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Abstract: In enterprise networks, idle desktop ma-
chines rarely sleep, because users (and IT departments)
want them to be always accessible. While a number of
solutions have been proposed, few have been evaluated
via real deployments. We have built and deployed a light-
weight sleep proxy system at Microsoft Research. Our
system has been operational for six months, and has over
50 active users. This paper focuses on providing a de-
tailed description of our implementation and test deploy-
ment, the first we are aware of on an operational network.

Overall, we find that our lightweight approach effected
significant energy savings by allowing user machines to
sleep (most sleeping over 50% of the time) while main-
taining their network accessibility to user satisfaction.
However, much potential sleep was lost due to interfer-
ence from IT management tasks. We identify fixing this
issue as the main path to improving energy savings, and
provide suggestions for doing so. We also address a num-
ber of issues overlooked by prior work, including compli-
cations caused by IPsec. Finally, we find that if certain
cloud-based applications become more widely adopted in
the enterprise, more specialized proxy reaction policies
will need be adopted. We believe our experience and in-
sights will prove useful in guiding the design and deploy-
ment of future sleep solutions for enterprise networks.

1 Introduction

A number of studies [30, 3, 41, 6] have noted that most
office machines are left on irrespective of user activity.
At Microsoft Research, we find hundreds of desktop ma-
chines awake, day or night – a significant waste of both
energy and money. Indeed, potential savings can amount
to millions of dollars per year for large enterprises [40].

As businesses become more energy conscious, more
desktops may be replaced by laptops. However, cur-
rently desktops comprise the majority of enterprise ma-
chines [18], with hundreds of millions additional desktops
being sold every year [22, 27, 18]. Where users make
heavy use of local resources (e.g., programming, engi-
neering, finance), desktops continue to be the platform of
choice. Hence, managing desktop power consumption is
an area of both active research [30, 3, 41, 6] and commer-
cial [2, 39, 33] interest.

The most common reason that desktops are kept idling
is that users and IT administrators want remote access to
machines at will. Users typically want to log into their
machines or access files remotely [3], while IT adminis-
trators need remote access to backup, patch, and other-

wise maintain machines. A number of solutions to this
problem have been proposed [33, 3, 6, 30]. The core idea
behind these is to allow a machine to sleep, while a sleep
proxy maintains that machine’s network presence, wak-
ing the machine when necessary. Some of these proposals
rely on specialized NIC hardware [33, 3]; others advocate
use of network-based proxies [6, 30].

Unfortunately, most previous work has been evaluated
either using small testbeds [3, 30, 6] or trace-based simu-
lations [30]. We are not aware of any paper detailing the
deployment of any of these proxying solutions in an oper-
ational enterprise network on actual user machines.1 This
is disconcerting: systems that work well on testbeds often
encounter potentially serious challenges when deployed
in operational networks.

This paper aims to fill that gap. We describe the
design and deployment of a network-based sleep proxy
on our corporate network. Our design expands on the
light-weight network proxy approach proposed in [6, 30],
avoiding hardware modification [3] and the overhead of
virtualization [17]. Our architecture comprises two core
components: a per-subnet sleep proxy, and a sleep noti-
fier program that runs on each client. The sleep notifier
alerts the sleep proxy just before the client goes to sleep.
In response, the proxy sends out ARP probes [13] to en-
sure that all future traffic meant for the sleeping client
is delivered to the proxy instead. The proxy then moni-
tors this traffic applying a reaction policy: responding to
some packets on the client’s behalf, waking the sleeping
client for certain specified traffic (using Wake-on-LAN
(WOL) [43] packets), and ignoring the rest. Our reac-
tion policy of waking for incoming TCP connection at-
tempts on listening ports was chosen both in keeping with
our goal for a light-weight, easily deployable system and
based on the performance predictions of [30]. We provide
in-depth discussion of the merits of this and alternative
approaches in Sec. 3.

Our system has been operational for over six months,
and currently has over 50 active users. Our software is
deployed on user’s primary workstations, not test ma-
chines. Indeed, this preliminary deployment has been so
successful that our IT department has begun recommend-
ing our system to users. We have instrumented our system
extensively; capturing numerous details about sleep and
wakeup periods, why machines wake up and why they stay
up. Instead of using generic estimates of PC power con-

1Concurrent work [4], provides the first study of sleep proxy deploy-
ment in an academic network.



sumption, we use a sophisticated software-based, model-
driven system, Joulemeter, to estimate power draw.

In this paper, we focus on providing a thorough de-
scription of our implementation and its performance
in the wild. We describe a number of practical issues we
encountered when deploying a light-weight sleep proxy
in a corporate network, many of which have been over-
looked by previous work. For example, our implementa-
tion must not only deal with vanilla IPv4 and IPv6 pack-
ets, but also tunneled packets. Our corporate network uses
IPsec, and we find that a seemingly minor implementation
choice in this setup, almost entirely ameliorates the over-
head of dealing with this traffic. We describe race condi-
tions that arise when the sleep proxy attempts to redirect
traffic from sleeping client to itself, and provide a prac-
tical solution. We show how issues such as DHCP lease
expiration and proxy failure can be handled without the
need for a more complex reaction policy.

The highlights of our deployment experience and per-
formance assessment are:
A light-weight system using a simple reaction policy
can produce significant savings. By analyzing trace data
from our system, we find that our system allowed the
clients to sleep quite well. Many machines slept over 50%
of the time, despite use of a simple reaction policy. How-
ever, the average power savings was only 20%, casting a
pall over the optimistic predictions made in [30, 3].
IT servers and applications proved a major impedi-
ment to sleep. The main cause of reduced power savings
in our enterprise network was due to the IT setup. We
find that while users do access their machines remotely,
remote accesses by IT applications are the primary cause
of both machines being woken (fitful sleep) and being kept
awake (insomnia). IT server connection attempts repeat-
edly woke sleeping machines. In one extreme case, a sin-
gle machine was contacted over 400 times within a two-
week period. Additionally, some of the locally running
IT applications (e.g., virus scanners) kept machines up by
temporarily disabling sleep functionality. We also iden-
tify bugs in common software (e.g., Adobe Flash player)
that interfere with proper sleeping. Fortunately, it appears
there is significant room for improving the compatibility
of IT setup and effective sleep. We discuss IT setup im-
pediments and remedies further in Sec. 7.6.
The rise of cloud-based applications may demand
more complex reaction policies. Three of our users re-
quired support for two popular cloud-based applications,
LiveMesh and LiveSynch. Machines running these, or
similar, applications must initiate TCP connections to the
cloud server, which are used to inform them of any pend-
ing updates. These connections can either be periodic,
or long-lived, but it must be initiated by client. We re-
fer to cloud applications of this type as persistent2. Con-

2Many cloud-based applications including most “software as a ser-

sequently, to support such cloud-based applications the
sleep proxy will need to keep some additional state which
may be as simple as sending TCP keep-alives or as com-
plex as running a virtualized client-side of the applica-
tion. While this did not pose a major issue in our op-
erational environment/population, as/where the predomi-
nance of persistent cloud applications increases, reaction
policies supportive of this model will be needed.

Overall, we believe that the insights gleaned from our
experience will be useful in guiding the design and de-
ployment of future sleep solutions in enterprise networks.

