aligned. A
naive approach to generating chunks can yield unaligned
chunk boundaries, as shown in Figure 4(a). Here, the
fingerprinting algorithm was run multiple times with
multiple sizes. However, due to different boundary-
detection mechanisms, chunk size limits, or other is-
sues, the boundaries for larger chunks are not aligned
with those of smaller chunks. As a result, when fetching
chunks to reconstruct data, some areas of chunks overlap,
while some chunks only partly overlap, causing wasted
bandwidth when a partially-hit chunk must be fetched to
satisfy a smaller missing range.
Instead, we perform a single-pass fingerprinting step,

in which all of the smallest boundaries are detected, and
then larger chunks are generated by matching different
numbers of bits of the same boundary detection con-
straint. This process produces the MRC tree shown in
Figure 4(b), where the largest chunk is the root, and all
smaller chunks share boundaries with some of their leaf
chunks. Performing this process using one fingerprint-
ing pass not only produces a cleaner chunk alignment,
but also requires less CPU.

Storing Chunks All chunks generated by the MRC
process are stored to disk, even though the smaller
chunks contain the same data as their parent. The ratio-
nale behind this decision is based on the observation that
disk space is cheap, and having all chunks be fully inde-
pendent simplifies the metadata 2 indexing process, re-
ducing memory pressure in the system, also minimizing
disk seeks as well. For example, when reading a chunk
content from disk, MRC requires only one index entry
access, and only one disk seek.

Two other options would be to reconstruct large
chunks from smaller chunks, which we call MRC-Small,
and storing the smaller chunks as offsets into the root
chunk, which we call MRC-Large.

While both MRC-Small and MRC-Large can reduce
disk space consumption by saving only unique data, they
suffer from more disk seeks and higher memory pressure.

2chunk name, disk location of chunk content, and chunk length at a
minimum.

Scheme Compression Disk Memory Index
Rate I/O Pressure Update

SRC-Small High High High Simple
SRC-Large Low Low Low Simple
MRC-Small High High High Complex
MRC-Large High Low High Complex
MRC High Low Low Simple

Table 1: Comparison of Chunking Schemes

To reconstruct a larger chunk, MRC-Small needs to fetch
all the smaller chunks sharing the content, which can sig-
nificantly increase disk access. The metadata for each
small chunk is accessed in this process and loaded in
memory, increasing memory pressure compared to stan-
dard MRC with only one chunk index entry. MRC-Large
avoids multiple disk seeks but complicates chunk index
management. When a chunk is evicted from disk or over-
written, all dependent chunks must also be invalidated.
This requires either that each metadata entry grows to
include all sub-chunk names, or that all sub-chunk meta-
data entries contain backpointers to their parents.

MRC avoids these problems by making all chunks in-
dependent of each other. This choice greatly simplifies
the design at the cost of more disk space consumption. In
practice, however, we can store more than one month’s
worth of chunk data on a single 1 TB disk assuming a 1
Mbps WAN connection. Table 1 summarizes the trade-
offs of different schemes.

Content Reconstruction When an R-Wanax receives
an MRC tree (chunk names only) from an S-Wanax, it
builds a candidate list to determine which chunks can be
fetched locally, at peers, and from the S-Wanax. To get
this information, it queries its local cache and peers for
each chunk’s status, starting from the root. Since Wanax
uses the in-memory index to handle this query, it does
not require extra disk access. If a chunk is a hit, R-Wanax
stops querying for any children of the chunk. For misses,
we find the root of the subtree containing only misses,
and fetch that from S-Wanax. After reconstructing the
content, Wanax stores each uncached chunk in the MRC
to disk for future reference.

Chunk Name Hints Optimization Sending full MRC
trees would waste bandwidth if there is a cache hit at
a high level in the tree or when subtrees are all cache
misses. Sending one level of the tree at a time avoids the
wasted bandwidth, but increases the transmission latency
with a large number of round trips. Instead, we have
S-Wanax predict chunk hits or misses at R-Wanax and
prune the MRC tree accordingly. We augment S-Wanax
with a hint table that contains recently-seen chunk names
along with timestamps. Before sending the MRC tree, S-
Wanax checks all chunk names against the hint table. For
any hit in the hint table, S-Wanax avoids sending the sub-
trees below the chunk. If it is a miss or the chunk name

hint is stale, S-Wanax determines the largest subtree that
is a miss and sends one chunk content for the entire sub-
tree. This way, we eliminate any inefficiency exchanging
MRC trees, further increasing effective compression rate.

Here, we assume the S-Wanax and the R-Wanax will
be roughly synchronized over time – what an R-Wanax
receives from an S-Wanax now is likely to be fetched
from the same S-Wanax in the future. We use the times-
tamps to invalidate old hint entries, but even if prediction
is wrong, it does not affect correctness.
3.3 Resource Sharing via Peering
Wanax incorporates a peering mechanism to share the
resources such as disks, memory, and CPU with nearby
peers using cheaper/faster local connectivity. It allows
Wanax to distribute the chunk fetching load among the
peers and utilize multiple chunk cache stores in parallel,
improving performance. In comparison, existing WAN
accelerators support only point-to-point communication.

To reduce scalability problems resulting from query-
ing peers [45], Wanax uses a variant of consistent hash-
ing called Highest Random Weight (HRW) [40]. Regard-
less of node churn, HRW deterministically chooses the
responsible peer for a chunk. We considered other ap-
proaches like Summary cache [12], but HRW consumes
small memory at the expense of more CPU cycles, and
this trade-off fits well in the developing world scenario.
In comparison, periodic rebuilds of a Bloom filter would
require re-scanning all chunk metadata, causing signifi-
cant memory pressure and possibly disk access.

Here is how it works. On receiving the chunk name
message from S-Wanax, R-Wanax sends a chunk request
message to its responsible peer Wanax. The message
includes the missing chunk name and the address of S-
Wanax from whom the name of the missing chunk orig-
inates. If the peer Wanax has the chunk, it sends the
requested chunk content back to R-Wanax with a chunk
response message. If not, the peer proxy can fetch the
missing chunk from S-Wanax, deliver it to R-Wanax,
and save the chunk locally for future requests. If peers
are not in the same LAN and could incur separate band-
width cost, fetching the missing chunk falls back to the
R-Wanax instead of the peer. After finishing data recon-
struction, R-Wanax also distributes any uncached chunk
to its corresponding peers. We introduce a chunk put
message in the data channel for this purpose.
3.4 Intelligent Load Shedding
While chunk cache hits are desirable in general since
they reduce bandwidth consumption, too many disk ac-
cesses may degrade the effective bandwidth by increas-
ing the overall latency. This problem becomes even
worse in the developing world where the disk perfor-
mance is poor. In such cases, we can opportunistically
use network bandwidth instead of queueing more re-
quests to the disk. By using the disk for larger chunks

Algorithm 1 Intelligent Load Shedding
Require: C: all the chunk names to be scheduled

BW , RTT : link bandwidth and RTT
Qi: # of pending disk requests for peer i
Bi: pending network bytes to receive for peer i
S: per chunk disk latency

1: partition C with HRW
2: resolve C with chunk peek message in parallel
3: generate the candidate list

Di: cache-hit chunks on peer i
N : cache-miss chunks

4: estimate each latency
TD

i
= (|Di| + Qi) × S

TN = RTT + {
X

i

Bi +
X

c∈N

length(c)}/BW

5: while max(TD
i
) > TN do

6: pick the peer k where max(TD
i
) = TD

k

7: move the smallest chunk from Dk to N
8: update TD

k
and TN

9: end while
10: return Di and N

and fetching smaller chunks over the network, we can
sustain high effective bandwidth without disk overload.

We introduce intelligent load shedding (ILS), which
exploits the structure of the MRC tree and dynamically
schedules chunk fetches to maximize the effective band-
width given a resource budget. The ILS algorithm is
presented in Algorithm 1, and takes the link bandwidth
(BW ) and round-trip latency (RTT ) of the R-Wanax as
input. Each peer Wanax also uses the monitoring chan-
nel to send heartbeats that contain its network and disk
load status in the form of the number of pending disk
requests (Qi), and the pending bytes to receive from net-
work (Bi). We assume per-chunk disk read latency (S),
or seek time is uniform for all peers for simplicity.
The first step in the ILS process is generating the can-

didate list. On receiving the chunk names from S-Wanax,
R-Wanax runs the HRW algorithm to partition the chunk
names (C) into responsible peers. Some chunk names
are assigned to R-Wanax itself. Then R-Wanax checks
if the chunks are cache hits by sending the chunk peek
messages to the corresponding peers in parallel. Based
on the lookup results, R-Wanax generates the candidate
list (§3.2). Note that this lookup and candidate list gener-
ation process (line 2 and 3 in Algorithm 1) can be saved
by name hints from S-Wanax, which R-Wanax uses to
determine the results without actual lookups.

The next step in the ILS process is estimating fetch la-
tencies for the network and disk queues. From the candi-
date list, we know which chunks need to be fetched over
network (network queue, N ) and which chunks need to
be fetched either from local disk or a peer (disk queues,
Di). Based on this information, we estimate the latency
for each chunk source. For each disk queue, the esti-
mated disk latency will be per-chunk disk latency (S)
multiplied by the number of cache hits. For the net-
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Figure 5: Intelligent Load Shedding: by moving smaller
chunks from the disk queue to the network queue, the overall
latency is further reduced.

work queue, the estimated network latency will be one
RTT plus the total size of cache-miss chunks divided by
BW . If there were pending chunks in the network or disk
queues, each latency is accordingly adjusted. We assume
the latency between the R-Wanax and peers is small, and
do not incorporate it in our model.
The final step in ILS is balancing the expected queue

latencies, but doing so in a bandwidth-sensitive manner.
We decide if we need to move some cache hit chunks
from a disk queue to a network queue – since fetching
chunks from each source can be done in parallel, the total
latency will be the maximum latency among them. If the
network is expected to cause the highest latency, we stop
here because no further productive scheduling is possi-
ble. When disk latency dominates, we can reduce it by
fetching some chunks from the network. We choose the
smallest chunk because it reduces one disk seek latency
while increasing the minimum network latency. We up-
date the estimated latencies, and repeat this process until
the latencies equalize, as shown in Figure 5. After fin-
ishing ILS, R-Wanax distributes chunk request messages
to corresponding peers. We send the requests in the or-
der they appear in the candidate list, in order to avoid
possible head-of-line (HOL) blocking.

Note that ILS algorithm works with both MRC and
SRC. However, by moving the smallest chunk from the
disk queue to the network queue, MRC could further re-
duce the disk latency than SRC, which results in smaller
overall latency. Combined with MRC’s better overall
disk performance and compression, it gives much higher
effective bandwidth.

4 Simulation Analysis
To understand the trade-offs between MRC and other
schemes, we simulate their behavior under a variety of
workloads, comparing bandwidth savings, disk access
overheads, memory pressure, and performance.
4.1 Simulator
We develop a simulator that reads the packet-level traces
from tcpdump [38] and simulates various scenarios us-
ing SRC and MRC. The simulator uses libnids [16] for
stream reconstruction, and consists of 7,000 lines of C

code. The outputs are actual and ideal bandwidth savings
with and without chunk indexing metadata overhead,
disk access overhead for chunk content fetching, and to-
tal memory usage. We use 20-byte SHA-1 hashes for
the chunk names, and model point-to-point deployments
with one S-Wanax and one R-Wanax with no peers. The
simulator implements all of the Wanax design mentioned
earlier, including the chunk name hint optimization used
for both SRC and MRC.

We vary the chunk size for both schemes, with SRC
using chunks from 32 bytes to 64 KB, and MRC using
three tree configurations, with a 64 KB root chunk with
tree degrees 2, 4 and 8 each. The child chunk size is
obtained by dividing the parent chunk size by the degree.
For example, a degree-2 tree (d = 2) starts with a 64
KB root chunk and two 32 KB children chunks. Each
child chunk recursively forms a subtree with the same
degree until the chunk size reaches 32 bytes. A degree-4
tree has 64 bytes as leaf node size while a degree-8 tree
has 128 bytes as the minimum size. If needed, we also
change the height of the MRC tree of the same degree,
by controlling the smallest chunk size, m.
4.2 Workload
We choose two types of workloads – dynamically-
generated Web content and redundant large files. We
focus on dynamic content because the static content is
likely to be handled by a standard Web proxy, and we can
further reduce bandwidth consumption on uncacheable
content with Wanax. We select a number of popular news
sites, fetch the front pages every five minutes, and mea-
sure the redundancy between the fetches. 3 To gener-
ate traffic close to what actual users would produce, we
use Firefox 3.0 [13] to fetch the content, and we enable
the browser cache to avoid re-fetching cacheable content.
We collect packet-level traces for three days, yielding a
1GB trace with 102K TCP sessions and a 72% redun-
dancy. We refer to this workload as “news sites”.
The large-file workload represents long-lived connec-

tions for videos or software packages. For this, we down-
load two different versions of the Linux kernel source
tar files, 2.6.26.4 and 2.6.26.5, one at a time and gather
packet-level traces as well. The size of each tar file is
about 276 MB, and the two files are 94% redundant. We
refer to this workload as “Linux kernel”.

Cacheability Breakdown Table 2 separates the poten-
tial bandwidth savings on the news sites by their HTTP
cacheability, as determined by checking the cache con-
trol directives in the response headers. The top two num-
bers represent the portion of HTTP-uncacheable bytes
(H-U), while the bottom two indicate HTTP-cacheable
bytes (H-C). The middle two numbers show the portion

3CNN, Google News, NYTimes, Slashdot, Digg, Fark, Salon, Ya-
hoo News, and Drudgereport.
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Figure 6: Potential Bandwidth Savings (d:degree) – SRC overheads prevent it from reaching ideal savings for smaller chunk sizes.
MRC savings are close to ideal across all chunk sizes.
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Figure 7: Disk Operation Cost (d:degree) – By using larger chunks when possible, MRC dramatically reduces the number of disk
operations needed for a given workload. Note: Y axis is thousands of operations.

SRC MRC-2 MRC-4 MRC-8
H-U/W-U 20 20 21 23
H-U/W-C 62 62 61 59
H-C/W-C 10 10 9 8
H-C/W-U 8 8 9 10

Table 2: News Sites Cacheability Breakdown (%) – as a re-
sult of browser caching, most traffic in this workload is HTTP-
uncacheable (H-U). However, it still has much redundancy,
making most bytes Wanax-cacheable (W-C).

of Wanax-cacheable bytes (W-C), while the outer two de-
pict the Wanax-uncacheable portion (W-U).

We see that most of the bytes are not cacheable by
HTTP, but are cacheable by Wanax. Of the bytes that
are not HTTP cacheable, about 75% are redundant and
can benefit from Wanax. Of the HTTP-cacheable bytes,
more than half are Wanax-cacheable as well. This re-
sult suggests that Wanax plus a browser cache can handle
much of the traffic, but that Wanax with an HTTP proxy
can provide even greater savings. Using an HTTP proxy
with Wanax also allows HTTP-cacheable responses to be
served directly from the proxy without re-contacting the
content provider.
4.3 Results
Potential Bandwidth Savings Figure 6 shows the
ideal and actual bandwidth savings on both workloads
for various chunk sizes. As expected, the ideal band-
width savings increases as the chunk size decreases.
However, due to the chunk indexing metadata transmis-

sion overhead, the actual savings with SRC peaks at a
chunk size of 256 bytes with 58% bandwidth savings on
the news sites, and 82% on the Linux kernel. The band-
width savings drops as the chunk size further decreases,
and when the chunk size is 32 bytes, the actual savings is
only 25% on the news sites and 36% on the Linux kernel.

On the other hand, MRC approaches the ideal savings
regardless of the minimum chunk size. With 32 byte
minimum chunks, it achieves close to the maximum sav-
ings on both workloads – about 66% on the news sites
and 92% on the Linux kernel. This is because MRC uses
larger chunks whenever possible and the chunk name
hint significantly reduces metadata transmission over-
heads. When comparing the best compression rates,
MRC’s effective bandwidth is 125% higher than SRC’s
on the Linux kernel while it shows 24% improvement on
the news sites.

Disk Operation Cost MRC’s reduced per-chunk in-
dexing overhead becomes clearer if we look at the num-
ber of disk I/Os for each configuration, shown in Fig-
ure 7. SRC’s disk fetch cost increases dramatically as the
chunk size decreases, making the use of small chunks al-
most impossible with SRC. MRC requires far fewer disk
operations even at small chunk sizes. When the leaf node
chunk size is 32 bytes, SRC performs 8.5 times as many
disk operations on the news sites, and 22.7 times more
on the Linux kernel.
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Figure 8: Memory Footprint Comparison. Note log-scale Y axis. MRC’s memory pressure is typically one-tenth that of SRC and
MRC-Small. MRC-Large typically uses twice the memory due to backpointer overhead.

 0
 10
 20
 30
 40
 50
 60
 70
 80

8 4 2 SRCB
a
n
d
w

id
th

 S
a
vi

n
g
 p

e
r 

T
re

e
 L

e
ve

l (
%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(a) News Site

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

8 4 2 SRCB
a
n
d
w

id
th

 S
a
vi

n
g
 p

e
r 

T
re

e
 L

e
ve

l (
%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(b) Linux Kernel

Figure 9: Per-level Bandwidth Savings in the MRC Tree –
most MRC savings are from larger chunk sizes, reducing disk
access and memory pressure.

Memory Pressure Memory pressure limits the amount
of cache storage that a WAN accelerator can serve and
the amount of RAM it requires for that storage. Figure 8
compares the memory footprint with different chunking
approaches. We count the number of chunk index entries
that are used during the simulation, and calculate the ac-
tual memory footprint. Each bar represents the memory
footprint (MB), and the numbers on top of each bar show
the number of used cache entries in thousands. Due to
space constraints, we show only the MRC trees with the
degree 2, but other results follow the same trend.

MRC incurs much less memory pressure than SRC
does, since MRC requires one cache entry for any large
chunk while SRC needs several cache entries for the
same content. MRC-Small, however, requires even more
cache entries than SRC does since reconstructing a larger
chunk requires accessing all of its child entries. At a 32-
byte chunk size, MRC-Small consumes almost 300 MB
for the linux kernel while MRC requires only about 10
MB for the cache entries. MRC-Large shows a similar
number of cache entries as MRC. However, the actual
memory consumption of MRC-Large is much worse than
MRC because every child chunk has a back pointer to
its parent. MRC-Large consumes almost twice as much
memory as MRC on the news workload.

MRC Chunk Size Breakdown Figure 9 shows the
breakdown of bandwidth savings by different chunk

sizes. We present all three MRC configurations and SRC
with a 32-byte minimum chunk. For MRC, chunk sizes
are sorted from smallest at top to largest at bottom, and
the bottom bar shows the root chunk size of 64KB.

The results explain MRC’s low disk overhead and low
memory pressure – only a small fraction of the total
savings is handled by the smallest chunks with MRC,
whereas all of the savings is handled by 32-byte chunks
with SRC. Most of MRC’s bandwidth reduction comes
from larger chunks, which results in a much smaller
number of disk I/Os and cache entries. We can see the
similar trend across different MRC degrees. For exam-
ple, the portion handled by a 4KB chunk size in MRC
degree 4 is handled by 8KB chunk size as well in MRC
degree 2. This means that some portion of 4KB chunks
are merged into 8KB chunks in MRC degree 2. In all the
MRC scenarios, chunks that are 4KB or larger provide
40-50% of the bandwidth savings, drastically reducing
disk I/O.

Intelligent Load Shedding Based on the previous re-
sults of bandwidth savings and disk performance, we
simulate the effective bandwidth improvement (times)
given a target link capacity using ILS in Figure 10. We
vary the link capacity from 1Mbps to 5Gbps, and assume
one 7200RPM SATA disk.

We see that the effective bandwidth improvement of
both MRC and SRC approaches one as link capacity in-
creases, but SRC drops much faster than MRC. With
smaller chunk sizes, SRC shows a high effective band-
width with slow links due to its high compression rate,
but the effective bandwidth quickly degrades as the link
capacity grows. This is because with small chunks, the
disk soon becomes the bottleneck of the system. In the
same context, SRC with larger chunk sizes performs bet-
ter with fast links, but shows a worse bandwidth im-
provement for slow links due to its low compression rate.

MRC outperforms SRC regardless of link speed, and
it sustains high effective bandwidth by leveraging mul-
tiple chunk sizes. If the link is slow, MRC fetches
even the smallest chunks from disk, suppressing most re-
dundancy. As the link capacity increases, MRC stops
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Figure 10: Effective Bandwidth Improvement over Link Capacity (c: avg chunk size, d: degree, m: min chunk size) – as link
capacity increases and disk performance becomes a bottleneck, MRC sheds cache hits on smaller chunks first, leading to a graceful
degradation in effective bandwidth. With ILS disabled, the bandwidth collapses to the bottleneck disk speed. Note log-scale Y-axis.

fetching the smaller chunks from disk, and focuses on
the larger chunks rather than completely disabling com-
pression, gracefully degrading the effective bandwidth.
When ILS is disabled, the effective bandwidth of all three
configurations collapses to the bottleneck disk speed.

5 Implementation
The Wanax prototype consists of about 18,000 lines of
C code sharing the same MRC/SRC code base with the
simulator in §4.
PPTP/GRE Tunneling To provide easy access to end
users, Wanax is implemented as an Internet gateway
with PPTP/GRE tunneling, with TUN/TAP [42] support
planned for the near future. Currently, users need to spec-
ify the IP address of Wanax in their PPTP client on Linux
(or to set up a VPN client on Microsoft Windows), after
which all traffic from the user is forwarded to the Wanax
system. Wanax performs content fingerprinting only on
TCP streams, and bypasses all non-TCP packets.
Reconstructing TCP Byte Streams While a fully
transparent solution could intercept all IP packets and
reconstruct TCP streams, that creates unnecessary com-
plexity between layer 3 and 4. Instead, we intercept each
TCP connection from the client, and redirect it to Wanax.
This greatly simplifies the buffering process sinceWanax
can use the regular socket interface to recover the origi-
nal content. We implement this in the PPTP server [26]
by modifying the destination address and port of the in-
coming packets from the client, to those of Wanax. Sim-
ilar to network address translation (NAT), we store this
mapping in the address translation table, and recover the
original address and port for the outgoing packets from
Wanax to the client. This requires about 500 lines of
PPTP server code modification.
Storage System We use HashCache [6] not only as
an HTTP proxy, but also as scalable storage for storing
and retrieving the chunk content as well as the chunk
name hint. With a highly memory-efficient indexing
scheme, HashCache fully utilizes a Terabytes-sized disk
with less than 256 MB of physical memory, which is

an ideal storage system for developing regions. Hash-
Cache is designed to use at most one disk seek for read-
ing a random chunk, and performs group writes of re-
lated chunks to minimize disk latency for future reading.
Wanax uses two special HashCache APIs, hc peek()
and hc hint(). hc peek() tells the existence of a
chunk without performing actual disk I/O, and we use
it for ILS and chunk name hints. hc hint() exports
the queuing status of the disk I/Os and is used for ILS
calculations.

Optimizing Transport Protocol Inter-Wanax com-
munication uses a set of techniques to improve network
performance over high-latency WANs. While imple-
menting a fully-custom transport protocol might yield
some additional benefit, we opt for simplicity and use
TCP variants optimized for high-delay, low-bandwidth
links [14, 15]. They modify the congestion avoidance
algorithm so that they can quickly increase the conges-
tion window even under high latency. In addition, Wanax
multiplexes all communication over a set of long-lived
TCP connections, avoiding an extra connection setup
overhead of one RTT [23]. We also disable slow-start
after idle time because we carefully control the number
of connections per link. 4 These techniques are help-
ful especially for short-lived HTTP connections, which
dominates traffic in the developing world [11]. In our
tests, we find this combination yields close to the line
speed even for many short connections.

Minimizing MRC Computation Overhead While
MRC preserves high bandwidth savings without sacri-
ficing disk performance, it consumes more CPU cycles
in fingerprinting and hash calculation due to an increased
number of chunks. Figure 11 shows average time for run-
ning Rabin’s fingerprinting algorithm and SHA-1 on one
chunk with an average size of 64 KB from a 10 MB file.
Surprisingly, Rabin’s fingerprinting, though it is known
to be computationally efficient, turns out to be still quite
expensive, taking three times more than SHA-1. How-

4sysctl ’tcp slow start after idle’ in Linux.
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Figure 11: MRC Computation Overhead for 64KB Block

ever, the aggregate SHA-1 cost increases as MRC’s leaf
chunk size decreases. If naively implemented, the total
CPU cost of an MRC tree with a height n would be n ×
Rabin’s fingerprinting time + sum of SHA-1 calculation
of each level.

We consider two general optimizations which can be
applied to both S-Wanax and R-Wanax. First, we run
Rabin’s fingerprinting on content only once, detect the
smallest chunk boundaries, and derive the larger chunk
boundaries from them. Second, we compute SHA-1
hashes only when necessary using the chunk name hint.
For example, if S-Wanax knows that this chunk has been
sent to R-Wanax before, S-Wanax assumes all of its chil-
dren are already in R-Wanax and sends only the name
of the parent. Likewise, if R-Wanax knows that a chunk
has been stored on disk before, it does not re-store its
children.
In addition, we implement an R-Wanax specific opti-

mization. When the top-level chunk is a miss with R-
Wanax but there are some chunk hits in the lower lev-
els in the MRC tree, we only need to run fingerprinting
with the cache-missed candidate list chunks. In order to
support this, we now store a Rabin’s fingerprint value (8
bytes) along with each chunk name hint. If a chunk in
the candidate list is a cache hit, we can retrieve the fin-
gerprint value for the chunk. If a chunk is a cache miss,
we run the fingerprinting function to find and store any
smaller chunks. We now know Rabin’s fingerprint values
for all chunks in the candidate list, so we can also recon-
struct any parents without running the fingerprinting on
the cache-hit chunks.

These optimizations are mainly for the case of chunk
cache hits, where more CPU cycles are needed to deliver
the chunks to the client. In case of a chunk cache miss,
the bottleneck will still be in the slow WAN link for the
developing worlds and consuming extra CPU cycles will
not affect the download throughput.

6 Evaluation
In this section, we evaluate our prototype implementa-
tion of Wanax. Except for the realistic traffic test in the
middle of this section, our tests use 1GHz AMD Athlon
64 X2 CPU machines equipped with 1GB RAM and a
SATA disk. We divide them into two regions to rep-
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Figure 12: Cache Miss and Cache Hit Performance – even on
all-hit or all-miss workloads, the extra overheads of MRC are
small compared to SRC. The best SRC performers on this set
use large chunk sizes, which would produce poor compression
on realistic workloads.

resent the content provider and the developing region,
with intra-region bandwidths set to 100Mbps. We vary
the bandwidth and latency of the bottleneck WAN link
connecting the two regions, depending on the evaluation
scenarios. We have an origin server and an S-Wanax in
the content provider side, and a client and two R-Wanax
nodes in the developing region. Both the SRC and MRC
tests are conducted using the same Wanax servers with
the same TCP optimizations. To emulate the effect of
large working sets which do not fit in memory, we dis-
able in-memory cache for serving chunk content.

Microbenchmark For our microbenchmark, we use
two 1 MB files that have 90% redundancy using a 64-
byte chunk size. The bottleneck WAN link is set to
512Kbps with a 200ms RTT. We download the first file
twice to generate a cold cache miss and a complete cache
hit, and then download the second file to generate a par-
tial cache hit. We repeat the experiment by increasing
the number of peers, and performing ILS. The down-
loading throughput (effective bandwidth) without Wanax
(BASE) is only 0.41 Mbps due to the high WAN latency.
We test SRC with chunk sizes from 128 bytes to 64KB,
and a degree-8 MRC using a 128-byte minimum and
64KB maximum chunks.

Figure 12 (a) shows the bandwidth savings and
throughputs when downloading the first file. Since ev-
ery chunk is a cache miss, S-Wanax sends the content as
well as the chunk name. Due to the chunk name over-
head, SRC consumes more bandwidth than BASE, with
up to 48% overhead for 128-byte chunks. However, the
throughput is higher than BASE, reaching 0.45Mbps for
64KB chunks, due to the optimized TCP between Wanax
nodes. On the other hand, the overhead of MRC is neg-
ligible since it uses the largest chunk size of 64KB for
most cache misses, yielding an overhead of 5.6% and a
throughput of 0.43Mbps.

Figure 12 (b) compares MRC with SRC for a second
download of the same file. As expected, SRC with the
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Figure 13: Performance with 90% redundancy and 512Kbps WAN link – MRC without ILS produces much better compression
than any SRC configuration, and throughput is comparable to the best SRC. With ILS enabled, MRC produces better compression
and throughput than any SRC configuration. When peering is used, disk is not a bottleneck, and enabling ILS has no effect.

large chunk sizes (16, 32, and 64KB) shows the best
throughput of 15Mbps. 5 As the chunk size decreases,
the throughput degrades, and the bandwidth savings is
also reduced due to the per-chunk metadata overhead.
However, MRC achieves both high throughput and band-
width savings since they use the largest chunk size in this
case. The slightly lower throughput of MRC versus SRC
with large chunks is because MRC generates multiple
chunk sizes for the first download, spreading the layout
of the large chunks on disk, whereas the SRC download
stores all of the chunks in sequence on disk.

Figure 13 (a) depicts the performance of download-
ing the second file after warming the cache with the
first file (90% redundancy). In this particular workload,
SRC with 1KB chunks is the best configuration achiev-
ing both the highest bandwidth savings (80%) and high-
est throughput (2Mbps). MRC, in comparison, provides
a higher bandwidth savings (89%) than any SRC scheme,
but without ILS, the disk becomes the bottleneck and the
throughput is almost the same as the best SRC. Enabling
ILS raises the MRC throughput to 2.4Mbps at the cost of
bandwidth savings, but beats every SRC configuration on
both bandwidth savings and throughput – ILS automati-
cally finds the sweet spot regardless of the workload.

Figure 13 (b) presents the effect of peering. The exper-
iment is the same as the previous test, but now includes
another Wanax peer in the developing region. Since peer-
ing allows Wanax to access multiple disks in parallel, we
can expect improved throughputs by mitigating the disk
bottleneck. However, for SRC, the lower compression
rate causes the WAN bandwidth to be the bottleneck, so
peering does not help. In comparison, MRC benefits sig-
nificantly from peering, achieving 3.4Mbps throughput.
With disk no longer the bottleneck, ILS is not necessary,
and enabling it does not shed any load.

Realistic Traffic To test more general Web browsing
in the developing regions, we use Alexa Top Sites [3]

5The throughput is limited by the 200ms link latency since the total
download time is 500-600ms. Downloading a larger file (10 MB) yields
44 Mbps throughput.

and YouTube [46] for testing using realistic traffic. We
use the “pc850” nodes on Emulab [43], each equipped
with an 850MHz Pentium III CPU and 512MB RAM.
The bottleneck WAN link is set to 1Mbps with a 1000ms
RTT, mimicking a satellite link commonly found in the
developing world. First, we collect packet-level traces
from Alexa’s top 10 sites for Ghana and Nigeria, to re-
flect common Web browsing activity in these regions,
including both cacheable and uncacheable objects. We
replay 5,000 connections with 200 simultaneous clients
on the traffic, and measure the response time. We also
pick one of the most popular videos at the time of test-
ing 6 from YouTube, and have 100 clients simultaneously
download the whole 18 MB clip. YouTube’s video con-
tent is not cacheable by standard Web proxies since its
URL is in a customized format and changes for each
download. This test is intended to reflect a classroom
scenario where a number of students watch the same
clip roughly at the same time. We introduce an 1 sec-
ond interval between the client requests, and measure the
throughput of each transfer. For these experiments, we
use only one R-Wanax, configured with either a degree-
8 MRC tree or a 1 KB SRC configuration, which has
shown good performance and bandwidth savings.

Figure 14 (a) shows the response time CDFs for the
Alexa workload. The average object size is 5,425 bytes
and the median is 570 bytes. MRC outperforms both
SRC and direct transfer (BASE), and shows the median
response time of 1.5 seconds while BASE and SRC show
6.7 and 3.8 seconds each. MRC and SRC are generally
faster than BASE because they fetch most objects from
the local disk cache. However, on this workload, MRC
typically uses one disk read per object while SRC fre-
quently uses multiple disk I/Os per object. This behav-
ior explains the performance difference between the two,
and the disk latency sometimes makes SRC worse than
BASE.

Figure 14 (b) shows the YouTube results. The bitrate
of the video is 490 Kbps and the BASE curve shows

6The first weekly address by President Obama on 01/24/09
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Figure 14: Realistic Traffic – both MRC and SRC provide compression on the Alexa workload, but MRC’s median response time
is 1.5 seconds, compared to 3.8 for SRC. For the YouTube test, all students would be able to view the video without interruption
using MRC, while with SRC, it would be 20% for the high-quality version and 50% for the low-quality version.
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Figure 15: Enterprise Environment – with no link bottleneck,
the underlying system performance can be measured. No stan-
dard test exists for these systems, but these figures are compa-
rable to those published for commercial systems.

that nobody would be able to watch the clip reliably on
a 1 Mbps link. SRC would satisfy only about 20% of
the users while MRC would deliver the video to all 100
clients without interruption. The median throughputs are
809 Kbps and 309 Kbps for MRC and SRC each. We
test the lower quality video (320 Kbps) of the same con-
tent, and find that SRC satisfies half of the users. Without
a WAN accelerator, only two or three clients can watch
the clip at any given time, which makes using classroom
video problematic.

Enterprise Environment Finally, we evaluate Wanax
in an enterprise-like environment to determine how well
it performs compared to commercial WAN accelerators.
Unfortunately, while vendors publish performance fig-
ures, none appear to publish the test scenarios they use.
Testing in industry magazines uses LANs to remove net-
work capacity as the bottleneck, which we also use in
this test. That is, we focus on the impact of disk per-
formance by separating the network delay from the over-
all throughput. This is because the disk performance is
the bottleneck in higher link capacity enterprise environ-
ments. A high-end commercial product targeting large
offices or data centers uses multiple small capacity SCSI
disks, 7 rather than one large capacity disk [32].

71U product supporting 45Mbps uses 4 disks, 3U product support-
ing 310Mbps uses 16 disks.

We create three sets of PowerPoint slides – an original
deck that is 11.9 MB, and two modified decks that add
slides to this deck, yielding a 13.9 MB file (Slides A)
and a 14.9 MB file (Slides B). Compared with the origi-
nal deck, these have redundancies of 86% and 81%. This
represents a scenario where multiple people in different
offices are collaborating on a presentation. We first warm
the Wanax cache with the original file, and measure the
throughput of the two modified slide decks. The mea-
sured bandwidth savings correspond to the redundancy
in the files. We use MRC degree 8 with the minimum
chunk size of 128 bytes, and repeat the experiments with
two different disks.
As shown in Figure 15, both file downloads achieve

slightly more than 20 Mbps with a single 7200 RPM
SATA disk at R-Wanax. The slightly larger redundancy
of Slides A (86%) incurs more disk hits than Slides B
(81%), and it is reflected in B’s slightly larger through-
put. With a faster 15K RPM SCSI disk, the throughput
almost doubles in both cases. In examining the config-
urations of one of the leading WAN accelerator compa-
nies [32], we see that their per-disk performance ranges
from 8 Mbps to 20 Mbps depending on the configura-
tion. Since we have incomplete information about the
testing scenario, we cannot draw any firm conclusions,
but our range of 20-40 Mbps suggests that we have at
least comparable performance to commercial solutions
in these higher-end configurations, and ourmemory pres-
sure analysis suggests that Wanax does so using a small
fraction of the memory of these systems.

7 Related Work
Much work, both commercial and academic, has been
done in the broad area of redundancy elimination for net-
work traffic. Web caching has been an active field, with
the first-generation caches [8, 17] storing unchanging ob-
jects in their entirety, often with protocol support. Later
techniques included delta encoding [19] to reduce traffic
for object updates, and duplicate detection to suppress
downloading of aliased HTTP objects [20].

