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Abstract

Concurrently running applications on multiprocessors

may desire different CPU frequency/voltage settings in

order to achieve performance, power, or thermal ob-

jectives. Today’s multicores typically require that all

sibling cores on a single chip run at the same fre-

quency/voltage level while different CPU chips can have

non-uniform settings. This paper targets multicore-

based symmetric platforms and demonstrates the ben-

efits of per-chip adaptive frequency scaling on multi-

cores. Specifically, by grouping applications with similar

frequency-to-performance effects, we create the oppor-

tunity for setting a chip-wide desirable frequency level.

We run experiments with 12 SPECCPU2000 benchmarks

and two server-style applications on a machine with two

dual-core Intel “Woodcrest” processors. Results show

that per-chip frequency scaling can save ∼20watts of

CPU power while maintaining performance within a

specified bound of the original system.

1 Introduction and Background

Dynamic voltage and frequency scaling (DVFS) is a

hardwaremechanism onmany processors that trades pro-

cessing speed for power saving. Typically, each CPU

frequency level is paired with a minimum operating volt-

age so that a frequency reduction lowers both power

and energy consumption. Frequency scaling-based CPU

power/energy saving has been studied for over a decade.

Weiser et al. [17] first proposed adjusting the CPU speed

according to its utilization. The basic principle is that

when the CPU is not fully utilized, the processing ca-

pability can be lowered to improve the power efficiency.

The same principle was also applied to workload concen-

tration with partial system shutdown or dynamic DVFS

in server clusters [6,7]. Bianchini and Rajamony [5] pro-

vide a thorough survey of energy-saving techniques for

servers circa 2004.

When the CPU is already fully utilized, DVFS may
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be applied to reduce the CPU speed when running mem-

ory intensive applications. The rationale is that memory-

bound applications do not have sufficient instruction-

level parallelism to keep the CPU busy while waiting

for memory accesses to complete, and therefore decreas-

ing their CPU frequency will not result in a significant

performance penalty. Previous studies along this direc-

tion [9, 11, 18] largely focused on exploring power sav-

ing opportunities within individual applications. Little

evaluation has been done on frequency scaling for mul-

tiprogrammed workloads running on today’s multicore

platforms.

Multicore frequency scaling is subject to an important

constraint. Since most current processors use off-chip

voltage regulators (or a single on-chip regulator for all

cores), they require that all sibling cores be set to the

same voltage level. Therefore, a single frequency set-

ting applies to all active cores on Intel mutlicore proces-

sors [2,14]. AMD family 10h processors do support per-

core frequency selection, but they still maintain the high-

est voltage level required for all cores [3], which limits

power savings. Per-core on-chip voltage regulators add

design complexity and die real estate cost and are a sub-

ject of ongoing architecture research [10]. Recent work

by Merkel and Bellosa [13] recognized this design con-

straint and showed how to schedule applications on a sin-

gle chip in order to achieve the best energy-delay product

(EDP).

Due to the scalability limitations of today’s multicores,

multichip, multicore machines are commonplace. Such

machines often use a symmetric multiprocessor design,

with each of the multiple processor chips containingmul-

tiple cores. On these machines, nonuniform frequency

scaling can still be achieved on a per-chip basis. The

goal of this paper is to evaluate the potential benefits of

such per-chip frequency scaling of realistic applications

on today’s commodity processors. To enable chip-wide

frequency scaling opportunities, we group applications

with similar frequency-to-performance behavior so that

they run on sibling cores of the same processor chip.

Using a variable-frequency performance model, we then

configure an appropriate frequency setting for each chip.

Experimental Setup Our experimental platform is a 2-

chip machine and each processor chip is an Intel “Wood-



crest” dual-core (two cores operating at 3GHz and shar-

ing a 4MB L2 cache). We modified Linux 2.6.18 to

support per-chip DVFS at 2.67, 2.33, and 2GHz on our

platform. Configuring the CPU frequency on a chip re-

quires writing to platform-specific registers, which takes

around 300 cycles on our processor. Because the off-

chip voltage switching regulators operate at a relatively

low speed, it may require some additional delay (typi-

cally at tens of microsecond timescales [10]) for a new

frequency and voltage configuration to take effect.