2 Related work

While the basic concept of sleep proxying has been
known for some time [15], it has received much renewed
attention lately [6, 29, 3]. Among recent publications, the
two most closely related to our work are [3] and [29].

In [3], the authors describe a hardware-based solution.
They augment the NIC with a GumStix [20] device, which
is essentially a small form factor, low-powered PC. Once
the host machine goes to sleep, the GumStix device takes
over. It handles select applications (e.g., file downloads)
on behalf of the host PC, but wakes up the host PC for
more complex operations. While this approach is more
flexible than the sleep proxy we have built, it is far less
practical for two reasons. Not only is additional hardware
required on every PC, but both applications and host OS
modification are required to enable state transfer between
host PC and GumStix device. Both these requirements
are a substantial barrier to widespread deployment of this
technology. In contrast, our approach requires neither ex-
tra hardware, nor application modifications.

In [29], the authors carry out an extensive trace-based
study of network traffic, arguing for a network-based
sleep proxy. Their primary finding is that in an enter-
prise environment, broadcast and multicast traffic related
to routing and service discovery cause substantial network
‘chatter”, most of which can be safely ignored by a sleep
proxy. They also posit that most unicast traffic directed
to a host after it has gone to sleep can also be ignored, so
long as the host is woken when traffic meant for a set of
pre-defined applications arrive (early work had focused on
avoiding disrupting existing TCP connections [14, 23]).
Based on these insights, they propose a number of sleep
proxy designs.

While our proxy design builds upon the insights of
[29], we make several additional contributions in this pa-
per. First, unlike [29], our design includes a client-side
agent, which considerably simplifies the overall architec-
ture, making it robust, and virtually configuration-free.
Second, we build and deploy our sleep proxies in a real
operational network on users’ primary workstations. In

vice” applications (e.g., Google Docs) are not of this type



contrast, the prototype in [29] was tested only a small
testbed without real users, and did not address challenges
such as IPsec traffic and proxy failures. Third, our in-
strumentation measures sleep and wakeup behavior of op-
erational machines. We document why machines do not
sleep, when and why they wake, etc. Fourth, our deploy-
ment includes a model-based power measurement compe-
tent. Since machine power usage can vary by 2.5x while
awake, our power estimates provide significantly greater
fidelity than the “one size fits all” model used by [29].

Two pieces of concurrently published work address al-
ternative sleep proxying architectures that make use of a
networked sleep proxy. [4] implements a stub-based reac-
tion policy along the lines of [3] and evaluates it in an aca-
demic network, while [17] runs client machines within a
hypervisor and migrates these to the sleep proxy machine.
We provide further comparison in Sec. 3.3.

We now turn to commercial systems. Intel offers
two hardware-based solutions, Remote Wakeup Technol-
ogy (RWT) [33] and Active Management Technology
(AMT) [7], that can remotely wake up a sleeping ma-
chine. AMT is primarily meant for management tasks
(e.g., out of band access for asset discovery, remote trou-
bleshooting). RWT is more closely related to our work.
RWT requires the NIC of the sleeping machine to main-
tain a persistent TCP connection to an authorized server.
The NIC wakes up the host machine upon receiving a spe-
cial message over this TCP connection. RWT requires
modification of client applications and works only with
Intel hardware. Even the wakeup service has to be digi-
tally signed by Intel. In contrast, our solution is entirely
software-based, hardware-agnostic, and requires no appli-
cation modification.

Apple has recently released a sleep proxy geared to-
ward home networks that works only with select Apple
hardware [8]. For enterprise networks, systems such as
Adaptiva [2] and Verdiem [39] are available. The primary
focus of these systems is to enable the system adminis-
trator to estimate power usage, and wake up sleeping ma-
chines to perform management tasks such as patching. A
number of industry participants are trying to standardize
basic sleep proxy functionality [16].

Several other approaches to saving power, such as
power-proportional computing [9], dynamic voltage and
frequency scaling [34], the TickLess kernel [37] and OS-
level power management [35] have been investigated, and
can be used in conjunction with our system. Researchers
have also looked at networking hardware and software
stacks as potential targets for power savings. Examples
include [21, 30, 12, 11]. [5, 38, 26] examine data center
power consumption and savings approaches.

Prior work has shown that CPU utilization and cer-
tain performance counters can be used to estimate com-
puter energy use [32, 10, 19]. Our power estimation tech-

nology provides enhanced accuracy by considering addi-
tional factors not considered in prior work, such as pro-
cessor DVFS states and monitor power.

3 Design Goals & Alternatives

As discussed earlier, enterprise users often do not let their
machines sleep as they may require remote access. Our
goal in deploying a sleep proxy is to encourage users to
allow their machines to sleep – by ensuring their machine
will wake on remote access attempts. We now describe
the basic functionality required from a sleep proxy, define
our design goals, and describe design alternatives. Before
we begin, we note that our use of the term ”sleep” refers
to ACPI S3 (suspend to RAM) [1]. Our system supports
ACPI S4 (hibernate) and S5 (power off) as well.

3.1 Basic sleep proxy functionality
A sleep proxy detects when a sleep client machine (M )
has gone to sleep, typically because that machine’s idle
timeout had been reached.3 The proxy then monitors net-
work traffic destined for M . Based on a pre-defined re-
action policy, the sleep proxy will, (a) respond to some of
the traffic on behalf of M (e.g. ARP requests for M ), (b)
wake M for selected traffic (e.g. TCP SYNs for M ) and
(c) ignore the remainder.

3.2 Design goals
Our goal is to build a practical, deployable sleep proxy
for typical corporate networks, composed of desktop ma-
chines with wired connectivity. In a typical usage sce-
nario, the user’s machine goes to sleep, and wakes auto-
matically on remote connection attempts.

The design of our sleep proxy was directed by four
goals. (a) The system had to save as much power as pos-
sible, (b) while minimizing disruptions to users. It is crit-
ically important to ensure a sleeping machine is always
woken when the user desires access: otherwise no one
would use the system. Furthermore, the system had to be
(c) easy to deploy and maintain, since we operated with-
out the benefit of a large IT staff. We explicitly decided
not to add hardware to client machines, as it makes de-
ployment significantly harder. Finally, we required the ar-
chitecture be (d) scalable and extensible, since the system
had to operate in a dynamic live network

It was not our goal to support laptops per se as they
offered much less opportunity for power savings. They
consume much less power when active, and are more of-
ten put to sleep by users. Thus, while some of the work
we have done is applicable to laptops, we do not address
laptop-specific challenges such as mobility in our work.

3In Windows, the idle timeout is typically 30 minutes from power
up / last user activity, and two minutes for any other wake cause (e.g.,
scheduled wakeup, WOL).



As all the machines in our network run Windows,
some details of our implementation are Windows specific.
However, our architecture is designed to be OS agnostic.