Spring and Wetherall [36] further extend the pre-

vious approaches to sub-packet granularity, and de-
velop a protocol-independent content fingerprinting (CF)
scheme that eliminates redundancy over a single link.
Recently, Anand et al. [4] extend this idea on ISP routers,
with an emphasis on redundancy-aware routing algo-
rithms. RTS-id [2] also eliminates redundancy in the
wireless environment by caching recently transferred
packets through eavesdropping. However, they all work
on a per-packet basis at the link layer, which limits the
potential bandwidth saving to the packet size. Since
Wanax operates on byte streams, it does not have such
limits.
Content fingerprinting has been widely adapted in

many applications, including network file systems [5,
21], Web proxies [7, 30], file transfer services [27, 28],
and Web servers [24]. However, all of these systems
are application-specific, and do not work across pro-
tocols. DOT [41] proposes a flexible architecture for
generic data transfer, which is protocol independent, but
not transparent, and requires application-level modifica-
tion. Ditto [10] extends DOT, and targets wireless mesh
network environments. It is complementary to Wanax
since Wanax focuses on eliminating redundancy on the
bottleneck WAN link.

There are a number of commercial WAN accelera-
tors [9, 33, 35] as well. They operate below the appli-
cation layer, so they are both transparent and protocol
independent. However, they are designed to run on ded-
icated server-class appliances with fast disks and a large
pool of memory. Also, their typical enterprise deploy-
ment scenario is a star topology where branch offices are
speaking only to a central office. Running them on the
resource-limited shared machines with mesh topology in
the developing world would be problematic leading to
poor performance if possible at all. Instead, Wanax is
designed from the scratch to specifically address the de-
veloping world’s needs, and we believe some of our tech-
niques such as MRC and ILS can also be applied to the
enterprise scenarios to reduce the deployment cost.
To the best of our knowledge, Wanax is the first

system to simultaneously use multiple chunk sizes.
Riverbed [33] uses a bottom-up segmentation scheme [1]
that first uses 100 byte chunks, and then creates larger
pseudo-chunks that contain the names of the smaller
chunks [31], which is similar to MRC-Small. This ap-
proach provides some of the disk efficiency and band-
width benefits of MRC, but still requires access to all
of the metadata of the 100-byte chunks, thereby retain-
ing the memory pressure of the smaller chunks. In
the context of large file replication, Remote Differential
Compression [39] uses a similar recursive segmentation
scheme with a minimum chunk size of 1 KB, in order to
reduce the size of chunk names sent over the network.
Most recently, multi-resolution handprinting [37] pro-

poses an efficient technique for choosing the best chunk
sizes for the given similar files, by comparing handprints
- a deterministic subset of chunk hashes with different
chunk sizes. We share the same spirit of exploiting trade-
offs of multiple chunk sizes. However, their method is
based on static analysis on the files they already have.
MRC is a dynamic counterpart, and is directly applica-
ble for online processing.

Finally, there are a number of active research projects
for the developing world. DitTorrent [34] shares the
same idea of exploiting better regional connectivity as
Wanax, but focuses on scheduling P2P dialup connec-
tions. As systems like rural WiFi [25] or WiMAX [44]
extend the Internet to new regions, Wanax can help im-
prove the effective bandwidth delivered.

8 Conclusion
We have presented the design and implementation of
Wanax, a flexible and scalable WAN accelerator target-
ing developing regions. Using a novel chunking tech-
nique, MRC, Wanax provides high compression and high
throughput, while maintaining a small memory footprint.
This profile enables it to run on resource-limited shared
hardware, an important requirement in developing-world
deployments. By exploiting MRC to direct load shed-
ding, Wanax is designed to maximize the effective band-
width even when disk performance is poor due to over-
loading. The peering scheme used in Wanax allows mul-
tiple servers in a region to share their resources, and
thereby exploit faster and cheaper local-area connectivity
instead of always using the WAN. In summary, through
a careful design addressing the developing world chal-
lenges, Wanax provides customized, cost-effective WAN
acceleration to the region with commodity hardware. We
have begun deploying Wanax at a few partner sites in
Africa, and expect to have more results about real-world
operation in the future.
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Abstract

Concurrently running applications on multiprocessors

may desire different CPU frequency/voltage settings in

order to achieve performance, power, or thermal ob-

jectives. Today’s multicores typically require that all

sibling cores on a single chip run at the same fre-

quency/voltage level while different CPU chips can have

non-uniform settings. This paper targets multicore-

based symmetric platforms and demonstrates the ben-

efits of per-chip adaptive frequency scaling on multi-

cores. Specifically, by grouping applications with similar

frequency-to-performance effects, we create the oppor-

tunity for setting a chip-wide desirable frequency level.

We run experiments with 12 SPECCPU2000 benchmarks

and two server-style applications on a machine with two

dual-core Intel “Woodcrest” processors. Results show

that per-chip frequency scaling can save ∼20watts of

CPU power while maintaining performance within a

specified bound of the original system.

1 Introduction and Background

Dynamic voltage and frequency scaling (DVFS) is a

hardwaremechanism onmany processors that trades pro-

cessing speed for power saving. Typically, each CPU

frequency level is paired with a minimum operating volt-

age so that a frequency reduction lowers both power

and energy consumption. Frequency scaling-based CPU

power/energy saving has been studied for over a decade.

Weiser et al. [17] first proposed adjusting the CPU speed

according to its utilization. The basic principle is that

when the CPU is not fully utilized, the processing ca-

pability can be lowered to improve the power efficiency.

The same principle was also applied to workload concen-

tration with partial system shutdown or dynamic DVFS

in server clusters [6,7]. Bianchini and Rajamony [5] pro-

vide a thorough survey of energy-saving techniques for

servers circa 2004.

When the CPU is already fully utilized, DVFS may

∗This work was supported in part by NSF grants CNS-0411127,

CCF-0448413, CNS-0509270, CNS-0615045, CNS-0615139, CCF-

0702505, CNS-0834451, and CCF-0937571; by NIH grants 5 R21

GM079259-02 and 1 R21 HG004648-01; and by several IBM Faculty

Partnership Awards.

be applied to reduce the CPU speed when running mem-

ory intensive applications. The rationale is that memory-

bound applications do not have sufficient instruction-

level parallelism to keep the CPU busy while waiting

for memory accesses to complete, and therefore decreas-

ing their CPU frequency will not result in a significant

performance penalty. Previous studies along this direc-

tion [9, 11, 18] largely focused on exploring power sav-

ing opportunities within individual applications. Little

evaluation has been done on frequency scaling for mul-

tiprogrammed workloads running on today’s multicore

platforms.

Multicore frequency scaling is subject to an important

constraint. Since most current processors use off-chip

voltage regulators (or a single on-chip regulator for all

cores), they require that all sibling cores be set to the

same voltage level. Therefore, a single frequency set-

ting applies to all active cores on Intel mutlicore proces-

sors [2,14]. AMD family 10h processors do support per-

core frequency selection, but they still maintain the high-

est voltage level required for all cores [3], which limits

power savings. Per-core on-chip voltage regulators add

design complexity and die real estate cost and are a sub-

ject of ongoing architecture research [10]. Recent work

by Merkel and Bellosa [13] recognized this design con-

straint and showed how to schedule applications on a sin-

gle chip in order to achieve the best energy-delay product

(EDP).

Due to the scalability limitations of today’s multicores,

multichip, multicore machines are commonplace. Such

machines often use a symmetric multiprocessor design,

with each of the multiple processor chips containingmul-

tiple cores. On these machines, nonuniform frequency

scaling can still be achieved on a per-chip basis. The

goal of this paper is to evaluate the potential benefits of

such per-chip frequency scaling of realistic applications

on today’s commodity processors. To enable chip-wide

frequency scaling opportunities, we group applications

with similar frequency-to-performance behavior so that

they run on sibling cores of the same processor chip.

Using a variable-frequency performance model, we then

configure an appropriate frequency setting for each chip.

Experimental Setup Our experimental platform is a 2-

chip machine and each processor chip is an Intel “Wood-
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crest” dual-core (two cores operating at 3GHz and shar-

ing a 4MB L2 cache). We modified Linux 2.6.18 to

support per-chip DVFS at 2.67, 2.33, and 2GHz on our

platform. Configuring the CPU frequency on a chip re-

quires writing to platform-specific registers, which takes

around 300 cycles on our processor. Because the off-

chip voltage switching regulators operate at a relatively

low speed, it may require some additional delay (typi-

cally at tens of microsecond timescales [10]) for a new

frequency and voltage configuration to take effect.

Our experiments employ 12 SPECCPU2000 bench-

marks (applu, art, bzip, equake, gzip, mcf, mesa, mgrid,

parser, swim, twolf, wupwise) and two server-style ap-

plications (TPC-H and SPECjbb2005).

2 Prototype System Design

2.1 Multichip Workload Partitioning

To maximize power savings from per-chip frequency

scaling while minimizing performance loss, it is es-

sential to group applications with similar frequency-to-

performance behavior to sibling cores on a processor

chip. A simple metric that indicates such behavior is the

application’s on-chip cache miss ratio—a higher miss ra-

tio indicates a larger delay due to off-chip resource (typi-

cally memory) accesses that are not subject to frequency

scaling-based speed reduction. We therefore group ap-

plications with similar last level cache miss ratios to run

on the same multicore processor chip. We call this ap-

proach similarity grouping.

A natural question is how our workload partitioning

would affect system performance before DVFS is ap-

plied. Merkel and Bellosa [13] profiled a set of SPEC-

CPU benchmarks and found that memory bus bandwidth

(rather than cache space) is the most critical resource on

multicores. Based on this observation, they advocated

running a mix of memory-bound and CPU-bound appli-

cations at any given time on a single multicore platform

in order to achieve the best EDP. Although their com-

plementary mixing appears to contradict our similarity

grouping, in reality, they accomplish one of the same

goals of more uniform memory demand. Their approach

focuses on temporal scheduling of applications on a sin-

gle chip, while similarity grouping focuses on spatial

partitioning of applications over multiple chips. Similar-

ity grouping has the additional advantage of being able

to individually control the voltage and frequency of the

separate chips.

In addition to the ability to save power by slowing

down the processor without loss in performance for high

miss ratio applications, miss ratio similarity grouping

may lead to more efficient sharing of the cache on mul-

ticore chips. Applications typically exhibit high miss ra-

tios because their working sets do not fit in the cache.
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Figure 1: Normalized miss ratios of 12 SPECCPU2000 bench-

marks at different cache sizes. The normalization base for each

application is its miss ratio at 512 KB cache space. Cache size

allocation is enforced using page coloring [20]. Solid lines

mark the six applications with the highest miss ratios while dot-

ted lines mark the six applications with the lowest miss ratios.

Increasing available cache space is not likely to improve

performance significantly until the cache size exceeds

the working set. This can be observed from the L2

cache miss ratio curves of 12 SPECCPU2000 bench-

marks, shown in Figure 1. With the exception of mcf,

most high miss ratio applications (applu, equake, mgrid,

swim, and wupwise) show small or no benefits with ad-

ditional cache space beyond 512KB. In fact, the applica-

tions will aggressively occupy the cache space, resulting

in adverse effects on co-running applications on sibling

cores. Similarity grouping helps reduce these adverse ef-

fects by separating low miss ratio applications that may

be more sensitive to cache pressure so that they run on a

different chip.

2.2 Model-Driven Frequency Setting

To realize target performance or power saving objec-

tives, we need an estimation of the target metrics at can-

didate CPU frequency levels. Several previous stud-

ies [9, 18] utilized offline constructed frequency selec-

tion lookup tables. Such an approach requires a large

amount of offline profiling. Merkel and Bellosa em-

ployed a linear model based on memory bus utiliza-

tion [13] but it only supports a single frequency adjust-

ment level. Kotla et al. constructed a performancemodel

for variable CPU frequency levels [11]. Specifically, they

assume that all cache and memory stalls are not affected

by the CPU frequency scaling while other delays are

scaled in a linear fashion. Their model was not evalu-

ated on real frequency scaling platforms.
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(B) Model prediction error at throttled CPU frequencies

Figure 2: The accuracy of our variable-frequency performance

model. Subfigure (A) shows the measured normalized perfor-

mance (to that of running at the full CPU speed of 3GHz).

Subfigure (B) shows our model’s prediction error (defined as
prediction−measurement

measurement
).

In practice, on-chip cache accesses are also affected

by frequency scaling, which typically applies to the en-

tire chip. We corrected this aspect of Kotla’s model [11].

Specifically, our variable-frequency performance model

assumes that the execution time is dominated by mem-

ory and cache access latencies, and that the execution of

all other instructions can be overlapped with these ac-

cesses. Accesses to off-chip memory are not affected by

frequency scaling while on-chip cache access latencies

are linearly scaled with the CPU frequency. Let T (f)

be the average execution time of an application when the

CPU runs at frequency f . Then:

T (f) ∝
F

f
· (1−Rcachemiss) ·Lcache +Rcachemiss ·Lmemory,

where F is the maximum CPU frequency. Lcache and

Lmemory are access latencies to the cache and memory re-

spectively measured at full speed. We assume that these

access latencies are platform-specific constants that ap-

ply to all applications. Using a micro-benchmark, we

measured the average cache and memory access laten-

cies to be around 3 and 121 nanoseconds respectively on

our experimental platform. The miss ratio Rcachemiss rep-

resents the proportion of data accesses that go to mem-

ory. Specifically, it is measured as the ratio between the

L2 cache misses (L2 LINES IN with hardware prefetch

also included) and data references (L1D ALL REF) per-

formance counters on our processors [8].

The normalized performance (as compared to running

at the full CPU speed) at a throttled frequency f is there-

Test Chip Similarity grouping Complementary mixing

#1 0 {equake, swim} {swim, parser}
1 {parser, bzip} {equake, bzip}

#2 0 {mcf, applu} {mcf, art}
1 {art, twolf} {applu, twolf}

#3 0 {wupwise, mgrid} {wupwise, mesa}
1 {mesa, gzip} {mgrid, gzip}

#4 0 {mcf, swim, equake, {swim, equake, applu,

applu, wupwise, mgrid} wupwise, gzip, twolf}
1 {parser, bzip, gzip, {mcf, mgrid, parser,

mesa, twolf, art} bzip, mesa, art}

#5 0 2 SPECjbb threads 1 SPECjbb thread and

1 TPC-H thread

1 2 TPC-H threads 1 SPECjbb thread and

1 TPC-H thread

Table 1: Benchmark suites and scheduling partitions of 5

tests. Complementary mixing mingles high-low miss-ratio ap-

plications such that two chips are equally pressured in memory

bandwidth. Similarity grouping separates high and low miss-

ratio applications on different chips (Chip-0 hosts high miss-

ratio ones in these partitions).

fore
T (F )

T (f)
. Since Rcachemiss does not change across dif-

ferent CPU frequency settings, we can simply use the

online measured cache miss ratio to determine normal-

ized performance online. Figure 2 shows the accuracy

of our model when predicting the performance of 12

SPECCPU2000 benchmarks and two server benchmarks

at different frequencies. The results show that our model

achieves a high prediction accuracy with no more than

6% error for the 14 applications.

The variable-frequency performance model allows us

to set the per-chip CPU frequencies according to specific

performance objectives. For instance, we can we can

maximize power savings while bounding the slowdown

of any application. The online adaptive frequency set-

ting must react to dynamic execution behavior changes.

Specifically, we monitor our model parameter Rcachemiss

and make changes to the CPU frequency setting when

necessary.

3 Evaluation Results

3.1 Scheduling Comparison

First, we compare the overall performance of the

default Linux (version 2.6.18) scheduler, complemen-

tary mixing (within each chip), and similarity grouping

(across chips) scheduling policies. We design five mul-

tiprogrammed test scenarios using our suite of applica-

tions. Each test includes both memory intensive and non-

intensive benchmarks. Benchmarks and scheduling par-

titions are detailed in Table 1.

Figure 3 compares the performance of the different

scheduling policies when both chips are running at full

CPU speed. For each test, the geometric mean of the ap-

plications’ performance normalized to the default sched-

uler is reported. On average, similarity grouping is about
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Figure 3: Performance (higher is better) of the different

scheduling policies at full CPU speed.
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(B) Performance loss due to frequency scaling

Figure 4: Performance comparisons of different scheduling

policies when Chip-0 is scaled to 2GHz. In subfigure (A), the

performance normalization base is the default scheduling with-

out frequency scaling in all cases. In subfigure (B), the perfor-

mance loss is calculated relative to the same scheduling policy

without frequency scaling in each case.

4% and 8% better than default and complementary mix-

ing respectively. As explained in Section 2.1, the perfor-

mance gains are due to reduced cache space interference

when using similarity grouping. We also measure the

power consumption of these policies using aWattsUpPro

meter [1]. Our test platform consumes 224watts when

idle and 322watts when running our highest power-

consuming workload. We notice that similarity grouping

consumes slightly more power, up to 3watts as compared

to the default Linux scheduler. However, the small power

increase is offset by its superior performance, leading to

improved power efficiency.

Next, we examine how performance degrades when

the frequency of one of the two chips is scaled down.

Default scheduling does not employ CPU binding and

applications have equal chances of running on any chip,

so deploying frequency scaling on either Chip-0 or Chip-

1 has the same results. We only scale Chip-0 for similar-

ity grouping scheduling since it hosts the high miss-ratio

applications. For complementary mixing, scaling Chip-0
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(B) Power consumption comparison

Figure 5: Performance and power consumption for per-chip

frequency scaling under the similarity grouping schedule. Sub-

figure (B) only shows the range of active power (from idle

power at around 224watts), which is mostly consumed by the

CPU and memory in our platform.

shows slightly better results than scaling Chip-1. Hence,

we report results for all three scheduling policies with

Chip-0 scaled to 2GHz. Figure 4 shows that similarity

grouping still achieves the best overall performance and

the lowest self-relative performance loss under frequency

scaling.

3.2 Nonuniform Frequency Scaling

We then evaluate the performance and power con-

sumption of per-chip nonuniform frequency scaling un-

der similarity grouping. We keep Chip-1 at 3GHz and

only vary the frequency on Chip-0 where high miss-ratio

applications are hosted. Figure 5(B) shows significant

power saving due to frequency scaling—specifically, 8.4,

15.8, and 23.6watts power savings on average for throt-

tling Chip-0 to 2.67, 2.33, and 2GHz respectively. At

the same time, Figure 5(A) shows that the performance

when throttling Chip-0 is still comparable to that with the

default scheduler.

We next evaluate the power efficiency of our system.

We use performance per watt as our metric of power ef-

ficiency. Figure 6(A) shows that, on average, per-chip

nonuniform frequency scaling achieves a modest (4–

6%) increase in power efficiency over default scheduling.

This is because the idle power on our platform is sub-

stantial (224 watts). Considering a hypothetical energy-
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Figure 6: Power efficiency for per-chip frequency scaling un-

der the similarity grouping schedule. Subfigure (A) uses whole

system power while (B) uses active power in the efficiency cal-

culation.

proportional computing platform [4] on which the idle

power is negligible, we use the active power (full oper-

ating power minus idle power) to estimate the power ef-

ficiency improvement. In this case, Figure 6(B) shows

more sizable gaps. Scaling Chip-0 at 2.67, 2.33, and

2GHz achieves 13%, 21%, and 32% better active power

efficiency respectively.

3.3 Application Fairness

While it shows encouraging overall performance, the

per-chip nonuniform frequency scaling even with simi-

larity grouping does not provide any performance guar-

antee for individual applications. For example, setting

Chip-0 to 2GHz causes a 26% performance loss for

mgrid as compared to the same schedule without fre-

quency scaling.

To be fair to all applications, we want to achieve

power savings with bounded individual performance

loss. Based on the frequency-performance model de-

scribed in Section 2.2, our system will periodically (ev-

ery 10 milliseconds) adjust the frequency setting if nec-

essary to bound the performance degradation of running

applications (e.g., a target of 10% degradation in this ex-

periment). Note that in this case the system may scale

down any processor chip as long as the performance

degradation bound is not exceeded.

Figure 7(A) shows the normalized performance of the

most degraded application in each test. We observe that

fairness-controlled frequency scaling is closer than the

static (2 GHz) scaling to the 90% performance target.

It completely satisfies the bound for three tests while it

exhibits slight violations in test-3 and test-4. The most
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Figure 7: Performance and power consumption for static (2

GHz) and fair per-chip frequency scaling under the similarity

grouping scheduling.

degraded application in these cases is mgrid, whose per-

formance is 6% and 3% away from the 90% target in

test-3 and test-4 respectively. Figure 2 shows that our

model over-estimates mgrid’s performance by up to 6%.

This inaccuracy causes the fairness violation in test-3

and test-4. Figure 7(B) shows power savings for both

static (2 GHz) and fairness-controlled frequency scal-

ing. Fairness-controlled frequency scaling provides bet-

ter quality-of-service while achieving comparable power

savings to the static scheme.

4 Discussions

We have seen a slow but stable trend of increasing

core numbers on a single chip, which will exacerbate the

contention for memory bandwidth. Fortunately, mem-

ory technology advancement has significantly mitigated

this problem. Measured using the STREAM bench-

mark [12], our testbed with 3GHz CPUs (two dual-

core chips) and 2GB DDR2 533MHz memory achieves

2.6GB/sec memory bandwidth. In comparison, a newer

Intel Nehalem machine with 2.27GHz CPUs (one quad-

core chip) and 6GB DDR3 1,066MHz memory achieves

an 8.6GB/sec memory bandwidth.

The idle power constitutes a substantial part (about

70%) of the full system power consumption on our

testbed, which questions the practical benefits of opti-

mizations on active power consumption. However, we

are optimistic that future hardware designs will trend to-

ward more energy-proportional platforms [4]. We have

already observed this trend—the idle power constitutes a

smaller part (about 60%) of the full power on the newer

Nehalem machine. In addition, our measurement shows

that per-chip nonuniform frequency scaling can reduce
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the average CPU temperature (by up to 5 degrees Celsius,

averaged over four cores), which may lead to additional

power savings on cooling.

Per-chip CPU frequency scaling is largely orthogo-

nal to the management of shared resources on multi-

core processors. In particular, our frequency scaling

scheme partitions applications among multiple multicore

chips on the machine and mainly targets power con-

sumption while resource management techniques such as

cache space partitioning [20] and nonuniform core throt-

tling [19] further regulate resource competition within

each multicore chip.

Evaluation in this paper focuses on multiprogrammed

workloads. When a single server application (consist-

ing of many concurrent requests) runs on the machine,

it may also be beneficial to group requests with similar

frequency-to-performance behavior for per-chip adap-

tive frequency scaling. This would be possible with

on-the-fly identification of request execution character-

istics [15, 16] for online grouping and control.

5 Conclusion

In this paper, we advocate a simple scheduling policy

that groups applications with similar cache miss ratios

on the same multicore chip. On one hand, such schedul-

ing improves the performance due to reduced cache in-

terference. On the other hand, it facilitates per-chip fre-

quency scaling to save CPU power and reduce heat dis-

sipation. Guided by a variable-frequency performance

model, our CPU frequency scaling can save about 20

watts of CPU power and reduce up to 5 degrees Celsius

of CPU temperature on average on our multicore plat-

form. These benefits were realized without exceeding

the performance degradation bound for almost all appli-

cations. This result demonstrates the strong benefits pos-

sible from per-chip adaptive frequency scaling on multi-

chip, multicore platforms.
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Abstract

An edge network deployment consists of many (tens to
a few hundred) satellite data centers. To optimize end-
user perceived performance, a Global Traffic Manage-
ment (GTM) solution needs to continuously monitor the
performance between the users and the data centers, in
order to dynamically select the “best” data center for
each user. Though widely adopted in practice, GTM
solutions based on active measurement techniques suf-
fer from limited probing reachability. In this paper, we
propose a novel DNS reflection method, which uses the
GTM DNS traffic itself to measure the performance be-
tween an arbitrary end-user and the data centers. From
these measurements, the best data center can be selected
for the user. We have implemented and deployed a pro-
totype system involving 17 geographically distributed lo-
cations within the Microsoft global data center network
infrastructure. Our evaluation of the prototype shows
that the DNS reflection method is extremely accurate and
suitable for GTM. In particular, at the 95 percentile, the
measured latency is 6 ms away from Ping, and the se-
lected data center is 2 ms away from the ground-truth
best.

1 Introduction
In an era where 100 ms extra delay can cost 1% drop
in sales [10], cloud service providers are examining all
possible measures that can reduce end-user perceived la-
tency. One aggressive strategy is to deploy satellite data
centers in addition to the traditional mega “backbone
data centers”, so as to construct an acceleration platform
close to the end-users. Based on these satellite data cen-
ters, planet-scale edge networks, such as Google’s CDN
and Microsoft’s Edge Computing Network, go beyond
distributing static content and speeding up large down-
loads. They are increasingly important for accelerating
dynamic cloud services, including search, email, maps,
online office productivity software, etc.

An edge network deployment consists of many (tens
to a few hundred) satellite data centers. To optimize
end-user perceived performance, the “best” data center
needs to be dynamically determined for each end-user.
By serving users from the best data center, static content
can be delivered with lower latency and higher through-
put (as well as with less load on the network backbones).
In addition, these satellite data centers can proxy TCP
connections to speed-up dynamic cloud services [15].
One key challenge here is to find, for each end user,
the best data center, which is a dynamic real-time op-
timization problem. In practice, the optimal selection
does not always correlate well with geographic distance,
but rather with a combination of network latency, packet
loss, and available bandwidth. Furthermore, optimality
changes as Internet routes flap, ISP relationships change,
and the connectivity of physical networks fluctuates. Dy-
namically and accurately determining the best data cen-
ter is the cornerstone of the Global Traffic Management
(GTM) solution.

To optimize end-user perceived performance, the
GTM solution needs to continuously monitor the perfor-
mance between the users and the satellite data centers,
in order to dynamically select the best data center for
each user. Though widely adopted in practice, we argue
that existing GTM solutions based on active measure-
ments [1] suffer from limited probing reachability, and
those based on passive measurements [4, 11, 18] incur
high overhead and degrade performance. In this paper,
we propose a novel DNS reflection method, which uses
the GTM DNS traffic itself to measure the performance
between an arbitrary end-user and the data centers. The
contributions of this paper are as follows:

• We first survey existing DNS-based GTM solutions,
including those that pick the geographically closest
data center, those that use IP anycast to direct users
to a data center, and those that use active probing or
passive measurements. We argue that these existing

1
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solutions can perform poorly for a non-negligible
fraction of the users. As part of this analysis, as
a side result, we estimate that there are approxi-
mately 862,000 Local DNS (LDNS) servers used
by all Windows Vista and Windows 7 users in the
Internet today.

• We then propose a novel DNS reflection method,
which uses the GTM DNS traffic itself to measure
the performance between an arbitrary end-user and
the data centers. The basic idea is to (very) occa-
sionally have a user’s DNS query redirected to and
reflected by the DNS servers located in the satellite
data centers, which can in turn measure the perfor-
mance between themselves and the user. From these
measurements, the best data center can be selected
for the user.

• We implement and deploy a prototype system in-
volving 17 of the geographically distributed loca-
tions in the Microsoft global data center network
infrastructure. In our evaluation, we first show that
the DNS reflection method is extremely accurate. In
particular, at the 95 percentile, the measured latency
is 6 ms away from Ping. We then compare the GTM
solution based on our DNS reflection method with
solutions based on geographic and anycast selec-
tion. In our experiments, the reflection-based GTM
method is 2 ms within optimal at the 95 percentile,
while the geography and anycast based GTM solu-
tions are 74 ms and 183 ms from optimal, respec-
tively. In other words, for the users whose perfor-
mance is most precarious, the benefit of reflection-
based GTM is significant.

2 Brief Overview of GTM Solutions
GTM is often implemented through a DNS system. As a
simple example, suppose CloudService.com has an
infrastructure of mega and satellite data centers. When
a user wants to connect to the service, it first performs a
DNS resolution for CloudService.com. The author-
itative DNS server for CloudService.com responds
with the IP address of the “best” data center, which has
been determined from its GTM system. The GTM sys-
tem provides, via the authoritative DNS server, different
satellite data centers for different users.

Before presenting our approach to GTM, in this sec-
tion we briefly review various GTM solutions and dis-
cuss related work.

2.1 Geography-based GTM Solutions
This type of GTM system uses geographic locations to
map clients to data centers [7, 9]. Using commercial Ge-
oLocation databases provided by Akamai, Quova, Max-
Mind and so on, each client’s IP address is mapped to

a geographic location. The data center chosen for a
client is simply the data center that is geographically
closest. Such a solution can work reasonably well for a
large fraction of the clients, as recently shown in eval-
uation [3]. However, geographic-based solutions are
still subject to well-known issue of Triangular Inequal-
ity Violation (TIV) of Internet distances. Moreover, a
geographic-based solution ignores the dynamic nature of
the Internet, such as the variation of latency and packet
loss, and always assigns the same data center to a partic-
ular client.

2.2 Anycast-based GTM Solutions
This type of GTM uses IP anycast [14], for which all
the data centers announce the same anycast IP address.
When a client sends a packet to the anycast address,
the packet is routed to the anycast-closest data center.
The anycast-closest is governed by both intra- and inter-
domain routing algorithms and policies. Although the
anycast-closest data center is often the best data center
in terms of latency for many clients, there are a non-
negligible percentage of violations [5, 8]. In addition,
anycast-based GTM solutions ignore packet loss, which
could severely impact many delay sensitive online ser-
vices.

2.3 GTM Solutions based on Active Mea-
surements

Commercial GTM solutions commonly rely on active
probing techniques to measure the performance between
data centers and clients. For instance, the F5 3-DNS sys-
tem actively probes Local DNS (LDNS) servers and uses
the response time to calculate the round trip time and
packet loss between the LDNS and the data center [1].
Observations collected at Internet honey-pots also sug-
gest commercial CDNs, such as Akamai, are conduct-
ing large scale Internet measurements [13]. However, as
we will soon demonstrate, active probing suffers from
limited reachability, as many LDNSes are configured to
never respond to active probes. Because a large percent-
age of the LDNSes cannot be probed, the effectiveness
of active measurements is limited.

2.4 GTM Solutions based on Passive Mea-
surements

An alternative to active probing is to infer performance
between clients and data centers through passive moni-
toring. For instance, latency can be calculated by exam-
ining the gap between SYN-ACK and client ACK during
the TCP three-way handshake. In order to monitor the
performance between clients and every data center, such
solutions require redirecting clients to sub-optimal data
centers from time to time [4, 11, 18]. Although only a

2

small number of clients will be selected to probe remote
data centers, these “unfortunate” clients could suffer sig-
nificant performance degradation. Because even a sim-
ple response to a web search query can take 4-6 TCP
rounds trips, the inflated RTT to a remote data center can
significantly degrade the user’s perceived performance.
Furthermore, for large responses, such as online maps or
documents, directing clients to remote data centers could
further inflate the response time. In an era where half a
second latency kills user satisfaction [10], such degrada-
tion can become unacceptable.

Moreover, in order to minimize the impact of subopti-
mal redirection to clients arriving subsequently, a small
(or even 0) TTL should be set in the DNS response for
the initial client. Unfortunately, as Pang et al. [2] discov-
ered in a large-scale DNS study, a significant fraction of
clients and LDNSes do not adhere to DNS TTLs. Re-
sponses could be used long after their expiration, even
in excess of 2 hours. In those cases, suboptimal redirec-
tion can degrade the performance of a large number of
subsequent clients.

2.5 Other Factors
Most end-hosts are not far away from their LDNSes. Our
latest evaluation of more than 1.6 million end-hosts ac-
cessing a popular Microsoft online service shows that the
geographic distance between end-host and LDNS is less
than 27 km in 60% of the cases and less than 428 km in
80% of the cases [6]. Still, there are nontrivial amount
of end-hosts using LDNSes not in nearby locations, as
similarly reported in earlier studies [12, 17]. The client-
LDNS mismatching problem is being addressed indepen-
dently [6]. In this paper, we focus on how to achieve
good performance for those end-hosts that co-locate with
their LDNSes.

Besides performance, there are many additional im-
portant factors to a GTM solution. The dynamic load on
the data centers is one such factor: clients should not be
directed to over-loaded data centers. ISP delivery cost is
another factor. The data centers can use different ISPs,
which may have different cost structures, due to com-
plicated contractual relationships between ISPs and data
center operators [8]. Taking into account delivery cost
could bring significant savings to service providers, op-
erational cost of data centers could also be explored. For
instance, the power costs of the data centers can be ex-
plored so as to achieve additional savings [16]. Neverthe-
less, all these cost concerns are secondary and they can
only be explored when they do not lead to performance
degradation.

3 Limitation of Active Measurements
In this section, we set out to answer the following ques-
tions by examining a large LDNS population: how many
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Figure 1: Newly Observed LDNSes

LDNSes can be reached by active probing?

3.1 A Large LDNS Population
Network Connectivity Status Indicator (NCSI) is a ser-
vice running on Windows Vista or Windows 7 machines
to detect the status of Internet connectivity. For in-
stance, it shows as a system tray icon to notify users
upon loss of Internet connectivity. Part of the NCSI ser-
vice performs DNS queries for a special host name –
www.msftncsi.com.

Between Nov. 18th and Dec. 30th 2009, we have
sniffed 5% of the DNS traffic on the authoritative server
of msftncsi.com for 6 weeks. A large collection of
LDNS addresses is obtained. In particular, the NCSI col-
lection contains about 795,000 LDNS addresses, located
in 10,012 cities over 229 countries1. Figure 1(a) plots the
number of uniquely newly-observed LDNSes every day.
It is clear that a large number of LDNSes are observed
in the first few days. However, new LDNSes keep be-
ing discovered over the entire course. A weekly pattern
is also observed where the troughs correlate nicely with
weekends.

To estimate the total LDNS population, Figure 1(b)
plots the number of uniquely observed LDNSes every
week. Except for the first week, there appears to be
a clear linear trend. After simply curve fitting and ex-
trapolation, we estimate the total number of LDNS to
be around 862,000. Given the wide deployment of Win-
dows machines, we expect this counts for a significant
portion of the entire LDNS population on the Internet.

3.2 Reachability of Active Probing
We can use active probing to measure the performance
between a LDNS and a data center. In this section,
we study how many LDNSes can be reached via active
probes.

To this end, we randomly select 50,000 LDNS ad-
dresses from the NCSI collection. Our evaluation shows
that 24,660 LDNSes respond to Ping – about 49%. For

1from Akamai’s GeoLocation database.

3



268 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 269

the rest, since they are DNS servers in nature, we issue
DNS queries against them as a measure of active probing.
Latency can be obtained by simply calculating the time
difference between issuing a request and receiving the re-
sponse. We experimented with three types of queries: 1)
resolving DOT (the root DNS name); 2) reversely resolv-
ing localhost (i.e., 127.0.0.1); and 3) reversely resolving
the LDNS’ own IP address. Unfortunately, only 2896
(about 6% of the total) LDNSes respond to our DNS
probes. Thus far, it is clear that a large percentage (about
45%) of the LDNSes are closed – they do not respond to
either Ping or DNS queries from random clients.
To address the insufficiency of active measurements,

in the next section, we proposed a much more involved
passive DNS reflection method, which works for all
LDNSes.

4 The DNS Reflection Method
4.1 The Key Idea
DNS reflection uses DNS traffic itself to measure the per-
formance between a LDNS and a target data center. Very
occasionally, the GTM DNS queries are redirected to the
target data center. Since DNS traffic is UDP-based, get-
ting one DNS query from the LDNS does not allow the
target to infer the performance. Therefore, the target re-
flects the DNS query and responds in such a way that
the LDNS is triggered to immediately issue another DNS
query against the target. By examining the time differ-
ence between the two queries occurred on the target, the
performance from the LDNS can be readily inferred.
DNS reflection is a passive measurement method and

in this sense, similar to the approaches taken by [4, 11,
18], which redirect HTTP traffic from clients to the tar-
get. For all these methods, when there is no traffic from
the clients or the LDNSes, there is no redirection and
thus no measurement.
Beyond this similarity, however, the DNS reflection

method differs fundamentally from [4, 11, 18] in a num-
ber of important ways: 1) DNS reflection only redirects
DNS traffic, not HTTP traffic. Hence, the clients will al-
ways be served by the “best” data center (per the choice
of the GTM). Although there is a latency incurred when
a LDNS is elected to probe a remote date center, there
is no latency inflation for subsequent HTTP transactions.
2) Each DNS reflection incurs two round trips between
the LDNS and the target. This is a much smaller penalty,
compared to redirecting HTTP transactions where the re-
sponse time will be 4-6 times (or even more) of the in-
flated round trip time. 3) In HTTP traffic redirection,
due to LDNS caching, subsequent arriving clients can be
affected. While in DNS reflection, since the final DNS
resolution result is not modified, it will not affect subse-
quent clients, which will always be served by the “best”
data center.