Our experiments employ 12 SPECCPU2000 bench-

marks (applu, art, bzip, equake, gzip, mcf, mesa, mgrid,

parser, swim, twolf, wupwise) and two server-style ap-

plications (TPC-H and SPECjbb2005).

2 Prototype System Design

2.1 Multichip Workload Partitioning

To maximize power savings from per-chip frequency

scaling while minimizing performance loss, it is es-

sential to group applications with similar frequency-to-

performance behavior to sibling cores on a processor

chip. A simple metric that indicates such behavior is the

application’s on-chip cache miss ratio—a higher miss ra-

tio indicates a larger delay due to off-chip resource (typi-

cally memory) accesses that are not subject to frequency

scaling-based speed reduction. We therefore group ap-

plications with similar last level cache miss ratios to run

on the same multicore processor chip. We call this ap-

proach similarity grouping.

A natural question is how our workload partitioning

would affect system performance before DVFS is ap-

plied. Merkel and Bellosa [13] profiled a set of SPEC-

CPU benchmarks and found that memory bus bandwidth

(rather than cache space) is the most critical resource on

multicores. Based on this observation, they advocated

running a mix of memory-bound and CPU-bound appli-

cations at any given time on a single multicore platform

in order to achieve the best EDP. Although their com-

plementary mixing appears to contradict our similarity

grouping, in reality, they accomplish one of the same

goals of more uniform memory demand. Their approach

focuses on temporal scheduling of applications on a sin-

gle chip, while similarity grouping focuses on spatial

partitioning of applications over multiple chips. Similar-

ity grouping has the additional advantage of being able

to individually control the voltage and frequency of the

separate chips.

In addition to the ability to save power by slowing

down the processor without loss in performance for high

miss ratio applications, miss ratio similarity grouping

may lead to more efficient sharing of the cache on mul-

ticore chips. Applications typically exhibit high miss ra-

tios because their working sets do not fit in the cache.
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Figure 1: Normalized miss ratios of 12 SPECCPU2000 bench-

marks at different cache sizes. The normalization base for each

application is its miss ratio at 512 KB cache space. Cache size

allocation is enforced using page coloring [20]. Solid lines

mark the six applications with the highest miss ratios while dot-

ted lines mark the six applications with the lowest miss ratios.

Increasing available cache space is not likely to improve

performance significantly until the cache size exceeds

the working set. This can be observed from the L2

cache miss ratio curves of 12 SPECCPU2000 bench-

marks, shown in Figure 1. With the exception of mcf,

most high miss ratio applications (applu, equake, mgrid,

swim, and wupwise) show small or no benefits with ad-

ditional cache space beyond 512KB. In fact, the applica-

tions will aggressively occupy the cache space, resulting

in adverse effects on co-running applications on sibling

cores. Similarity grouping helps reduce these adverse ef-

fects by separating low miss ratio applications that may

be more sensitive to cache pressure so that they run on a

different chip.

2.2 Model-Driven Frequency Setting

To realize target performance or power saving objec-

tives, we need an estimation of the target metrics at can-

didate CPU frequency levels. Several previous stud-

ies [9, 18] utilized offline constructed frequency selec-

tion lookup tables. Such an approach requires a large

amount of offline profiling. Merkel and Bellosa em-

ployed a linear model based on memory bus utiliza-

tion [13] but it only supports a single frequency adjust-

ment level. Kotla et al. constructed a performancemodel

for variable CPU frequency levels [11]. Specifically, they

assume that all cache and memory stalls are not affected

by the CPU frequency scaling while other delays are

scaled in a linear fashion. Their model was not evalu-

ated on real frequency scaling platforms.
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(A) Measured performance at throttled CPU frequencies
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(B) Model prediction error at throttled CPU frequencies

Figure 2: The accuracy of our variable-frequency performance

model. Subfigure (A) shows the measured normalized perfor-

mance (to that of running at the full CPU speed of 3GHz).