3.3 Design alternatives
We now consider three design alternatives, and evaluate
them in light of our requirements.

3.3.1 NIC Pattern Matching
The first potential approach is to simply use the combina-
tion of Wake-On-Pattern+ARP Offload. This capability is
available on most modern wired NICs.
How it works: The NIC effectively acts as the sleep
proxy for the machine. It responds to incoming ARPs
on behalf of the sleeping machine (ARP Offload), thereby
maintaining the machine’s network presence. The NIC
can be programmed to detect specific patterns in incom-
ing traffic, and wake up the host machine if a packet with
specified pattern arrives (Wake-On-Pattern). The inter-
face for specifying patterns [28] includes built-in support
for IPv4 and IPv6 TCP-SYNs; one only need specify ad-
ditional information (e.g., ports). Raw bit patterns can
also be specified.
Pros: These NICs are available on most modern ma-
chines, so no additional hardware needs to be deployed.
Cons: We found that for our purposes the capabilities of-
fered by these NICs were not adequate. Our corporate
network is quite complex: it supports IPv4, IPv6, v6-
over-v4 and requires IPsec. To ensure machines were
woken whenever users required access, we had to han-
dle packets requiring flexible inspection (e.g. a TCP SYN
in an ESP packet carried in an IPv6 packet, tunneled in
an IPv4 packet - Sec. 4.3.2). While such packets may
be detected by explicit bit-pattern matching, the number
of wakeup patterns needed is a multiple of the number of
listening ports (to detect tunneled variations) plus several
base patterns for standard WOL functionality. NICs on
older machines can support as few as four wake patterns
and are limited to detecting matches in the beginning of
the packet which restricts the ability to detect tunneled
packets. Moreover, future needs (e.g., support for persis-
tent cloud applications) may dictate stateful reaction poli-
cies or deeper packet inspection, beyond current NIC ca-
pabilities. Thus, this approach fails criteria (b) and (d).

3.3.2 Virtualization
How it works: Users install a hypervisor on their
desktop, and then install and use a VM on top of the
hypervisor[17]. When the desktop machine needs to
sleep, the VM is migrated to a hosting server. When nec-
essary, (e.g. a CPU intensive application is run), the desk-
top machine is woken, and the VM migrated back.
Pros: This approach is attractive because if the migration
can be made seamless, the desktop does not have be wo-
ken up for transactions of even moderate complexity that

can be carried out on the hosting server. As the machine
can go to sleep without interrupting existing network con-
nections, the machines can go to sleep much more often,
and hence the power savings may be greater.
Cons: To deploy a system based on this approach, we
would have had to install hypervisor on the end user sys-
tems and boot their existing OS as a VM. Most users
would not have agreed to such a drastic change to their
work environment. Apart from taking a performance hit,
virtualization may encounter problems with a number of
common end-user devices (e.g., cameras, external drives),
whose drivers do not always work well when virtualized.

3.3.3 Network-Based Sleep Proxies

This approach was proposed in [15], its feasibility re-
cently given careful study by [29].
How it works: This approach relies on a separate ma-
chine acting as a sleep proxy for the sleeping machine.
The sleep proxy detects when a client goes to sleep. It
then modifies Ethernet routing (Sec. 4.3.1) to ensure that
all packets destined for the sleeping machine are deliv-
ered to the sleep proxy instead. The proxy examines the
packets, and wakes up the sleeping client when needed,
by sending a Wake-On-LAN (WOL) [43] packet.
Pros: Very little hardware support is required from the
client machine - the client NIC only needs to support
WOL. As the sleep proxy runs on a separate, general
purpose computer, it has great flexibility in handling in-
coming traffic for the sleeping machine. The sleep proxy
can do complex, conditional packet parsing and can even
wake the sleeping machine based on non-network events
such as requests by system administrators, users entering
the building (with support from building access systems),
etc. This design also scales well (Sec. 7.5.2).
Cons: This design requires deployment of a sleep proxy
on a separate machine (generally one per subnet sup-
ported). In most variations a client-side application must
be installed as well.

We have chosen this approach as it is both very easy to
deploy and requires minimal changes to user machines. It
affords great scalability and flexibility as the sleep proxy
can be changed without disturbing the client machines.
We have chosen to use light-weight reaction policy which
simplifies both client and proxy software complexity and
allows a very large number of hosts to be handled by a
single proxy. This reaction policy does cause existing net-
work connections are broken. We argue that this is not an
issue for typical corporate workloads (Sec. 4.4), although
this may change if persistent cloud computing applica-
tions play a greater role in corporate environments.

Contrastingly, [4] uses a stub-based reaction policy, ca-
pable of maintaining existing network connections and
waking the host somewhat more infrequently. This comes
at the cost of implementation complexity and will allow



fewer clients to be hosted on a sleep proxy. Their im-
plementation uses an ESX server that would preclude ei-
ther low-power sleep proxies (Sec. 6) or peered proxying
(Sec. 8). Their reaction policy faces the same impedi-
ments from sleep-unfriendly IT setups as ours - by far the
main source of lost sleep opportunities in our environment
- as IT tasks generally require waking clients.

4 Architecture

LAN

SUBNET 
ROUTER

Experiment
DB

Apps.

Sleep 
Notifier

Joulemeter

Sleep 
Proxy

CLIENTS

WAN
Remote

Application
User

Figure 1: System block diagram. Blocks shaded gray rep-
resent existing components that are not modified in any
way for the sleep proxy to work. Blocks with dashed out-
lines are part of our instrumentation setup.

The overall architecture of our system is shown in Fig-
ure 1. We require one sleep proxy per subnet. We also
required the clients to install a small background service4,
sleep notifier. In this section, we will focus on the design
of the sleep proxy and the sleep notifier which form the
core of our solution. We discuss Joulemeter in Sec. 5.1

As discussed earlier, a sleep proxy responds to some
traffic, wakes the sleep client for other traffic, and ignores
the rest. Our choice of reaction policy is similar to that
of the proxy scheme (proxy3), which [29] found provided
the highest simulated power savings. This reaction pol-
icy, whose rationale is discussed in Sec. 4.4, responds me-
chanically to IP resolution requests (e.g., ARP) and wakes
the sleep client only on TCP connection attempts to listen-
ing ports5, ignoring other traffic.

Before digging into design details (Secs. 4.2 and 4.3),
we provide a quick overview of how our system works.

4.1 System Overview
Imagine a sleep client M running sleep notifier. M ’s
sleep notifier registers with the OS to receive notification
when the machine is about to go to sleep. At such time,
the OS alerts the sleep notifier.

4A daemon, in Unix terminology.
5There being no reason to wake the machine for connections to non-

listening ports, which would just be ignored anyway.

M ’s sleep notifier then alerts the sleep proxy S that
M is going to sleep, providing a list of M ’s TCP ports
in the listening state (actively listening for incoming con-
nections). Assume that the SSH port, 22, is one such port.

Upon receiving the notification, S adds M to its list of
proxied clients and sends out an ARP probe (Sec. 4.3.1),
re-mapping the switched Ethernet to direct future packets
for M to the network port at which S resides. S now
begins receiving traffic that was meant for M . S responds
to ARP requests and IPv6 Neighbor Discovery packets as
if it were M , thereby maintaining M ’s network presence
and ensuring traffic for M continues to arrive at S.

Some time later a remote client C attempts to con-
nect to the sleeping machine M , using SSH. As the first
transport-layer action taken in establishing this new con-
nection, C sends a TCP SYN on port 22 to M which the
switched Ethernet routes to S.