LDNS: local 
DNS resolver

E: end-user

R: reflector DNS server
( domain: r-c-t.msrapollo.net )

C: collector DNS server
( domain: lax.r-c-t.msrapollo.net )

5
4

3

2

1

8
7

6

1 A? gtm.msrapollo.net

2 same as (1)
3 CNAME: rand.lax.reflector-collector-target.msrapollo.net

NS: ns.reflector-collector-target.msrapollo.net
NS_ADDRESS: reflector

6 same as (4)

7 NS_ADDRESS: target

8 same as (7)

T: top level DNS server
( domain: msrapollo.net )

4 CNAME: rand.lax.reflector-collector-target.msrapollo.net

5 NS: ns.lax.reflector-collector-target.msrapollo.net
NS_ADDRESS: collector

Figure 2: The DNS Reflection Method

4.2 Detailed Process
Figure 2 illustrates the details of each step of the passive
DNS reflection method, as elaborated in the following:

Step 1 and 2: An end-user submits a DNS query for
gtm.msrapollo.net to its LDNS, which then for-
wards the query to the top level authoritative name server
of msrapollo.net.

Step 3: Instead of responding with a target IP address,
the top level domain server decides to delegate the DNS
resolution to a sub-domain, whose server locates in a tar-
get data center (e.g., the one in LAX). To this end, it
constructs a CNAME (an alias in DNS parlance, which
itself has to be recursively resolved by DNS), which em-
beds LAX as the target, as well as the IP addresses of
two DNS servers in LAX, denoted as reflector and col-
lector, respectively. In addition, it delegates the CNAME
to be handled by a sub-domain server, by appending the
sub-domain server name and its IP address (the address
of the reflector) in the DNS response.2

Step 4: The LDNS follows the delegation by the top
level authoritative name server and sends the query of the
CNAME to the reflector.

Step 5: The reflector further delegates the DNS reso-
lution to another sub-domain, which is a sub-domain of
the previously delegated sub-domain. Similarly, the re-
flector appends the new sub-domain server name and its
IP address (the address of the collector) in the DNS re-
sponse.

2CNAMEs and name server records should always be unique such
that the entire reflection process avoids caching at LDNS completely to
ensure deterministic estimation.

4

Step 6: The LDNS continues to follow the delegation
by the reflector and send the query of the CNAME to the
collector.

Step 7 and 8: The collector examines the CNAME
and responds with the address of target, which is embed-
ded in the CNAME. The DNS resolution completes.
When the reflector and the collector are in the same

physical location (LAX here), we can simply calculate
the network latency between the LDNS and the LAX
data center from the time difference between the reflec-
tor and the collector receiving request (4) and (6), re-
spectively. The process can be further simplified by con-
figuring one physical machine in LAX to own both IP
addresses of the reflector and the collector.

Note that all the information regarding how to respond
to a particular DNS query is embedded in the query itself.
Therefore, neither the top level authoritative name server,
nor the reflector or the collector, needs to maintain sta-
tus at any step during the reflection process. This is an
important design to simplify system implementation.

5 Evaluation
We implement a prototype system using C#, which con-
sists of two types of DNS servers. The first type is a top
level authoritative name server that responds to a GTM
probing query (such as gtm.msrapollo.net) with a
CNAME, following step 3 in the previous section. The
second type combines the reflector and the collector to-
gether and responds to queries targeting at either. It is de-
ployed on a single physical machine configured with two
IP addresses (one for the reflector and the other for the
collector), in each of the 17 geographically distributed
locations in the Microsoft global data center network (3
in Asia, 6 in Europe, 7 in US and 1 in Australia).

5.1 How Accurate is DNS Reflection?
In this section, we first evaluate whether the DNS re-
flection method gives correct latency measurement. Af-
ter all, if a LDNS does not behave as we understand
it would, or if it does not immediately send a second
query after receiving the delegation response from a re-
flector, the reflection method could result in inflated or
even completely wrong estimates.

To evaluate the correctness and accuracy of DNS re-
flection, we use 274 PlanetLab nodes as clients to is-
sue DNS queries to our system. Every 15 minutes, each
client generates 17 queries, which are redirected to all
the 17 reflection locations, respectively. Upon receiving
a DNS query, the reflector/collector also probes whether
the requesting LDNS responds to Ping, and if it does,
6 Ping probes are sent to the LDNS. The experiment
lasted 4 days during the first week of Jan., 2010. Among
the 274 PlanetLab nodes, 240 of them are in the same
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Figure 3: Latency Comparison

location as their LDNSes (from Akamai’s GeoLocation
database). Among those co-located LDNSes, 162 of
them respond to Ping. For comparison purpose, in the
rest of the section, we focus on these 162 LDNSes.
For each reflection measurement, we compute the la-

tency as outlined in the previous section. Also, we use
the minimum of the 6 Ping probes as the ground-truth
RTT. To compare the DNS reflection method and Ping,
it is sufficient to use all the measurements collected from
any single data center. Figure 3(a) shows the cumulative
distributions of the two methods from one selected date
center.
At the first sight, it appears that the two CDFs match

each other quite well. However, if we calculate the differ-
ence between corresponding measurement samples and
plot the distribution, as shown by the “Raw Samples”
curve in Figure 3(b), it becomes clear that the latency
measured by reflection and Ping do not really match well
– the difference is 80 ms at the 95 percentile.

Manual examination of the samples reveals that when-
ever there is a large gap between reflection and Ping, the
reflection latency is always twice as that of Ping. This
triggered us to examine the logs of the top level author-
itative name server. Finally, we discovered that some
LDNSes do not use the delegated name server address
returned by the reflector in step 5. Instead, it always
resolves the name server address from the top level au-
thoritative DNS server. This involves an extra round trip
between the LDNS and the top level DNS server. In this

5
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particular case, the top level DNS server happens to be in
the same data center, which is why the reflection latency
is twice as that of Ping. Among the 162 LDNSes, there
are 27 behaving this way. After we correct the samples
from these LDNSes by halving the latency values, the
curve “Samples w/ correction” in Figure 3(b) shows that
the different with Ping is extremely small – 14 ms at the
95 percentile.3
The difference between reflection and Ping is even

smaller if we apply an minimum filter on the measure-
ment samples. As shown in Figure 3(c), if we take the
minimum value of all the samples in a 2-hour window,
then the difference with Ping is only 6 ms at the 95 per-
centile. Therefore, we conclude that DNS reflection is an
extremely accurate measurement method.

5.2 How Good is a Reflection-based GTM?
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Figure 4: GTM Policy Comparison

Next, we evaluate the effectiveness of a reflection-
based GTM by comparing it with geography-based GTM
and IP anycast-based GTM. For the geography-based
GTM, we use Akamai’s GeoLocation database to find
the latitude and longitude of each LDNS. The data cen-
ter with the shortest great circle distance from the LDNS
is selected as the best choice. For the IP anycast-based
GTM, we setup an IP anycast address, which is an-
nounced from all the 17 locations. There are 17 DNS
servers listening on the anycast address (one in each lo-
cation). The PlanetLab nodes send DNS queries towards
the anycast address. These queries are naturally routed to
the anycast-closest data center. For the reflection-based
GTM, we use the reflection measurements collected in
every 2 hours to rank all data centers with respect to each
LDNS. The minimum latency one is chosen as the best
choice for the next 2 hours.

For each GTM, because of the co-location of the
LDNS and its corresponding PlanetLab node, we use the
Ping latency between the LDNS and the GTM-choice as

3We use DNS fingerprinting tool fpdns to find out the DNS server
software and versions, but the extra name server resolution appears to
happen independently. At the moment, we can only conjecture that it
is likely due to specific configurations.
Fortunately, the extra resolution incurs fixed latency and thus will

not affect the relative performance ranking with respect to all the loca-
tions. In addition, the latency can be reduced by deploying the top level
authoritative DNS server in every data center and on IP anycast.

the latency between the node and the data center, We use
the minimum Ping latency of the 17 RTTs to all the data
centers as the optimal latency. We calculate the differ-
ence between each GTM and the optimal. The cumula-
tive distributions of the three GTMs are shown in Fig-
ure 4. We observe that the reflection-based GTM is 2 ms
within the optimal (at the the 95 percentile), while the
geography-based GTM is 74 ms and the anycast-based
GTM is 183 ms. In other words, for the users whose
performance is most precarious, the benefit of reflection-
based GTM is significant!

6 Conclusions
In this paper, we argue that existing GTM solutions can
perform poorly for a non-negligible fraction of the users.
We propose a novel DNS reflection method, which uses
the GTM DNS traffic itself to measure the performance
between an arbitrary end-user and a data centers, with
extremely good accuracy. We show that reflection-based
GTM is very close to optimal and can significantly ben-
efit a non-negligible fraction of the users.
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Abstract
Mobile consumer-electronics devices, especially phones,
are powered from batteries which are limited in size and
therefore capacity. This implies that managing energy
well is paramount in such devices.

Good energy management requires a good understand-
ing of where and how the energy is used. To this end we
present a detailed analysis of the power consumption of
a recent mobile phone, the Openmoko Neo Freerunner.
We measure not only overall system power, but the exact
breakdown of power consumption by the device’s main
hardware components. We present this power breakdown
for micro-benchmarks as well as for a number of realis-
tic usage scenarios. These results are validated by over-
all power measurements of two other devices: the HTC
Dream and Google Nexus One.

We develop a power model of the Freerunner device
and analyse the energy usage and battery lifetime under
a number of usage patterns. We discuss the significance
of the power drawn by various components, and identify
the most promising areas to focus on for further improve-
ments of power management. We also analyse the energy
impact of dynamic voltage and frequency scaling of the
device’s application processor.

1 Introduction

Mobile devices derive the energy required for their op-
eration from batteries. In the case of many consumer-
electronics devices, especially mobile phones, battery ca-
pacity is severely restricted due to constraints on size
and weight of the device. This implies that energy effi-
ciency of these devices is very important to their usabil-
ity. Hence, optimal management of power consumption
of these devices is critical.

At the same time, device functionality is increasing
rapidly. Modern high-end mobile phones combine the
functionality of a pocket-sized communication device

with PC-like capabilities, resulting in what are generally
referred to as smartphones [11]. These integrate such di-
verse functionality as voice communication, audio and
video playback, web browsing, short-message and email
communication, media downloads, gaming and more.
The rich functionality increases the pressure on battery
lifetime, and deepens the need for effective energy man-
agement.

A core requirement of effective and efficient manage-
ment of energy is a good understanding of where and how
the energy is used: how much of the system’s energy is
consumed by which parts of the system and under what
circumstances.

In this paper we attempt to answer this question and
thus provide a basis for understanding and managing
mobile-device energy consumption. Our approach is to
measure the power consumption of a modern mobile de-
vice, the Openmoko Neo Freerunner mobile phone, bro-
ken down to the device’s major subsystems, under a wide
range of realistic usage scenarios.

Specifically, we produce a breakdown of power distri-
bution to CPU, memory, touchscreen, graphics hardware,
audio, storage, and various networking interfaces. We
derive an overall energy model of the device as a func-
tion of the main usage scenarios. This should provide
a good basis for focusing future energy-management re-
search for mobile devices.

Furthermore, we validate the results with two addi-
tional mobile devices at a less detailed level: the HTC
Dream and Google Nexus One. Along with the Freerun-
ner, these three devices represent approximately the last
three to four years of mobile phone technology.

The paper is structured as follows. In Section 2 we
describe our measurement platform and benchmarking
methodology. Section 3 describes each experiment and
presents the results, and in Section 4 we perform a
coarse-grained validation of the results. We then analyse
this data in Section 5. Section 6 surveys existing work.
Finally, we conclude in Section 7.
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2 Methodology

Our approach to profiling energy consumption is to take
physical power measurements at the component level on
a piece of real hardware. In this section, we describe
the hardware and software used in the experiments, and
explain our benchmarking methodology.

There are three elements to the experimental setup:
the device-under-test (DuT), a hardware data acquisition
(DAQ) system, and a host computer.

2.1 Device under test
The DuT was the Openmoko Neo Freerunner (revision
A6) mobile phone. It is a 2.5G smartphone featuring a
large, high-resolution touchscreen display, and many of
the peripherals typical of modern devices. Table 1 lists
its key components. The notable differences between our
device and a modern smartphone are the lack of a camera
and 3G modem.

Component Specification
SoC Samsung S3C2442
CPU ARM 920T @ 400 MHz
RAM 128 MiB SDRAM
Flash 256 MiB NAND
Cellular radio TI Calypso GSM+GPRS
GPS u-blox ANTARIS 4
Graphics Smedia Glamo 3362
LCD Topploy 480 × 640
SD Card SanDisk 2 GB
Bluetooth Delta DFBM-CS320
WiFi Accton 3236AQ
Audio codec Wolfson WM8753
Audio amplifier National Semiconductor LM4853
Power controller NXP PCF50633
Battery 1200 mAh, 3.7 V Li-Ion

Table 1: Freerunner hardware specifications.

This device was selected because the design files, par-
ticularly the circuit schematics [7], are freely available.
This is critical for our approach to power measurement,
which relies on understanding the power distribution net-
work at the circuit level. For this reason, few other de-
vices would be suitable.

The high-level architecture of the Freerunner is shown
in Figure 1. The total system memory is split equally be-
tween two banks, one external RAM package, and one
on-chip. All peripherals except the graphics chip com-
municate with the application processor (CPU) by pro-
grammed I/O over various serial buses.

The other devices studied, the HTC Dream (G1) and
Google Nexus One (N1), are described in Section 4.

Applications
Processor

NAND

SDRAM

GSM

GPS

Codec

Amp

WiFi

Bluetooth

Graphics SDRAM
LCD

SD Card

Host bus

I2C

SDIO

USB

serial

serial

Figure 1: Architecture of the Freerunner device, showing
the important components and their interconnects.

2.2 Experimental setup

To calculate the power consumed by any component,
both the supply voltage and current must be determined.

To measure current, we inserted sense resistors on the
power supply rails of the relevant components—this is
relatively simple on the DuT selected, since most of them
have been designed with placeholders for sense resistors,
factory-populated with 0 Ω. Where this was not the case,
choke inductors could be reused in the same way. In both
cases, we replaced the part with a current-sense resistor
selected such that the peak voltage drop did not exceed
10 mV, which in all cases is less than 1 % of the supply
voltage and therefore presents an acceptably small per-
turbation. With a known resistance and measured voltage
drop, current can be determined by Ohm’s law.

To measure the voltages, we used a National Instru-
ments PCI-6229 DAQ, to which the sense resistors were
connected via twisted-pair wiring. The key characteris-
tics of this hardware are summarised in Table 2.

Characteristic Value
Max. sample rate 250 kS/s
Input ranges ±0.2 V, ±1 V, ±5 V and ±10 V
Resolution 16 b
Accuracy 112 µV @ ±0.2 V range

1.62 mV @ ±5 V range
Sensitivity 5.2 µV @ ±0.2 V range

48.8 µV @ ±5 V range
Input impedance 10 GΩ

Table 2: National Instruments PCI-6229 DAQ specifica-
tions [6].

The sense-resistor voltage drops were sampled differ-
entially at the ±0.2 V input range. We used the same
physical connections to measure supply voltages; these
were taken relative to ground from the component side
of the resistors, in the ±5 V range.

We were able to directly measure the power consumed
by the following components: CPU core, RAM (both
banks), GSM, GPS, Bluetooth, LCD panel and touch-
screen, LCD backlight, WiFi, audio (codec and ampli-
fier), internal NAND flash, and SD card. Since the graph-
ics module had too many supply rails to measure directly,
we instead used a combination of direct and subtractive
measurements.

Power to the DuT was supplied through a bench power
supply connected to the phone’s battery terminals so we
did not need to deal with battery management. This also
prevents the OS’s power policies from interfering with
the benchmarks. Total system power consumption was
measured at this point by inserting a sense resistor be-
tween the supply and the phone. For the G1 and N1 we
measured total system power by inserting a sense resistor
between the device and its battery.

Measuring backlight power required special attention,
because its supply voltage (10–15 V, depending on the
brightness) far exceeded the maximum range supported
by our DAQ hardware. To resolve this, we pre-scaled the
backlight voltage with some external circuitry, consist-
ing of a high-input-impedance voltage follower feeding
a fixed voltage divider. This brought the voltage within
the ±5 V range.

2.2.1 Voltage regulation efficiency

Our measurement approach yields the power directly
consumed by each component. However, a certain
amount of additional power is lost in converting the sup-
ply (i.e. battery) voltage to the levels required by the
components. We have not included this factor in the
results reported, because the conversion efficiencies are
unknown. However, based on the data sheet of a similar
part (the NXP PCF 50606), the efficiency conversion is
likely to be in the range of 75–85 %, depending on the
current drawn.

Because of this, we differentiate between “total
power”, measured at the battery, and “aggregate power”,
measured as the sum of individual component measure-
ments. The latter assumes no power is consumed in
the non-instrumented components, and while we haven’t
been able to measure precisely what their contribution is,
it is certainly less than 10 %, and probably within a few
percent of the aggregate consumption.

One exception to this is the backlight boost converter,
the efficiency of which we measured to be 67 %. We de-
termined the cause of this poor efficiency to be heating in

an external component. We found no evidence to suggest
this is an issue for any of the other voltage regulators.

2.3 Software
The DuT ran the Freerunner port of the Android 1.5 op-
erating system [1] using the Linux v2.6.29 kernel. Ex-
cept for the CPU micro-benchmark, the kernel was con-
figured with the ondemand frequency scaling governor,
using 100 MHz and 400 MHz—the only two frequencies
supported by both the hardware and OS.

On the host system we ran the power-data collection
software which interfaced with the National Instruments
DAQmxBase 3.3 library to collect raw data from the
DAQ, aggregate it, and write the result to file for post-
processing. Each data point collected was an average of
2000 consecutive voltage samples. We configured the
tool such that a complete power snapshot of the system
could be generated approximately every 400 ms.

The benchmarks were coordinated on the host ma-
chine, which communicated with the DuT via a serial
connection. It was responsible for executing benchmarks
on the DuT, synchronising the power measurement soft-
ware with the benchmark, and collecting other relevant
data.

2.4 Benchmarks
We ran two types of benchmarks. First, a series of
micro-benchmarks designed to independently charac-
terise components of the system, particularly their peak
and idle power consumption.

Second, we ran a series of macro-benchmarks based
on real usage scenarios. For low-interactivity applica-
tions (e.g. music playback), we simply launched them
from the command line. For interactive applications,
such as web browsing, we took a trace-based approach.
A trace consisted of a sequence of input events, in-
cluding a time-stamp, the name of the device provid-
ing the input (the touchscreen or one of two push-
buttons), and for touchscreen events, the coordinates
of the touch. The Linux kernel provides this informa-
tion by reading from the /dev/input/event* de-
vice files. To collect the trace, we used the target ap-
plication normally, while in the background storing the
input events to file. We then replayed the events under
benchmarking conditions by writing the collected data
to the /dev/input/event* files at the correct time.

Although this approach does bypass the hardware and
interrupt paths that would usually be followed for a
touchscreen event, our measurements showed the addi-
tional power to be negligible. The vast majority of en-
ergy required to handle a touchscreen event is consumed
in delivering it from the kernel to software.
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Figure 2: Power breakdown in the suspended state. The
aggregate power consumed is 68.6 mW.

3 Results

3.1 Baseline cases
Prior to running any benchmarks, we established the
baseline power state of the device, when no applications
are running. There are two different cases to consider:
suspended and idle. For the idle case, there is also the
application-independent power consumption of the back-
light to consider.

3.1.1 Suspended device

A mobile phone will typically spend a large amount of
time in a state where it is not actively used. This means
that the application processor is idle, while the commu-
nications processor performs a low level of activity, as
it must remain connected to the network be able to re-
ceive calls, SMS messages, etc. As this state tends to
dominate the time during which the phone is switched
on, the power consumed in this state is critical to battery
lifetime.

The Android OS running on the application proces-
sor aggressively suspends to RAM during idle periods,
whereby all necessary state is written to RAM and the
devices are put into low-power sleep modes (where ap-
propriate). To quantify power use while suspended, we
forced the device into Android’s suspended state and
measured the power over a 120 second period. Figure 2
shows the results, averaged over 10 iterations. The av-
erage aggregate power is 68.6 mW, with a relative stan-
dard deviation (RSD) of 8.2 %. The large fluctuations
are largely due to the GSM (14.4 % RSD) and graphics
(13.0 %) subsystems.

The GSM subsystem power clearly dominates while
suspended, consuming approximately 45 % of the overall
power. Despite maintaining full state, RAM consumes
negligible power—less than 3 mW. Note that the GSM

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

G
SM C
PU

R
AM W
iF

i

G
ra

ph
ic

s

LC
D

Au
di

o

R
es

t

Po
w

er
 (m

W
)

Figure 3: Average power consumption while in the idle
state with backlight off. Aggregate power is 268.8 mW.

subsystem in our device does not use system memory—it
has its own bank of RAM which we include in the GSM
power measurements.

3.1.2 Idle device

The device is in the idle state if it is fully awake (not sus-
pended) but no applications are active. This case consti-
tutes the static contribution to power of an active system.
We run this case with the backlight turned off, but the
rest of the display subsystem enabled.

Figure 3 shows the power consumed in the idle state.
As with the suspend benchmark, we ran 10 iterations,
each of 120 seconds in the idle state. Power consumed
in this state was very stable, with an RSD of 2.6 %, in-
fluenced largely by GSM, which varied with an RSD of
30 %. All other components showed an RSD below 1 %.

Figure 3 shows that the display-related subsystems
consume the largest proportion of power in the idle
state—approximately 50 % due to the graphics chip and
LCD alone, and up to 80 % with backlight at peak bright-
ness. GSM is also a large consumer, at 22 % of aggregate
power.

3.1.3 Display

Figure 4 shows the power consumed by the display
backlight over the range of available brightness levels.
That level is an integer value between 1 and 255, pro-
grammed into the power-management module, used to
control backlight current. Android’s brightness-control
user-interface provides linear control of this value be-
tween 30 and 255.

The minimum backlight power is approximately
7.8 mW, the maximum 414 mW, and a centred slider cor-
responds to a brightness level of 143, consuming 75 mW.
The backlight consumes negligible power when disabled
(as in the above idle benchmarks).
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Figure 4: Display backlight power for varying brightness
levels.

We also measured how the content displayed on the
LCD affected its power consumption: 33.1 mW for a
completely white screen, and 74.2 mW for a a black
screen. Display content can therefore affect overall
power consumption by up to 43 mW.

3.2 Micro-benchmarks
As mentioned in Section 2.4, we used micro-benchmarks
to determine the contribution to overall power from var-
ious system components. Specifically we used bench-
marks to exercise the application processor (CPU and
memory), the flash storage devices, and the network in-
terfaces.

3.2.1 CPU and RAM

To measure CPU and RAM power, we ran a subset of the
SPEC CPU2000 suite. There are several reasons for not
running all benchmarks of the suite. Firstly, we could
only use benchmarks which we could build and run on
the Android OS, which rules out those written in C++
or Fortran, due to Android’s lack of run-time support for
these languages. They also needed to fit into the phone’s
limited memory and their execution times needed to be
short enough to give reasonable turn-around. Finally,
we were only interested in establishing the power con-
sumption of CPU and memory, rather than making com-
parisons between different platforms’ algorithms, hence
completeness of the suite was not a relevant considera-
tion.

From the candidates remaining according to the above
criteria, we selected a set representing a good spectrum
of CPU and memory utilisation, from highly CPU-bound
to highly memory-bound. We determined memory-
boundedness by running the entire suite on a server
Linux system and comparing the slowdown due to fre-
quency scaling. Snowdon et al. [9] show that this slow-
down is primarily due to memory-boundedness. While
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Figure 5: CPU and RAM power when running SPEC
CPU2000 micro-benchmarks, sorted by CPU power.

we do not expect the benchmarks to behave similarly on
the different platforms, our aim is only to select bench-
marks with different characteristics.

The SPEC CPU2000 benchmarks ultimately selected
are equake, vpr, gzip, crafty and mcf.

For each of the benchmarks, we measured the aver-
age CPU and RAM power at fixed core frequencies of
100 MHz and 400 MHz. We also measured power for
the system in the idle state. Figure 5 shows these results,
averaged over 10 runs. The RSD is less than 3 % in all
cases.

For the idle, equake, vpr and gzip workloads,
CPU power dominates RAM power considerably at both
frequencies. However, crafty and mcf show that
RAM power can exceed CPU power, albeit by a small
margin.

Table 3 shows the effect of frequency scaling on the
performance, as well as combined CPU and RAM power
and energy of the benchmarks. The wide range of slow-
down factors across the different benchmarks validates
our selection of workloads as representing a range of
CPU/memory utilisations.

Benchmark Performance Power Energy
equake 26 % 36 % 135 %
vpr 31 % 40 % 125 %
gzip 38 % 43 % 112 %
crafty 63 % 62 % 100 %
mcf 74 % 69 % 93 %
idle - 71 % -

Table 3: SPEC CPU2000 performance, power and en-
ergy of 100 MHz relative to 400 MHz. Both CPU and
RAM power/energy are included.
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Figure 6: SD, NAND, CPU and RAM power for flash
storage read and write benchmarks.

3.2.2 Flash storage

Bulk storage on the Freerunner device is provided by
256 MiB of internal NAND flash, and an external micro
Secure Digital (SD) card slot. To measure their max-
imum power consumption, we used the Linux dd pro-
gram to perform streaming reads and writes. For reads
we copied a 64 MiB file, filled with random data, to
/dev/null in 4 KiB blocks. For writes, 8 MiB of ran-
dom data was written, with an fsync between succes-
sive 4 KiB blocks to ensure predictability of writes. Be-
tween each iteration we forced a flush of the page cache.

Figure 6 shows the power consumed by the NAND
flash and SD card, as well as the CPU and RAM, aver-
aged over 10 iterations of each workload. Table 4 shows
the corresponding data throughput, efficiency (including
NAND/SD power and the CPU and RAM power to sup-
port it), and idle power consumption. The power and
throughput RSD is less than 5 % in all cases.

The graphics module, which contains the physical
SD card interface, showed a power increase of 2.2 mW
(2.6 % above static) for writes, and a 21.1 mW increase
(26 %) for reads.

Metric NAND SD
Idle (mW) 0.4 1.4
Read

throughput (MiB/s) 4.85 2.36
efficiency (MiB/J) 65.0 31.0

Write
throughput (KiB/s) 927.1 298.1
efficiency (MiB/J) 10.0 5.2

Table 4: Flash storage power and performance.
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Figure 7: Power consumption of WiFi and GSM
modems, CPU, and RAM for the network micro-
benchmark.

3.2.3 Network

In this benchmark we stressed the two main networking
components of the device: WiFi and GPRS (provided by
the GSM subsystem). The test consisted of downloading
a file via HTTP using wget. The files contained random
data, and were 15 MiB for WiFi, and 50 KiB for GPRS.
The results of 10 iterations of the benchmark are shown
in Figure 7.

WiFi showed a throughput of 660.1± 36.8 KiB/s, and
GPRS 3.8±1.0 KiB/s. However, they both show compa-
rable power consumption far exceeding the contribution
of the RAM and CPU. The increased CPU and RAM
power for WiFi reflects the cost of processing data with
a higher throughput. Despite highly-variable throughput,
GSM showed a relatively consistent power consumption
with an RSD of approximately 2 %.

To test the effect of signal strength on power and
throughput, we re-ran the network benchmarks with the
device shielded within a metal box of 2 mm thickness.
Over GPRS, this resulted in an increase of GSM power of
30 %, but no effect on throughput. The shielding resulted
in a reported signal strength drop of 10 dBm. Over WiFi,
the signal strength dropped by only 2 dBm, and no effect
on throughput or power consumption was observed.

3.2.4 GPS

To measure power consumption of the GPS subsystem,
we enabled the module and ran the GPSStatus2 An-
droid application. Table 5 shows the power consumed
by the GPS module in three situations; using only the in-
ternal antenna, with an external active antenna attached,
and when idle (i.e. powered down).

We noticed that the energy consumption of the mod-
ule is largely independent of the received signal—neither
the number of satellites, nor the signal strength, had any
appreciable effect.

This observation is contrary to the part’s data sheet

State Power (mW)
Enabled (internal antenna) 143.1 ± 0.05 %
Enabled (external antenna) 166.1 ± 0.04 %
Disabled 0.0

Table 5: GPS energy consumption.

[10], which specifies that power consumption should
drop by approximately 30 % after satellite acquisition. It
is unclear why we did not see such behaviour; perhaps
due to the GPS module itself, or more likely an error in
hardware integration or software. In addition, the power-
management features of the device are not exploited by
software. Thus, these figures should only be considered
worst-case.

3.3 Usage scenarios
Here we show the results of using macro-benchmarks to
determine power consumption under a number of typi-
cal usage scenarios of a smartphone. Specifically we ex-
amined audio and video playback, text messaging, voice
calls, emailing and web browsing.

3.3.1 Audio playback

This benchmark is designed to measure power in a sys-
tem being used as a portable media player. The sample
music is a 12.3 MiB, 537-second stereo 44.1 kHz MP3,
with the output to a pair of stereo headphones. The
measurements are taken with the backlight off (which is
representative of the typical case of someone listening
to music or podcasts while carrying the phone in their
pocket). However, GSM power was included, as the re-
alistic usage scenario includes the phone being ready to
receive calls or text messages.

Figure 8 shows the power breakdown for this bench-
mark at maximum volume, averaged over 10 iterations.
The audio file is stored on the SD card. Between suc-
cessive iterations we forced a flush of the buffer cache to
ensure that the audio file was re-read each time.

The results show the audio subsystem (amplifier and
codec) consuming 33.1 mW with an RSD of less than
0.2 %. Approximately 58 % of this power is consumed
by the codec, with the remaining 42 % used by the am-
plifier. Compared with the idle state, this corresponds to
a negligible change in codec power, with amplifier power
increasing by 80 %. Overall, the audio subsystem ac-
counts for less than 12 % of power consumed.

In addition to maximum volume, we also measured the
system at 13 % volume. This showed little change—the
audio subsystem power decreased by 4.3 mW (approx-
imately 14 %), mostly in the amplifier. However, for
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Figure 8: Audio playback power breakdown. Aggregate
power consumed is 320.0 mW.

unknown reasons, the power consumed by the graphics
chip increased by 4.6 mW. As a result, the additional
power consumed in the high-volume benchmark is less
than 1 mW compared with the low-volume case.

Again, maintaining a connection to the GSM net-
work requires a significant and highly variable amount of
power, specifically 55.6 ± 19.7 mW in this case. While
the MP3 file is loaded from the SD card, the cost of doing
so is negligible at < 2 % of total power.

3.3.2 Video playback

In this benchmark we measured the power requirements
for playing a video file. We used a 5 minute, 12.3 MiB
H.263-encoded video clip (no sound), and played it with
Android’s camera application. Again we forced a flush of
the buffer cache between iterations. The power averaged
over 10 iterations is shown in Figure 9.

Since the purpose of the macro-benchmarks is to anal-
yse the full system, we have included backlight power
in the results. However, rather than arbitrarily choosing
a single brightness, we have plotted the results at 0 %,
33 %, 66 %, and 100 %, corresponding to the position of
Android’s brightness-control slider. These correspond to
brightness levels of 30, 105, 180 and 255 respectively.
GSM power is again included.

While the CPU is the biggest single consumer of
power (other than backlight), the display subsystems still
account for at least 38 % of aggregate power, up to 68 %
with maximum backlight brightness. The energy cost of
loading the video from the SD card is negligible, with an
average power of 2.6 mW over the length of the bench-
mark.

3.3.3 Text messaging

We benchmarked the cost of sending an SMS by using
a trace of real phone usage. This consists of loading
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Figure 9: Video playback power breakdown. Aggregate
power excluding backlight is 453.5 mW.
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Figure 10: Power breakdown for sending an SMS. Ag-
gregate power consumed is 302.2 mW, excluding back-
light.

the contacts application and selecting a contact, typing
and sending a 55-character message, then returning to
the home screen; lasting a total of 62 seconds. To en-
sure the full cost of the GSM transaction is included, we
measured power for an additional 20 seconds. The aver-
age result of 10 iterations of this benchmark are shown
in Figure 10. Again, the power for four backlight bright-
ness levels is shown.

Power consumed is again dominated by the display
components. The GSM radio shows an average power of
66.3 ± 20.9 mW, only 7.9 mW greater than idle over the
full length of the benchmark, and accounting for 22 %
of the aggregate power (excluding backlight). All other
components showed an RSD of below 3 %.

3.3.4 Phone call

Figure 11 shows the power consumption when making
a GSM phone call. The benchmark is trace-based, and
includes loading the dialer application, dialing a number,
and making a 57-second call. The dialled device was
configured to automatically accept the call after 10 sec-
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Figure 11: GSM phone call average power. Excluding
backlight, the aggregate power is 1054.3 mW.
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Figure 12: Power consumption for the email macro-
benchmark. Aggregate power consumption (excluding
backlight) is 610.0 mW over GPRS, and 432.4 mW for
WiFi.

onds. Thus, the time spent in the call was approximately
40 seconds, assuming a 7-second connection time. The
total benchmark runs for 77 seconds.

GSM power clearly dominates in this benchmark at
832.4± 99.0 mW. Backlight is also significant, however
note that its average power is lower than in other bench-
marks, since Android disables the backlight during the
call. The backlight is active for approximately 45 % of
the total benchmark.

3.3.5 Emailing

For this benchmark, we used Android’s email applica-
tion to measure the cost of sending and receiving emails.
The workload consisted of opening the email applica-
tion, downloading and reading 5 emails (one of which
included a 60 KiB image) and replying to 2 of them. The
results of the benchmark are shown in Figure 12, aver-
aged over 10 iterations.

The power breakdown between the GPRS and WiFi
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Figure 13: Web browsing average power over WiFi and
GPRS. Aggregate power consumption is 352.8 mW for
WiFi, and 429.0 mW for GPRS, excluding backlight.

benchmarks is comparable, except for the GSM and WiFi
radios. Despite presenting identical workloads to the ra-
dios, GSM consumes more than three times the power of
WiFi.

3.3.6 Web browsing

Our last benchmark measured the power consumption for
a web-browsing workload using both GPRS and WiFi
connections. The benchmark was trace-based, ran for
a total of 490 seconds, and consisted of loading the
browser application, selecting a bookmarked web site
and browsing several pages. We used the BBC News
website, which we mirrored locally to improve the reli-
ability of the benchmark. After each run, the browser
cache was cleared. The results averaged over 10 itera-
tions are shown in Figure 13, including backlight power
at 4 brightness levels.

GPRS consumes more power than WiFi by a factor of
2.5. The other components do not display any significant
difference between the two benchmarks.

This benchmark, along with the emailing benchmark,
are the only two where a more modern phone can be ex-
pected to show significantly different results. The much
higher bandwidth supported by 3G protocols is likely to
result in them being more power-hungry.

4 Validation

In this section, we measure the power consumption of
two additional smartphones; the HTC Dream (G1), and
the Google Nexus One (N1). Table 6 lists the key fea-
tures of these devices.

We measure the full-system power of these platforms
at the battery; per-component measurements are not pos-
sible because the necessary documentation (schematics,
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Figure 14: Display, button and keyboard backlight power
on the G1.

etc.) are not available to us. Moreover, there is no reason
to expect these production devices would be capable of
the type of instrumentation we have performed on the
Freerunner, since the additional components and PCB
area would increase the per-unit cost.

4.1 Display and backlight

Figure 14 plots the power consumption of the various
backlights on the G1 as a function of brightness level. In
addition to the LCD display backlight, the G1 features
a backlit physical keyboard and buttons which are not
present on either the Freerunner or the N1. These back-
lights do not have any brightness control, and contribute
189 mW when both enabled. The content of the LCD
display can affect power consumption by up to 17 mW.