Subfigure (B) shows our model’s prediction error (defined as
prediction−measurement

measurement
).

In practice, on-chip cache accesses are also affected

by frequency scaling, which typically applies to the en-

tire chip. We corrected this aspect of Kotla’s model [11].

Specifically, our variable-frequency performance model

assumes that the execution time is dominated by mem-

ory and cache access latencies, and that the execution of

all other instructions can be overlapped with these ac-

cesses. Accesses to off-chip memory are not affected by

frequency scaling while on-chip cache access latencies

are linearly scaled with the CPU frequency. Let T (f)
be the average execution time of an application when the

CPU runs at frequency f . Then:

T (f) ∝
F

f
· (1−Rcachemiss) ·Lcache +Rcachemiss ·Lmemory,

where F is the maximum CPU frequency. Lcache and

Lmemory are access latencies to the cache and memory re-

spectively measured at full speed. We assume that these

access latencies are platform-specific constants that ap-

ply to all applications. Using a micro-benchmark, we

measured the average cache and memory access laten-

cies to be around 3 and 121 nanoseconds respectively on

our experimental platform. The miss ratio Rcachemiss rep-

resents the proportion of data accesses that go to mem-

ory. Specifically, it is measured as the ratio between the

L2 cache misses (L2 LINES IN with hardware prefetch

also included) and data references (L1D ALL REF) per-

formance counters on our processors [8].

The normalized performance (as compared to running

at the full CPU speed) at a throttled frequency f is there-

Test Chip Similarity grouping Complementary mixing

#1 0 {equake, swim} {swim, parser}
1 {parser, bzip} {equake, bzip}

#2 0 {mcf, applu} {mcf, art}
1 {art, twolf} {applu, twolf}

#3 0 {wupwise, mgrid} {wupwise, mesa}
1 {mesa, gzip} {mgrid, gzip}

#4 0 {mcf, swim, equake, {swim, equake, applu,

applu, wupwise, mgrid} wupwise, gzip, twolf}
1 {parser, bzip, gzip, {mcf, mgrid, parser,

mesa, twolf, art} bzip, mesa, art}

#5 0 2 SPECjbb threads 1 SPECjbb thread and

1 TPC-H thread

1 2 TPC-H threads 1 SPECjbb thread and

1 TPC-H thread

Table 1: Benchmark suites and scheduling partitions of 5

tests. Complementary mixing mingles high-low miss-ratio ap-

plications such that two chips are equally pressured in memory

bandwidth. Similarity grouping separates high and low miss-

ratio applications on different chips (Chip-0 hosts high miss-

ratio ones in these partitions).

fore
T (F )
T (f) . Since Rcachemiss does not change across dif-

ferent CPU frequency settings, we can simply use the

online measured cache miss ratio to determine normal-

ized performance online. Figure 2 shows the accuracy

of our model when predicting the performance of 12

SPECCPU2000 benchmarks and two server benchmarks

at different frequencies. The results show that our model

achieves a high prediction accuracy with no more than

6% error for the 14 applications.

The variable-frequency performance model allows us

to set the per-chip CPU frequencies according to specific

performance objectives. For instance, we can we can

maximize power savings while bounding the slowdown

of any application. The online adaptive frequency set-

ting must react to dynamic execution behavior changes.

Specifically, we monitor our model parameter Rcachemiss

and make changes to the CPU frequency setting when

necessary.

3 Evaluation Results

3.1 Scheduling Comparison

First, we compare the overall performance of the

default Linux (version 2.6.18) scheduler, complemen-

tary mixing (within each chip), and similarity grouping

(across chips) scheduling policies. We design five mul-

tiprogrammed test scenarios using our suite of applica-

tions. Each test includes both memory intensive and non-

intensive benchmarks. Benchmarks and scheduling par-

titions are detailed in Table 1.