Upon examining the packet, S determines that it is a
TCP SYN meant for M and destined to a port on which M
was listening when it when to sleep. S therefore wakes M
up by sending it a WOL packet (Sec. 3.3.3), removes M
from the proxied client list, and drops the TCP SYN. As
M wakes up, it sends its own ARP probes, which ensure
that future traffic meant for M will arrive at M ’s network
port. Meanwhile, C retransmits this SYN following the
normal TCP timeout. The retransmitted SYN arrives at
M , who responds as normal, thereby establishing the TCP
connection without C being any the wiser, except for a
small delay - quantified in Sec. 7.5.1.

4.2 The Sleep Notifier
Installing the sleep notifier on sleep clients greatly simpli-
fies the overall design. As the service runs on user desk-
tops, our aim is to make the sleep notifier code robust and
stateless, requiring as simple configuration as possible.

The primary purpose of the sleep notifier is to no-
tify the sleep proxy when the machine is going to
sleep. Just before a machine is put to sleep, the
Windows OS sends out a ‘get ready for sleep” (a
Win32 PowerManagementEvent) event to all the
processes and drivers running on a machine, allowing
them to prepare for sleep. The sleep notifier registers to
receive this event. Upon receiving the event, the notifier
immediately broadcasts a sleep notification packets (en-
capsulated in a UDP packet to port 9999), containing a
“going-to-sleep” opcode and list of the sleep client’s lis-
tening TCP ports, to the subnet broadcast address. For
reliability it retransmits the packet three times.

In keeping with our light-weight approach, sleep noti-
fication packets are broadcast. The sleep client does not
need to know the identity of the sleep proxy and requires
no configuration nor stable storage, as there is no state to
be kept. The sleep notification packet obviates the need
for active probing sleep clients to determine sleep status



(as done in [29]) or which ports should be proxied ([29]
restricted proxied ports to a manually pre-configured set).

Since the sleep notifier may have less than two seconds
in which to send the sleep notification packet before the
machine falls asleep 6, it is possible, albeit unlikely, that
the notification packets will not be sent in time. Conse-
quently, the sleep notifier also sends out periodic heart-
beats when the machine is awake. These heartbeats are
identical to the sleep notification packet, save that they
use a “heartbeat” opcode. In our current implementation,
heartbeats are sent out every 5 minutes, with some jitter-
ing. When the sleep proxy misses two consecutive heart-
beats from a client, it immediately sends a WOL packet to
that client. If, after sending the WOL, neither a heartbeat
nor a sleep notification is subsequently received from the
client, the proxy assumes that the machine has left the net-
work and removes it from the list of proxied sleep clients.

4.3 The Sleep Proxy
The sleep proxy needs to monitor incoming traffic to the
sleep client and also wake that client by sending a WOL
packet on the subnet broadcast address 7. Redirecting traf-
fic destined for a given machine to another machine out-
side of its local subnet requires substantial support from
routers. Thus, the sleep proxy has to run either on the sub-
net router itself, or on some other subnet machine. Run-
ning a sleep proxy on the subnet router was not possible,
so we use one dedicated machine per subnet to act as a
sleep proxy for machines in those subnets.

4.3.1 Rerouting

Like most enterprise networks, our network is a switched
Ethernet network. Thus, unicast traffic for a host is not
generally visible to other hosts on the network. Thus,
upon receiving the sleep notification from a client, the
sleep proxy needs to ensure that the traffic destined for
sleeping clients is re-routed to the sleep proxy’s NIC.

While there are a few ways to affect such re-routing,
we have found sending ARP probes [13], as shown in Fig.
2, to be the most reliable method. A machine uses these
ARP probes to advertise its MAC and IP address, and
to perform duplicate address detection (DAD). Also, the
subnet switches refresh/remap their internal routing tables
upon receiving these probes.

Thus, when a sleep proxy receives a sleep notification
from a client, it issues specially crafted ARP probes pre-
tending to be the sleep client (refer again to Fig. 2).

6The sleep notifier cannot reliably force the system to remain awake
once the notification is broadcast

7This packet must be broadcast since at the time it is sent, the sub-
net’s routing is set to deliver all packets meant for the sleeping host to
the sleep proxy.

Field Value
Ethernet Source Addr M.MAC Addr
Header Destination Addr FF:FF:FF:FF:FF

Sender MAC Addr M.MAC Addr
ARP Sender IP Addr 0.0.0.0

Request Target MAC Addr 00:00:00:00:00:00
Target IP Addr M.IP Addr

Figure 2: ARP probe for sleep client M

This ensures that subsequent network traffic meant for the
sleeping machine is delivered to the sleep proxy instead.8

When a sleeping machine wakes (either because the
sleep proxy woke it, or because it was woken for some
other reason), it will naturally send out a fresh set of ARP
probes generated by the OS to ensure that it can re-use
the same IP address that it had before it went to sleep.
This has two nice side effects. First, the subnet switches
now begin forwarding traffic meant for the sleeping (and
now awake) machine, back to that machine, instead of the
sleep proxy. Second, as these probes are broadcast, the
sleep proxy can see them, allowing it to immediately rec-
ognize when clients have woken and cease proxying.

4.3.2 Reaction Policy
As discussed earlier our sleep proxy reaction policy re-
sponds to IP address resolution traffic, examines incom-
ing TCP connection attempts, and ignores all other traffic.
This means that (a) current TCP connections are broken
and (b) UDP applications are not supported.

Intuitively, the former would seem to be a safe strategy
for many applications. The sleep proxy is not responsible
for putting a machine to sleep. That decision is taken by
the local OS. If the local OS deemed it safe to put a ma-
chine to sleep while it had TCP connections open, then
clearly the applications to which those TCP connections
correspond have not placed requests to prevent sleep (a
standard feature of modern OSes). Moreover, most com-
mon corporate network applications are inherently dis-
connection tolerant (e.g., email, web browser).

As for the latter, in our network, practically all desk-
top applications use TCP. Users typically access their
machines either via SMB (to retrieve files) or via Re-
mote Desktop. Upon initiation, both these applications
start new TCP connections, and hence send correspond-
ing SYNs. Routine maintenance is handled via RPC calls,
and this traffic also goes over TCP. Additionally, it given
the flexible parsing power of our sleep proxy, it should not
be difficult to extend our technique to cover UDP traffic
meant to initiate new connections for particular applica-
tions requiring such (e.g., NFS version 2).

The impact of ignoring non-TCP traffic and breaking
currently existing TCP is difficult to estimate empirically.

8An alternate way of doing this would be to replace
M.MAC ADDR with the sleep proxy’s MAC address, however
this could cause the DAD mechanism to be triggered if the sleep client
were to wake very quickly after sleep.



However, we believe the proof is in the pudding: after
months of running our code, none of our users or IT staff
have complained that their machines did not wake on re-
mote access and the only applications which we received
request support for were the two cloud-based applications
run by a small minority of users. [29] provides a more
detailed discussion of our reaction policy and comparison
with other possibilities.