The Nexus One features an OLED display, and as such
does not require a separate backlight like the Freerunner
and G1. Furthermore, the effects of display content and
brightness on power consumption are more tightly cou-
pled. For instance, the OLED power consumption for
a black screen is fixed, regardless of the brightness set-
ting. For a completely white screen at minimum bright-
ness, an additional 194 mW is consumed, and at maxi-
mum brightness, 1313 mW.

4.2 CPU

Figure 15 plots the G1 and N1 total system power un-
der our SPEC CPU2000 workloads at the minimum and
maximum frequencies supported by the respective de-
vice: 246 MHz and 384 MHz on the G1, and 245 MHz
and 998 MHz on the N1. Table 7 shows the percentage
slowdown, and reduction in full system power, due to
frequency scaling. This benchmark was run with the dis-
play system powered down and all radios disabled.
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G1 N1
SoC Qualcomm MSM7201 Qualcomm QSD 8250
CPU ARM 11 @ 528 MHz ARMv7 @ 1 GHz
RAM 192 MiB 512 MiB
Display 3.2” TFT, 320x480 3.7” OLED, 480x800
Radio UMTS+HSPA UMTS+HSPA
OS Android 1.6 Android 2.1
Kernel Linux 2.6.29 Linux 2.6.29

Table 6: G1 and Nexus One specifications.
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Figure 15: N1 and G1 system power for SPEC CPU2000
benchmarks.

Performance (%) Power (%)
Benchmark G1 N1 G1 N1
equake 67 25 87 26
vpr 68 25 87 26
gzip 71 25 86 27
crafty 76 25 89 28
mcf 84 54 91 41

Table 7: SPEC CPU2000 performance and average sys-
tem power of 246 MHz relative to 384 MHz on the G1,
and 245 MHz relative to 998 MHz on the N1.

4.3 Bluetooth

As noted earlier, we were unable to get Bluetooth work-
ing reliably on the Freerunner phone. To get an idea
of Bluetooth power consumption, we re-ran the audio
benchmark on the G1 with the audio output to a Blue-
tooth stereo headset. The power difference between this
and the baseline audio benchmark should yield the con-
sumption of the Bluetooth module, because (as shown in
our Freerunner benchmarks) the power consumed by the
audio subsystem is almost entirely static.

Power (mW)
Benchmark Total Bluetooth
Audio baseline 459.7 -
Bluetooth (near) 495.7 36.0
Bluetooth (far) 504.7 44.9

Table 8: G1 Bluetooth power under the audio bench-
mark.

Table 8 shows the total and estimated Bluetooth power
consumption for the audio benchmarks. In the ”near”
benchmark, the headset was placed approximately 30 cm
from the phone, and about 10 m in the ”far” benchmark.

4.4 Benchmarks
Table 9 shows total system power consumption for the
Freerunner, G1, and Nexus One for a selection of our
benchmarks. The power consumption of the backlight
(OLED for the N1) has been subtracted out, since it is
highly dependent on the user’s brightness setting. Ta-
ble 10 shows the additional power consumption of the
OLED display at minimum and maximum brightness
levels.

The lower power consumption of the G1 in the idle,
web and email benchmarks can be attributed to the ex-
cellent low-power state of its SoC and effective use of it
by software. This can be seen in the SPEC benchmarks,
where the idle system consumes less than 22 mW; the
idle CPU power must be lower still.

The power disparity for the phone call benchmark is
likely due to power consumed by the non-radio compo-
nents of the system. The G1 and Nexus One phones enter
a suspended state during the call, offloading all function-
ality to the UMTS module. In contrast, the Freerunner
remains in a fully-active state throughout. The power
consumption of the GSM subsystem alone (832.4 mW) is
comparable to the G1 and N1 system consumption. Due
to lack of freely-available documentation, it is not clear
whether the Freerunner’s GSM chipset lacks this feature,
or if it is not supported in software.

Average System Power (mW)
Benchmark Freerunner G1 N1
Suspend 103.2 26.6 24.9
Idle 333.7 161.2 333.9
Phone call 1135.4 822.4 746.8
Email (cell) 690.7 599.4 -
Email (WiFi) 505.6 349.2 -
Web (cell) 500.0 430.4 538.0
Web (WiFi) 430.4 270.6 412.2
Network (cell) 929.7 1016.4 825.9
Network (WiFi) 1053.7 1355.8 884.1
Video 558.8 568.3 526.3
Audio 419.0 459.7 322.4

Table 9: Freerunner, G1 and N1 system power (ex-
cluding backlight) for a number of micro- and macro-
benchmarks.

5 Analysis

5.1 Where does the energy go?

Our results show that the majority of power consumption
can be attributed to the GSM module and the display,
including the LCD panel and touchscreen, the graphics
accelerator/driver, and the backlight.

In all except the GSM-intensive benchmarks, the
brightness of the backlight is the most critical factor in
determining power consumption. However, this is a rela-
tively simple device from a power-management perspec-
tive, and largely depends on the user’s brightness prefer-
ence. Our results confirm that aggressive backlight dim-
ming can save a great deal of energy, and further moti-
vates the inclusion of ambient light and proximity sen-
sors in mobile devices to assist with selecting an appro-
priate brightness. Moreover, the N1 OLED results show
that merely selecting a light-on-dark colour scheme can
significantly reduce energy consumption.

The GSM module consumes a great deal of both static
and dynamic power. Merely maintaining a connection
with the network consumes a significant fraction of total
power. During a phone call, GSM consumes in excess
of 800 mW average, which represents the single largest
power drain in any of our benchmarks. Unfortunately,
a phone-call-heavy workload presents little scope for
software-level power management. Dimming the back-
light during a call, as Android does, is clearly good pol-
icy, saving up to 40 % power even with the large GSM
consumption.

Overall, the static contribution to system power con-
sumption is substantial. In all of our usage scenarios, ex-
cept GSM phone call, static power accounts for at least
50 % of the total. If the backlight is included, this fig-

OLED Power (mW)
Benchmark Min. Max.
Idle 38.0 257.3
Phone call 16.7 112.9
Web 164.2 1111.7
Video 15.1 102.0

Table 10: Additional power consumed by the N1 OLED
display at maximum and minimum brightness.

ure rises substantially. This leads us to the conclusion
that the most effective power management approach on
mobile devices is to shut down unused components and
disable their power supplies (where possible).

The RAM, audio and flash subsystems consistently
showed the lowest power consumption. While our
micro-benchmarks showed that the peak power of the
SD card could be substantial (≈ 50 mW), in practice the
utilisation is low enough such that on average, negligi-
ble power is consumed. Even video playback, one of the
more data-intensive uses of mobile devices, showed SD
power well under 1 % of total power. RAM has simi-
lar characteristics; micro-benchmarks showed that RAM
power can exceed CPU power in certain workloads, but
in practical situations, CPU power overshadows RAM by
a factor of two or more. Audio displayed a largely static
power consumption in the range of 28–34 mW. Overall,
RAM, audio and SD have little effect on the power con-
sumption of the device, and therefore offer little potential
for energy optimisation.

5.2 Dynamic voltage and frequency scaling
Our CPU micro-benchmarks show that dynamic volt-
age and frequency scaling (DVFS) can significantly re-
duce the power consumption of the CPU. However,
this does not imply reduced energy overall, because the
run-time of the workload also increases. Our results
show (Table 3) that only highly memory-bound work-
loads (namely mcf) exhibit a net reduction in CPU/RAM
energy.

However, such a simplistic analysis assumes that af-
ter completing the task, the device consumes zero power.
Clearly this is not a realistic model, particularly for a
smartphone. To correct for this, we can “pad” each of the
measurements with idle power [5] in order to equalise the
run times, according to the following equation:

E = Pt + Pidle (tmax − t)

where

E is the equivalent energy consumed for the
benchmark;
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% Energy
Benchmark Freerunner G1 N1
equake 95.5 126.0 75.6
vpr 95.8 124.5 75.9
gzip 95.8 120.1 77.7
crafty 95.5 115.6 77.3
mcf 94.9 105.3 65.9

Table 11: SPEC CPU2000 percentage total system en-
ergy consumption of the minimum frequency compared
with the maximum frequency, padded with idle power.

P is the average power over the run-time of
the benchmark;

t is the run-time of the benchmark;
Pidle is the idle power;
tmax is the maximum run-time of the bench-

mark over all frequencies.

Table 11 shows the energy consumed for each of the
SPEC benchmarks at the lowest frequency, compared to
the highest frequency, padded with idle power.

The results show that the practical benefits of DVFS
depend largely on the CPU hardware (particularly idle
power), and to some extent, the workload.

On the G1, which has a good low-power idle mode, re-
ducing frequency always results in increased energy us-
age. It appears that DVFS on this platform is completely
ineffective.

On the Freerunner, DVFS only yields a marginal en-
ergy reduction of approximately 5 %—a saving of at
most 20 mW. However, the N1 shows considerable ad-
vantages to using DVFS, saving up to 35 %, correspond-
ing to an average power reduction of 138 mW. Whether
or not to use DVFS on these two platforms is a policy
decision, since reducing frequency can affect user expe-
rience.

Much of the energy reduction on the Freerunner can be
attributed to the high idle power. For a system going into
suspend (rather than idle) after completing the workload,
DVFS no longer offers an advantage. However, on the
N1 this is not the case: DVFS is still effective, even if
transitioning into a very-low power state. This is due to
the processor’s high efficiency at low frequencies, which
can be seen in Figure 15.

In the case of an idle system, reducing frequency can
result in an energy saving, and at worst has no effect. Our
results show that DVFS reduces idle CPU/RAM con-
sumption by about 30 % on the Freerunner. However, in
absolute terms, this is less than a 20 mW saving: 6.5 % of
an idle system. On the N1, this saving is approximately
36 mW. On the G1, frequency scaling during idle periods

is ineffective due to the processor’s low-power idle state,
which is used aggressively.

5.3 Energy model

We can express the results of Section 3 in a scenario-
based energy model of the Freerunner device, which
shows the energy for each usage scenario as a function
of time:

Eaudio(t) = 0.32W × t

Evideo(t) = (0.45W + PBL) × t

Esms(t) = (0.3W + PBL) × t

Ecall(t) = 1.05W × t

Eweb(t) = (0.43W + PBL) × t

Eemail(t) = (0.61W + PBL) × t

The equations give the energy consumed in Joules when
the time is supplied in seconds. PBL is the backlight
power (in watts), scenarios without a PBL term are as-
sumed to run with backlight off.

5.4 Modelling usage patterns

To investigate day-to-day power consumption of the de-
vice, we define a number of usage patterns. Suspend rep-
resents the baseline case of a device which is on standby,
without placing or receiving calls or messages. The ca-
sual pattern represents a user who uses the phone for a
small number of voice calls and text messages each day.
Regular represents a commuter with extended time of lis-
tening to music or podcasts, combined with more lengthy
or frequent phone calls, messaging and a bit of email-
ing. The business pattern features extended talking and
email use together with some web browsing. Finally, the
PMD (portable media device) case represents extensive
media playback. The parameters of these patterns are
summarised in Table 12. In each case, GPRS is used for
data networking.

The Freerunner uses a battery of 1.2 Ah capacity,
which is approximately 16 kJ. Table 13 shows the power
use, and resulting battery life corresponding to the above
use patterns. We assume that in all cases requiring back-
light, illumination level is set at approx 66 %, corre-
sponding to 140 mW. In all other cases, backlight is as-
sumed off.

The table shows that total battery life varies by almost
a factor of 2.5 between use cases. It shows that GSM
is the dominating energy drain, followed by CPU and
graphics.

Workload SMS Video Audio Phone call Web browsing Email
Suspend - - - - - -
Casual 15 - - 15 - -
Regular 30 - 60 30 15 15
Business 30 - - 60 30 60
PMD - 60 180 - - -

Table 12: Usage patterns, showing total time for each activity in minutes.

Power (% of total) Battery life
Workload GSM CPU RAM Graphics LCD Backlight Rest [hours]
Suspend 45 19 4 13 1 0 19 49
Casual 47 16 4 12 2 3 16 40
Regular 44 14 4 14 4 7 13 27
Business 51 11 3 11 4 11 10 21
PMD 31 19 5 17 6 6 14 29

Table 13: Daily energy use and battery life under a number of usage patterns.

5.5 Limitations

Our work has a number of limitations which need to be
kept in mind when using our results.

The biggest one is that the Freerunner is not a latest-
generation mobile phone, but is a few years old. The
main feature it is lacking is a 3G cellular interface, which
supports much higher data rates than the 2.5G GPRS in-
terface. Our validation results show that this higher data
rate does not appreciably affect power consumption in
practical situations.

Further, the application processor is based on a rela-
tively dated ARMv4 architecture, however it is clocked
at a rate consistent with 2009-vintage smartphones. The
difference in power consumption compared with more
modern processors can traced largely to idle power; in
other respects, the age of the CPU is not a substantial
limitation.

6 Related Work

Mahesri and Vardhan [4] perform an analysis of power
consumption on a laptop system. Their approach to
component power measurement is driven partially by di-
rect power measurement, but largely by deduction using
modelling and off-line piece-wise analysis. They show
that the CPU and display are the main consumers of en-
ergy for their class of system, and that other components
contribute substantially only when they are used inten-
sively. Their results mirror our observations that RAM
power is insignificant in real workloads.

Bircher and John [2] look at component power esti-
mation using modelling techniques. They demonstrate

an error of less than 9 % on average across all tested sub-
systems, including memory, chipset, disk, CPU, and I/O.

In a later work, Bircher and John [3] measure the
power consumption of the CPU, memory controller,
RAM, I/O, video and disk subsystems under a number
of workloads. Their results show that CPU and disk con-
sume the majority of the power, with the RAM and video
systems consuming very little. However, under the SPEC
CPU suites, they show that RAM power can indeed ex-
ceed CPU power for highly memory-bound workloads.

Sagahyroon [8] perform an analysis similar to ours on
a handheld PC. They show significant consumption in
the display subsystems, particularly in backlight bright-
ness. Unlike our results, theirs suggest that the CPU,
and its operating frequency, is important to overall power
consumption. They also show significant dynamic power
consumption in the graphics subsystems.

7 Conclusions and Future Work

We performed a detailed analysis of energy consumption
of a smartphone, based on measurements of a physical
device. We showed how the different components of the
device contribute to overall power consumption. We de-
veloped a model of the energy consumption for differ-
ent usage scenarios, and showed how these translate into
overall energy consumption and battery life under a num-
ber of usage patterns.

The open nature of the Openmoko Neo Freerunner
smartphone is what allowed us to perform such a detailed
analysis and breakdown of its power consumption. This
is not possible to the same degree on a typical commer-
cial device.
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We have compared the detailed measurements with
a coarse-grained analysis of more modern phones, and
shown the results to be comparable.

The ultimate aim of this work is to enable a systematic
approach to improving power management of mobile de-
vices. We hope that by presenting this data, we will en-
able such future research, both in our lab as well as by
others.
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Abstract
Desktop computers are an attractive focus for energy sav-

ings as they are both a substantial component of enterprise en-
ergy consumption and are frequently unused or otherwise idle.
Indeed, past studies have shown large power savings if such
machines could simply be powered down when not in use. Un-
fortunately, while contemporary hardware supports low power
“sleep” modes of operation, their use in desktop PCs has been
curtailed by application expectations of “always on” network
connectivity. In this paper, we describe the architecture and
implementation of SleepServer, a system that enables hosts to
transition to such low-power sleep states while still maintain-
ing their application’s expected network presence using an on-
demand proxy server. Our approach is particularly informed
by our focus on practical deployment and thus SleepServer is
designed to be compatible with existing networking infrastruc-
ture, host hardware and operating systems. Using SleepServer
does not require any hardware additions to the end hosts them-
selves, and can be supported purely by additional software run-
ning on the systems under management. We detail results from
our experience in deploying SleepServer in a medium scale en-
terprise with a sample set of thirty machines instrumented to
provide accurate real-time measurements of energy consump-
tion. Our measurements show significant energy savings for
PCs ranging from 60%-80%, depending on their use model.

1 Introduction

“Turn off lights and equipment when they are not in
use.” This simple exhortation heads the list of the En-
vironmental Protection Agency’s “tips” for making busi-
nesses energy efficient. The reasons are straightforward.
In the U.S., commercial buildings consume over one
third of all electrical power [9] and, of these, lighting
and IT equipment are the largest contributors (roughly
25% and 20% respectively in office buildings accord-
ing to one 2005 study [10]). However, while it has been
relatively straightforward to address lighting use (either
through education or occupancy sensors), IT equipment
use has been far more resistant to change. Indeed, in a

recent empirical study across a number of buildings on
our campus, we measured that between 50% and 80% of
all electrical power consumption in a modern building is
attributable to IT equipment (primarily desktops) [4].

This finding can be unintuitive. First, the computer
equipment industry is working hard to reduce power con-
sumption at all levels. Thus, we expect desktop power
consumption to be decreasing, not increasing. Second,
modern hardware and operating systems possess mech-
anisms for entering low-power modes when not in use.
However, the overall impact of both has been limited
in practice. For example, while individual components
are indeed much more energy efficient, the capability per
desktop has also increased. Thus, while a typical desktop
system from 2002 might consume roughly 60-75 watts
when idle, the same is also true for today’s desktops.
Even machines designed and marketed as “low-power”
desktops, such as Dell’s Optiplex 960 SFF, routinely con-
sume 45 Watts when they are unused.

Compounding this issue is the fact that while today’s
machines can enter a low-power sleep state, it is com-
mon that they do not – even when idle. Here the prob-
lem is more subtle. Today’s low power mechanisms as-
sume that – like lighting – the absence of a user is a suf-
ficient condition for curtailing operation. While this is
largely true for disconnected laptop computers (indeed,
low-power suspend states are more frequently used for
such computers), it is not compatible with how users and
programs expect their connected desktops to function.
The success of the Internet in providing global connec-
tivity and hosting a broad array of services has implicitly
engendered an “always on” mode of computation. Ap-
plications expect to be able to poll Internet services and
download in the background, users expect stateful appli-
cations to act on their behalf in their absence, system ad-
ministrators expect to be able to reach desktops remotely
for maintenance and so on. Thus, there is implicitly a
high “opportunity cost” associated with not being able to
access and use computers on demand.
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Figure 1: Detailed breakdown of the various power consumers inside the CSE building at UC San Diego [4], for
a week in September 2009. Desktop computing equipment, which make up majority of the plug loads, and the IT
equipment in the server rooms account for almost 50% to 80% of the base load of this building.

However, we, as well as others, have observed that this
demand for “always on” behavior is distinct from truly
requiring an “always on” system. Indeed, it can be suffi-
cient to present the illusion that a desktop is always on —
suspending it when idle, proxying minor requests on its
behalf and dynamically waking it up if its power and state
are truly needed [3, 5, 16, 20]. Unfortunately, all of these
systems have imposed significant barriers to deployment
in implementing this illusion — either requiring signifi-
cant modifications to network interface hardware and in
some cases the host OS software. Such requirements not
only represent new expenses, but also require the active
participation of third parties (especially network silicon
merchants) over the full range of systems in broad use.
Thus, in spite of the significant potential for energy sav-
ings, we are unaware of any such systems that have been
fielded in practice or had practical impact on power con-
sumption in the enterprise sector.

In this paper, we focus on this deployment challenge.
Our goal is to provide the same power savings of prior
research prototypes, such as our own Somniloquy sys-
tem [3], yet do so within the confined rubric of exist-
ing commodity network equipment, host hardware, op-
erating systems and applications. Indeed, at the idea
level SleepServer is similar to Somniloquy, but from a
practical standpoint SleepServer addresses a different set
of challenges that arise directly from our experience in
deploying it in our department. The remainder of this
paper describes our two contributions: First, we moti-
vate and explain the architecture and implementation of
the SleepServer system, which transitions machines to
a sleep state when idle, while transparently maintain-
ing the “always-on” abstraction should their services be
needed, using a combination of virtual machine proxies
and VLANs. Second, we present the results of our pilot
SleepServer deployment across a heterogeneous sample
of thirty desktops in active use and monitored in real-
time by dedicated power meters, including an empirical
quantification of the (significant) power savings, an anal-

ysis of our system’s scalability and cost, and a descrip-
tion of our qualitative experience concerning user feed-
back and behavior modification.

2 Background

Over the last several decades, the pervasive adoption of
information technology has created a new demand for
electrical power. Partly due to this reason, the share of
U.S. electrical power consumed by commercial buildings
has grown 75% since 1980 (it is now over a third of all
electrical power consumed) [9]. In a modern office build-
ing, this impact can be particularly striking.

For example, Figure 1 shows the power consumption
of the CSE building at UC San Diego, broken down by
various functions: lighting, server computing, plug loads
and HVAC. While the overall electrical usage varies from
320KW to 580KW over the course of a year [4] — gen-
erally due to increases in air-handling and cooling — the
baseline load is highly stable. Indeed, computer servers
and desktop machines connected as plug loads account
for 50% (during peak hours on weekdays) to 80% (dur-
ing nights and weekends) of the baseline load and vary
by no more than 20KW over the course of the year.

Given their large consumption footprint, it is not sur-
prising that increasing the energy efficiency of IT equip-
ment has long been an active area of research. However,
most of these efforts fall into three distinct categories.
One approach focuses on reducing the active power con-
sumption of individual computing devices by utilizing
lower power components [11] or using them more effi-
ciently [12, 21]. The second class of energy saving tech-
niques, especially popular in data centers, look at migrat-
ing work between machines — either to consolidate onto
a smaller number of servers [8] (e.g., using virtual ma-
chines [19]) or to arbitrage advantageous energy prices in
different geographic zones [23]. Finally, the third class
of energy management techniques consider opportunis-
tically duty-cycling subsystems, such as wireless radios

[2, 22, 24], networking infrastructure [14, 21] or even
entire platforms[3, 18, 25], during periods of idleness or
low use. SleepServer falls into this third category of en-
ergy management approaches.

The duty-cycling technique exploits the capability of
modern hardware to enter low-power states while main-
taining transient state. For example, modern desktops
support the ACPI S3 (Sleep/Standby) state, which can
reduce power consumption by 95% or more [1]. One
approach to using this capability, embodied in modern
versions of most operating systems, is to simply place
the system in a low-power state after it has been idle for
some period of time. Unfortunately, as mentioned earlier,
this conflicts with the behavior of users and software that
implicitly assume an “always on” abstraction.

To manage this problem, today’s network interfaces
(NIC) implement features, such as “Wake-on-Lan” [17],
that allow sleeping systems to be awakened upon receiv-
ing network traffic (frequently a special packet). While
this mechanism is quite important, it does not address
the key question of when a machine should be woken. If
this mechanism is activated for every packet then energy
savings quickly disappear. Conversely, if its use is too re-
stricted then the “always on” abstraction is lost and users
lose the ability to freely access their machines. Conse-
quently, a gap exists between the abstraction levels over
which WoL works and the level at which its operation is
useful in real-life systems.

Some recent variants have attempted to address these
concerns through proprietary hardware and software sup-
port. For example, Intel Remote Wake allows the “wake
up” capability to be integrated into server software so,
for example, a VoIP server could be enabled to wake one
of its client machines [15]. Apple’s Wake-on-Demand
takes a similar approach, allowing client machines us-
ing Bonjour advertised services to be “woken” when ac-
cessed via Apple networking hardware (WiFi APs) [6].
While neither approach is general, they reflect precisely
the need to encode some dynamic triggering policy to
preserve application and user transparency.

To generalize this policy, several systems incorporate
additional low-power processors into the network inter-
face itself[3, 25]. Using this approach, requests from the
network can be parsed and evaluated even when the rest
of the system itself is in a low-power sleep state. More-
over, due to their generality these low-power processors
can even process requests on behalf of the sleeping sys-
tem instead of waking it, thus maximizing the amount
of power saved. Unfortunately, such approaches face a
significant deployment barrier as they require non-trivial
changes to network interface hardware.

Finally, a set of projects [5, 16, 20] have explored
the notion of implementing this ”always on” function-
ality via network proxies that maintain a limited network

presence on behalf of sleeping PCs. Nedevschi et al.[20]
provide an in-depth look at network traffic to evaluate the
design space of a network proxy, while the Network Con-
nection Proxy (NCP) [16] proposes modifications to the
socket layer for keeping TCP connection alive through
sleep and resume transitions. SleepServer is most sim-
ilar in spirit to these efforts, but is distinguished from
prior work both in offering an actual implementation and
not requiring changes to existing hardware, software or
networking infrastructure. We argue that these are nec-
essary requirements for any system to see practical use
in the enterprise setting.

3 SleepServer: Architecture

We had several goals in mind when we started to design a
network-proxy, especially for an enterprise setting. First,
the proxy must be able to maintain the network pres-
ence of any host on the local network while maintaining
complete transparency to other end hosts in the network
and to network infrastructure elements such as switches
and routers. Second, since the proxies themselves add to
the total power consumption, they must be highly scal-
able and therefore be able to service hundreds of hosts at
any given time for maximum energy savings. Third, the
proxy should be able to provide isolation when it is ser-
vicing individual hosts while providing mechanisms to
scale resource allocation based on the proxying demands
of individual hosts. Fourth, the proxy must address man-
agement aspects, such as providing mechanisms to en-
able and disable the proxying functionality for hosts dy-
namically, viewing the status of supported hosts in the
system, and maintaining security. Fifth, the proxy should
be able to support a heterogeneous environment with dif-
ferent classes of machines running different operating
systems. Lastly, we wanted to achieve all of the above
goals purely in software without requiring any additional
hardware to the individual end hosts or any changes to
the networking infrastructure.

Based on these design goals, our SleepServer—
network-proxy architecture is illustrated in Figure 2.
In an enterprise LAN environment, one or more
SleepServers (SSR) can be added in addition to the
host computers (H) proxied by the SleepServer. These
SleepServer machines have a presence on the same net-
work segments or subnets as the proxied hosts, i.e.
they are on the same Layer-2 broadcast domain. A
SleepServer can proxy for machines on different sub-
nets using existing Virtual LAN (VLAN) support that is
common to commodity routers and switches. Of course,
there can be multiple SleepServers, each servicing only
a particular VLAN(s) for security isolation if required by
enterprise policy.

The various components of a SleepServer are shown
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Figure 2: An example deployment of Sleep Servers in
an enterprise setting. Since there are many more hosts
in Subnet A there may be more than one SleepServer
(SS1 and SS2) to handle the load while there is only one
SleepServer (SS3) needed in Subnet B with fewer hosts.

in Figure 3. As shown in the figure, access to the
underlying hardware is by a resource multiplexer, which
can be either an operating system or a hypervisor/Virtual
Machine Monitor (VMM) such a XEN [7]. For each
host H that the SleepServer is proxying for, there is a
corresponding Image I that is instantiated. This image is
responsible for maintaining the network presence of the
host when it is in a sleep state. Although it is possible
to build a host image as a stand alone process that can
respond to the various network protocols, we chose a
VMM-based architecture for simplicity and expediency.
Since VMs are typically based on existing operating
systems, all the standard protocols (e.g. ARP, ICMP)
are already supported while support for others can be
easily added. In contrast a process based approach
would require adding support for the myriad of standard
protocols. Furthermore, it is unclear how a process
oriented approach would handle stateful applications
that need application specific code (described in Section
3.2). VMMs also already have existing support for
isolation between host images, for resource allocation
and sharing, and for managing security and networking
between images. While VMs may use more resources
than a standalone process, our results show that the VM
solution offers sufficient scalability for our purposes
without requiring significant additional engineering. In
addition to the host images, the SleepServer supports
a privileged controller domain that is responsible for
various SleepServer functions. This SSR-controller
manages the creation and configuration of individual
host images, communication between the SSR-Client
software and the host images, and resource allocation
and sharing among the host images.
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Figure 3: A example SleepServer serving a collection of
host PCs (H1, ...H99). All resource sharing and access
to the hardware is mediated by the SleepServer controller
software module running on the SleepServer.

Each host PC using SleepServer has a software com-
ponent installed (SSR-Client) that communicates with
the SSR-Controller. When a particular host is enabled
for use with a SleepServer, the SSR-Client first connects
to the SleepServer machine in its network subnet, and
specifies its network parameters such as its MAC and
IP address and its firewall configurations. In addition,
the SSR-Client sends the state of the running applica-
tions on the host, and any open TCP or UDP ports to the
SSR-Controller. The information sent by the host is re-
ceived by the SSR-Controller which then creates an ‘im-
age’ of that particular host using the specified network
parameters. The network parameters of this image are
configured to mimic those of the particular host. The
base firewall configuration of this image can be identical
to the one on the host, or can be made more restrictive.
When the host is asleep, its image can respond to incom-
ing packets on its behalf. In case an application request is
received that requires the host itself to respond the SSR-
Controller wakes up the host and disables its image on
the SleepServer.

3.1 Handling State Transitions

The basic operation for a SleepServer is as follows. Be-
fore a host PC transitions to a low power mode such as
sleep, the SSR-Client software running on it sends a mes-
sage to the SSR-controller with the state transition in-
formation. The controller then enables the correspond-
ing Image for that host. Additionally, in order to have
packets re-routed to the SleepServer and the Image of
the host, the controller needs to reconfigure the Layer-2
switches to re-learn the network topology. To do this in a
seamless way, without requiring any special functional-

ity provided by only high-end switches, the SleepServer
uses a combination of gratuitous ARPs and packets sent
to the gateway in the subnet. Since these packets are sent
by the Images of the host on the SleepServer, the Layer-2
switches learn the MAC address of the Image and subse-
quent packets for that host are sent to the switch ports
that the SleepServer is connected to.

Similarly, when the host transitions out of a low power
mode, the SSR-Client traps this event and sends a mes-
sage to the SSR-Controller notifying it of the transition.
When the SSR-Controller gets this message it disables
the host image, thus stopping if from responding on the
behalf of the host. The SSR-Client on the host also sends
gratuitous ARP messages and packets to the subnet gate-
way which cause switches in the network infrastructure
to learn the MAC address and forward any subsequent
packets meant for the the host to the switch port that the
host is connected to.

3.2 Host Images on the SleepServer

The host-images on the SleepServer are responsible for
maintaining full network presence on behalf of the host
when they are asleep. In principle, these host-images
have their own TCP/IP stack, memory, processor re-
sources and persistent storage. The host images do not
need to run the same OS as the host computer. The im-
age of a particular host is configured with the identical
network configuration as the host itself (IP, MAC ad-
dress) and it can essentially masquerade as the host and
respond to network events when the host is asleep. How-
ever, processor and memory resources allocated to an im-
age are generally much less than those available on the
host machine itself, as these host images are configured
to only maintain network presence and any application
stubs that may be necessary to run (described later in this
section). For example, a host image on the SleepServer
may only have 64MB of memory allocated, while the
actual host may have several Gigabytes of memory. Fur-
thermore, shared resources such as the processor and net-
work bandwidth allocation of the images are multiplexed
between several other images on the same SleepServer,
providing scalability and the ability to host hundreds of
images on the same SleepServer.

Supporting Stateless Applications: Stateless appli-
cations do not maintain long running sessions or have
a persistent connection open. To support these appli-
cations, the image responds appropriately to connection
requests by doing one of two actions. First, the image
can respond on behalf of the host for certain requests
by sending an appropriate response, such as replying to
ICMP requests or responding to ARP queries. Recall that
since the network parameters of the image are the same
as the host, they appear identical to the other hosts on

the network. Second, for incoming requests that require
the resources of the host itself, for example an incoming
SSH connection to the host or an SMB request for data
stored on the host computer, the image is disabled and
the controller is notified. To ensure that the original con-
nection request is handled appropriately, it is essential
that the image of the host does not respond to it. Instead
we rely on the fact that most applications are based on
protocols, such as TCP, that normally retry connection
requests in case of packet loss. Applications based on
unreliable delivery protocols such as UDP usually han-
dle packet loss at the application layer by retransmitting
requests. Applications that are essentially stateless and
connect to well defined ports, such as remote access re-
quests using RDP (TCP Port 3389) or SSH (TCP Port
22), incoming SMB file sharing requests(TCP port 445),
and requests to a web server (TCP Port 80), can be sup-
ported using this mechanism.

On receipt of the notification from a host image, the
controller automatically generates a wakeup packet to
wake up the host. This can be done using either Wake-
on-LAN (WoL)[17], which can be found on most PCs,
or by utilizing newer technologies like Intel AMT. WoL
allows PCs to be woken up on receipt of several differ-
ent kinds of packets. ’Wake on Directed Packets’ and
’Wake-on-Any Packet’ unfortunately cause too many
wake ups since even broadcast traffic causes the PC to
wake up. Instead, we use the “magic-packet” variant of
Wake-on-LAN which can be sent by a SleepServer in the
subnet to wake up the host from a sleep state.

Supporting Stateful Applications: Stateful applica-
tions maintain continuous state and send periodic keep
alives or keep connections open. For these applications
and protocols, capturing application semantics is essen-
tial in order to proxy for them by the image of the host on
the SleepServer. To support these stateful application we
require application specific code to be running on the im-
ages on the SleepServer. This is in contrast to the state-
less applications mentioned in the previous section that
do not require any application specific code on the im-
ages. A majority of these stateful applications run in the
background, and can be active even when the user is not
present in front of the system. Examples include main-
taining presence on IM networks, long running and unat-
tended web downloads, participating on P2P networks
such as BitTorrent, and advertising available services and
content using protocols such as Bonjour and uPNP.

To support these applications we take an approach
similar to Somniloquy[3] where we run reduced func-
tionality variants of the main applications, called
‘application-stubs’. These stubs have significantly re-
duced processor and memory requirements as compared
to the original applications running on the hosts. The key
idea in developing a stub is to remove all the code com-
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ponents of the application that are not needed on the host
image, such as the user interface. Similar to Somnilo-
quy, these stubs can be created by either writing them
from scratch or by removing components of an existing
application. In some cases console versions of the same
applications are already available, such as the pidgin
IM client and its console version called finch, which
can be used as a starting point.

Although the process to build stubs is similar to that
used in Somniloquy, there are several key differences
that make it significantly simpler in the SleepServer ar-
chitecture. First, because SleepServer can be run on
any x86 based server computer, the host images them-
selves can also run on this industry standard architec-
ture. Therefore, porting applications and building stubs
for the SleepServer images is as simple as building an
application for a regular computer with all of the stan-
dard libraries and packages available. In contrast, Som-
niloquy used an additional piece of hardware, with a dif-
ferent processor architecture, and required cross compil-
ing applications. Second, the host images running on a
SleepServer are based on software VMs, and as a result
the amount of resources allocated to each host image can
be dynamically changed. For example, the image of a
particular host performing heavy downloads would have
more memory and processor resources allocated to it,
while the image of another host that is just replying to
ICMP echo requests would have less. This is not pos-
sible with Somniloquy as each host PC has a dedicated
piece of Somniloquy hardware physically attached to it,
each with a fixed amount of resources.

In some cases it becomes necessary to transfer data be-
tween the host and its image running on the SleepServer.
For example, consider a download stub that continues a
long running download on behalf of the host when it is
asleep. Once the host wakes up, the downloaded data
needs to be transferred to the host. In the SleepServer ar-
chitecture this state and data transfer can be handled by
storing the data locally in the persistent storage provided
to each image and then later sending it to the host over
the network when the host is awake. Another option is to
set up a network storage for each host, which can even be
hosted by the SleepServer itself. The host and its image
can then access the same unified storage to store data that
is needed for SleepServer operation.

3.3 Scalability and Resource Sharing

Scalability, in terms of the number of hosts supported
simultaneously on a single SleepServer, is an impor-
tant design goal for both cost and energy savings. To
keep the cost of the SleepServer low, we want to base
the SleepServer on commodity components and have it
support a large number of hosts. Therefore, we ensure

that the individual images start with the smallest possible
footprint, both in terms of disk space used and the num-
ber of processes they create, in order to minimize proces-
sor and memory usage. Furthermore, each image is fur-
ther customizable such that only the application stubs or
software modules that are needed by each host are loaded
onto their respective images.