Figure 3 compares the performance of the different

scheduling policies when both chips are running at full

CPU speed. For each test, the geometric mean of the ap-

plications’ performance normalized to the default sched-

uler is reported. On average, similarity grouping is about
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Figure 3: Performance (higher is better) of the different

scheduling policies at full CPU speed.
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(B) Performance loss due to frequency scaling

Figure 4: Performance comparisons of different scheduling

policies when Chip-0 is scaled to 2GHz. In subfigure (A), the

performance normalization base is the default scheduling with-

out frequency scaling in all cases. In subfigure (B), the perfor-

mance loss is calculated relative to the same scheduling policy

without frequency scaling in each case.

4% and 8% better than default and complementary mix-

ing respectively. As explained in Section 2.1, the perfor-

mance gains are due to reduced cache space interference

when using similarity grouping. We also measure the

power consumption of these policies using aWattsUpPro

meter [1]. Our test platform consumes 224watts when

idle and 322watts when running our highest power-

consuming workload. We notice that similarity grouping

consumes slightly more power, up to 3watts as compared

to the default Linux scheduler. However, the small power

increase is offset by its superior performance, leading to

improved power efficiency.

Next, we examine how performance degrades when

the frequency of one of the two chips is scaled down.

Default scheduling does not employ CPU binding and

applications have equal chances of running on any chip,

so deploying frequency scaling on either Chip-0 or Chip-

1 has the same results. We only scale Chip-0 for similar-

ity grouping scheduling since it hosts the high miss-ratio

applications. For complementary mixing, scaling Chip-0
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(B) Power consumption comparison

Figure 5: Performance and power consumption for per-chip

frequency scaling under the similarity grouping schedule. Sub-

figure (B) only shows the range of active power (from idle

power at around 224watts), which is mostly consumed by the

CPU and memory in our platform.

shows slightly better results than scaling Chip-1. Hence,

we report results for all three scheduling policies with

Chip-0 scaled to 2GHz. Figure 4 shows that similarity

grouping still achieves the best overall performance and

the lowest self-relative performance loss under frequency

scaling.

3.2 Nonuniform Frequency Scaling

We then evaluate the performance and power con-

sumption of per-chip nonuniform frequency scaling un-

der similarity grouping. We keep Chip-1 at 3GHz and

only vary the frequency on Chip-0 where high miss-ratio

applications are hosted. Figure 5(B) shows significant

power saving due to frequency scaling—specifically, 8.4,

15.8, and 23.6watts power savings on average for throt-

tling Chip-0 to 2.67, 2.33, and 2GHz respectively. At

the same time, Figure 5(A) shows that the performance

when throttling Chip-0 is still comparable to that with the

default scheduler.

We next evaluate the power efficiency of our system.

We use performance per watt as our metric of power ef-

ficiency. Figure 6(A) shows that, on average, per-chip

nonuniform frequency scaling achieves a modest (4–

6%) increase in power efficiency over default scheduling.

This is because the idle power on our platform is sub-

stantial (224 watts). Considering a hypothetical energy-
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Similarity grouping (chip−0@2Ghz)

Figure 6: Power efficiency for per-chip frequency scaling un-

der the similarity grouping schedule. Subfigure (A) uses whole

system power while (B) uses active power in the efficiency cal-

culation.

proportional computing platform [4] on which the idle

power is negligible, we use the active power (full oper-

ating power minus idle power) to estimate the power ef-

ficiency improvement. In this case, Figure 6(B) shows

more sizable gaps. Scaling Chip-0 at 2.67, 2.33, and

2GHz achieves 13%, 21%, and 32% better active power

efficiency respectively.

3.3 Application Fairness

While it shows encouraging overall performance, the

per-chip nonuniform frequency scaling even with simi-

larity grouping does not provide any performance guar-

antee for individual applications. For example, setting

Chip-0 to 2GHz causes a 26% performance loss for

mgrid as compared to the same schedule without fre-

quency scaling.