4.4 Implementation Challenges
IPsec: Responding to IP address resolution traffic is easy:
the sleep proxy simply issue ARP responses and Neigh-
bor Discovery advertisements as if it were the sleeping
client. Handling TCP connection attempts is more com-
plicated. To detect an incoming TCP connection attempt
the sleep proxy must examine the packet’s IP header con-
firming it was destined to a currently proxied machine,
and contains a TCP SYN with a destination port on which
that machine had been listening. While it is easy to parse a
TCP SYN contained in a vanilla IPv4 or IPv6 packet, our
network (like most corporate networks) is more compli-
cated in both its use of IPv6 tunneling and IPsec ESP au-
thentication9. Tunneling comes in three flavors, ISATAP,
6over4, and Teredo [36]. Our current implementation
handles ISATAP and 6over4. ISATAP packets are already
unwrapped for the sleep proxy by the ISATAP router and
arrive as IPv6 packets on the sleep client’s ISATAP IPv6
address. Thus these packets require no additional process-
ing. 6over4 packets arrive as IPv4 packets whose next
protocol is 6over4. The inner packet is then removed and
parsed as a standard IPv6 packet. Our current implemen-
tation does not handle Teredo wrapping, since it is being
phased out in favor of the first two mechanisms.

The use of IPsec [42] presents a number of challenges.
Imagine a remote machine C trying to connect to sleeping
machine M using TCP. Let S be the sleep proxy. If IPsec
is in use, there are two possibilities. Either C has not
communicated with M in recent past, or it has.

If C has not recently communicated with M it would
first try to establish a new security association by doing
IPsec key exchange (IKE). The IKE packets are sent via
UDP. The IKE sent by C end up at S. Recall, however,
that our sleep proxy wakes up packets only on receiving
TCP SYNs. Thus, the sleep proxy would never wake up
M . However, Windows optimizes connection establish-
ment by requiring C to send a TCP SYN “in the clear” as
it begins the key exchange [42]. This is done to speed up
the connection establishment: TCP handshake can hap-
pen in parallel with IPsec handshake. This works in our
favor: the sleep proxy can detect the TCP SYN transmit-

9Note that tunneling and IPsec can be (and indeed are) used together.
Our sleep proxy routinely sees and handles TCP SYNs that are encap-
sulated in an ESP payload, which is carried in an IPv6 packet, which is
tunneled inside an IPv4 packet.

ted by C, and wake up M , which can then finish the key
exchange. Otherwise, M would need to be woken for ev-
ery IKE attempt. As we shall see later, in our network this
would have lead to many spurious wake-ups.

Conversely, if C has recently communicated with M ,
it may have cached the security association information.
Since our network uses Encapsulated Security Payload
(ESP) [25] protocol, C would encrypt the TCP SYN it
sends. While the TCP SYN would end up at S, there is
no way for S to decode the packet. This would have been
incompatible with our reaction policy, except that our net-
work uses ESP only with integrity service: the payload
itself is not encrypted. Thus, S can parse the packet, in-
spect it, and wake M if needed.

Thus by choosing an IPsec setup in which both ESP
payload encryption is disabled and enabling TCP connec-
tion establishment optimization, the need for running a
heavier-weight reaction policy is ameliorated.
ARP probe timing: The sleep proxy cannot simply send
out ARP probes as soon as it receives the sleep notifica-
tion from a client, as that client may send other packets
before the network card sleeps. If ARP probes from the
sleep proxy intermingle with traffic generated from the
client that is about to fall asleep, the spanning tree proto-
col may end up in state where packets meant for the sleep-
ing machine are not routed to the sleep proxy. In our early
implementations, this problem created much heartache.

To avoid this problem, after receiving the sleep notifi-
cation, the sleep proxy begins pinging that sleep client.
The sleep proxy waits for five consecutive ping failures
before sending out ARP probes and thereby taking over
for the sleeping client.
Daily wakeup & DHCP lease expiration: Currently, the
sleep proxy wakes all sleeping clients at 5AM. The pri-
mary reason is to allow these machines to initiate any
backup or scanning activity. The wakeup also obviates the
need for the sleep proxy to handle DHCP traffic on behalf
of the clients. In our network, DHCP leases are valid for
30 days. When the client is awake, it renews the lease
every day. Furthermore, it also renews the lease when
it wakes up. As each client is guaranteed to wake up at
least once a day, we did not need to implement DHCP re-
newal on our sleep proxy. The same mechanism also pro-
tects against address black-holing: whereby a sleep proxy
keeps holding on to the address of a machine that has de-
parted the network. If heartbeats are not seen for a sleep
client after the daily wakeup, that machine is inferred to
have left the network (as described earlier).
Failure of sleep proxy: In our current implementation,
each subnet is served by a single sleep proxy. This cre-
ates a single point of failure. We have designed, but not
yet implemented a primary-backup solution for ensuring
additional reliability. Another possibility is to design a
purely peer-to-peer solution (Sec. 8). Our design does of-



fer protection against a sleep proxy crashing, and restart-
ing. The sleep proxy stores the MAC addresses of all the
machines that it is proxying for in a log maintained on
non-volatile network storage. Upon restarting, the sleep
proxy checks the log, and proactively wakes up all the
machines by sending them WOL packets. This ensures
that the sleep proxy starts operations in a consistent state.
Multi-homed machines: The sleep proxy architecture
can easily handle multi-homed machines as long as (i)
the sleep notification goes out on all interfaces and (ii)
a sleep proxy is available on each network that receives
incoming connection attempts.
Manual wakeup: Apart from the “automatic” wakeup
described so far, we also provide for remote, manual
wakeup of sleeping clients. This is achieved by main-
taining a website outside our corporate firewall. Every
sleep proxy maintains an open TCP connection to this
web server. Users can type in the name of their machine
on this website. The web service sends the name to every
sleep proxy, and if a sleep proxy has the specified ma-
chine as a client, it wakes that machine up by sending
it a magic packet. This service provides a “last resort”
wakeup alternative and also allowed the small minority of
cloud application users to manually reconnect cloud apps.

5 Instrumentation

Our sleep proxy keeps a detailed log of its interactions
with clients, including when and why the clients go to
sleep or wake up. On client side, we use Joulemeter, to
estimate the power consumption of the clients, and gather
information about why clients stay awake. Joulemeter is
installed as a separate, optional service on clients.

5.1 Monitoring power consumption
To quantify the energy savings of our approach, we de-
sired an accurate method of estimating our deployment’s
power consumption. Different machine makes and mod-
els consume power at differing rates. Further, a given
machine consumes vastly different power depending on
its CPU utilization level, P-state and whether its moni-
tors are on or off. For instance, the power usage of an
HP xw4300 workstation with two monitors varied from
141W to 240W with processor utilization, and changed
by an additional 120W with monitor power state for a to-
tal variation of 2.5X.

However, desktop workstations do not typically have
built-in instrumentation to measure power usage, and
we wished to avoid attaching external power-meters to
each machine for the same reasons we rejected hardware
augmented sleep proxying approaches. Consequently,
we used a software solution, Joulemeter, that produces
power usage estimates based on hardware activity and
pre-calibrated machine models.
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Figure 3: Measured and predicted power consumption

The key principle behind Joulemeter’s energy estima-
tion is to use a machine specific power model. The model
consists of a set of equations that relate the hardware
configuration and resource utilization levels to power us-
age. Our current model takes into account processor P-
states, processor utilization, disk I/O levels, and whether
the monitor(s) are on or off. The power model for a spe-
cific hardware configuration is learned via calibration -
controlled experiments in a laboratory settings. Once the
power model is known, the machine’s power consump-
tion at run time can be estimated by monitoring CPU uti-
lization (and P-state), disk utilization and monitor status.
We omit the details of model construction due to lack of
space. For a preliminary introduction see [24].