Beyond CPU usage, the potential scalability bottle-
necks lie in the memory usage and network bandwidth
requirements. Currently we allocate memory statically
to the host images and only have as many images con-
currently running as can fit in the main memory of
the SleepServer. Given that our images start out with
very modest memory allocations (64MB or less), a
SleepServer with 32GB of memory can support over
500 simultaneously executing host images. Furthermore,
since the host images are based on Virtual Machines
(VM), we can employ techniques such as Difference
Engine [13] which exploits memory compression tech-
niques to significantly reduce the memory use of VMs.
For multiplexing access to the processor and the network
interfaces, we rely on the resource sharing provided by
the underlying VMM.

3.4 Management in Enterprises

Security and manageability are important considerations
in enterprises. System administrators are reluctant to add
and support technology solutions that add administrative
costs. We have implemented management modules that
allow administrators to view in real time a ‘heart-beat’
of the systems supported on SleepServer. Since all state
transitions such as hosts going to sleep and resuming are
logged by the SleepServer controller, it can also provide
users of those particular PCs feedback on their energy
usage in real time and their estimated energy savings.
SleepServer administrators can check the health of the
host machines and see if they are transitioning in and out
of sleep modes successfully. SleepServer also adds to
the observability of the state of machines. For example,
it is possible to tell the difference between a computer
in a sleep state against one that has crashed. Through
the centralized management interface, administrators can
also set up host specific policies, such as waking up some
hosts at designated times, and perhaps even staggering
wake ups to minimize spikes in energy usage.

Similarly, failure detection and recovery are impor-
tant, such as handling the case when a SleepServer goes
down. Note that under all circumstances the hosts that
are sleeping can still be woken up normally by a user ac-
tion such as a key press on the keyboard. Hosts that are
awake and were not being serviced by the SleepServer
are not affected by a SleepServer failure, while hosts
that were asleep will lose network connectivity. Fur-

thermore, if the SleepServer is unavailable any hosts
that want to transition to sleep and maintain their net-
work presence and availability can no longer do so. The
SleepServer architecture handles these failure cases us-
ing several mechanisms. First, for a temporary failure
or an intentional reboot after updates the SSR-controller
re-creates the state of the various hosts from its logs and
restarts all the host images to their original conditions.
Second, multiple SleepServers can exist and proxy for
a particular host. The different SSR-Controllers in this
case communicate with each other to provide redundancy
and load balancing. Finally, hosts can discover and check
for the availability of their SleepServer and in case the
SleepServer is not responding, they can look for alter-
natives. If no SleepServer is available the SSR-Client
running on the host alerts the user about the lack of an
appropriate SleepServer in the network and can let the
user decide if they still want to transition to sleep.

Security and Isolation of the Host images: Address-
ing the security implications of SleepServer is impor-
tant since multiple host images are hosted on the same
SleepServer. We need to ensure that the host images do
not increase the attack surface of the hosts within an en-
terprise while keeping them safe from outside attackers.
Furthermore, the individual images should not be able to
receive and intercept each others network traffic.

While we do not currently have a comprehensive se-
curity evaluation, there are several features and safe-
guards in our SleepServer architecture that address se-
curity. First, since the SleepServer is based on a VMM
architecture the SSR-Controller domain runs at a higher
privilege level than the individual images. The SSR-
Controller therefore has the responsibility to add rules
to route traffic to the appropriate image. As such, only
the packets that are meant for a particular host image are
send to it, in addition to broadcast and multicast traffic.
Second, the host images are not accessible by users of the
host PCs directly. Instead, all communication between
the SSR-Client software and the host image goes through
the SSR-Controller. Third, the firewalls on the host im-
ages is configured to be very restrictive and opened only
to the ports for which the host and its application stubs
require. Note that the firewall on the host images can
be configured to be even more restrictive than that of the
actual host. Fourth, the host images only communicate
with the SleepServer controller directly to get configura-
tion changes and can be patched by the controller. Fur-
thermore, we enable only the essential services and pro-
grams in the host images, and as such the attack surface is
relatively narrow. Finally, recall that on a valid incoming
connection request the particular host is immediately wo-
ken up from sleep by the controller and its image stops
responding. In this case, the security implications are
identical to the case where the host remained awake.

4 Implementation

We have implemented SleepServer on a commodity
server computer and are currently serving over thirty
desktop users on it. In this section we outline our imple-
mentation of SleepServer, specifically highlighting how
we support the design goals mentioned earlier in Section
3. There are three primary software components that are
required. The first is the SSR-Client software that runs
on the host computer. The second component is the SSR-
Controller which runs on a SleepServer computer. The
third component are the host images themselves, each
supporting a host PC using SleepServer.

4.1 SS-Client Software for Hosts

SleepServer currently supports several common operat-
ing systems, such as Microsoft Windows (XP, Vista and
7) and Linux (tested on Ubuntu). Windows based operat-
ing systems have standardized power management inter-
faces but different distributions of Linux can have differ-
ent interfaces to handle power management and therefore
require different client software.

While SleepServer can support multiple low-power
states, in our evaluation we use only the standard ‘sleep’
state or suspend-to-RAM (ACPI State S3) across all ma-
chines [1]. In some cases this requires changing the
BIOS settings of the host to enable the S3 state. Since we
are leveraging Wake-on-LAN functionality, and specifi-
cally ‘magic packets’, we require the appropriate options
to be enabled in the BIOS, the device drivers and the
operating system. Most PCs manufactured in the last
decade support S3 and Wake-on-LAN, although these
modes often need to be enabled explicitly.

The SSR-Client software on the host computers is
responsible for providing mechanisms to detect power
management events, such as transitions in and out of
sleep modes, and transfer state information to the SSR-
Controller such as firewall configuration, network infor-
mation (IP, MAC addresses), applications and events that
the host wants to be notified for.

Note that modern operating systems already have user-
configurable power management idle timers that use
events, such as keyboard, mouse, and CPU activity to
determine when the host is inactive and able to sleep.
SleepServer users can use the same interface to configure
their idle preferences. It is important to note that almost
all of the users in our deployment had these power man-
agement timers disabled before using SleepServer since
they wanted to be able to access their PCs at all times. In
our evaluation we compare the additional energy savings
gained by using these automatic idle timeouts, as com-
pared to having no automatic idle timeouts and instead
asking users to manually put their machines to sleep.



292 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 293

Network Subnet A Network Subnet B

Host H2 Host H3Host H1  Host H198  Host H199 Host H200
MAC Address = MAC1 

IP Address = IP1  (MAC2, IP2) (MAC3, IP3) (MAC198, IP198) (MAC199, IP199) (MAC200, IP200)

Switch
Switch

.  .  .  .  
Switch

Sleep Server 
(SSR)

Virtual Switch
Image VM1  Image VM1 (for Host H1)
(for Host H1)

MAC Address = MAC1 
IP Address = IP1

VM2 (for H2)

(MAC2 IP2 VLAN A)

.  .  . 

VM200 (for H200)

(MAC200, IP200,)

Packet Analyzer

Firewall Module

Application Stubs

Hardware (Processor, Memory, Network Interfaces, …)

XEN VMM (Hypervisor)

Connected to Virtual LAN A 

Sleep‐Server Controller (Domain 0) 

(MAC2, IP2, VLAN‐A) VLAN‐B

MAC1, IP1
VLAN‐A

Authentication

. . . . . . . . 

Hardware (Processor, Memory, Network Interfaces, …) 

Figure 4: SleepServer implementation based on XEN.

Windows Platforms: The SSR-Client for Microsoft
Windows is comprised of several programs and services.
The first component is an initial setup program that is
used to read the firewall configuration of the host PC
as well as its network configurations (IP address, Host
name, MAC address) and send this information to the
SSR-Controller. Anytime these parameters change, this
program sends an update to the SSR-Controller. The
second component is a ‘PowerNotifier’ that is responsi-
ble for updating the SSR-Controller of any change in the
power state of the host. Since there are various ways a
user in Windows can transition to sleep modes, the Pow-
erNotifier service installs hooks directly into the Win-
dows Power Management Interface (WMI) so that it is
notified on any power state changes. When a suspend or
resume from sleep event occurs the PowerNotifier com-
ponent sends a message to the SSR-Controller.

Linux Platforms: Similar to our implementation for
Windows platforms, we have several components that
run on the Linux host. The Ubuntu distribution al-
lows access to the power management events through
the ACPI subsystem and our PowerNotifier service for
Linux is installed by placing appropriate hooks into this
ACPI framework. PowerNotifier is called on both sleep
and resume from sleep events and is responsible for
communicating with the SSR-Controller. Additionally,
we use standard Linux tools such as iptables and
ifconfig to get network and firewall configurations.

4.2 SleepServer

We have implemented the SleepServer on a commod-
ity Dell PowerEdge PE2950 server, which is config-
ured with two quad-core Intel XEON 5550 processors,
32GB of RAM, a 1TB SATA disk drive and dual gi-
gabit interfaces. Figure 4 illustrates the logical organi-
zation of our SleepServer prototype, and the host im-

ages running on it. The SleepServer runs a XEN 4.0
[7] hypervisor/VMM (using the 2.6.32 pvops kernel)
and the SSR-Controller (domain0 in XEN) is based on
Ubuntu 9.10. We have modified the XEN utilities to
allow creation of customized SleepServer Virtual Ma-
chines (VM) (domU’s in XEN) representing host im-
ages based on supplied network parameters such as Host
name, IP address, MAC address, etc. We configured the
SSR-Controller to have several virtual interfaces that al-
low it to be placed on all of the VLANs (eight different
subnets) in the CSE department network at UCSD. We
also configured the department managed switches so that
traffic on all these VLANs is forwarded to the switch port
that the SleepServer is connected to. The SSR-Controller
then sets up software network bridges automatically for
each configured VLAN. We initialize the VMs to only
have access to those VLANs that the host they represent
are originally on, with identical network parameters (IP,
MAC address etc) as the hosts. For example, image VM1
for Host H1 can only access VLAN A and will have the
same IP and MAC addresses as the host H1 (Figure 4).
Additionally, the SSR-Controller and the host VMs com-
municate over a separate private network.

The SSR-Controller listens for messages from the
hosts on several well defined UDP and TCP ports. Re-
call that our SSR-Client software running on the hosts
automatically sends state transition messages to the SSR-
Controller. On receipt of these messages the SSR-
Controller enables (if the host is going to sleep) or dis-
ables (if the host is resuming from sleep) the VM for
the appropriate host. The SSR-Controller is also re-
sponsible for reconfiguring the VM for a particular host
when the SSR-Client sends an update, such as adding
or deleting new applications. Additionally, the SSR-
Controller maintains a log of all sleep/resume events re-
ceived. These recorded events are used by a separate
status module which allows users to view the status of
their PCs. This log is also key in calculating the duty-
cycle of all the hosts served on the SleepServer, and can
provide estimates of energy savings given the average
power draw of the machine in sleep and active modes.
The SSR-Controller has a wake-up module that is used
to generate wakeup packets using Wake-on-LAN to re-
sume a sleeping host when needed. Note that since both
the SSR-Controller and the wakeup-module have a pres-
ence on all the VLAN’s, they can send Wake-on-LAN
magic packets on any department subnet (same layer-2
domain) without any router configuration. Finally, the
SSR-Controller has a performance monitor module that
periodically measures statistics such as processor usage,
network throughput, and free memory using hooks pro-
vided by XEN. Feedback from this module can be used
by the SSR-Controller to wakeup some hosts and dis-
able their corresponding VM images in case the load

on the SleepServer exceeds capacity. In case of mul-
tiple SleepServers on the same subnet, individual SSR-
Controllers communicate with each other to provide load
balancing and redundancy.

Although we have implemented SleepServer on a sep-
arate server machine, it is feasible to have a scenario
where the SleepServer functionality can be supported on
enterprise PCs themselves. A subset of enterprise PCs
can run a hypervisor and the SSR-controller and can host
the images of other PCs that are asleep thus proxying for
them. However, there may be other implications of this
approach that we have not fully evaluated such as main-
taining security, resource allocation and isolation.

4.3 Host VM Image Image

The host images running on the SleepServer are XEN
VMs based on the standard x86 architecture executing a
stripped down version of Ubuntu Linux. After installa-
tion the VMs take up less than 300MB out of their ini-
tially allocated 1GB disk image. Given that only the es-
sential services are run inside the VM, our initial memory
allocation of 64MB is more that sufficient with most of
the memory free (>40MB) after boot up.

Each VM is configured to have several software mod-
ules to support SleepServer operation, as illustrated in
Figure 4. Each VM has a full TCP/IP stack and can
therefore respond on behalf of the host to packets such
as ICMP echo-requests or ARP queries. The VMs have a
firewall based on the iptables package which is con-
figured to be identical to the host firewall by the SSR-
Controller. The ‘Packet-Analyzer’ (PA) module is used
to support stateless applications such as incoming RDP
or SSH requests. The PA module is based on the BSD
raw socket interface and is used to parse incoming pack-
ets to look for matches on one or more fields of packet
headers, such as incoming requests on particular TCP
and UDP ports. In case the incoming packet matches
one of the application ports, the firewall is configured
to not send a response to the initial request. Instead the
PA sends a message to the SSR-Controller and disables
the network interface of the VM. Upon receipt of this
message, the SSR-Controller uses the wakeup module
to send a wakeup packet to the host as described ear-
lier that relies on retries inherent in TCP. When the host
resumes, it receives one of the retransmits and the ses-
sion can be established. For stateful applications we have
implemented application stubs similar to those proposed
in Somniloquy [3]. We currently support several appli-
cation stubs namely a multi-protocol instant messaging
stub, a background web download stub and a BitTorrent
stub that allows participation in P2P networks. Given
the x86 compatible architecture of the VMs, and the
availability of standard libraries and tools, implementing

these stubs is significantly easier than on the specialized
Somniloquy hardware device.

In a way, supporting a large number of stateful appli-
cations may be considered a barrier to deployment since
each application requires its own corresponding stub. In
our experience with deploying SleepServer, we did not
observe this to be an issue, especially in enterprise set-
tings, for several reasons. First, a significant portion of
users can be supported without requiring stubs, as long as
seamless connectivity (responding to ARPs, ICMP) and
user selectable wakeup on incoming connections is han-
dled (e.g. SSH, RDP, SMB, backups and updates). This
observation is in fact similar to the findings of previous
measurement based studies [5, 20] in this space. The rest
of the users in our deployment requested support for a
relatively small number of common services (and hence
stubs). The “fall-back” position of waking up the PC
provides a fail-safe default for those applications or pro-
tocols that we do not yet proxy. Indeed, additional stubs
will only improve upon the energy results we report.

4.4 Discussion

An emerging use model in enterprising computing is
based around Virtualized Desktops environments. The
common scenario is when all desktops reside on a cen-
tralized server and users utilize thin clients to connect
over the network to their desktops. In this setting
we believe the lightweight proxying functionality that
SleepServer offers can potentially increase the density of
inactive desktops, thus improving scalability. Another
scenario is based on the assumption that each Desktop
PC runs a Hypervisor itself (e.g. XEN or VMware) and
the actual users ‘virtual desktop’ runs as a VM on top of
the VMM/hypervisor. When the user is in front of his
actual PC, his virtual desktop runs on the local VMM
and when the user steps away or logs out the entire VM
can be migrated to a central server, or pool of servers.
The advantage of this architecture over SleepServer is
that no application stubs are needed since entire VMs
are migrated. However, a potential drawback of this ap-
proach is its limited scalability since the amount of state
that needs to be transferred for each virtual desktop can
be quite large. For example, the memory footprint alone
may be up to several gigabytes based on the hardware
configuration of the host PC and the entire OS state, in-
cluding all applications. is transferred and has to be kept
running even if the user only wants a small subset of the
functionality when they are away. Furthermore, the lo-
cal persistent storage may also need to be migrated. De-
spite using techniques like memory ballooning and de-
duplicating memory, the scalability of a virtual desktop
based infrastructure will most likely be significantly lim-
ited than that of SleepServer which uses very lightweight
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Machine Type Year OS Average Power Average Power Time to Resume
in S3 when on (idle) from S3 (network)

1 Dimension 4500 2002 WinXP 2.5 Watts 75 Watts 29 (+/- 4.1) seconds
2 Dimension 4500 2002 WinXP 2.4 Watts 61 Watts 28 (+/- 1.6) seconds
4 Dimension 4600 2004 WinXP 4.4 Watts 76 Watts 29 (+/- 3.0) seconds
4b (Same as above - Dual Boot) 2004 Ubuntu 4.6 Watts 74 Watts 12 (+/- 1.8) seconds
5 Dimension 4700 2005 WinXP 2.2 Watts 111 Watts 30 (+/- 10.0s) seconds
6 Optiplex SX260 Small Form Factor 2004 Ubuntu 5.1 Watts 67 Watts 10 (+/- 7.44) seconds

(Desktop + SSH/CVS Server)
7 Optiplex GX280 Small Form Factor 2005 WinXP 3 Watts 86 Watts 25 (+/- 5.3) seconds
8 Optiplex 755 2007 Ubuntu 2.8 Watts 84 Watts 14 (+/- 2) seconds

(Desktop, SSH + file server)
9 Optiplex 745 2007 Vista 3.3 Watts 107 Watts 8 (+/- 1.4) seconds
10 DELL XPS 720 2008 Win XP 4.2 Watts 314 Watts 9 (+/- 7.7) seconds

(Drives LCD Display + Webserver)
11 Optiplex 960 Small Form Factor 2009 Win 7 2.3 Watts 45 Watts 12 (+/- 5) seconds

Table 1: Power consumption for an example set of PCs in our deployment. Resume from S3 times are much better
for newer machines and operating systems. Base power consumption of newer PCs still remains high and power
consumed in S3 ranges from 1/20 to 1/75 of that in idle mode.

VM images which can be as low as 32MB in footprint.
Going forward, we do believe that Virtual Desktop based
solutions and the significantly lightweight proxying ap-
proach offered by SleepServer are synergistic and both
may be useful based on specific use cases. For exam-
ple, a SleepServer can potentially host full virtual desk-
tops when particular stubs may not be available. We
also believe that any investments that application ven-
dors make into building stubs for their applications will
be useful for both a lightweight VM based approach
taken by SleepServers, as well as potential hardware so-
lutions that add proxying functionality to network inter-
face hardware[3, 16].

5 Evaluation

We first present micro benchmarks highlighting our ex-
perience with deploying SleepServers to various hosts in
our department. We then evaluate the SleepServer it-
self, benchmarking its power consumption under vari-
ous loads and measuring the latencies for management
tasks such as creating, starting and shutting down new
host images. We also present experimental data about
the scalability of SleepServers demonstrating that we
can easily scale to serve several hundred hosts on a sin-
gle SleepServer machine. Finally, we present data that
shows the energy savings of the various host PCs in our
deployment.

5.1 Micro Benchmarks

We have deployed SleepServer on a variety of host PCs
in our department building. In total we have over thirty

desktop PC users including a couple of laptop users par-
ticipating in our SleepServer deployment. The users
range from faculty and students to full time staff workers
to give us a mix of use-scenarios. Also, the mix of ma-
chines range from PCs that are well over 7 years old to
those that are fairly new. The operating systems running
on these PC range from Linux (Ubuntu) to all versions of
Windows, including numerous Windows XP machines.

Table 1 shows the distribution of some representative
PCs that are part of our SleepServer deployment. Our
goal in benchmarking these systems was to see whether
we could observe any trends in the design of PCs and op-
erating systems. We benchmarked these systems based
on power consumption in various states of operation,
and the latency of these systems when they resume from
sleep. We only show the latency measurements to resume
from sleep, since latency to go to sleep is less impor-
tant from a usability standpoint. We have instrumented
all the machines in our deployment to provide real time
energy measurements using a commercial energy meter
from WattsUP devices1. We have also made this energy
data available to SleepServer users to view over the web
using an ‘Energy-Dashboard’ interface that we have de-
signed [4]. In addition to viewing their power usage in
real time, users can also look at long term trends such as
comparing their usage over different time periods.

Our instrumentation of the thirty desktop computers in
our SleepServer deployment using energy meters gives
us long term power use data, allowing us to measure and
quantify the impact of using SleepServers under differ-
ent usage scenarios. We observed that most users in our
deployment did not put their machines to sleep before

1www.wattsupmeters.com

they started to use SleepServers, as measured by over
five months of power usage data by these machines.

Table 1 reports the power consumption and latency
values for an example set of SleepServer PCs. We do
not include the power consumed by LCD displays con-
nected to these PC, since most of them are configured
to go into sleep modes on inactivity. Several interest-
ing observations can be made from the table. First, the
power consumption in sleep (S3) mode for most of the
PCs is significantly less than when they are in idle mode.
This is even true across operating systems (line 4 and 4a
for the same PC in the table). Second, the power con-
sumption of PCs has not come down significantly dur-
ing the last 7-8 years, as idle power for desktops remains
around 80 Watts for even new PCs. Third, the latency to
resume from sleep varies significantly across platforms.
We measure the latency to resume by measuring the time
from a wakeup event, such as a key press on the key-
board, to the time it takes for the network stack on the
host PC to respond to an incoming ICMP packet. Al-
though the display and logon screens on the host may
come up earlier, we believe measuring the latency for a
network response is a better metric to use. Table 1 shows
that in some cases resume latencies are up to 30-40s (line
5), with a large standard deviation in time to resume.
We also notice that the resume time on different oper-
ating systems (line 4 and 4a) on the same hardware plat-
form are significantly different. We believe this is mostly
due to the different applications, devices and drivers that
are installed on PCs over time and can cause delays in
startup. Importantly, as we can see from the table, re-
sume times are getting significantly better as we move
to more recent hardware (2007 and newer) and modern
operating systems.

5.2 Scalability of SleepServer

The hardware and software configuration of our
SleepServer prototype was presented earlier in Section
4. We measured the power consumption of our proto-
type under various operating conditions using a WattsUP
device. We also measured the latency to create a new
SleepServer image for a particular host, and the time to
start up an existing VM and shut it down. These laten-
cies are important to consider for dynamically creating
new VMs when new hosts are added to a SleepServer.

The latency and the power consumption values are
shown in Table 2. The latency to create a new host im-
age from scratch is on the order of two minutes. This in-
cludes creating the image, installing the SleepServer sup-
porting software, configuring the SleepServer controller
and updating all packages and security updates. To re-
duce this latency, the SleepServer allows creation of a
pool of VMs, which can be updated with the network

SleepServer function Time
(seconds)

1 Creating a new host image 120s (+/- 10)
2 Starting up a host image 11s (+/- 1)
3 Shutting down a new host image 12s (+/- 1)

Sleep-Server - State Power
(Watts)

4 Idle State, no host images running 213 W
5 Hosting 200 idle host images 221 W
6 Download + Write to Disk 255 W
7 CPU benchmark, (100% CPU util.) 308 W

Table 2: Benchmarking the Sleep-Server: Latency and
Power Measurements

configuration of a host. The time to start up an existing
VM and shut it down is around ten seconds. To reduce
the startup latency even more we have enabled only the
essential services in the VMs. This latency is important,
since it means that given the transition times presented
earlier in Table 1, it is possible to dynamically start up
VMs and have them activated by the time the host fin-
ishes its transition to sleep. Alternatively, the host VMs
can be started up if memory and CPU on the SleepServer
are not a constraint. Finally, the time taken for our proto-
type SleepServer machine to boot up from a powered off
state, to recreate state information from its logs, and to
start up the VM images is on the order of a few minutes.

Next, we tested the scalability of our SleepServer pro-
totype by instantiating a large number of VMs on it and
measuring the effect on the processor and the memory
utilization and impact on I/O performance. Since we al-
locate 64MB of memory to each VM, that gives an upper
bound of approximately 500 VMs executing simultane-
ously for the 32GB of main memory in our SleepServer
prototype. Unfortunately due to some limitations in XEN
and the Linux kernel, we were unable to scale beyond
200VMs. The limitations relate to the low number of
statically defined software interrupts in the XEN kernel,
as well as the number of block devices (disks) supported.
We have reported these limitations and the fix should be
released in an upcoming update.

Figure 5a shows how increasing the number of VMs
impacts the overall CPU and the memory utilization of
the SleepServer. The processor utilization increases lin-
early and remains low (20%) even at 200 VMs (idle),
giving almost 80% idle time for the CPU. The low CPU
utilization is as expected, since most of the idle VMs are
in a blocked state waiting for I/O (e.g. network pack-
ets) requests. The memory utilization also increases lin-
early as we increase the number of VMs, since each VM
uses an additional 64 MB. Next we benchmark the per-
formance of these VMs under I/O load, by setting up an
experiment where a number of VMs download data from
a fast local webserver using a web download stub. As
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Figure 5: Effect of scaling the number of VMs. The graph on the left (a) shows the memory and the CPU utilization as
we increase the number of VMs. The amount of memory used under additional network traffic by the individual VMs
does not change and is therefore not shown. The graph on the right (b) shows the total aggregate throughout observed
by all the VMs as we increase the number of downloads.

we increase the number of VMs simultaneously running
this benchmark, we measure the CPU and memory usage
and the aggregate throughput observed by the VMs. We
report these figures for two cases: when the download is
not saved to disk marked as ‘Download Only’, and when
the VMs save the downloaded data to their local storage
marked as ‘Download + Write’. When the VMs are not
saving the data to disk, the aggregate network throughput
is shared evenly between all VMs, and the downloads al-
most saturate the 1Gbit link (>800Mbps for 200VMs).
The CPU utilization increases to 40% even at 200 simul-
taneous downloads. However, when the VMs are writ-
ing to disk, CPU utilization rises to about 35%, while the
download throughout reduces to about 136Mbps (Fig 5b)
for 50 simultaneous downloads and to 126Mbps for 100
downloads. This can be explained by disk seek times,
caused by each VM writing to its image, starting to dom-
inate as the number of VMs increase, thus limiting per-
formance. We did not measure ’Download Write’ per-
formance beyond 100VMs since we started to observe
disk driver timeouts for some of the VMs. Using faster
disk drives or striping the VMs across separate local hard
drives on the SleepServer, or by using a network storage
element should expectedly improve performance. As di-
cussed in Section 4 earlier, the SSR-Controller can detect
this condition and choose to wake a few of the hosts to
alleviate any I/O bottlenecks. We measured the average
ICMP latency from a local machine to the VMs on the
SleepServer, as a measure of network responsiveness of
the VMs under load. The round-trip latency was under
5ms under all conditions.

The primary goal of SleepServer is to enable users to
put their PCs to sleep to save energy, while maintaining

their availability to both network and application level
events. Using the power consumption logs captured by
the WattsUP meters, we can calculate the energy con-
sumed by the various PCs over different periods of time
and use that to calculate the energy savings. The energy
savings for users is also dependent on how often users
actively put their machines to sleep. As an experiment,
we first let users use SleepServer in a mode where they
were responsible for putting their machines to sleep man-
ually. For the next week we modified the standard power
management settings for some users such that after one
hour of idleness, as detected by the power management
functions of the host OS, the PC would automatically go
to sleep. Note that for both these cases, the users were
aware that they would be able to use the SleepServer
functionality to access their machine and maintain con-
nectivity when their computers were in sleep mode.

Figure 6 shows the power consumption trace for a
typical user of our system drawn from the group of
thirty users. This figure compares the power consump-
tion of the user’s PC over a 2 week period, first with-
out SleepServer (August 31st - September 13th) and then
when the user started to utilize SleepServer (September
14th - September 27th). Additionally, for the first week
of deployment (Sept 14th - Sept 20th) the users were
asked to put the machine to sleep manually when it was
not in use, while for the second week (Sept 21st - 27th)
the one hour idle-timeout was instituted. For the first
week the energy consumption of this user dropped by
30% as seen by the frequent transitions to sleep. There
were however several cases during the first week when
the users forgot to put their machines to sleep despite the
fact that they were not actively using the PC (e.g. Sept

Figure 6: Comparing the Power Consumption for a Desktop PC with and without Sleep-Servers. For the first two
weeks from August 31st - Sept 13th the user was not using SleepServer, while from Sept 14th to September 28th,
SleepServer operation was enabled. Additionally, from Sept 22nd onwards the PC was set to automatically go to sleep
within one hour of idleness.

15th, Sept 20th and 21st). In Week 2, when we insti-
tuted the one hour timeout policy, there were more tran-
sitions to sleep (Sept 22nd, Sept 24th), even during the
day. The end result was that the user saved an additional
54% energy between Sept 21st - 27th over the previous
week, giving a total enegy savings of 68% over the pe-
riod where the PC was always on. We also notice that
the user logged in to his PC remotely during the weekend
(September 27th and 28th), and that the PC went back to
sleep afterwards.

5.3 Energy Savings Using SleepServer
Of course, the energy savings for a particular user or a PC
are based on its usage scenario. Graduate students in our
department tend to stay longer, while most staff and fac-
ulty have relatively fixed hours. A significant fraction of
people do however connect to their PCs remotely, and in
some cases even run services like a web server or a CVS
repository on their machines which would normally pre-
clude them from putting their machines to sleep. Using
SleepServer our entire deployed set of more than thirty
users were able to put their machines to sleep. In Fig-
ure 7 we have plotted a representative set of eight host
PCs for two weeks in September 2009. To simplify the
chart, we have plotted a step function denoting the state
of these PCs rather than absolute power consumption val-
ues. The times when the host is active (and its image on
the SleepServer is disabled) is marked by an ’A’, while
’S’ marks the times when the PC is asleep (and its image
on the SleepServer is enabled). The hosts are ordered
from top to bottom in terms of energy savings, with PC1
seeing the most savings and PC8 seeing the least.

There are several important observations from Figure

7. First, we can clearly see the advantages of institut-
ing the one hour idle timeout for certain users. Users of
PC2 and PC3 forget to put their machines to sleep and as
a result their PCs remained on through the weekend of
Sept 12th/13th (marked by a ‘1’ in the chart). When the
automatic timeouts were instituted, most of the PCs re-
mained asleep for longer periods of time including over
the weekend of September 19th/20th (marked by a ‘3’
in the chart). Second, while there were some trends in
terms of machines being turned on in the morning when
the users came in to work, the distribution of when the
machines are on or sleeping using SleepServers is quite
varied over the week. Users of PC4 and PC8 for exam-
ple log in to their PCs to work over the weekend (marked
by a ‘2’ in the chart). This points to the fact that a sim-
ple scheduled policy of waking up PCs at pre-determined
work times does not suffice. By mining the SleepServer
controller logs we can also determine what caused par-
ticular PCs to wakeup. PC1 for example runs a Web
server; any request to access the website therefore causes
the SleepServer to wake up the machine. After a config-
ured period of inactivity PC1 goes back to sleep causing
frequent state changes. It is important to note that a ma-
jor fraction of the users in our deployment were running
one or more application that otherwise would have re-
quired the user to keep their machine powered on. Dur-
ing the course of our study, for example, our measure-
ments show that 22 out of the total 30 machines needed
to be woken up. Furthermore, despite the limited number
of stubs we currently support, 6 out of 30 users utilized
one or more stubs during our study. Of course the partic-
ular stubs that are required may depend on the enterprise
environment, and we expect to gain more experience as
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Figure 7: Showing eight different hosts on using SleepServer over a two week period. For each host the graph shows
the times when the host was on and its image on the SleepServer was disabled (denoted by A) and when the host as
asleep and the SleepServer was proxying for it (denoted by S).

we deploy SleepServers further. However, we do believe
that it is important to support the capability of handling
stateful applications in the SleepServer architecture for
widespread adoption. The energy savings for the exam-
ple set of 8 PCs shown in Figure 7 is significant, ranging
from 27% (PC1) to 81% (PC8) for this two week period.
The measured energy savings across all machines in our
deployment for the month of September range from 27%
to 86%, with an average savings of 60%.

6 Conclusion

In this paper we have presented SleepServer, a software-
only implementation of proxy architecture that allows
end hosts to utilize low power sleep modes frequently
and opportunistically to save energy, without sacrific-
ing network connectivity or availability. Within enter-
prise networks, a SleepServer machine can maintain net-
work presence on behalf of a host while its sleeping by
responding on behalf of the host seamlessly and wak-
ing it only when required. SleepServers are easily de-
ployable since they require no changes to existing hard-
ware, software or networking infrastructure and can be

supported entirely using a simple software agent on the
end hosts. We demonstrate that SleepServer is portable
across a range of operating systems and hardware plat-
forms and show how our prototype implementation can
scale to support hundreds of client hosts on a single com-
modity server.

SleepServer is both practical, easy to deploy and very
scalable. A large number of clients (and thus VMs) that
are doing intensive disk activity might limit scalability
due to heavy disk I/O. However, a case can be made to
limit or avoid putting such machines to sleep. Instru-
menting thirty heterogeneous desktop users, we show en-
ergy savings ranging from 27% to 86% with an average
savings of 60%. Extrapolating from these results and as-
suming an average idle power consumption of 93Watts
per desktop (from Table 1), and a use factor of 40%
(machines are asleep for 60% of the time), we expect
to reduce the baseline power use of the CSE building
from 320KW to 245KW during nights and weekends. At
current California energy prices of 9 cents per KW-Hr,
this translates to over US$ 35,000 in annual cost savings
alone, easily paying for the cost of a Sleep-Server within
a few months.
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Abstract
Thorough testing of software systems requires ways to

productively employ fault injection. We describe a tech-
nique for automatically identifying the errors exposed by
shared libraries, finding good injection targets in pro-
gram binaries, and producing corresponding injection
scenarios. We present a framework for writing precise
custom triggers that inject the desired faults—in the form
of error return codes and corresponding side effects—at
the boundary between shared libraries and applications.

We incorporated these ideas in the LFI tool chain [18].
With no developer assistance and no access to source
code, this new version of LFI found 11 serious, previ-
ously unreported bugs in the BIND name server, the Git
version control system, the MySQL database server, and
the PBFT replication system. LFI achieved entirely auto-
matically 35%-60% improvement in recovery-code cov-
erage, without requiring any new tests. LFI can be down-
loaded from http://lfi.epfl.ch.

1 Introduction

Most software interacts with its environment through li-
braries, and most environmental events, including fail-
ures, are exposed to applications through the APIs of
these libraries. Shared libraries, in particular, are widely
used, as they encapsulate frequently used functionality.
General-purpose applications frequently link to tens or
even hundreds of shared libraries [18].

As a result, the reliable functioning of programs is
tightly coupled to how well they handle the returns from
shared libraries. While most of the APIs are well docu-
mented, they can be quite complex, and they differ from
platform to platform in subtle enough ways to not be no-
ticed during porting, but in sufficiently important ways
to cause problems (e.g., errno values for the same libc
call can vary between Linux, Solaris, and Mac OS X).
Such corner cases are easy to miss and can lead to crashes
or more subtle errors. For example, a read() call may
not be retried after receiving an EINTR return code, caus-
ing the application to miss some data in its input stream.

These bugs are hard to find through input testing alone,
because they are triggered by low-probability events that
are typically input-independent and occur below the li-
brary layer. Yet there must be a way to ensure that pro-
grams with high reliability requirements, such as servers
or embedded applications, use these libraries consis-
tently with the libraries’ true behavior. In particular, it is
essential to verify that such software can correctly handle
faults at or below the library layer, faults that manifest as
errors returned through the shared libraries’ interface.

The program/library boundary is an appealing location
for injecting faults. First, it provides a well defined API
where realistic faults can be injected. Second, most er-
ror recovery code can be exercised directly or indirectly
via library-level fault injection. However, one must in-
telligently restrict the number of fault injections—an ex-
haustive injection campaign is infeasible, while a random
one is unlikely to find bugs in a reasonable amount of
time. One way to achieve this restriction is to target fault
injection to precisely the program conditions that are of
interest for testing, and none other.

This paper introduces a mechanism for high-precision
fault injection. We extend our LFI library-level fault in-
jector [18] with three new techniques: First, a fault injec-

tion triggering mechanism that allows testers to specify
conditions under which a given call to a given library
should be caused to fail. Triggers take the form of pred-
icates on program state—global and local variables, call
stack, etc.—which enable arbitrarily precise control over
the fault injection process. Second, we present a call site

analysis technique that aids in constructing these triggers
by automatically identifying potentially buggy recovery
code in program binaries, along with information on the
ways in which the library calls at those sites can fail. The
LFI analyzer automatically produces injection scenarios
to exercise these code areas. Finally, we present an ex-
panded fault injection language, which allows testers to
devise sophisticated fault injection scenarios, as well as
combine base triggers to form new triggers, without hav-
ing to write any new code.
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The rest of the paper provides an overview of LFI (§2),
describes the triggering mechanism (§3), fault injection
language (§4), and call site analysis (§5), after which we
present details of our implementation (§6), evaluate our
system (§7), survey related work (§8), and conclude (§9).