To be fair to all applications, we want to achieve

power savings with bounded individual performance

loss. Based on the frequency-performance model de-

scribed in Section 2.2, our system will periodically (ev-

ery 10 milliseconds) adjust the frequency setting if nec-

essary to bound the performance degradation of running

applications (e.g., a target of 10% degradation in this ex-

periment). Note that in this case the system may scale

down any processor chip as long as the performance

degradation bound is not exceeded.

Figure 7(A) shows the normalized performance of the

most degraded application in each test. We observe that

fairness-controlled frequency scaling is closer than the

static (2 GHz) scaling to the 90% performance target.

It completely satisfies the bound for three tests while it

exhibits slight violations in test-3 and test-4. The most
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(B) System power consumption comparison

Figure 7: Performance and power consumption for static (2

GHz) and fair per-chip frequency scaling under the similarity

grouping scheduling.

degraded application in these cases is mgrid, whose per-

formance is 6% and 3% away from the 90% target in

test-3 and test-4 respectively. Figure 2 shows that our

model over-estimates mgrid’s performance by up to 6%.

This inaccuracy causes the fairness violation in test-3

and test-4. Figure 7(B) shows power savings for both

static (2 GHz) and fairness-controlled frequency scal-

ing. Fairness-controlled frequency scaling provides bet-

ter quality-of-service while achieving comparable power

savings to the static scheme.

4 Discussions

We have seen a slow but stable trend of increasing

core numbers on a single chip, which will exacerbate the

contention for memory bandwidth. Fortunately, mem-

ory technology advancement has significantly mitigated

this problem. Measured using the STREAM bench-

mark [12], our testbed with 3GHz CPUs (two dual-

core chips) and 2GB DDR2 533MHz memory achieves

2.6GB/sec memory bandwidth. In comparison, a newer

Intel Nehalem machine with 2.27GHz CPUs (one quad-

core chip) and 6GB DDR3 1,066MHz memory achieves

an 8.6GB/sec memory bandwidth.

The idle power constitutes a substantial part (about

70%) of the full system power consumption on our

testbed, which questions the practical benefits of opti-

mizations on active power consumption. However, we

are optimistic that future hardware designs will trend to-

ward more energy-proportional platforms [4]. We have

already observed this trend—the idle power constitutes a

smaller part (about 60%) of the full power on the newer

Nehalem machine. In addition, our measurement shows

that per-chip nonuniform frequency scaling can reduce



the average CPU temperature (by up to 5 degrees Celsius,

averaged over four cores), which may lead to additional

power savings on cooling.

Per-chip CPU frequency scaling is largely orthogo-

nal to the management of shared resources on multi-

core processors. In particular, our frequency scaling

scheme partitions applications among multiple multicore

chips on the machine and mainly targets power con-

sumption while resource management techniques such as

cache space partitioning [20] and nonuniform core throt-

tling [19] further regulate resource competition within

each multicore chip.

Evaluation in this paper focuses on multiprogrammed

workloads. When a single server application (consist-

ing of many concurrent requests) runs on the machine,

it may also be beneficial to group requests with similar

frequency-to-performance behavior for per-chip adap-

tive frequency scaling. This would be possible with

on-the-fly identification of request execution character-

istics [15, 16] for online grouping and control.

5 Conclusion

In this paper, we advocate a simple scheduling policy

that groups applications with similar cache miss ratios

on the same multicore chip. On one hand, such schedul-

ing improves the performance due to reduced cache in-

terference. On the other hand, it facilitates per-chip fre-

quency scaling to save CPU power and reduce heat dis-

sipation. Guided by a variable-frequency performance

model, our CPU frequency scaling can save about 20

watts of CPU power and reduce up to 5 degrees Celsius

of CPU temperature on average on our multicore plat-

form. These benefits were realized without exceeding

the performance degradation bound for almost all appli-

cations. This result demonstrates the strong benefits pos-

sible from per-chip adaptive frequency scaling on multi-

chip, multicore platforms.
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