Fig. 3 shows Joulemeter estimates versus measured
power consumption (using a hardware power meter) for
a HP d530 workstation with 2.66GHz Pentium CPU run-
ning a workload generator that loaded the CPU and disk
at random. The estimates were generated using the cali-
brated model produced from a different workstation with
the same model and CPU. The results shown confirm
Joulemeter’s estimates track closely with the actual power
consumption. In practice, no two systems are exactly
alike. Still, in validation testing we found Joulemeter pre-
dictions to be accurate within 20%

In our deployment Joulemeter generated power read-
ings were averaged over 30 second intervals and periodi-
cally uploaded to the database. We have built up a library
of power models covering most of our client machines.

5.2 Monitoring machine insomnia
To determine why a machine is awake, Joulemeter relies
on two sources. First, it periodically checks the lastUser-
Input timer provided by the OS. This timer provides the
time of last user activity. We compare the value of this
timer to the idle timeout (a typical Windows default value
is 30 minutes). If user activity has occurred more recently
than the idle timeout, we assume that the machine is being
kept awake by user activity. We note that due to various
technical issues this timer is not always available, so we
cannot always determine whether the user is active.

We also find that machines often stay awake even when
the idle period exceeds this duration. To determine the
reasons behind this, we rely on powercfg.exe utility that
ships as part of Windows 7. The utility can often (but
not always) shed light on why a machine is staying up
by detailing requests to the OS for the machine to remain



awake. For example, a remote machine may be holding
a file open or a defragmenting routine may be running.
Joulemeter periodically collects this information and re-
ports it to the central database. Analysis of this informa-
tion is presented in Sec. 7.

6 Implementation and Deployment

Our deployment consisted of 6 proxies (one for each
of our network’s 6 wired subnets), 51 clients, an SQL
database, and the manual wakeup webservice mentioned
earlier (standard IIS webserver with code written using
ASP.NET). Most of the code is written in C# (5000 lines).

Only the sleep proxy contains any significant amount
of unmanaged code. The sleep proxy relies on PCAP
to capture and examine incoming packets. A small cus-
tom driver allows the sleep proxy to craft and inject ARP
probes while bypassing the network stack. The primary
data structure in the sleep proxy is a hashtable used to
keep track of clients and their status. We first used or-
dinary desktop machines as proxies and have begun mi-
grating to the low-powered, small-form-factor machines
drawing less than 25 watts of power.

On client side, apart from the required sleep noti-
fier service, the clients install three optional applications:
Joulemeter, a GUI program displaying sleep statistics and
estimated energy savings, and an auto-updater service that
keeps client-side code up-to-date. During client instal-
lation, we ensured that Wake-On-LAN was enabled and
ARP offload (which is enabled by default for certain cards
in Windows 7) was disabled on the client’s NIC. We also
set the idle timeout to 30 minutes.

7 Results

This section is guided by several overarching questions.
What is the sleep and wake behavior of machines in our
system? How much power did our solution save? What
might be done to obtain additional power savings? What
impact did our setup have on user experience? Was
the sleep proxy architecture scalable? For the impatient
reader, we highlight our main insights at this section’s end
(Sec. 7.6).

We begin by describing the details of our dataset.

7.1 Dataset Overview
While our deployment has been active for half a year in
various stages, for the rest of this section we focus on the
45 day period from November 19th, 2009 through Jan-
uary 3, 2010. During this time, we gathered data from
51 distinct machines belonging to 50 distinct users. As
users installed our software at differing times, not all ma-
chines provided data for the entire period (although most
did). Fig. 4(a) shows the cumulative distribution of trace
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Figure 4: Trace Length and Listening Port Distribution

lengths of individual machines. Our users were a self se-
lecting group, so their behavior may not be representative
of all user populations.

7.1.1 Machines in our study

As we noted in Sec. 5.1, machine power consumption de-
pends on the particulars of that machine’s hardware con-
figuration. The hardware configuration of machines in our
deployment was varied, but not overly so. Of the 51 ma-
chines, 43 are HP and 6 were Dell. Only one of the ma-
chines has an AMD processor, the rest having Intel CPUs.
Most of the machines are dual or quad cored. The CPU
frequencies vary from 2-3.4GHz. Twenty seven machines
had one monitor, 20 had two, and five had three. Five
machines ran Windows Vista, all the rest ran Windows 7.

As we wake up machines for incoming TCP SYNs only
on listening ports, it is worth examining the number of
listening TCP ports on each machine. This number, of
course, varies over time, as active processes and settings
change. Fig. 4(b) shows the min, max, and average num-
ber of listening ports by machine. One machine had 35
ports open simultaneously!

7.1.2 Traffic

Since all traffic destined for sleeping clients arrives at
their sleep proxies, we can examine this traffic in cen-
tralized manner, without installing sniffers on individual
machines. While we have deployed a sleep proxy on each
of our six subnets, 59% of our machines are connected to
the largest subnet. We have seen as many as 800 active
machines on this subnet. We examined in detail a trace of
all (23 million) packets arriving at the sleep proxy serving
this subnet during a typical work week (5.5 days).

Of this traffic, 96% were multicast and broadcast pack-
ets. Of the multicast packets, 12.31% were ARP requests,
which the sleep proxy examined and replied to as needed.
The vast majority of the multicast traffic was safely ignor-
able [29]. The remaining 4% traffic was unicast: destined
either to the proxy itself, or to the sleeping clients. 75% of
these packets were wrapped by ESP and 8.4% were tun-
neled v6-over-v4 packets - underscoring the importance
of parsing such packets. 7% of the total unicast pack-
ets were UDP (mostly IPsec related) and 3% were ICMP,
which the sleep proxy ignores. Most of the remaining
traffic was TCP, and the proxy was able to ignore the vast
majority of it. During this time, we woke sleeping clients



for just 747 TCP SYNs. Our analysis of the traffic data
confirmed the importance of filtering TCP SYNs based
on port. More than half of incoming TCP connection at-
tempts were destined to ports on which the sleep client
was not listening. If we had woken clients without filter-
ing by port, we would have had more spurious wake-ups
than valid ones.

7.2 Sleep/Wake Behavior
We note that five of our 51 clients did not sleep at all, as
their their users manually disabled sleep functionality.

7.2.1 Aggregate sleep/wake behavior
Fig. 5(a) shows the percentage of time each machine
spent sleeping, as a CDF across all machines. The uni-
form slope of the CDF demonstrates that the average sleep
time was quite variable, with 50% of the clients sleeping
more than half the time. Fig. 5(b) plots the CDF of the av-
erage number of sleep-to-wake transitions per day for the
machines. Most machines average fewer than seven daily
wake-ups. Later, we will see that most of these wake-ups
were caused by IT management traffic (e.g., updates) ar-
riving for a sleeping machine.