2 System Overview

We combine a library-level fault injector with three new
elements that turn it into a high-precision testing tool:
fault injection triggers, a fault injection language, and
call site analysis. A developer would employ call site
analysis to automatically identify good targets for test-
ing, then potentially refine the generated test scenarios
(written in the fault injection language), and finally pro-
vide all these to the fault injector. Below, we provide a
brief overview of the injector, along with the three main
contributions of this paper.

In order to make testing based on fault injection more
accessible to programmers, we developed LFI [18], a
tool for injecting faults at the boundary between pro-
grams and the shared libraries they use. LFI generates
shim libraries to intercept library calls; based on pred-
icates generated from user-provided configuration, they
decide to either pass control to the original function or
return an error value to the calling program (Figure 1).

The state of the art in testing software by injecting
high-level faults consists largely of hand-coding the tests
inside the product itself. For example, the MySQL server
code has occasional custom code that returns specific er-
rors when activated via a compile-time debug directives.
In contrast to this approach, LFI decouples the testing
from the target system’s code, thus enabling automation
and reuse of fault injection tests across many systems.

Using LFI involves two steps: First, a fault injection
scenario is developed either by hand or using one of the
automated techniques described later on. Second, the
scenario is provided to the LFI controller, which con-
ducts a suite of tests in which the described errors are
introduced in the library API. The output of these tests
can be used to diagnose and fix the identified bugs.

Underneath the covers, LFI uses the fault injection
scenario to synthesize custom interposition libraries. The
synthetic libraries have the same API as the original
ones, but underneath the API they encode the fault in-
jection logic. These libraries are shimmed between the
program being tested and the original library(ies); mul-
tiple such synthetic libraries can coexist simultaneously.
They intercept calls of interest, made from the program
to the shared libraries, and return erroneous results that
simulate faults in the libraries and the environment, as
required by the scenario. The shimming of the gener-
ated libraries is system-specific: on Linux and Solaris,
LFI uses the LD_PRELOAD mechanism to communicate
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LFI Controller
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Test workload

test log

failure replay scripts 

   LFI

Profiler

fault scenario

Figure 1: Architecture of the LFI fault injector.

with the dynamic linker, while on Windows it uses the
Microsoft Detours framework [14].

The LFI controller coordinates the entire testing pro-
cess. It is responsible for interpreting the injection sce-
nario, generating the corresponding interception stubs,
and combining them with runtime code and triggers to
synthesize a new library. Once the stubs are gener-
ated and installed, the controller invokes a developer-
provided script that starts the program under test, exer-
cises it with the desired workload, and monitors its be-
havior to determine whether it terminates normally or
with an error exit code. This information is collected in a
log used by developers to diagnose and fix the program.

The LFI log records each error injection, the injected
side effects (e.g., errno), and the events that triggered
that injection (e.g., call count, stack trace). This informa-
tion can be used to match injections to observed program
behavior, as well as to refine the fault scenario. This also
helps pinpointing and fixing the bug that caused the fail-
ure. Third party systems, like R2 [13], can be used to
replay deterministically all program failures of interest.

In order to help with the generation of fault scenarios,
LFI provides an automated library profiler, which oper-
ates directly on the binaries of the shared libraries. It
performs two tasks: First, using static analysis of the bi-
naries, it infers the return codes of the functions exported
by a library (e.g., it determines that read() in libc can
return -1, 0, or a positive number). Second, it infers
side effects—besides error return values, library func-
tions may communicate to callers additional information
regarding the encountered error, via channels such as
output parameters, global variables, or thread local stor-
age (TLS) variables. For example, the profiler finds that,
when returning -1, read() could also set the TLS vari-
able errno to EAGAIN, EBADF, EINTR, etc. The results
of these analyses are output in an XML file representing
the so-called fault profile of the target library.

The present paper shows how we extended LFI with
new techniques for writing and running sophisticated
tests with little effort. Some of the key questions we ad-
dress include: How to specify exactly at which point in
a program’s execution to inject errors? When testing a

large program, how to decide where to inject faults? Fig-
ure 2 illustrates the three new elements: a high-precision
triggering mechanism, along with an expanded fault in-
jection language and a call site analyzer.
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Figure 2: Architecture of the new injection framework.

A fault injection trigger is a way to specify which fault
(“what”) to inject at which point in a program’s exe-
cution (“when”) and in which call to the target library
(“where”). This trigger is a predicate that evaluates to
true when a fault should be injected and false otherwise.
The new LFI includes default stock triggers as well as an
API for writing custom triggers.

The fault injection language glues together triggers,
library functions, and their fault profiles into complete
fault injection scenarios. Every function which appears
in a scenario is intercepted by the LFI runtime, and the
associated triggers are called to decide (based on various
conditions) whether to inject a fault from the profile.

The call site analyzer uses a heuristic method to check
whether all error return values are checked by the callers
of library functions. In other words, it searches the target
program for “interesting” places to inject faults. For each
identified call site, it uses dataflow analysis to determine
against which error code values the return is checked.
An unchecked error value indicates a potential bug, to be
verified through testing. The analyzer runs on the binary,
so source code of the target program is not required.

Next we describe the fault injection triggers (§3), fault
injection language (§4), and call site analysis (§5).

3 Fault Injection Triggers

Triggers are invoked by the LFI runtime to decide
whether an intercepted library function should fail or not.
A trigger can inspect any part of system state to make
its decision. Triggers offer high precision and flexibility
to testers in choosing the exact conditions under which
a fault is to be injected. Testers can use stock triggers
with specific parameter values, they can customize exist-
ing trigger code, or write new triggers from scratch.

3.1 Trigger Interface

Triggers are pluggable modules, written as C++ classes
that implement the following Trigger interface:

class Trigger {

virtual void Init(xmlNodePtr initData) {}

virtual bool Eval(const string&

libFuncName, ...) = 0;

}

To add a new trigger to the framework, one writes a
class derived from this abstract base class and places the
corresponding source files in an LFI-specific location.
The new trigger can be referenced directly by class name
from any injection scenario provided to LFI. We used a
variant of the Registry design pattern and the Standard
Template Library to implement this behavior transpar-
ently for trigger writers.

The boilerplate code needed for a trigger is minimal—
usually less than 100 lines of code are needed to write a
useful custom trigger. One could forgo the interface and
implement triggers inside the LFI runtime, as we did in a
first prototype, but then they become hard to extend and
require intimate knowledge of LFI internals.

The Init method is optional and its default imple-
mentation is empty. It is called by the runtime after a
trigger instance is created and before its Eval function is
called for the first time. The main purpose of the Init

function is to provide support for trigger parametrization,
as we will show in §4.1. The trigger’s parameters are pro-
vided as an XMLNodePtr object, which can be processed
with a standard XML library.

The Eval method is where the main trigger logic re-
sides. It is called every time a function (associated with
an instance of this trigger by the injection scenario) is
intercepted. Its return value indicates to the runtime
whether to inject a fault or not. Since Eval can be called
quite frequently, its code must be efficient.
Eval is a variadic function in order to be capable of

receiving the original arguments of any intercepted li-
brary call. Its first argument indicates the name of the
intercepted function; based on this name, the trigger de-
cides how many actual arguments to expect and what
their meaning is. The number of arguments must be ex-
plicitly specified in the injection scenario; since LFI does
not look at source code or documentation, it cannot au-
tomatically infer the number of arguments to pass. It is
possible, though, to extend LFI with LibTrac’s heuristic
technique for inferring function arguments [5].

In addition to the arguments passed to Eval, a trigger
can directly obtain any other information normally ac-
cessible to a program. For example, it can use the GNU
libc backtrace() function to inspect the call stack and
determine whether the intercepted library call was made
by a program, by a function in the intercepted library, or
by some other shared library.
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Below we illustrate trigger construction with a sketch
of one of our custom triggers. It is used in an injection
scenario where errors are to be injected in read when-
ever the corresponding file descriptor is a pipe, the num-
ber of bytes to be read is between 1 KB and 4 KB, and
the calling thread holds a POSIX mutex.

#include "Trigger.h"

DECLARE_TRIGGER ( ReadPipe1K4KwithMutex )

{

private:

static __thread int lockCount;

public:

ReadPipe1K4KwithMutex() { }

bool Eval(const string& libFuncName, ...) {

pthread_t self = pthread_self();

if (libFuncName ==

"pthread_mutex_lock") {

++lockCount;

} else if (libFuncName ==

"pthread_mutex_unlock") {

--lockCount;

} else if (libFuncName ==

"read") {

if (lockCount > 0) {

va_list ap;

int fd;

size_t size;

struct stat st;

va_start(ap, libFuncName);

fd = va_arg(ap, int);

va_arg(ap, void*);

size = va_arg(ap, size_t);

va_end(ap);

fstat(fd, &st);

return (S_ISFIFO(st.st_mode) &&

size >= 1024 && size <= 4096);

}

}

return false;

}

};

Trigger.h contains all the required definitions for
the trigger mechanism, including the definition of the
Trigger interface. DECLARE_TRIGGER is a macro that
simplifies the class declaration by automatically creating
a properly derived class with the supplied name.

Triggers are not pure functions, but can also main-
tain state to inform their injection decisions. The
ReadPipe1K4KwithMutex trigger, for instance, checks
the name of the intercepted function and either updates
the lock holding status for the current thread (in the case
of a POSIX threads library call) or checks whether a fault
should be injected in the case of the read function.

3.2 Stock Triggers

In addition to the Trigger interface, which allows
testers to write their own custom triggers, LFI also pro-
vides a set of triggers that can be used out-of-the-box.
We found this set to offer sufficient precision for most

injection testing. Most of these triggers are generic, in
that they can be used for any intercepted function and
do not rely on the function’s arguments. Stock triggers
can easily be extended and specialized, as needed. LFI
provides by default the following six triggers:

Call stack-based triggers allow injecting faults based
on whether the current call stack (or part of it) matches
a user-defined set of stack frames. By looking at the call
stack, the trigger can learn from which particular loca-
tion in the program the call is being made, from which
program module (e.g., from Apache’s SSL module), etc.
User-provided stack frames can be identified by object
file name, offsets within the binary, file name/line num-
ber pairs, or combinations thereof. The LFI call site an-
alyzer automatically produces fault injection scenarios
that use call stack-based triggers to inject faults in the
locations where error checking is incomplete.

Program state-based triggers inject faults depending
on whether a given relationship between program vari-
ables holds (e.g., numConnections==maxConnections).
The stock trigger allows checking for equality between
both local and global variables, but it can be easily ex-
tended with other operators. Later in the paper, we show
how to specialize this trigger for data structures specific
to the Apache Web server.

Call count-based triggers allow specifying that an in-
jection should occur exactly on the n-th call to a function.
Besides their obvious use, such triggers can also be used
during debugging to replay observed failures in programs
that are driven deterministically by interactions with the
environment.

Singleton triggers inject a fault exactly once. This
type of trigger is often combined with other triggers
in a conjunction. For example, combined with a pro-
gram state-based trigger, a singleton trigger can ensure
that a fault is injected only the first time numConnec-

tions==maxConnections holds, but not afterwards. Trig-
ger composition is described in more detail in §4.2.

Random triggers inject a fault with a configurable
probability. These triggers can also be augmented with
supplementary conditions, through composition.

Distributed triggers are used for testing distributed
systems. A central controller receives information on
intercepted calls (function name, arguments, and stack)
and, based on a global view of the system, decides
whether the remote trigger should fire or not. This al-
lows setting up distributed failure scenarios, such as the
ones we used for PBFT (see §7.1). In order to minimize
runtime overhead, distributed triggers must be carefully
composed with node-local triggers, so that the central
controller is invoked solely when the injection decision
can no longer be made locally.

In theory, one should write triggers that achieve per-
fect precision, i.e., they decide to inject a fault only in

the specific situation targeted by the tester. However, in
our experience, such high precision is not always ideal: it
takes longer to write an ultra-precise trigger, and the in-
duced runtime overhead can become non-negligible. In
most cases, we favor an approach where triggers are pre-

cise enough, i.e., inject in all targeted situations and per-
haps have a couple of false positives. In the context of
testing, the extra unintended fault instances might even
turn out to be useful, at little extra cost.

Care must be taken to not inject unrealistic faults, be-
cause these can result in wasted debugging time. For
example, injecting an error in an I/O call made with a
blocking file descriptor and setting errno to EAGAIN

is arguably unnecessarily paranoid testing, given that
EAGAIN should only occur on non-blocking file descrip-
tors. In LFI, this exception could be handled by compos-
ing with a trigger that evaluates to true only when the file
descriptor supplied to the I/O call is non-blocking (e.g.,
the trigger can check the file descriptor with fcntl).

4 Fault Injection Scenarios

An LFI test scenario is a declaration of triggers and
conditions under which these triggers should be evalu-
ated, i.e., it is a specification of what, when and where
to inject. We use an XML-based test specification lan-
guage (§4.1) to describe these scenarios, including var-
ious compositions of triggers (§4.2), which permit pro-
ductive reuse of fault injection scenarios. LFI employs
several optimizations in the evaluation of triggers, aimed
at reducing runtime overhead (§4.3).

4.1 Description Language

Fault injection scenarios can be written by hand, but we
believe practitioners also want to use automated tools for
generating and modifying these scenarios (such as the
call site analyzer described in §5). For scenarios to be
both human-readable and machine-readable, we chose an
XML-based language. Here we provide an overview of
the language, and direct the interested reader to the com-
plete DTD available at http://lfi.epfl.ch.

An injection scenario has two main constructs: trigger
declarations and associations between trigger instances
and intercepted library functions. A trigger declaration
makes a trigger class known to LFI and creates a named
trigger instance. An association links a trigger instance
to a library function that LFI intercepts, and specifies the
conditions under which the triggers should be evaluated.

Consider the earlier example, which aimed to inject
faults in read only when the corresponding file descrip-
tor is a pipe, the number of bytes requested is between
1 KB and 4 KB, and a mutex is held by the calling thread.

The ReadPipe1K4KwithMutex defined in §3.1 can be
associated with the relevant library calls as follows:

<!-- Make the trigger known to LFI -->

<trigger id="readTrig1"

class="ReadPipe1K4KwithMutex" />

<!-- Invoke the trigger for read() calls -->

<function name="read" argc="3"

return="-1" errno="EINVAL">

<reftrigger ref="readTrig1" />

</function>

<!-- Trigger needs to see the lock/unlock calls -->

<function name="pthread_mutex_lock"

return="unused" errno="unused">

<reftrigger ref="readTrig1" />

</function>

<function name="pthread_mutex_unlock"

return="unused" errno="unused">

<reftrigger ref="readTrig1" />

</function>

The <trigger> element declares a trigger instance

identified by the name readTrig1 and implemented by
the class ReadPipe1K4KwithMutex. This must either
be a C++ class written by the tester, or an LFI stock trig-
ger. The same trigger class can be used for multiple trig-
ger instances.

The <function> element creates an association be-
tween the read library function and the readTrig1 trig-
ger instance. Whenever read is called by the target
program, readTrig1 is asked for a yes/no answer re-
garding whether to inject a fault or not. To make this
decision, readTrig1 is given by LFI three arguments
from the original call stack (argc attribute); these ar-
guments correspond to the file descriptor, buffer pointer,
and number-of-bytes parameters of the intercepted read
call. The trigger uses the values of these arguments to de-
termine whether the file descriptor is a pipe and whether
the requested number of bytes falls in the target range. If
readTrig1 returns true, then LFI returns to the caller a
return value of -1 (return attribute) from read and sets
the errno variable to EINVAL.

The other two <function> associations serve the
purpose of informing the trigger about the corresponding
mutex lock/unlock calls, giving the trigger instance the
opportunity to update its state. Since these associations
will never result in injections, the return and errno

attributes are set to “unused.”
Triggers can also be parametrized, i.e., the test sce-

nario can specify arguments to be passed to the trigger
instance at initialization time. This means, for instance,
that one could replace the ReadPipe1K4KwithMutex

class with a new class that takes the upper and lower
bound of the number of bytes as arguments, instead of
them being hardcoded to 1 KB and 4 KB. An example
of such a class is the ReadPipe trigger class in the next
subsection.



306 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 307

4.2 Trigger Composition

Triggers can be composed, to form more complex trig-
gers. By default, associating multiple triggers within one
<function> declaration implies a conjunction of the
triggers: they all have to evaluate to true in order for a
fault to be injected.

Consider the earlier pipe read example: instead of
using the ReadPipe1K4KwithMutex class, we can use
a conjunction of two trigger classes, ReadPipe and
WithMutex. The first one handles injections in the read
function when the file descriptor is a pipe and the num-
ber of bytes requested is between a configurable mini-
mum and maximum. The second one injects a fault in
any function, as long as the caller holds a mutex.

Trigger composition allows wider reuse of triggers
and, together with parametrization, encourages writing
flexible, general triggers. The scenario below illus-
trates the composition of two triggers, readTrig2 and
mutexTrig. The first <trigger> declaration illustrates
the initialization of the parametrized ReadPipe trigger:
it allows the tester to specify the upper and lower bound
on the number of bytes, and these values are passed to
the Eval method of the ReadPipe trigger.

<!-- Declare & initialize a ReadPipe instance -->

<trigger id="readTrig2" class="ReadPipe">

<args>

<low>1024</low>

<high>4096</high>

</args>

</trigger>

<!-- Declare a WithMutex instance -->

<trigger id="mutexTrig" class="WithMutex" />

<!-- Invoke the composition for read() calls -->

<function name="read" argc="3"

return="-1" errno="EINVAL">

<reftrigger ref="readTrig2" />

<reftrigger ref="mutexTrig" />

</function>

<!-- Trigger needs to see the lock/unlock calls -->

<function name="pthread_mutex_lock"

return="unused" errno="unused">

<reftrigger ref="mutexTrig" />

</function>

<function name="pthread_mutex_unlock"

return="unused" errno="unused">

<reftrigger ref="mutexTrig" />

</function>

Triggers can also be composed into a disjunction,
whereby a fault is injected whenever any trigger in the
composition returns true; for this, one just adds multiple
<function> elements using the same function name,
each one associated with a different trigger. Besides
conjunctions and disjunctions, LFI can support negation,
whereby the result of a trigger is simply inverted. Using
disjunction, conjunction, and negation, one can assemble
a wide range of trigger combinations.

4.3 Trigger Evaluation

LFI evaluates triggers in the order in which they appear
in the injection scenario. However, in the case of trigger
compositions, LFI invokes the smallest number of trig-
gers needed to determine the result of the composition.
For example, in the case of conjunctions (i.e., multiple
trigger instances referenced in the same <function> el-
ement), if the first trigger returns false, then the remain-
ing triggers are not invoked at all. This optimization re-
duces runtime overhead and is similar to the short-circuit
evaluation used in C/C++ logical expressions. This fea-
ture can be leveraged when composing with the stock
singleton trigger: if added to the end of a conjunction,
it ensures that a fault is injected once when all the other
triggers in the composition return true.

LFI’s internal data structures ensure that the list of
triggers for the currently intercepted function is obtained
in O(1) time, i.e., it is independent of the size of the fault
injection scenario. To eliminate runtime overhead during
program startup, LFI uses lazy initialization: each trigger
is initialized right before it is invoked for the first time.

5 Call Site Analysis

The call site analyzer helps developers find “interesting”
places to inject faults, i.e., parts of the target system
that are likely to be buggy. The analyzer runs entirely
autonomously and looks for call sites where the return
values or error side effects of the call are not properly
checked. An example is the following code snippet:

dir = opendir(pathToDir);

while (ent = readdir(dir)) {

...

}

The code works properly most of the time, when
pathToDir points to an existing directory, but crashes if
the directory does not exist or opendir cannot allocate
sufficient memory. Since the return value of opendir
is not checked, readdir could be passed a null pointer.
Although a rather obvious bug, we found similar bugs in
widely used software like BIND and Git.

The call site analyzer combs the target program bi-
nary for places where a library function is called, and
then uses dataflow analysis to determine whether the
program checks for all possible errors that the function
could return (as indicated by the corresponding library’s
fault profile, described in §2). The analyzer’s method
is heuristic, but we found it to be highly accurate, even
if not perfect (an occasional false positive is acceptable,
given that the potential bug sites can easily be verified
through fault injection). While, in theory, disassem-
bling binaries cannot be completely accurate, it has been
shown that in commercial-grade applications over 99%
disassembly accuracy can be achieved [22].

Once the analysis is complete, the analyzer gener-
ates a fault injection scenario targeted at the vulnerable
sites with the missing errors; these scenarios employ the
generic call stack trigger. The tester would then run a test
based on the injection scenarios. The workload for exer-
cising the specific call must be provided by the tester;
LFI can help, by analyzing code coverage information
from previous executions and indicating whether previ-
ously used workloads exercised the target call sites.

Algorithm 1 describes a simplified version of the gen-
eral workflow for the analysis. The algorithm takes in
the executable X , the function of interest F (e.g., read),
and the set of error codes E , based on the library fault
profile. It produces three sets of call sites: the set Cyes of
sites where the return of F is checked for all error codes,
Cpart where it is checked for only some of the errors in
E , and Cnot where is is not checked for any errors in E .

Lines 1-2 initialize these sets and find the set
callSitesF of places in the target binary where F is called.

For each such call site (line 3), we construct a par-
tial control flow graph for the instructions that follow

the call to F (line 4), in order to determine how the re-
turn value and side effects are handled. We empirically
found 100 post-call instructions to be sufficient for build-
ing the CFG we require. Indirect branches can make the
CFG inaccurate, and the current LFI prototype ignores
them. This is not a major issue: our analysis of over
9,000 library calls in real-world software revealed that
only 0.13% (104 out of 78,292) were indirect branches.

We then perform dataflow analysis (line 5), to follow
the propagation of the function’s return value through
the program. We look at all targets to which the return
value is copied and look at all literals to which this return
value (or a copy of it) is compared. We iterate through
any loops that may occur, as long as the set of copies of
the return value increases. In practice, this set typically
stabilizes after a few iterations. Our dataflow analysis
is intra-procedural; even though other functions may be
called to handle errors, the real systems we analyzed al-
ways did this after a local check for error conditions.

The result of the dataflow analysis for each call to F

consists of sets Chkeq and Chkineq, corresponding to error
codes checked via equality (as in if (retval==-1))
and those that are checked via inequality (as in
if (retval<0) ). If all error codes in E are checked
by equality, then the call site goes into the set of fully
checked calls (lines 6-7). If error codes are checked via
inequality, we assume the entire range of error codes is
covered (hence the disjunction in line 6). If only some
of the error codes in E are checked by equality, then the
call site goes into the set of partially checked calls (lines
8-9). If no error codes in E are checked, the site goes
into the set of completely unchecked calls, even if error
codes outside E are checked (lines 10-11).

Algorithm 1: Call site analysis (simplified)

Input: Target executable X , target function
name F , target function error codes E

Output: Set Cyes of fully checked calls,
Set Cpart of partially checked calls,
Set Cnot of completely unchecked calls

Cyes := Cpart := Cnot := /01

callSitesF := parse all calls to F in X2

foreach site ∈ callSitesF do3

cfg := construct partial CFG after site4

<Chkeq,Chkineq>:=dataflow analysis on cfg5

if Chkeq ⊇ E ∨ Chkineq �= /0 then6

Cyes := Cyes ∪{site}7

else if Chkeq �= /0 ∧ Chkeq ⊂ E then8

Cpart := Cpart ∪{site}9

else10

Cnot := Cnot ∪{site}11

return <Cyes,Cpart ,Cnot >12

Due to space constraints, we omit the side-effect anal-
ysis done by LFI, which is responsible for verifying
whether side effects shown in the fault profile (such as
the errno variable) are properly checked. The analysis
for errno checking is virtually identical to the one used
for return values. Failing to check particular values of
errno (e.g., not restarting a system call interrupted with
EINTR) can compromise the application’s robustness.

The call site analyzer produces two sets of fault injec-
tion scenarios, one for Cnot and one for Cpart. Testers are
probably most interested in the former, but after exhaust-
ing the bug vulnerabilities related to Cnot, they can make
use of the latter as well. Note that the call site analyzer
does not check the correctness of the error handling code,
it just relieves humans of some of the burden involved in
testing.

6 Implementation

At the heart of LFI is a library call interception mech-
anism described in more detail in the original LFI pa-
per [18]. LFI creates a shim library that exports stub
functions with the same name as the ones being in-
tercepted. On UNIX platforms, we take advantage of
the dynamic linker (using the LD_PRELOADmechanism),
and on Windows we use Microsoft Detours [14].

A stub function determines the address of the original
function and evaluates the triggers provided in the fault
injection scenario. If an injection is to be done, the stub
gets the return value and side effect to be injected from
the injection scenario and injects them. If no injection is
to be done, the stub cleans up the stack and jumps to the
original function. A stub looks approximately as follows:
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int LIB_FUNC_NAME(void) {

static void * (*original_fn_ptr)();

if (!original_fn_ptr)

original_fn_ptr = (void* (*)())

dlsym(RTLD_NEXT, LIB_FUNC_NAME);

if (eval_triggers(LIB_FUNC_NAME_triggers,

lib_function_args)) {

/* determine return_code, side_effects */

/* apply side_effects */

return return_code;

} else {

/* return stack and registers to original values */

__asm__("jmp [original_fn_ptr]");

/* original function will return to caller */

}

}

Since LFI has no access to source code or documen-
tation to get the prototypes of intercepted functions, the
stub functions do not have any arguments. When call-
ing the original function (i.e., no fault injected), the stub
merely removes the current frame from the stack (i.e.,
the one corresponding to the stub) and passes control di-
rectly to the original. This has the advantage of not re-
quiring any information about the number of arguments
and their type. When having to pass arguments to a trig-
ger, LFI relies on the injection scenario to specify how
many arguments are expected on the stack. In our cur-
rent prototype, we assume all arguments are word-sized.

Designing an extensible trigger system was difficult.
Our goal was to allow developers to simply drop the trig-
ger classes in a particular location and then be able to
refer to the triggers by their class name in injection sce-
narios. In other words, we wanted a mechanism similar
to Java’s Class.forName(). We used a variation of the
Registry pattern, where each trigger class automatically
inherits a factory method and a static member variable
whose initialization causes the class name along with the
associated factory method to be added to a global map.
Instantiating a trigger is done by searching in the map
and using the corresponding factory method.

To maximize ease of use, we added to LFI the ability
to directly handle DWARF debug information [17]. For
example, the call stack trigger allows testers to specify
that injections should be done only if execution passes
through certain filename/linenumber locations. Another
example is the call site analyzer, which can provide the
exact source code location of a particularly “suspicious”
call, whenever debug symbols are available.

7 Evaluation

LFI’s main strength is precision—it allows testers to
specify exactly what fault to inject, where to do so, and
when to inject. This can be used to selectively inject
faults on a particular call when servicing a specific work-
load, when the program enters a particular state, or when
control flow passes through a specific set of points. It
is fairly obvious how, combined with knowledge of the
system being tested, LFI can be a tester’s “power tool.”

However, such knowledge may not always available,
so we focus our evaluation on how LFI can be used pro-
ductively even without knowledge of the code. We in-
ject faults in several real systems (§7.1) and find several
previously unknown bugs; we also measure the improve-
ment in recovery-code coverage. We measure the accu-
racy and efficiency of automated injection site identifica-
tion (§7.2). We then show how LFI can be used to study
the behavior of distributed systems and find interesting
vulnerabilities (§7.3). Finally, we measure the overhead
introduced by LFI triggers and find that their interference
with the tested system is negligible (§7.4).

We evaluated LFI on four systems representing four
different classes of applications: BIND 9.6.1, MySQL
5.1.44, Git 1.6.5.4 and PBFT 2008-12-09. BIND is per-
haps the most popular Domain Name System (DNS)
server used in the Internet, being the de facto standard for
most UNIX-based network infrastructures. Git is a mod-
ern distributed version control system that was initially
designed and developed for Linux kernel development,
and has experienced tremendous popularity since then.
MySQL is a well known and widely used open-source
database management system. PBFT [7] is a practical
replicated Byzantine fault tolerance system, designed to
correctly serve requests in the face of f Byzantine replica
failures, as long as there are at least 3 f + 1 total repli-
cas. All experiments were run on a 4-core 2 GHz In-
tel Xeon CPU with 4 GB of RAM, running Ubuntu 9.04
with Linux kernel 2.6.28.

We used the binary distributions of the systems listed
above. We resorted to source code only when needed to
manually confirm LFI’s results.

7.1 Effectiveness of Testing: Bugs and

Coverage

When assessing an automated testing tool, there are gen-
erally two measures of interest: how many high-impact
bugs it finds, and to what extent it improves code cov-
erage. For this section, we run the call site analyzer on
the target binaries and directly apply, with no modifica-
tions, the injection scenario it generates. Of course, the
deeper the knowledge one has of the system being tested,
the more effectively LFI’s injection triggers can be used.
However, here we focus mainly on what can be done en-
tirely automatically, using only stock triggers. We briefly
show how human intervention is useful in connecting in-
jected faults to bugs and in writing custom triggers for
particular bug categories.

As a first measure of effectiveness, Table 1 lists the 11
previously unknown bugs found by LFI entirely on its
own. We expect that, in the hands of a human tester, LFI
could find substantially more bugs.

We use the last bug in Table 1 to illustrate the pro-

System Bug

BIND Crash if call to xmlNewTextWriterDoc

fails while a user is retrieving statistics via
HTTP [4]

BIND Abort due to incorrectly handled malloc re-
turn value in method dst_lib_init [3]

MySQL Abort after a double mutex unlock, due to a
failed close [19]

MySQL Crash due to a failed read (error code EIO)
while processing errmsg.sys [20]

Git Data loss caused by running an external com-
mand with an incomplete environment, due to
failed setenv [11]

Git Crash due to calling readdir with a
NULL pointer returned by a previously failed
opendir call [9]

Git Crash due to unhandled malloc return value
on line 567 in xdiff/xmerge.c [10]

Git Crash due to unhandled malloc return value
on line 571 in xdiff/xmerge.c [10]

Git Crash due to unhandled malloc return value
on line 191 in xdiff/xpatience.c [10]

PBFT Crash caused by a failed recvfrom call
PBFT Crash due to calling fwrite with a NULL

pointer returned by a previously failed fopen

call (see below for details)

Table 1: Bugs found automatically by LFI (more details
can be found in the referenced bug reports).

cess followed in these experiments. After running on the
PBFT binary, the call site analyzer generates an injection
scenario, of which we show a fragment below. We then
passed this scenario to the LFI injector. Upon inspecting
the report of the test, we found that a replica had crashed
due to a segmentation fault; the log indicated the id of the
trigger that fired in that particular test case. Based on the
trigger and an inspection of the source code, we immedi-
ately found that the replica’s shutdown code attempts to
write a checkpoint to a file, without checking that the file
has been properly opened.
<trigger id="8054a69" class="CallStackTrigger">

<args>

<frame>

<module>

bft/bft-simple/simple-server

</module>

<offset>

8054a69

</offset>

</frame>

</args>

</trigger>

<function name="fopen"

retval="0" errno="EINVAL">

<reftrigger ref="8054a69" />

</function>

The other PBFT bug is interesting, as it does not man-
ifest in the debug build, but only in the release build.

Faults were injected in sendto and recvfrom (simu-
lating deteriorated network conditions), successively in
calls made by different replicas (i.e., inject in a call made
by replica R1, then in a call made by replica R2, etc.).
This type of network behavior results in a segmentation
fault in the view change phase of PBFT, when the replica
tries to access a previously committed message. The rea-
son this bug does not manifest in the debug build is be-
cause, when the debug flag is on, the PBFT implemen-
tation checks to see if messages were sent correctly and
halts with an error code as soon as a problem occurs. The
release (i.e., non-debug) build skips this check.

The malloc bug in BIND and the close bug in
MySQL represent interesting cases of buggy recovery
code. In BIND, the dst_lib_init method checks the
return value of malloc calls, and runs recovery code if
any such call fails. The recovery code destroys the cre-
ated data structures, by calling dst_lib_destroy. The
first statement in this method is an assertion, checking
that the dst data structures have been initialized. How-
ever, the call from dst_lib_init is made before the
dst_initialized flag is set, therefore triggering the
assertion. In MySQL, the mi_create method has error
handling code that releases resources, including a partic-
ular mutex. However, a failed close call can trigger this
code after the mutex has already been released by the
“normal” program flow, leading to a double unlock and
an application crash.

These scenarios illustrate the importance of tools tar-
geted at testing recovery code: such code is hard to exer-
cise in the testing lab without LFI-like tools, and it rarely
gets exercised in the field. Yet, whenever it runs, it is
expected to run flawlessly.

The second MySQL bug is caused by an uninitial-
ized data structure access after a failed read. A re-
lated bug, describing a silent failure of MySQL when the
errmsg.sys configuration file is not found [21], has
been acknowledged and fixed. However, if the file exists
but reading from it fails for a reason such as a low-level
I/O error, MySQL logs the error but nonetheless tries to
access an uninitialized data structure and crashes.

When testing MySQL, we started out by using random
injection, because MySQL routinely checks function re-
turn values, so we wanted to see how robustly it does
so. Yet, 1,000 random injection tests targeting different
functions caused 35 distinct crashes in MySQL. We ana-
lyzed the 35 core dumps and, in this way, found the two
bugs presented in Table 1. After writing a specific call
stack trigger to reproduce each one of them, we attached
a debugger and stepped through the code until the bug
manifested; in this way, we were able to connect the in-
jected fault to the bug manifestation.

Custom triggers: To show how triggers can increase
testing precision, compared to random injection, we eval-



310 USENIX ATC ’10: 2010 USENIX Annual Technical Conference USENIX Association USENIX Association  USENIX ATC ’10: 2010 USENIX Annual Technical Conference 311

uate in Table 2 the precision of three injection scenar-
ios. We report the number of times the close MySQL
bug presented in Table 1 was activated while running
100 times the merge-big MySQL test suite component.
This also illustrates step-by-step how to build a custom
trigger for a particular category of bugs:

1. The first attempt used random injection, with a 10%
injection probability in each close call. This ap-
proach triggered the bug 16 times. Bigger injection
probabilities lower the precision, because faults end
up being injected in other close calls, and execu-
tion does not reach the intended target.

2. In our second attempt, we took advantage of “do-
main knowledge” and used the call stack trigger to
inject faults with a 10% probability only in calls
issued from the code in the particular file where
the bug resides. This scenario triggered the bug 45
times.

3. For the final scenario, we took advantage of a pe-
culiarity of this bug: the close call happens after
a mutex unlock. Therefore, we injected faults in
close calls that happen shortly after a mutex un-
lock, in the hope that the fault will trigger cleanup
code that will cause a double unlock. We created a
parametrized trigger that allows specifying the max-
imum distance, in number of lines of code, between
the injection site and the last mutex unlock. This
trigger, with a distance of 2, reproduced the bug
100% of the time. This excellent precision illus-
trates our earlier point that triggers need only be
“precise enough.”

Trigger scenario Precision

Random (10%) 16%
Random (10%) within
bug’s file

45%

Close after mutex unlock 100%

Table 2: Precision of three triggers targeting the close

MySQL bug from Table 1.

Recovery-code coverage: Improving coverage of re-
covery code is notoriously hard, because exercising such
code typically requires errors that appear outside the
scope of the developed program and are hard to simulate.
Although scenarios that exercise recovery code are rarely
encountered in practice, programs that must operate re-
liably (e.g., servers) should be able to recover gracefully
from such faults without corrupting user data or crash-
ing. Since Git and BIND are mature, widely-used appli-
cations, we expect them to have recovery code for a large
set of possible environment errors.