We now examine the duration of sleep and awake in-
tervals. Note that no sleep interval is longer than 1440
minutes because of the daily 5AM wakeup. The CDF of
length of sleep and wake intervals is shown in Fig. 5(c),
while Fig. 5(d) shows the time-weighted CDF (i.e., con-
tribution of intervals at or below a given length to the total
sleep or wake time). By comparing these two figures, we
see that while most sleep and awake intervals are under
one hour, the majority of both sleep and awake time com-
prises intervals over one hour. This implies that insomnia
should be our first focus in attempting to reduce power
usage (Sec. 7.3.2).

The awake interval CDF in Fig. 5(c) demonstrates a bi-
modal distribution with abrupt changes in slope at around
two minutes, and at 30 minutes. This indicates that awake
periods of two and 30 minutes are prevalent in our trace.

7.2.2 Individual sleep/wake behavior
Figs. 6(b) and 6(a) show the 10th, 50th, and 90th per-
centile of wake and sleep intervals for each machine. The
machines are sorted in order of 10th percentile. Notably,
for around half of the machines the 10th percentile lies
around two minutes, while for other half it lies around 30
minutes, corresponding to the jumps seen in Fig. 5(c).

We closely inspected a number of these awake periods.
The prevalence of both two and 30 minute awake periods
is easily understood: these being the idle timeouts after
WOL wakeup and user activity respectively. When look-
ing at our special 5AM wakeup (which we know was not
user-initiated - Sec. 4.4) we saw a much greater than nor-
mal proportion of two minute wakes which is precisely
what we would expect.

(a) Awake Interval

(b) Sleep Interval

Figure 6: Per-machine Sleep/Awake Intervals

(a) Cause of Wake (b) Wakeup Source Port

Figure 7: Cause of wake-ups

Fig. 6(b) shows that for about a quarter of the ma-
chines, the median sleep interval is under 10 minutes. For
one machine all sleep intervals were under a minute. This
machine appears to have some driver configuration issue
that causes almost immediate wake upon sleep and was
unique in our data set. Such intervals add very little to
overall sleep duration and indicate potential sleep prob-
lems which will be examined further in Sec. 7.3.

7.2.3 Why do machines wake up?

Fig. 7(a) shows the causes of wake-ups. We divide these
into three categories: manual wake-up using our web site,
wake-up by proxy due to incoming traffic, and other. The
last bucket includes wake-ups caused by users walking
up to the machine, any timer-based wake-ups caused by
the BIOS, as well as occasional WOL packets sent by a
commercial wakeup solution being tested by our IT de-
partment. We were able to confirm for 33% of these that
the user did in fact initiate wakeup (by checking lastUser-
Input - Sec. 5.2) and for 50% of these the user definitively
did not wake the machine. The remaining 27% could not
be determined as lastUserInput was unavailable.

We see that while the web site was used in a few cases,
it is not statistically significant. The majority of wake-
ups caused by the sleep proxy are due to incoming TCP
SYNs. The ports to which these SYNs were destined to
are shown in Fig. 7(b).

Remote Procedure Calls (port 135) were the over-
whelmingly largest source of wakeup triggers, followed
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Figure 5: Aggregate Sleep/Wake statistics

by NETBIOS (139) and SMB (445). SMB is the main
mechanism used for remote file system access in our net-
work. The two other notable ports are UPnP (2869) and
Remote Desktop (3389). In our network, Remote Desk-
top is the primary mechanism for interactive remote ma-
chine access. We can see Remote Desktop is not a major
wakeup source. In fact, only 39% of the machines were
ever woken up due to Remote Desktop requests. There-
fore, it would seem that while users leave their machines
on for potential remote access, interactive remote access
is used relatively rarely.

7.2.4 Who wakes up machines?

There were slightly over 300 IP addresses requesters
whose incoming connection attempts caused wake-ups.
Most of these only attempted to connect to a single sleep
client. However, a sizable minority attempted to connect
to multiple clients as seen in Fig. 8(a). We were able
to verify that all the requesters who woke 20 or more
sleep clients were machines belonging to our IT depart-
ment. These machines perform a variety of management
actions such as verifying patch status and checking secu-
rity policies. We will see later that our IT configuration is
sleep-unfriendly in other ways as well (Sec. 7.3.2).

Fig. 8(b) shows the number of wakeup events caused
by requester. Just as most requesters only connect to a
single machine, many only cause only one wakeup and
most cause only a handful. However, again a large minor-
ity of requesters cause many wake-ups each. IT-owned
machines again make a large portion of this group. In-
terestingly, several of the most active requesters actually
connect to only one or a handful of machines. In fact, the
most active requester with over 400 requests connected to
only two machines, and that too in in a span of just two
weeks! We are currently investigating the role of this re-
quester further.

7.3 Why Machines Don’t Sleep Better
While we have seen that our solution is fairly successful
at enabling machines to sleep (Fig. 5(a)), we wanted to in-
vestigate whether more idle time could be harvested. We
begin by noting that most machines are not being woken
overly often (Fig. 5(b)). However, a small subset of ma-
chines suffer from “crying-baby-syndrome” being woken
as soon as they fall asleep. Sec. 7.2.4. These machines are

(a) Distribution of Requesters by Num. Clients Woken

(b) Number of Wake-ups Caused By Requester

Figure 8: Who causes wake-ups?

being bombarded by frequent connection attempts that in-
terrupt their sleep often. If a machine with a standard 30
minute idle timeout wakes 12 times a day, one quarter
of the day will have been spent awake due to wake-ups
alone. It appears that configuration issues are responsible
for much of this behavior.

However, most sleep clients are being kept awake for
other reasons the majority of the time. In fact, when
not being kept awake, these machines manage to sleep
well, sustaining few wakeup events per day. We now con-
sider whether these machines would have benefited from
a more aggressive idle timeout, and then look at the prob-
lem of insomniac machines.

7.3.1 Aggressive idle timeout

As mentioned in Sec. 7.2.2, it appears that setting the idle
timeout more aggressively could result in some power
savings. We now consider how much could be saved
with a 5-minute idle timeout (this is 1/3rd the EnergyS-
tar guidelines recommendation [16]).

To do so, we examined each wake interval to see why
the machine was being kept up. Recall from Sec. 5.2 that a
machine may be kept awake because the user is active, the
machine has woken up recently, or a stay-awake request
placed by a local application with the OS.

We divided the total awake time into three components,
recoverable, unknown, and unrecoverable. Recoverable
time was time in which the machine could have slept if
the idle timeout had been set more aggressively. This time
was the sum of periods in which the user had been active



Figure 9: Awake Time as Percentage of Uptime. Broken
Into Components Unknown, Recoverable, and Unrecov-
erable using Aggressive Idle Timeout

(a) Percentage of Awake Time
Caused by Requests

(b) Source of Requests

Figure 10: Stay-Awake Request Data

within the past five minutes or the machine had been wo-
ken within the past five minutes. The unknown time was
the time for which insufficient data was available to diag-
nose cause of wakefulness. The unrecoverable time con-
sisted of all other time (i.e., an application had placed a
stay-awake request with the OS).