To assess the coverage improvements that LFI can
achieve, we first used gcov and lcov to measure the level
of recovery-code coverage obtained by the test suite that
ships with each of the applications. We manually iden-
tified in the lcov results the recovery code blocks for the
functions we target for injection—a tedious job, but nec-
essary for an accurate comparison. We then ran the LFI
call analyzer on the two target applications; to be con-
servative, we trimmed the resulting injection scenarios
down to approximately 25 library function calls that are
known to fail on occasion (e.g., fopen, read, sendto,
fstat) and excluded all others. We re-ran the default
test suite and measured the new level of coverage. Ta-
ble 3 shows the results.

Git BIND

Additional recovery code covered ∼35% ∼60%
Additional LOC covered by LFI 429 560
Total coverage without LFI 78.7% 61.2%
Total coverage with LFI 79.6% 61.8%

Table 3: Automated improvement in code coverage.

The fact that, without any human assistance, LFI was
able to make the default test suite cover up to an addi-
tional 60% of the recovery code in mature applications
suggests LFI can offer substantial benefits to testers out-
of-the-box. The numbers reported in Table 3 are only a
conservative estimate of the improvement in testing, be-
cause (a) we did not write any new tests, rather relied on
the workload generated by the default test suite; (b) we
did not test any of the calls for which there was no re-
covery code at all, even if there should have been; and
(c) we injected faults in only a subset of the library calls
made by the applications. Note that the call site analyzer
can suggest targets for additional tests, thus helping test
developers write tests with less effort.

7.2 Injection Target Identification:

Accuracy and Efficiency

There are two ways to identify good injection targets:
manually or automatically. We believe the most practical
approach is one in which injection targets are first identi-
fied automatically, by tools like the LFI call site analyzer,
and then developers manually refine the generated injec-
tion scenarios. The refinement can be done either based
on knowledge of the target system or iteratively, by try-
ing out increasingly focused failure scenarios of interest.

To maximize usefulness of an automated injection tar-
get identifier, it must be accurate. The accuracy of injec-
tion target identification can be defined as:

Accuracy =
T P+T N

T P+TN+FP+FN

where TP stands for the number of true positives, TN for
true negatives, FP for false positives, and FN for false
negatives. In the context of injection target identification,
these are defined by the following confusion matrix:

Actually Not actually

LFI says... checked checked

error return is checked TN FN
error return is not checked FP TP

We used the call site analyzer to identify places in the
target system where libc calls are made and the return
code is not checked. We then manually inspected the
code to cross-check the results (see Table 4). Note that
we did not specifically select the ones that are favorable
to LFI; we are showing here all the calls for which we
performed the manual inspection and validation.

System Function TP+TN FN FP Accuracy

BIND malloc 17 0 0 100%
BIND unlink 6 0 0 100%
BIND open 5 0 1 83%
BIND close 39 0 0 100%
Git malloc 25 0 0 100%
Git close 127 0 0 100%
Git readlink 7 0 0 100%
PBFT fopen 6 0 0 100%

Table 4: LFI’s call site analysis accuracy with no human
assistance, no documentation, and no source code.

Based on these results, we conclude that LFI’s call site
analysis is highly accurate for libc calls, even though it
is performed directly on x86 binaries; we expect this ac-
curacy to carry over to other libraries beyond libc. It is
therefore reasonable to expect that LFI can automatically
provide a good set of injection scenarios that developers
can then adjust as needed for their tests.

Efficiency: Besides accuracy, running time of the an-
alyzer is also an important factor, because testers are un-
willing to wait long for results. For example, it is fre-
quently said that the long running times of model check-
ers have discouraged their widespread use in testing.

The LFI call site analyzer is fast: in our experiments,
analysis time ranged from 1 second to a maximum of
10 seconds for BIND, in cases where there were more
than 100 call sites. Analysis time is only influenced by
program size (i.e., number of machine instructions) and
number of call sites that have to be analyzed.

Developers can process the results of the analyzer
fairly quickly. With each call site found, the details re-
garding file name and line number are provided, if debug
symbols are available; this information can guide the de-
veloper in inspecting the source code.

7.3 Studying System Behavior

Finding bugs is not the only objective of a tool like LFI—
it can also be used to study the behavior of systems un-
der various circumstances. For example, the users of a
distributed system may be interested in knowing how
it behaves in the face of network failures. We illus-
trate here the use of LFI for studying the behavior of
PBFT’s implementation, which is hard to reason about
based solely on the design, without experimental evalua-
tion. Our setup consisted of four replicas (i.e., f = 1) and
one client. We used the simple_client and simple_server

programs shipped with PBFT to generate test workload.
In our first experiment, we used LFI along with a

stock distributed trigger (§3.2) to see how PBFT’s per-
formance is affected by faults in inter-replica commu-
nication. We randomly injected faults in sendto and
recvfrom with a variable probability, simulating a de-
graded (but not malicious) network environment. Using
as a baseline PBFT’s performance without LFI’s interfer-
ence, we show in Figure 3 how the slowdown varies (av-
eraged over 7 trials) as network conditions worsen. The
performance of PBFT deteriorates gradually, reaching a
maximum of 4.17× slowdown for a 99% probability of
packet loss (i.e., when only one in every 100 network
messages make it to the receiver).
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Figure 3: Slowdown in PBFT under progressively wors-
ening network conditions.

While the trend of the curve is not surprising, the exact
amount of slowdown experienced at every level of degra-
dation would be difficult to guess without direct mea-
surement.

In a second experiment, we used LFI to simulate a
denial-of-service (DoS) attack on PBFT’s replicas and
we measured again PBFT end-to-end performance, aver-
aged over 7 trials. The baseline for the experiment cor-
responds to LFI intercepting the calls but letting them all
succeed. By injecting consecutive faults in all communi-
cation of a specific replica (thus rendering it practically
inactive), we obtained an overall performance improve-

ment of 12%, possibly due to reduced communication
overhead. The third set of measurements corresponds to
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an attack in which 500 consecutive faults were injected in
replica R1’s communication, then 500 in R2’s, then 500
in R3’s, then again 500 in R1’s, and so on. Such an attack
targets the reconfiguration protocol, aiming to confuse it.
PBFT’s throughput dropped by a factor of 2.2×.

The results indicate that the second DoS attack sce-
nario is more effective than the first. While this behavior
may not be necessarily surprising, the number of faults
and their impact on the overall performance cannot be
easily inferred from the design of the system.

As seen in this section, LFI can be used to study the
behavior of system implementations under various fail-
ure conditions. Since LFI works on binaries, we believe
this can be a useful tool for engineers who wish to evalu-
ate, for instance, closed-source third party software, such
as databases, load balancers, or application servers.

7.4 The Precision/Performance Tradeoff

It is obvious that LFI triggers can be designed at arbi-
trary levels of precision, using information in call stacks,
program variables, system state, etc. In the context of
fault injection, precision denotes the degree to which re-
peated runs of the target program trigger the same injec-
tions. For example, a precise injection would be one that
is made only when the system processes a specific re-
quest (e.g., a database answering a SQL query), but not
when it processes other queries, even if the same library
functions are called in the same conditions.

The question we wish to answer is: What is the cost of
this precision? If, for instance, the process of injecting
library-level faults via LFI slows down the system to the
point that its behavior is no longer representative, then
the value of testing is decreased (though not eliminated).

To analyze the performance of the trigger mecha-
nism, we measured two commercial-grade servers that
are highly performance-sensitive: the Apache 2.2.14
Web server and the MySQL 5.1.44 database server. We
computed the induced overhead as a function of number
of triggers, frequency of triggering, and type of triggers.
We used the Apache benchmark (AB) [1] on Apache and
the SysBench [25] Online Transaction Processing bench-
mark on MySQL.

In order to allow the benchmarks to proceed correctly,
we did not actually inject faults, but allowed the triggers
to pass the calls through to the real library functions. In
this way, we focus the measurement on the triggering
mechanism. Our purpose is not to measure how long
it takes the applications to recover after encountering a
fault, but rather what overhead is introduced by LFI’s
trigger mechanism.

We constructed injection scenarios with a variable
number of triggers and combinations thereof:

• Trigger 1: This trigger targeted apr_file_read

calls. We used it for targeting calls that have the file
descriptor pointing to a socket. The trigger uses the
apr_stat function on the received file descriptor
to check its type.

• Trigger 2: As we wanted to focus testing on
Apache’s core, and exclude dynamically loaded
modules, we also decided to check if the function
caller is Apache via the call stack trigger.

• Trigger 3: We further narrowed down our injection
target by requiring that the function call happens
while processing a request. We used a variation of
the stock call stack trigger to require the existence
of Apache’s ap_process_request_internal

function in the call stack.

• Trigger 4: We then adapted the stock applica-
tion state trigger in order to permit injections only
when the HTTP POST method is used to make
the request. To do so, the trigger had to analyze
the request_rec argument received by Apache’s
ap_process_request_internal function and
examine its method_number field.

• Trigger 5: We wrote a custom trigger in order to
intercept lock and unlock methods in order to target
only apr_file_read calls made while holding a
mutex.

Table 5 summarizes the results, obtained on two dif-
ferent benchmark workloads: static HTML and PHP re-
quests. The former, consisting of 1,000 requests of a
static HTML page, fires triggers 32,612 times (about
1.7× 105 triggerings/second) for the maximum number
of five triggers. The second workload is computation-
ally more demanding on Apache, resulting in fewer li-
brary calls per unit of time: a total of 45,228 triggerings
(about 2.8× 104 triggerings/second). In both cases, the
overheads introduced by trigger evaluation are negligi-
ble, suggesting that LFI can be used without affecting the
target system’s behavior other than through the injected
faults.

Static HTML PHP

Baseline (no LFI) 0.179 sec 1.562 sec
1 trigger 0.179 sec 1.564 sec

2 triggers 0.179 sec 1.574 sec
3 triggers 0.179 sec 1.577 sec
4 triggers 0.186 sec 1.585 sec
5 triggers 0.188 sec 1.589 sec

Table 5: Running time of the Apache Web server while
using LFI with 1-5 triggers. The baseline represents
Apache httpd without any interference from LFI.

We also ran the SysBench [25] Online Transaction
Processing (OLTP) benchmark on the MySQL RDBMS
with LFI applied to GNU libc. We devised injection sce-
narios with 1-4 triggers on the fcntl function:

• Trigger 1: Inject when the cmd argument is
F_GETLK.

• Trigger 2: Inject only when the thread count
is bigger than 64 (tests the global variable
thread_count with the application state trigger).

• Trigger 3: Inject only when the system is
shutting down (tests the global variable
shutdown_in_progress with the application
state trigger).

• Trigger 4: Inject when the call is made by the main
application module and not other libraries (uses the
call stack trigger).

Table 6 shows the results for random triggering
and two different workloads: read-only and read-write
queries. For the highest number of four triggers, there
were ∼14K triggerings/second.

Read-only Read/Write

Baseline (no LFI) 1076 txns/sec 326 txns/sec
1 triggers 1064 txns/sec 319 txns/sec
2 triggers 1060 txns/sec 318 txns/sec
3 triggers 1056 txns/sec 316 txns/sec
4 triggers 1056 txns/sec 316 txns/sec

Table 6: MySQL database server performance while ap-
plying LFI with 1-4 triggers (number of transactions per
second, as reported by the SysBench OLTP benchmark).

Even with complex combinations of conditions that
check various parts of the system state, LFI introduces
negligible overhead (consistently less than 5% in our
measurements). This offers an advantageous preci-
sion/performance tradeoff, meaning that testers can af-
ford to use sophisticated triggers without being con-
cerned that trigger evaluation will bias system behavior.

8 Related Work

Library-level fault injection is an inexpensive testing
method first proposed in the context of FIG [6], a tool
used to verify the error handling code responsible for
GNU libc errors. FIG has several important limitations,
in that it only allows injecting faults in GNU libc func-
tions, cannot select particular call sites in which to inject,
and requires hardcoding the injected error values.

A refinement was presented by Süßkraut & Fetzer [24]
in the form of a system that finds bugs via library-level

fault injection and then patches the vulnerable applica-
tions to protect against these bugs. Still, this system
is limited to GNU libc functions and does not have the
means to automatically search for vulnerable call sites,
nor to specify complex injection conditions.

This paper continues our previous work on LFI [18], a
tool that enables a more general approach to library-level
fault injection, by automatically determining meaningful
faults to inject and by supporting the interception of arbi-
trary library functions without the need for source code.
To our knowledge, this was the first library-level fault in-
jector practical enough for real-world use. Its main dis-
advantage, however, proved to be the lack of a mecha-
nism for specifying precise injection conditions, leaving
the tester able to only do random or exhaustive explo-
ration of the fault space. The work presented here ad-
dresses this shortcoming.

Ideas similar to call site analysis have been previ-
ously proposed in [12], where the authors targeted Linux
file system implementations at the source-code level and
used block-level fault injection to confirm certain cate-
gories of bugs. Java exception propagation and handling
has been analyzed by Weimer and Necula [27] and Fu
et al. [8], using functional specifications and compile-
time fault injection, respectively, for discovering bugs.
Our approach is complementary, since we target different
types of systems, use fault injection at a different level,
and operate on binaries.

Other fault injection systems, like G-SWFIT [2], fol-
low another approach to testing: they mutate the target
binary code according to statistical bug rules. Different
tools operate at even lower levels: FTAPE [26] is de-
signed to inject faults in memory, registers, and disk ac-
cesses. NFTAPE [23] can use different low-level fault
injectors to test the robustness of systems. Using these
systems for testing general-purpose software faces two
challenges: it is not clear whether it is reasonable to ex-
pect an application to handle such low-level fault (e.g.,
disk failure), and the large number of layers that separate
the low-level injection point from the application level
makes pinpointing the location of a possible bug tedious.

The application-library boundary does not suffer from
these shortcomings: programs are expected to react prop-
erly to error conditions signaled by components with
which they interact, and determining the point where a
fault transformed into an error is easier, albeit not trivial.

The concept of injection triggers was used by FER-
RARI [16] and other tools for OS robustness evalua-
tion [15]. These early trigger mechanisms could only
specify a predefined set of conditions, like injecting af-
ter the n-th function call or after a determined amount of
time. The LFI stock triggers and the Trigger interface,
however, allow testers to achieve a level of precision in
recovery-code testing that was previously not available.
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9 Conclusion

This paper described a new and improved version of LFI,
a library-level fault injection framework that is able to
automatically identify errors externalized by shared li-
braries, identify potentially vulnerable injection targets
in application binaries, and produce injection scenarios
that exercise such vulnerabilities. The new LFI offers
an injection triggering mechanism that allows testers to
specify with high precision the conditions under which
a fault is to be injected. We presented the stock triggers
provided by LFI and the mechanism through which they
can be extended to fit practitioners’ needs.

LFI was successfully used in testing real systems, and
it found 11 new bugs in the BIND name server, the Git
version control system, the MySQL database server, and
the PBFT replication system. LFI achieved 35%-60%
recovery-code coverage entirely on its own, with no hu-
man involvement. We have also shown that LFI intro-
duces only negligible runtime overhead during testing.

LFI can be downloaded at http://lfi.epfl.ch/.
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Sleepless in Seattle No Longer
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Abstract: In enterprise networks, idle desktop ma-
chines rarely sleep, because users (and IT departments)
want them to be always accessible. While a number of
solutions have been proposed, few have been evaluated
via real deployments. We have built and deployed a light-
weight sleep proxy system at Microsoft Research. Our
system has been operational for six months, and has over
50 active users. This paper focuses on providing a de-
tailed description of our implementation and test deploy-
ment, the first we are aware of on an operational network.

Overall, we find that our lightweight approach effected
significant energy savings by allowing user machines to
sleep (most sleeping over 50% of the time) while main-
taining their network accessibility to user satisfaction.
However, much potential sleep was lost due to interfer-
ence from IT management tasks. We identify fixing this
issue as the main path to improving energy savings, and
provide suggestions for doing so. We also address a num-
ber of issues overlooked by prior work, including compli-
cations caused by IPsec. Finally, we find that if certain
cloud-based applications become more widely adopted in
the enterprise, more specialized proxy reaction policies
will need be adopted. We believe our experience and in-
sights will prove useful in guiding the design and deploy-
ment of future sleep solutions for enterprise networks.

1 Introduction

A number of studies [30, 3, 41, 6] have noted that most
office machines are left on irrespective of user activity.
At Microsoft Research, we find hundreds of desktop ma-
chines awake, day or night – a significant waste of both
energy and money. Indeed, potential savings can amount
to millions of dollars per year for large enterprises [40].

As businesses become more energy conscious, more
desktops may be replaced by laptops. However, cur-
rently desktops comprise the majority of enterprise ma-
chines [18], with hundreds of millions additional desktops
being sold every year [22, 27, 18]. Where users make
heavy use of local resources (e.g., programming, engi-
neering, finance), desktops continue to be the platform of
choice. Hence, managing desktop power consumption is
an area of both active research [30, 3, 41, 6] and commer-
cial [2, 39, 33] interest.

The most common reason that desktops are kept idling
is that users and IT administrators want remote access to
machines at will. Users typically want to log into their
machines or access files remotely [3], while IT adminis-
trators need remote access to backup, patch, and other-

wise maintain machines. A number of solutions to this
problem have been proposed [33, 3, 6, 30]. The core idea
behind these is to allow a machine to sleep, while a sleep
proxy maintains that machine’s network presence, wak-
ing the machine when necessary. Some of these proposals
rely on specialized NIC hardware [33, 3]; others advocate
use of network-based proxies [6, 30].

Unfortunately, most previous work has been evaluated
either using small testbeds [3, 30, 6] or trace-based simu-
lations [30]. We are not aware of any paper detailing the
deployment of any of these proxying solutions in an oper-
ational enterprise network on actual user machines.1 This
is disconcerting: systems that work well on testbeds often
encounter potentially serious challenges when deployed
in operational networks.

This paper aims to fill that gap. We describe the
design and deployment of a network-based sleep proxy
on our corporate network. Our design expands on the
light-weight network proxy approach proposed in [6, 30],
avoiding hardware modification [3] and the overhead of
virtualization [17]. Our architecture comprises two core
components: a per-subnet sleep proxy, and a sleep noti-
fier program that runs on each client. The sleep notifier
alerts the sleep proxy just before the client goes to sleep.
In response, the proxy sends out ARP probes [13] to en-
sure that all future traffic meant for the sleeping client
is delivered to the proxy instead. The proxy then moni-
tors this traffic applying a reaction policy: responding to
some packets on the client’s behalf, waking the sleeping
client for certain specified traffic (using Wake-on-LAN
(WOL) [43] packets), and ignoring the rest. Our reac-
tion policy of waking for incoming TCP connection at-
tempts on listening ports was chosen both in keeping with
our goal for a light-weight, easily deployable system and
based on the performance predictions of [30]. We provide
in-depth discussion of the merits of this and alternative
approaches in Sec. 3.

Our system has been operational for over six months,
and currently has over 50 active users. Our software is
deployed on user’s primary workstations, not test ma-
chines. Indeed, this preliminary deployment has been so
successful that our IT department has begun recommend-
ing our system to users. We have instrumented our system
extensively; capturing numerous details about sleep and
wakeup periods, why machines wake up and why they stay
up. Instead of using generic estimates of PC power con-

1Concurrent work [4], provides the first study of sleep proxy deploy-
ment in an academic network.
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sumption, we use a sophisticated software-based, model-
driven system, Joulemeter, to estimate power draw.

In this paper, we focus on providing a thorough de-
scription of our implementation and its performance
in the wild. We describe a number of practical issues we
encountered when deploying a light-weight sleep proxy
in a corporate network, many of which have been over-
looked by previous work. For example, our implementa-
tion must not only deal with vanilla IPv4 and IPv6 pack-
ets, but also tunneled packets. Our corporate network uses
IPsec, and we find that a seemingly minor implementation
choice in this setup, almost entirely ameliorates the over-
head of dealing with this traffic. We describe race condi-
tions that arise when the sleep proxy attempts to redirect
traffic from sleeping client to itself, and provide a prac-
tical solution. We show how issues such as DHCP lease
expiration and proxy failure can be handled without the
need for a more complex reaction policy.

The highlights of our deployment experience and per-
formance assessment are:
A light-weight system using a simple reaction policy
can produce significant savings. By analyzing trace data
from our system, we find that our system allowed the
clients to sleep quite well. Many machines slept over 50%
of the time, despite use of a simple reaction policy. How-
ever, the average power savings was only 20%, casting a
pall over the optimistic predictions made in [30, 3].
IT servers and applications proved a major impedi-
ment to sleep. The main cause of reduced power savings
in our enterprise network was due to the IT setup. We
find that while users do access their machines remotely,
remote accesses by IT applications are the primary cause
of both machines being woken (fitful sleep) and being kept
awake (insomnia). IT server connection attempts repeat-
edly woke sleeping machines. In one extreme case, a sin-
gle machine was contacted over 400 times within a two-
week period. Additionally, some of the locally running
IT applications (e.g., virus scanners) kept machines up by
temporarily disabling sleep functionality. We also iden-
tify bugs in common software (e.g., Adobe Flash player)
that interfere with proper sleeping. Fortunately, it appears
there is significant room for improving the compatibility
of IT setup and effective sleep. We discuss IT setup im-
pediments and remedies further in Sec. 7.6.
The rise of cloud-based applications may demand
more complex reaction policies. Three of our users re-
quired support for two popular cloud-based applications,
LiveMesh and LiveSynch. Machines running these, or
similar, applications must initiate TCP connections to the
cloud server, which are used to inform them of any pend-
ing updates. These connections can either be periodic,
or long-lived, but it must be initiated by client. We re-
fer to cloud applications of this type as persistent2. Con-

2Many cloud-based applications including most “software as a ser-

sequently, to support such cloud-based applications the
sleep proxy will need to keep some additional state which
may be as simple as sending TCP keep-alives or as com-
plex as running a virtualized client-side of the applica-
tion. While this did not pose a major issue in our op-
erational environment/population, as/where the predomi-
nance of persistent cloud applications increases, reaction
policies supportive of this model will be needed.

Overall, we believe that the insights gleaned from our
experience will be useful in guiding the design and de-
ployment of future sleep solutions in enterprise networks.

2 Related work

While the basic concept of sleep proxying has been
known for some time [15], it has received much renewed
attention lately [6, 29, 3]. Among recent publications, the
two most closely related to our work are [3] and [29].

In [3], the authors describe a hardware-based solution.
They augment the NIC with a GumStix [20] device, which
is essentially a small form factor, low-powered PC. Once
the host machine goes to sleep, the GumStix device takes
over. It handles select applications (e.g., file downloads)
on behalf of the host PC, but wakes up the host PC for
more complex operations. While this approach is more
flexible than the sleep proxy we have built, it is far less
practical for two reasons. Not only is additional hardware
required on every PC, but both applications and host OS
modification are required to enable state transfer between
host PC and GumStix device. Both these requirements
are a substantial barrier to widespread deployment of this
technology. In contrast, our approach requires neither ex-
tra hardware, nor application modifications.

In [29], the authors carry out an extensive trace-based
study of network traffic, arguing for a network-based
sleep proxy. Their primary finding is that in an enter-
prise environment, broadcast and multicast traffic related
to routing and service discovery cause substantial network
‘chatter”, most of which can be safely ignored by a sleep
proxy. They also posit that most unicast traffic directed
to a host after it has gone to sleep can also be ignored, so
long as the host is woken when traffic meant for a set of
pre-defined applications arrive (early work had focused on
avoiding disrupting existing TCP connections [14, 23]).
Based on these insights, they propose a number of sleep
proxy designs.

While our proxy design builds upon the insights of
[29], we make several additional contributions in this pa-
per. First, unlike [29], our design includes a client-side
agent, which considerably simplifies the overall architec-
ture, making it robust, and virtually configuration-free.
Second, we build and deploy our sleep proxies in a real
operational network on users’ primary workstations. In

vice” applications (e.g., Google Docs) are not of this type

contrast, the prototype in [29] was tested only a small
testbed without real users, and did not address challenges
such as IPsec traffic and proxy failures. Third, our in-
strumentation measures sleep and wakeup behavior of op-
erational machines. We document why machines do not
sleep, when and why they wake, etc. Fourth, our deploy-
ment includes a model-based power measurement compe-
tent. Since machine power usage can vary by 2.5x while
awake, our power estimates provide significantly greater
fidelity than the “one size fits all” model used by [29].

Two pieces of concurrently published work address al-
ternative sleep proxying architectures that make use of a
networked sleep proxy. [4] implements a stub-based reac-
tion policy along the lines of [3] and evaluates it in an aca-
demic network, while [17] runs client machines within a
hypervisor and migrates these to the sleep proxy machine.
We provide further comparison in Sec. 3.3.

We now turn to commercial systems. Intel offers
two hardware-based solutions, Remote Wakeup Technol-
ogy (RWT) [33] and Active Management Technology
(AMT) [7], that can remotely wake up a sleeping ma-
chine. AMT is primarily meant for management tasks
(e.g., out of band access for asset discovery, remote trou-
bleshooting). RWT is more closely related to our work.
RWT requires the NIC of the sleeping machine to main-
tain a persistent TCP connection to an authorized server.
The NIC wakes up the host machine upon receiving a spe-
cial message over this TCP connection. RWT requires
modification of client applications and works only with
Intel hardware. Even the wakeup service has to be digi-
tally signed by Intel. In contrast, our solution is entirely
software-based, hardware-agnostic, and requires no appli-
cation modification.

Apple has recently released a sleep proxy geared to-
ward home networks that works only with select Apple
hardware [8]. For enterprise networks, systems such as
Adaptiva [2] and Verdiem [39] are available. The primary
focus of these systems is to enable the system adminis-
trator to estimate power usage, and wake up sleeping ma-
chines to perform management tasks such as patching. A
number of industry participants are trying to standardize
basic sleep proxy functionality [16].

Several other approaches to saving power, such as
power-proportional computing [9], dynamic voltage and
frequency scaling [34], the TickLess kernel [37] and OS-
level power management [35] have been investigated, and
can be used in conjunction with our system. Researchers
have also looked at networking hardware and software
stacks as potential targets for power savings. Examples
include [21, 30, 12, 11]. [5, 38, 26] examine data center
power consumption and savings approaches.

Prior work has shown that CPU utilization and cer-
tain performance counters can be used to estimate com-
puter energy use [32, 10, 19]. Our power estimation tech-

nology provides enhanced accuracy by considering addi-
tional factors not considered in prior work, such as pro-
cessor DVFS states and monitor power.

3 Design Goals & Alternatives

As discussed earlier, enterprise users often do not let their
machines sleep as they may require remote access. Our
goal in deploying a sleep proxy is to encourage users to
allow their machines to sleep – by ensuring their machine
will wake on remote access attempts. We now describe
the basic functionality required from a sleep proxy, define
our design goals, and describe design alternatives. Before
we begin, we note that our use of the term ”sleep” refers
to ACPI S3 (suspend to RAM) [1]. Our system supports
ACPI S4 (hibernate) and S5 (power off) as well.

3.1 Basic sleep proxy functionality
A sleep proxy detects when a sleep client machine (M )
has gone to sleep, typically because that machine’s idle
timeout had been reached.3 The proxy then monitors net-
work traffic destined for M . Based on a pre-defined re-
action policy, the sleep proxy will, (a) respond to some of
the traffic on behalf of M (e.g. ARP requests for M ), (b)
wake M for selected traffic (e.g. TCP SYNs for M ) and
(c) ignore the remainder.

3.2 Design goals
Our goal is to build a practical, deployable sleep proxy
for typical corporate networks, composed of desktop ma-
chines with wired connectivity. In a typical usage sce-
nario, the user’s machine goes to sleep, and wakes auto-
matically on remote connection attempts.

The design of our sleep proxy was directed by four
goals. (a) The system had to save as much power as pos-
sible, (b) while minimizing disruptions to users. It is crit-
ically important to ensure a sleeping machine is always
woken when the user desires access: otherwise no one
would use the system. Furthermore, the system had to be
(c) easy to deploy and maintain, since we operated with-
out the benefit of a large IT staff. We explicitly decided
not to add hardware to client machines, as it makes de-
ployment significantly harder. Finally, we required the ar-
chitecture be (d) scalable and extensible, since the system
had to operate in a dynamic live network

It was not our goal to support laptops per se as they
offered much less opportunity for power savings. They
consume much less power when active, and are more of-
ten put to sleep by users. Thus, while some of the work
we have done is applicable to laptops, we do not address
laptop-specific challenges such as mobility in our work.

3In Windows, the idle timeout is typically 30 minutes from power
up / last user activity, and two minutes for any other wake cause (e.g.,
scheduled wakeup, WOL).
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As all the machines in our network run Windows,
some details of our implementation are Windows specific.
However, our architecture is designed to be OS agnostic.

3.3 Design alternatives
We now consider three design alternatives, and evaluate
them in light of our requirements.

3.3.1 NIC Pattern Matching
The first potential approach is to simply use the combina-
tion of Wake-On-Pattern+ARP Offload. This capability is
available on most modern wired NICs.
How it works: The NIC effectively acts as the sleep
proxy for the machine. It responds to incoming ARPs
on behalf of the sleeping machine (ARP Offload), thereby
maintaining the machine’s network presence. The NIC
can be programmed to detect specific patterns in incom-
ing traffic, and wake up the host machine if a packet with
specified pattern arrives (Wake-On-Pattern). The inter-
face for specifying patterns [28] includes built-in support
for IPv4 and IPv6 TCP-SYNs; one only need specify ad-
ditional information (e.g., ports). Raw bit patterns can
also be specified.
Pros: These NICs are available on most modern ma-
chines, so no additional hardware needs to be deployed.
Cons: We found that for our purposes the capabilities of-
fered by these NICs were not adequate. Our corporate
network is quite complex: it supports IPv4, IPv6, v6-
over-v4 and requires IPsec. To ensure machines were
woken whenever users required access, we had to han-
dle packets requiring flexible inspection (e.g. a TCP SYN
in an ESP packet carried in an IPv6 packet, tunneled in
an IPv4 packet - Sec. 4.3.2). While such packets may
be detected by explicit bit-pattern matching, the number
of wakeup patterns needed is a multiple of the number of
listening ports (to detect tunneled variations) plus several
base patterns for standard WOL functionality. NICs on
older machines can support as few as four wake patterns
and are limited to detecting matches in the beginning of
the packet which restricts the ability to detect tunneled
packets. Moreover, future needs (e.g., support for persis-
tent cloud applications) may dictate stateful reaction poli-
cies or deeper packet inspection, beyond current NIC ca-
pabilities. Thus, this approach fails criteria (b) and (d).

3.3.2 Virtualization
How it works: Users install a hypervisor on their
desktop, and then install and use a VM on top of the
hypervisor[17]. When the desktop machine needs to
sleep, the VM is migrated to a hosting server. When nec-
essary, (e.g. a CPU intensive application is run), the desk-
top machine is woken, and the VM migrated back.
Pros: This approach is attractive because if the migration
can be made seamless, the desktop does not have be wo-
ken up for transactions of even moderate complexity that

can be carried out on the hosting server. As the machine
can go to sleep without interrupting existing network con-
nections, the machines can go to sleep much more often,
and hence the power savings may be greater.
Cons: To deploy a system based on this approach, we
would have had to install hypervisor on the end user sys-
tems and boot their existing OS as a VM. Most users
would not have agreed to such a drastic change to their
work environment. Apart from taking a performance hit,
virtualization may encounter problems with a number of
common end-user devices (e.g., cameras, external drives),
whose drivers do not always work well when virtualized.

3.3.3 Network-Based Sleep Proxies

This approach was proposed in [15], its feasibility re-
cently given careful study by [29].
How it works: This approach relies on a separate ma-
chine acting as a sleep proxy for the sleeping machine.
The sleep proxy detects when a client goes to sleep. It
then modifies Ethernet routing (Sec. 4.3.1) to ensure that
all packets destined for the sleeping machine are deliv-
ered to the sleep proxy instead. The proxy examines the
packets, and wakes up the sleeping client when needed,
by sending a Wake-On-LAN (WOL) [43] packet.
Pros: Very little hardware support is required from the
client machine - the client NIC only needs to support
WOL. As the sleep proxy runs on a separate, general
purpose computer, it has great flexibility in handling in-
coming traffic for the sleeping machine. The sleep proxy
can do complex, conditional packet parsing and can even
wake the sleeping machine based on non-network events
such as requests by system administrators, users entering
the building (with support from building access systems),
etc. This design also scales well (Sec. 7.5.2).
Cons: This design requires deployment of a sleep proxy
on a separate machine (generally one per subnet sup-
ported). In most variations a client-side application must
be installed as well.

We have chosen this approach as it is both very easy to
deploy and requires minimal changes to user machines. It
affords great scalability and flexibility as the sleep proxy
can be changed without disturbing the client machines.
We have chosen to use light-weight reaction policy which
simplifies both client and proxy software complexity and
allows a very large number of hosts to be handled by a
single proxy. This reaction policy does cause existing net-
work connections are broken. We argue that this is not an
issue for typical corporate workloads (Sec. 4.4), although
this may change if persistent cloud computing applica-
tions play a greater role in corporate environments.

Contrastingly, [4] uses a stub-based reaction policy, ca-
pable of maintaining existing network connections and
waking the host somewhat more infrequently. This comes
at the cost of implementation complexity and will allow

fewer clients to be hosted on a sleep proxy. Their im-
plementation uses an ESX server that would preclude ei-
ther low-power sleep proxies (Sec. 6) or peered proxying
(Sec. 8). Their reaction policy faces the same impedi-
ments from sleep-unfriendly IT setups as ours - by far the
main source of lost sleep opportunities in our environment
- as IT tasks generally require waking clients.

4 Architecture
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Figure 1: System block diagram. Blocks shaded gray rep-
resent existing components that are not modified in any
way for the sleep proxy to work. Blocks with dashed out-
lines are part of our instrumentation setup.

The overall architecture of our system is shown in Fig-
ure 1. We require one sleep proxy per subnet. We also
required the clients to install a small background service4,
sleep notifier. In this section, we will focus on the design
of the sleep proxy and the sleep notifier which form the
core of our solution. We discuss Joulemeter in Sec. 5.1

As discussed earlier, a sleep proxy responds to some
traffic, wakes the sleep client for other traffic, and ignores
the rest. Our choice of reaction policy is similar to that
of the proxy scheme (proxy3), which [29] found provided
the highest simulated power savings. This reaction pol-
icy, whose rationale is discussed in Sec. 4.4, responds me-
chanically to IP resolution requests (e.g., ARP) and wakes
the sleep client only on TCP connection attempts to listen-
ing ports5, ignoring other traffic.

Before digging into design details (Secs. 4.2 and 4.3),
we provide a quick overview of how our system works.

4.1 System Overview
Imagine a sleep client M running sleep notifier. M ’s
sleep notifier registers with the OS to receive notification
when the machine is about to go to sleep. At such time,
the OS alerts the sleep notifier.

4A daemon, in Unix terminology.
5There being no reason to wake the machine for connections to non-

listening ports, which would just be ignored anyway.

M ’s sleep notifier then alerts the sleep proxy S that
M is going to sleep, providing a list of M ’s TCP ports
in the listening state (actively listening for incoming con-
nections). Assume that the SSH port, 22, is one such port.

Upon receiving the notification, S adds M to its list of
proxied clients and sends out an ARP probe (Sec. 4.3.1),
re-mapping the switched Ethernet to direct future packets
for M to the network port at which S resides. S now
begins receiving traffic that was meant for M . S responds
to ARP requests and IPv6 Neighbor Discovery packets as
if it were M , thereby maintaining M ’s network presence
and ensuring traffic for M continues to arrive at S.

Some time later a remote client C attempts to con-
nect to the sleeping machine M , using SSH. As the first
transport-layer action taken in establishing this new con-
nection, C sends a TCP SYN on port 22 to M which the
switched Ethernet routes to S.

Upon examining the packet, S determines that it is a
TCP SYN meant for M and destined to a port on which M
was listening when it when to sleep. S therefore wakes M
up by sending it a WOL packet (Sec. 3.3.3), removes M
from the proxied client list, and drops the TCP SYN. As
M wakes up, it sends its own ARP probes, which ensure
that future traffic meant for M will arrive at M ’s network
port. Meanwhile, C retransmits this SYN following the
normal TCP timeout. The retransmitted SYN arrives at
M , who responds as normal, thereby establishing the TCP
connection without C being any the wiser, except for a
small delay - quantified in Sec. 7.5.1.

4.2 The Sleep Notifier
Installing the sleep notifier on sleep clients greatly simpli-
fies the overall design. As the service runs on user desk-
tops, our aim is to make the sleep notifier code robust and
stateless, requiring as simple configuration as possible.

The primary purpose of the sleep notifier is to no-
tify the sleep proxy when the machine is going to
sleep. Just before a machine is put to sleep, the
Windows OS sends out a ‘get ready for sleep” (a
Win32 PowerManagementEvent) event to all the
processes and drivers running on a machine, allowing
them to prepare for sleep. The sleep notifier registers to
receive this event. Upon receiving the event, the notifier
immediately broadcasts a sleep notification packets (en-
capsulated in a UDP packet to port 9999), containing a
“going-to-sleep” opcode and list of the sleep client’s lis-
tening TCP ports, to the subnet broadcast address. For
reliability it retransmits the packet three times.

In keeping with our light-weight approach, sleep noti-
fication packets are broadcast. The sleep client does not
need to know the identity of the sleep proxy and requires
no configuration nor stable storage, as there is no state to
be kept. The sleep notification packet obviates the need
for active probing sleep clients to determine sleep status
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(as done in [29]) or which ports should be proxied ([29]
restricted proxied ports to a manually pre-configured set).

Since the sleep notifier may have less than two seconds
in which to send the sleep notification packet before the
machine falls asleep 6, it is possible, albeit unlikely, that
the notification packets will not be sent in time. Conse-
quently, the sleep notifier also sends out periodic heart-
beats when the machine is awake. These heartbeats are
identical to the sleep notification packet, save that they
use a “heartbeat” opcode. In our current implementation,
heartbeats are sent out every 5 minutes, with some jitter-
ing. When the sleep proxy misses two consecutive heart-
beats from a client, it immediately sends a WOL packet to
that client. If, after sending the WOL, neither a heartbeat
nor a sleep notification is subsequently received from the
client, the proxy assumes that the machine has left the net-
work and removes it from the list of proxied sleep clients.

4.3 The Sleep Proxy
The sleep proxy needs to monitor incoming traffic to the
sleep client and also wake that client by sending a WOL
packet on the subnet broadcast address 7. Redirecting traf-
fic destined for a given machine to another machine out-
side of its local subnet requires substantial support from
routers. Thus, the sleep proxy has to run either on the sub-
net router itself, or on some other subnet machine. Run-
ning a sleep proxy on the subnet router was not possible,
so we use one dedicated machine per subnet to act as a
sleep proxy for machines in those subnets.

4.3.1 Rerouting

Like most enterprise networks, our network is a switched
Ethernet network. Thus, unicast traffic for a host is not
generally visible to other hosts on the network. Thus,
upon receiving the sleep notification from a client, the
sleep proxy needs to ensure that the traffic destined for
sleeping clients is re-routed to the sleep proxy’s NIC.

While there are a few ways to affect such re-routing,
we have found sending ARP probes [13], as shown in Fig.
2, to be the most reliable method. A machine uses these
ARP probes to advertise its MAC and IP address, and
to perform duplicate address detection (DAD). Also, the
subnet switches refresh/remap their internal routing tables
upon receiving these probes.

Thus, when a sleep proxy receives a sleep notification
from a client, it issues specially crafted ARP probes pre-
tending to be the sleep client (refer again to Fig. 2).

6The sleep notifier cannot reliably force the system to remain awake
once the notification is broadcast

7This packet must be broadcast since at the time it is sent, the sub-
net’s routing is set to deliver all packets meant for the sleeping host to
the sleep proxy.

Field Value
Ethernet Source Addr M.MAC Addr
Header Destination Addr FF:FF:FF:FF:FF

Sender MAC Addr M.MAC Addr
ARP Sender IP Addr 0.0.0.0

Request Target MAC Addr 00:00:00:00:00:00
Target IP Addr M.IP Addr

Figure 2: ARP probe for sleep client M

This ensures that subsequent network traffic meant for the
sleeping machine is delivered to the sleep proxy instead.8

When a sleeping machine wakes (either because the
sleep proxy woke it, or because it was woken for some
other reason), it will naturally send out a fresh set of ARP
probes generated by the OS to ensure that it can re-use
the same IP address that it had before it went to sleep.
This has two nice side effects. First, the subnet switches
now begin forwarding traffic meant for the sleeping (and
now awake) machine, back to that machine, instead of the
sleep proxy. Second, as these probes are broadcast, the
sleep proxy can see them, allowing it to immediately rec-
ognize when clients have woken and cease proxying.

4.3.2 Reaction Policy
As discussed earlier our sleep proxy reaction policy re-
sponds to IP address resolution traffic, examines incom-
ing TCP connection attempts, and ignores all other traffic.
This means that (a) current TCP connections are broken
and (b) UDP applications are not supported.

Intuitively, the former would seem to be a safe strategy
for many applications. The sleep proxy is not responsible
for putting a machine to sleep. That decision is taken by
the local OS. If the local OS deemed it safe to put a ma-
chine to sleep while it had TCP connections open, then
clearly the applications to which those TCP connections
correspond have not placed requests to prevent sleep (a
standard feature of modern OSes). Moreover, most com-
mon corporate network applications are inherently dis-
connection tolerant (e.g., email, web browser).

As for the latter, in our network, practically all desk-
top applications use TCP. Users typically access their
machines either via SMB (to retrieve files) or via Re-
mote Desktop. Upon initiation, both these applications
start new TCP connections, and hence send correspond-
ing SYNs. Routine maintenance is handled via RPC calls,
and this traffic also goes over TCP. Additionally, it given
the flexible parsing power of our sleep proxy, it should not
be difficult to extend our technique to cover UDP traffic
meant to initiate new connections for particular applica-
tions requiring such (e.g., NFS version 2).

The impact of ignoring non-TCP traffic and breaking
currently existing TCP is difficult to estimate empirically.

8An alternate way of doing this would be to replace
M.MAC ADDR with the sleep proxy’s MAC address, however
this could cause the DAD mechanism to be triggered if the sleep client
were to wake very quickly after sleep.

However, we believe the proof is in the pudding: after
months of running our code, none of our users or IT staff
have complained that their machines did not wake on re-
mote access and the only applications which we received
request support for were the two cloud-based applications
run by a small minority of users. [29] provides a more
detailed discussion of our reaction policy and comparison
with other possibilities.

4.4 Implementation Challenges
IPsec: Responding to IP address resolution traffic is easy:
the sleep proxy simply issue ARP responses and Neigh-
bor Discovery advertisements as if it were the sleeping
client. Handling TCP connection attempts is more com-
plicated. To detect an incoming TCP connection attempt
the sleep proxy must examine the packet’s IP header con-
firming it was destined to a currently proxied machine,
and contains a TCP SYN with a destination port on which
that machine had been listening. While it is easy to parse a
TCP SYN contained in a vanilla IPv4 or IPv6 packet, our
network (like most corporate networks) is more compli-
cated in both its use of IPv6 tunneling and IPsec ESP au-
thentication9. Tunneling comes in three flavors, ISATAP,
6over4, and Teredo [36]. Our current implementation
handles ISATAP and 6over4. ISATAP packets are already
unwrapped for the sleep proxy by the ISATAP router and
arrive as IPv6 packets on the sleep client’s ISATAP IPv6
address. Thus these packets require no additional process-
ing. 6over4 packets arrive as IPv4 packets whose next
protocol is 6over4. The inner packet is then removed and
parsed as a standard IPv6 packet. Our current implemen-
tation does not handle Teredo wrapping, since it is being
phased out in favor of the first two mechanisms.

The use of IPsec [42] presents a number of challenges.
Imagine a remote machine C trying to connect to sleeping
machine M using TCP. Let S be the sleep proxy. If IPsec
is in use, there are two possibilities. Either C has not
communicated with M in recent past, or it has.

If C has not recently communicated with M it would
first try to establish a new security association by doing
IPsec key exchange (IKE). The IKE packets are sent via
UDP. The IKE sent by C end up at S. Recall, however,
that our sleep proxy wakes up packets only on receiving
TCP SYNs. Thus, the sleep proxy would never wake up
M . However, Windows optimizes connection establish-
ment by requiring C to send a TCP SYN “in the clear” as
it begins the key exchange [42]. This is done to speed up
the connection establishment: TCP handshake can hap-
pen in parallel with IPsec handshake. This works in our
favor: the sleep proxy can detect the TCP SYN transmit-

9Note that tunneling and IPsec can be (and indeed are) used together.
Our sleep proxy routinely sees and handles TCP SYNs that are encap-
sulated in an ESP payload, which is carried in an IPv6 packet, which is
tunneled inside an IPv4 packet.

ted by C, and wake up M , which can then finish the key
exchange. Otherwise, M would need to be woken for ev-
ery IKE attempt. As we shall see later, in our network this
would have lead to many spurious wake-ups.

Conversely, if C has recently communicated with M ,
it may have cached the security association information.
Since our network uses Encapsulated Security Payload
(ESP) [25] protocol, C would encrypt the TCP SYN it
sends. While the TCP SYN would end up at S, there is
no way for S to decode the packet. This would have been
incompatible with our reaction policy, except that our net-
work uses ESP only with integrity service: the payload
itself is not encrypted. Thus, S can parse the packet, in-
spect it, and wake M if needed.

Thus by choosing an IPsec setup in which both ESP
payload encryption is disabled and enabling TCP connec-
tion establishment optimization, the need for running a
heavier-weight reaction policy is ameliorated.
ARP probe timing: The sleep proxy cannot simply send
out ARP probes as soon as it receives the sleep notifica-
tion from a client, as that client may send other packets
before the network card sleeps. If ARP probes from the
sleep proxy intermingle with traffic generated from the
client that is about to fall asleep, the spanning tree proto-
col may end up in state where packets meant for the sleep-
ing machine are not routed to the sleep proxy. In our early
implementations, this problem created much heartache.

To avoid this problem, after receiving the sleep notifi-
cation, the sleep proxy begins pinging that sleep client.
The sleep proxy waits for five consecutive ping failures
before sending out ARP probes and thereby taking over
for the sleeping client.
Daily wakeup & DHCP lease expiration: Currently, the
sleep proxy wakes all sleeping clients at 5AM. The pri-
mary reason is to allow these machines to initiate any
backup or scanning activity. The wakeup also obviates the
need for the sleep proxy to handle DHCP traffic on behalf
of the clients. In our network, DHCP leases are valid for
30 days. When the client is awake, it renews the lease
every day. Furthermore, it also renews the lease when
it wakes up. As each client is guaranteed to wake up at
least once a day, we did not need to implement DHCP re-
newal on our sleep proxy. The same mechanism also pro-
tects against address black-holing: whereby a sleep proxy
keeps holding on to the address of a machine that has de-
parted the network. If heartbeats are not seen for a sleep
client after the daily wakeup, that machine is inferred to
have left the network (as described earlier).
Failure of sleep proxy: In our current implementation,
each subnet is served by a single sleep proxy. This cre-
ates a single point of failure. We have designed, but not
yet implemented a primary-backup solution for ensuring
additional reliability. Another possibility is to design a
purely peer-to-peer solution (Sec. 8). Our design does of-
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fer protection against a sleep proxy crashing, and restart-
ing. The sleep proxy stores the MAC addresses of all the
machines that it is proxying for in a log maintained on
non-volatile network storage. Upon restarting, the sleep
proxy checks the log, and proactively wakes up all the
machines by sending them WOL packets. This ensures
that the sleep proxy starts operations in a consistent state.
Multi-homed machines: The sleep proxy architecture
can easily handle multi-homed machines as long as (i)
the sleep notification goes out on all interfaces and (ii)
a sleep proxy is available on each network that receives
incoming connection attempts.
Manual wakeup: Apart from the “automatic” wakeup
described so far, we also provide for remote, manual
wakeup of sleeping clients. This is achieved by main-
taining a website outside our corporate firewall. Every
sleep proxy maintains an open TCP connection to this
web server. Users can type in the name of their machine
on this website. The web service sends the name to every
sleep proxy, and if a sleep proxy has the specified ma-
chine as a client, it wakes that machine up by sending
it a magic packet. This service provides a “last resort”
wakeup alternative and also allowed the small minority of
cloud application users to manually reconnect cloud apps.

5 Instrumentation

Our sleep proxy keeps a detailed log of its interactions
with clients, including when and why the clients go to
sleep or wake up. On client side, we use Joulemeter, to
estimate the power consumption of the clients, and gather
information about why clients stay awake. Joulemeter is
installed as a separate, optional service on clients.

5.1 Monitoring power consumption
To quantify the energy savings of our approach, we de-
sired an accurate method of estimating our deployment’s
power consumption. Different machine makes and mod-
els consume power at differing rates. Further, a given
machine consumes vastly different power depending on
its CPU utilization level, P-state and whether its moni-
tors are on or off. For instance, the power usage of an
HP xw4300 workstation with two monitors varied from
141W to 240W with processor utilization, and changed
by an additional 120W with monitor power state for a to-
tal variation of 2.5X.

However, desktop workstations do not typically have
built-in instrumentation to measure power usage, and
we wished to avoid attaching external power-meters to
each machine for the same reasons we rejected hardware
augmented sleep proxying approaches. Consequently,
we used a software solution, Joulemeter, that produces
power usage estimates based on hardware activity and
pre-calibrated machine models.
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Figure 3: Measured and predicted power consumption

The key principle behind Joulemeter’s energy estima-
tion is to use a machine specific power model. The model
consists of a set of equations that relate the hardware
configuration and resource utilization levels to power us-
age. Our current model takes into account processor P-
states, processor utilization, disk I/O levels, and whether
the monitor(s) are on or off. The power model for a spe-
cific hardware configuration is learned via calibration -
controlled experiments in a laboratory settings. Once the
power model is known, the machine’s power consump-
tion at run time can be estimated by monitoring CPU uti-
lization (and P-state), disk utilization and monitor status.
We omit the details of model construction due to lack of
space. For a preliminary introduction see [24].

Fig. 3 shows Joulemeter estimates versus measured
power consumption (using a hardware power meter) for
a HP d530 workstation with 2.66GHz Pentium CPU run-
ning a workload generator that loaded the CPU and disk
at random. The estimates were generated using the cali-
brated model produced from a different workstation with
the same model and CPU. The results shown confirm
Joulemeter’s estimates track closely with the actual power
consumption. In practice, no two systems are exactly
alike. Still, in validation testing we found Joulemeter pre-
dictions to be accurate within 20%

In our deployment Joulemeter generated power read-
ings were averaged over 30 second intervals and periodi-
cally uploaded to the database. We have built up a library
of power models covering most of our client machines.

5.2 Monitoring machine insomnia
To determine why a machine is awake, Joulemeter relies
on two sources. First, it periodically checks the lastUser-
Input timer provided by the OS. This timer provides the
time of last user activity. We compare the value of this
timer to the idle timeout (a typical Windows default value
is 30 minutes). If user activity has occurred more recently
than the idle timeout, we assume that the machine is being
kept awake by user activity. We note that due to various
technical issues this timer is not always available, so we
cannot always determine whether the user is active.

We also find that machines often stay awake even when
the idle period exceeds this duration. To determine the
reasons behind this, we rely on powercfg.exe utility that
ships as part of Windows 7. The utility can often (but
not always) shed light on why a machine is staying up
by detailing requests to the OS for the machine to remain

awake. For example, a remote machine may be holding
a file open or a defragmenting routine may be running.
Joulemeter periodically collects this information and re-
ports it to the central database. Analysis of this informa-
tion is presented in Sec. 7.

6 Implementation and Deployment

Our deployment consisted of 6 proxies (one for each
of our network’s 6 wired subnets), 51 clients, an SQL
database, and the manual wakeup webservice mentioned
earlier (standard IIS webserver with code written using
ASP.NET). Most of the code is written in C# (5000 lines).

Only the sleep proxy contains any significant amount
of unmanaged code. The sleep proxy relies on PCAP
to capture and examine incoming packets. A small cus-
tom driver allows the sleep proxy to craft and inject ARP
probes while bypassing the network stack. The primary
data structure in the sleep proxy is a hashtable used to
keep track of clients and their status. We first used or-
dinary desktop machines as proxies and have begun mi-
grating to the low-powered, small-form-factor machines
drawing less than 25 watts of power.

On client side, apart from the required sleep noti-
fier service, the clients install three optional applications:
Joulemeter, a GUI program displaying sleep statistics and
estimated energy savings, and an auto-updater service that
keeps client-side code up-to-date. During client instal-
lation, we ensured that Wake-On-LAN was enabled and
ARP offload (which is enabled by default for certain cards
in Windows 7) was disabled on the client’s NIC. We also
set the idle timeout to 30 minutes.

7 Results

This section is guided by several overarching questions.
What is the sleep and wake behavior of machines in our
system? How much power did our solution save? What
might be done to obtain additional power savings? What
impact did our setup have on user experience? Was
the sleep proxy architecture scalable? For the impatient
reader, we highlight our main insights at this section’s end
(Sec. 7.6).

We begin by describing the details of our dataset.

7.1 Dataset Overview
While our deployment has been active for half a year in
various stages, for the rest of this section we focus on the
45 day period from November 19th, 2009 through Jan-
uary 3, 2010. During this time, we gathered data from
51 distinct machines belonging to 50 distinct users. As
users installed our software at differing times, not all ma-
chines provided data for the entire period (although most
did). Fig. 4(a) shows the cumulative distribution of trace
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Figure 4: Trace Length and Listening Port Distribution

lengths of individual machines. Our users were a self se-
lecting group, so their behavior may not be representative
of all user populations.

7.1.1 Machines in our study

As we noted in Sec. 5.1, machine power consumption de-
pends on the particulars of that machine’s hardware con-
figuration. The hardware configuration of machines in our
deployment was varied, but not overly so. Of the 51 ma-
chines, 43 are HP and 6 were Dell. Only one of the ma-
chines has an AMD processor, the rest having Intel CPUs.
Most of the machines are dual or quad cored. The CPU
frequencies vary from 2-3.4GHz. Twenty seven machines
had one monitor, 20 had two, and five had three. Five
machines ran Windows Vista, all the rest ran Windows 7.

As we wake up machines for incoming TCP SYNs only
on listening ports, it is worth examining the number of
listening TCP ports on each machine. This number, of
course, varies over time, as active processes and settings
change. Fig. 4(b) shows the min, max, and average num-
ber of listening ports by machine. One machine had 35
ports open simultaneously!

7.1.2 Traffic

Since all traffic destined for sleeping clients arrives at
their sleep proxies, we can examine this traffic in cen-
tralized manner, without installing sniffers on individual
machines. While we have deployed a sleep proxy on each
of our six subnets, 59% of our machines are connected to
the largest subnet. We have seen as many as 800 active
machines on this subnet. We examined in detail a trace of
all (23 million) packets arriving at the sleep proxy serving
this subnet during a typical work week (5.5 days).

Of this traffic, 96% were multicast and broadcast pack-
ets. Of the multicast packets, 12.31% were ARP requests,
which the sleep proxy examined and replied to as needed.
The vast majority of the multicast traffic was safely ignor-
able [29]. The remaining 4% traffic was unicast: destined
either to the proxy itself, or to the sleeping clients. 75% of
these packets were wrapped by ESP and 8.4% were tun-
neled v6-over-v4 packets - underscoring the importance
of parsing such packets. 7% of the total unicast pack-
ets were UDP (mostly IPsec related) and 3% were ICMP,
which the sleep proxy ignores. Most of the remaining
traffic was TCP, and the proxy was able to ignore the vast
majority of it. During this time, we woke sleeping clients
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for just 747 TCP SYNs. Our analysis of the traffic data
confirmed the importance of filtering TCP SYNs based
on port. More than half of incoming TCP connection at-
tempts were destined to ports on which the sleep client
was not listening. If we had woken clients without filter-
ing by port, we would have had more spurious wake-ups
than valid ones.

7.2 Sleep/Wake Behavior
We note that five of our 51 clients did not sleep at all, as
their their users manually disabled sleep functionality.

7.2.1 Aggregate sleep/wake behavior
Fig. 5(a) shows the percentage of time each machine
spent sleeping, as a CDF across all machines. The uni-
form slope of the CDF demonstrates that the average sleep
time was quite variable, with 50% of the clients sleeping
more than half the time. Fig. 5(b) plots the CDF of the av-
erage number of sleep-to-wake transitions per day for the
machines. Most machines average fewer than seven daily
wake-ups. Later, we will see that most of these wake-ups
were caused by IT management traffic (e.g., updates) ar-
riving for a sleeping machine.

We now examine the duration of sleep and awake in-
tervals. Note that no sleep interval is longer than 1440
minutes because of the daily 5AM wakeup. The CDF of
length of sleep and wake intervals is shown in Fig. 5(c),
while Fig. 5(d) shows the time-weighted CDF (i.e., con-
tribution of intervals at or below a given length to the total
sleep or wake time). By comparing these two figures, we
see that while most sleep and awake intervals are under
one hour, the majority of both sleep and awake time com-
prises intervals over one hour. This implies that insomnia
should be our first focus in attempting to reduce power
usage (Sec. 7.3.2).

The awake interval CDF in Fig. 5(c) demonstrates a bi-
modal distribution with abrupt changes in slope at around
two minutes, and at 30 minutes. This indicates that awake
periods of two and 30 minutes are prevalent in our trace.

7.2.2 Individual sleep/wake behavior
Figs. 6(b) and 6(a) show the 10th, 50th, and 90th per-
centile of wake and sleep intervals for each machine. The
machines are sorted in order of 10th percentile. Notably,
for around half of the machines the 10th percentile lies
around two minutes, while for other half it lies around 30
minutes, corresponding to the jumps seen in Fig. 5(c).

We closely inspected a number of these awake periods.
The prevalence of both two and 30 minute awake periods
is easily understood: these being the idle timeouts after
WOL wakeup and user activity respectively. When look-
ing at our special 5AM wakeup (which we know was not
user-initiated - Sec. 4.4) we saw a much greater than nor-
mal proportion of two minute wakes which is precisely
what we would expect.

(a) Awake Interval

(b) Sleep Interval

Figure 6: Per-machine Sleep/Awake Intervals

(a) Cause of Wake (b) Wakeup Source Port

Figure 7: Cause of wake-ups

Fig. 6(b) shows that for about a quarter of the ma-
chines, the median sleep interval is under 10 minutes. For
one machine all sleep intervals were under a minute. This
machine appears to have some driver configuration issue
that causes almost immediate wake upon sleep and was
unique in our data set. Such intervals add very little to
overall sleep duration and indicate potential sleep prob-
lems which will be examined further in Sec. 7.3.

7.2.3 Why do machines wake up?

Fig. 7(a) shows the causes of wake-ups. We divide these
into three categories: manual wake-up using our web site,
wake-up by proxy due to incoming traffic, and other. The
last bucket includes wake-ups caused by users walking
up to the machine, any timer-based wake-ups caused by
the BIOS, as well as occasional WOL packets sent by a
commercial wakeup solution being tested by our IT de-
partment. We were able to confirm for 33% of these that
the user did in fact initiate wakeup (by checking lastUser-
Input - Sec. 5.2) and for 50% of these the user definitively
did not wake the machine. The remaining 27% could not
be determined as lastUserInput was unavailable.

We see that while the web site was used in a few cases,
it is not statistically significant. The majority of wake-
ups caused by the sleep proxy are due to incoming TCP
SYNs. The ports to which these SYNs were destined to
are shown in Fig. 7(b).

Remote Procedure Calls (port 135) were the over-
whelmingly largest source of wakeup triggers, followed
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Figure 5: Aggregate Sleep/Wake statistics

by NETBIOS (139) and SMB (445). SMB is the main
mechanism used for remote file system access in our net-
work. The two other notable ports are UPnP (2869) and
Remote Desktop (3389). In our network, Remote Desk-
top is the primary mechanism for interactive remote ma-
chine access. We can see Remote Desktop is not a major
wakeup source. In fact, only 39% of the machines were
ever woken up due to Remote Desktop requests. There-
fore, it would seem that while users leave their machines
on for potential remote access, interactive remote access
is used relatively rarely.

7.2.4 Who wakes up machines?

There were slightly over 300 IP addresses requesters
whose incoming connection attempts caused wake-ups.
Most of these only attempted to connect to a single sleep
client. However, a sizable minority attempted to connect
to multiple clients as seen in Fig. 8(a). We were able
to verify that all the requesters who woke 20 or more
sleep clients were machines belonging to our IT depart-
ment. These machines perform a variety of management
actions such as verifying patch status and checking secu-
rity policies. We will see later that our IT configuration is
sleep-unfriendly in other ways as well (Sec. 7.3.2).

Fig. 8(b) shows the number of wakeup events caused
by requester. Just as most requesters only connect to a
single machine, many only cause only one wakeup and
most cause only a handful. However, again a large minor-
ity of requesters cause many wake-ups each. IT-owned
machines again make a large portion of this group. In-
terestingly, several of the most active requesters actually
connect to only one or a handful of machines. In fact, the
most active requester with over 400 requests connected to
only two machines, and that too in in a span of just two
weeks! We are currently investigating the role of this re-
quester further.

7.3 Why Machines Don’t Sleep Better
While we have seen that our solution is fairly successful
at enabling machines to sleep (Fig. 5(a)), we wanted to in-
vestigate whether more idle time could be harvested. We
begin by noting that most machines are not being woken
overly often (Fig. 5(b)). However, a small subset of ma-
chines suffer from “crying-baby-syndrome” being woken
as soon as they fall asleep. Sec. 7.2.4. These machines are

(a) Distribution of Requesters by Num. Clients Woken

(b) Number of Wake-ups Caused By Requester

Figure 8: Who causes wake-ups?

being bombarded by frequent connection attempts that in-
terrupt their sleep often. If a machine with a standard 30
minute idle timeout wakes 12 times a day, one quarter
of the day will have been spent awake due to wake-ups
alone. It appears that configuration issues are responsible
for much of this behavior.

However, most sleep clients are being kept awake for
other reasons the majority of the time. In fact, when
not being kept awake, these machines manage to sleep
well, sustaining few wakeup events per day. We now con-
sider whether these machines would have benefited from
a more aggressive idle timeout, and then look at the prob-
lem of insomniac machines.

7.3.1 Aggressive idle timeout

As mentioned in Sec. 7.2.2, it appears that setting the idle
timeout more aggressively could result in some power
savings. We now consider how much could be saved
with a 5-minute idle timeout (this is 1/3rd the EnergyS-
tar guidelines recommendation [16]).

To do so, we examined each wake interval to see why
the machine was being kept up. Recall from Sec. 5.2 that a
machine may be kept awake because the user is active, the
machine has woken up recently, or a stay-awake request
placed by a local application with the OS.

We divided the total awake time into three components,
recoverable, unknown, and unrecoverable. Recoverable
time was time in which the machine could have slept if
the idle timeout had been set more aggressively. This time
was the sum of periods in which the user had been active
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Figure 9: Awake Time as Percentage of Uptime. Broken
Into Components Unknown, Recoverable, and Unrecov-
erable using Aggressive Idle Timeout

(a) Percentage of Awake Time
Caused by Requests

(b) Source of Requests

Figure 10: Stay-Awake Request Data

within the past five minutes or the machine had been wo-
ken within the past five minutes. The unknown time was
the time for which insufficient data was available to diag-
nose cause of wakefulness. The unrecoverable time con-
sisted of all other time (i.e., an application had placed a
stay-awake request with the OS).

Thus the recoverable time is a lower bound on the
awake time that could have been saved by setting a more
aggressive idle timeout. The sum of recoverable and un-
known time provides the upper bound. Fig. 9 breaks the
total wake time as percentage of uptime into these three
components on a per-machine basis. We see that on most
machines the impact would be relatively small. These ma-
chines are being kept up by local application stay-awake
requests, to which we now turn.

7.3.2 Insomnia
We now look more closely at which local applications
keep machines awake. We label this phenomenon in-
somnia. Fig. 10(a) plots the fraction of awake time a
given machine was kept awake by local applications re-
questing OS to prevent sleep. We see that the majority of
awake time is in fact due to such stay-awake requests. So
which applications cause these stay-awake requests? Fig.
10(b) shows the percentage of requests initiated by vari-
ous applications. The news here is heartening. Four of
the top sources (Security Policy Agent, Windefend, Fore-
front, and Bitlocker) are all applications mandated by our

IT department. It may be possible to reconfigure or even
re-write these applications to minimize and coordinate
the duration of time they are active (and thus preventing
sleep). At least three more (Flash, Quicktime and Audio
Stream) are the result of code or driver bugs. For example,
certain older versions of Flash player may keep a machine
awake by playing silence even after the audio clip has fin-
ished (Windows prevents sleep when audio streams are
active). The third-highest request source is SMB. SMB’s
default behavior prevents a machine whose files are being
accessed from sleeping. Careful changes to this behavior
may allow for greater sleep opportunities.

7.4 Power savings
PC consumption varied, averaging from 89-143W for in-
dividual machines. The lowest draw we saw was 50W
idling. The highest was 191W heavily loaded. While
sleeping, all machines drew 1-2W. Monitors generally
added from 30-60W when on.

Fig. 11(a) illustrates the lower bound on power savings
on a per machine basis. This lower bound is calculated
with the assumption that had the machine stayed up in-
stead of sleeping, it would have consumed power at the
lowest rate seen in the entire non-sleeping portion of the
trace. This represents part of the reason we saw less power
savings than that predicted by previous work (which as-
sumed machines consumed power at a constant rate ir-
respective of activity level). The average across all ma-
chines is about 20%, although variation is considerable.

Fig. 11(b), shows aggregate power consumption for a
both a representative one-week period beginning 12/3/09
and the winter break (beginning 12/24/09). During the
representative week, weekend power consumption is low,
spiking only at the 5AM wakeup. During the work-week,
power use peaks during the work day before declining
into an overnight trough and bottoms out early on Friday.
In contrast we can see a markedly different pattern for the
Mid-Winter week with almost no increase in activity dur-
ing the day from the day preceding Christmas (which fell
on Friday) through the following Monday. By the Tues-
day following the holiday, we begin to see a similar level
of activity to that of the representative week, albeit at a
lower amplitude, as employees begin returning from the
holiday. Interestingly, the power consumption over the
Christmas weekend (12/26-12/27) weekend was slightly
higher than during a normal weekend (12/5-12/6).

7.5 Micro-Benchmarks
We now validate our architectural approach by examining
wakeup delay time and sleep proxy scalability.

7.5.1 Wakeup delay
The energy saved by our system comes at a cost: the user
experiences additional startup latency the first time a con-
nection (e.g., ssh login or samba file access) to a sleep

Step Time (s) From→To Packet Type
1 0 M1→M2 TCP SYN
2 0.04 S1→Broadcast Magic Packet
3 2.48 M1→M2 TCP SYN
4 5.6 M2→Broadcast ARP Probe
5 8.48 M1→M2 TCP SYN
6 8.49 M2→M1 TCP SYN-ACK

Table 1: Time line of a wakeup

(a) Lower Bound on Per-Machine Power Savings

(b) Aggregate Power Draw for Normal vs. Mid-Winter Weeks

Figure 11: Power Draw and Savings

client is attempted since that client fell asleep. This hap-
pens because sleep client takes time to both wake and be-
gin responding to an incoming TCP connection attempt.
To make the system usable, we need to minimize the
startup latency encountered by interactive transactions.

The user-perceived startup latency consists of several
components: the delay involved in sending the WOL
magic packet, the time required to wake up the ma-
chine, and the time required to perform any application-
specific actions. To quantify these component latencies,
we present a simple, but representative example.

Two machines, M1 and M2 were connected to the same
subnet. M1 was ran a simple TCP sink, and was put to
sleep. Thereafter, sleep proxy S1 started proxying for M1.
From M2, we attempted to establish a TCP connection to
the the sink on M1. The packet trace of the connection
establishment is summarized in Table 1.

The total latency is about 8.5 seconds, but the sleep
proxy itself consumes only 40 milliseconds, even though
it is on a busy subnet and proxying for several other ma-
chines. The largest component is the wake-up delay (i.e.,
time required for M2 to wake up and become active). This
is roughly the delay between steps 2 and 4 (about 5.5 sec-
onds). The remaining TCP-retransmit delay occurs be-
tween steps 4 and 5 (about 3 seconds). This delay is in-
curred while M1 waits to retransmit the TCP SYN the sec-
ond time, following regular TCP timeout algorithm [31].

Specific applications will usually encounter slightly
higher latencies, as the machine needs to perform addi-
tional, application-specific actions. For example, when
M1 tried to list a directory on M2 via SMB, the transac-
tion took 13.37 seconds when M2 was asleep. The ad-

ditional delay was incurred while M2 re-connected with
the domain controller, and obtained security credentials
to determine whether to allow M1 access.

We stress that this delay is incurred only for the trans-
action that wakes the machine. Subsequent transactions
experience normal latencies. While our experience is that
users do not mind this one-off penalty, both the wake-up
and retransmit delays can be addressed. A number of re-
search and engineering efforts are underway to address
the former. The latter can be shortened either by having
M1 retransmit TCP SYN more aggressively, or having S1
“replay” the TCP SYN.

7.5.2 Scalability

Our current deployment uses one sleep proxy per sub-
net. The load on these sleep proxies is a potential con-
cern. We find that the CPU load on a sleep server rarely
exceeds 5%. The total traffic (broadcast inclusive) seen
by the sleep server is also quite low (90th percentile is
250Kbps). We conclude sleep proxy operations do not re-
quire substantial resources, and a single sleep proxy could
easily handle very large subnets if necessary. Conversely
for reasonably sized subnets, the sleep proxy could be lo-
cated on a client machine without noticeably degrading
the user experience (Sec. 8).

7.6 Summary
Insomnia is the foremost cause of lost sleep. Thus im-
proving the energy savings of systems like ours, the main
focus should be on addressing sources of wakefulness.
IT applications are the main source of both insomnia
and fitful sleeping. Several uncoordinated IT applica-
tions for patching, security, and network testing all woke
machines and kept them awake. While we studied one
particular IT setup, practically all IT setups will interfere
with sleep to some extent - dependent on quantity, aggres-
siveness and degree of coordination of IT applications.
Misconfiguration can result in crying-baby syndrome
Requiring administrators to diagnose and resolve the mi-
nority of machines suffering this issue.
Use of more aggressive idle timeouts is of secondary
benefit. In enterprise systems behind firewalls, wakeups
will occur because of valid incoming TCP connection at-
tempts and in well configured setups, the number of wake-
ups caused by IT/misconfiguration will be minimal. Thus
savings from more aggressive idle timeouts will be minor.
Incoming TCP connection attempts need to be filtered
by listening port. More incoming TCP connection at-
tempts arrived for non-listening ports, than listening ones.

8 Conclusion & Future Work

We have designed and deployed a light-weight network-
based sleep proxy in an operation enterprise network on
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over 50 user workstations - the first such deployment of
which we are aware. During our work, we uncovered and
addressed several practical issues that must be addressed
by light-weight sleep proxying systems in enterprise net-
works. Our system has functioned both to user satisfac-
tion and our own specification for the past several months,
providing significant sleep opportunities and power sav-
ings using a simple reaction policy. However, we find that
significantly more power savings could be achieved by al-
tering the IT setup. Additionally, certain classes of cloud
applications require specialized reaction policies. Should
use of such persistent cloud applications become more
widespread, our reaction policy would need adjustment.

We conclude with a brief discussion of future possibil-
ities and concerns.
IT application coordination and configuration: Cur-
rently IT maintenance tasks are uncoordinated and con-
sequently will keep machines awake during each of their
separate execution time periods. Devising methodologies
that schedule these tasks to overlap as much as possible
can significantly increase sleep opportunities.
P2P sleep proxy: Our current setup requires the use of
a dedicated (albeit low-power) sleep proxy machine on
each subnet. We are working on a p2p architecture in
which machines fall asleep one after the other, while the
“last man standing” keeps watch for the entire subnet.
Security: While the sleep proxying system does not
pose a traditional security concern, we do note that many
machines waking simultaneously could cause significant
power spikes. To reduce the risk of this being exploited
by an attacker, proxies can rate limit WOL packets sent.
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