Thus the recoverable time is a lower bound on the
awake time that could have been saved by setting a more
aggressive idle timeout. The sum of recoverable and un-
known time provides the upper bound. Fig. 9 breaks the
total wake time as percentage of uptime into these three
components on a per-machine basis. We see that on most
machines the impact would be relatively small. These ma-
chines are being kept up by local application stay-awake
requests, to which we now turn.

7.3.2 Insomnia
We now look more closely at which local applications
keep machines awake. We label this phenomenon in-
somnia. Fig. 10(a) plots the fraction of awake time a
given machine was kept awake by local applications re-
questing OS to prevent sleep. We see that the majority of
awake time is in fact due to such stay-awake requests. So
which applications cause these stay-awake requests? Fig.
10(b) shows the percentage of requests initiated by vari-
ous applications. The news here is heartening. Four of
the top sources (Security Policy Agent, Windefend, Fore-
front, and Bitlocker) are all applications mandated by our

IT department. It may be possible to reconfigure or even
re-write these applications to minimize and coordinate
the duration of time they are active (and thus preventing
sleep). At least three more (Flash, Quicktime and Audio
Stream) are the result of code or driver bugs. For example,
certain older versions of Flash player may keep a machine
awake by playing silence even after the audio clip has fin-
ished (Windows prevents sleep when audio streams are
active). The third-highest request source is SMB. SMB’s
default behavior prevents a machine whose files are being
accessed from sleeping. Careful changes to this behavior
may allow for greater sleep opportunities.

7.4 Power savings
PC consumption varied, averaging from 89-143W for in-
dividual machines. The lowest draw we saw was 50W
idling. The highest was 191W heavily loaded. While
sleeping, all machines drew 1-2W. Monitors generally
added from 30-60W when on.

Fig. 11(a) illustrates the lower bound on power savings
on a per machine basis. This lower bound is calculated
with the assumption that had the machine stayed up in-
stead of sleeping, it would have consumed power at the
lowest rate seen in the entire non-sleeping portion of the
trace. This represents part of the reason we saw less power
savings than that predicted by previous work (which as-
sumed machines consumed power at a constant rate ir-
respective of activity level). The average across all ma-
chines is about 20%, although variation is considerable.

Fig. 11(b), shows aggregate power consumption for a
both a representative one-week period beginning 12/3/09
and the winter break (beginning 12/24/09). During the
representative week, weekend power consumption is low,
spiking only at the 5AM wakeup. During the work-week,
power use peaks during the work day before declining
into an overnight trough and bottoms out early on Friday.
In contrast we can see a markedly different pattern for the
Mid-Winter week with almost no increase in activity dur-
ing the day from the day preceding Christmas (which fell
on Friday) through the following Monday. By the Tues-
day following the holiday, we begin to see a similar level
of activity to that of the representative week, albeit at a
lower amplitude, as employees begin returning from the
holiday. Interestingly, the power consumption over the
Christmas weekend (12/26-12/27) weekend was slightly
higher than during a normal weekend (12/5-12/6).

7.5 Micro-Benchmarks
We now validate our architectural approach by examining
wakeup delay time and sleep proxy scalability.

7.5.1 Wakeup delay
The energy saved by our system comes at a cost: the user
experiences additional startup latency the first time a con-
nection (e.g., ssh login or samba file access) to a sleep



Step Time (s) From→To Packet Type
1 0 M1→M2 TCP SYN
2 0.04 S1→Broadcast Magic Packet
3 2.48 M1→M2 TCP SYN
4 5.6 M2→Broadcast ARP Probe
5 8.48 M1→M2 TCP SYN
6 8.49 M2→M1 TCP SYN-ACK

Table 1: Time line of a wakeup

(a) Lower Bound on Per-Machine Power Savings

(b) Aggregate Power Draw for Normal vs. Mid-Winter Weeks

Figure 11: Power Draw and Savings

client is attempted since that client fell asleep. This hap-
pens because sleep client takes time to both wake and be-
gin responding to an incoming TCP connection attempt.
To make the system usable, we need to minimize the
startup latency encountered by interactive transactions.

The user-perceived startup latency consists of several
components: the delay involved in sending the WOL
magic packet, the time required to wake up the ma-
chine, and the time required to perform any application-
specific actions. To quantify these component latencies,
we present a simple, but representative example.

Two machines, M1 and M2 were connected to the same
subnet. M1 was ran a simple TCP sink, and was put to
sleep. Thereafter, sleep proxy S1 started proxying for M1.
From M2, we attempted to establish a TCP connection to
the the sink on M1. The packet trace of the connection
establishment is summarized in Table 1.

The total latency is about 8.5 seconds, but the sleep
proxy itself consumes only 40 milliseconds, even though
it is on a busy subnet and proxying for several other ma-
chines. The largest component is the wake-up delay (i.e.,
time required for M2 to wake up and become active). This
is roughly the delay between steps 2 and 4 (about 5.5 sec-
onds). The remaining TCP-retransmit delay occurs be-
tween steps 4 and 5 (about 3 seconds). This delay is in-
curred while M1 waits to retransmit the TCP SYN the sec-
ond time, following regular TCP timeout algorithm [31].

Specific applications will usually encounter slightly
higher latencies, as the machine needs to perform addi-
tional, application-specific actions. For example, when
M1 tried to list a directory on M2 via SMB, the transac-
tion took 13.37 seconds when M2 was asleep. The ad-

ditional delay was incurred while M2 re-connected with
the domain controller, and obtained security credentials
to determine whether to allow M1 access.

We stress that this delay is incurred only for the trans-
action that wakes the machine. Subsequent transactions
experience normal latencies. While our experience is that
users do not mind this one-off penalty, both the wake-up
and retransmit delays can be addressed. A number of re-
search and engineering efforts are underway to address
the former. The latter can be shortened either by having
M1 retransmit TCP SYN more aggressively, or having S1
“replay” the TCP SYN.

7.5.2 Scalability

Our current deployment uses one sleep proxy per sub-
net. The load on these sleep proxies is a potential con-
cern. We find that the CPU load on a sleep server rarely
exceeds 5%. The total traffic (broadcast inclusive) seen
by the sleep server is also quite low (90th percentile is
250Kbps). We conclude sleep proxy operations do not re-
quire substantial resources, and a single sleep proxy could
easily handle very large subnets if necessary. Conversely
for reasonably sized subnets, the sleep proxy could be lo-
cated on a client machine without noticeably degrading
the user experience (Sec. 8).

7.6 Summary
Insomnia is the foremost cause of lost sleep. Thus im-
proving the energy savings of systems like ours, the main
focus should be on addressing sources of wakefulness.
IT applications are the main source of both insomnia
and fitful sleeping. Several uncoordinated IT applica-
tions for patching, security, and network testing all woke
machines and kept them awake. While we studied one
particular IT setup, practically all IT setups will interfere
with sleep to some extent - dependent on quantity, aggres-
siveness and degree of coordination of IT applications.
Misconfiguration can result in crying-baby syndrome
Requiring administrators to diagnose and resolve the mi-
nority of machines suffering this issue.
Use of more aggressive idle timeouts is of secondary
benefit. In enterprise systems behind firewalls, wakeups
will occur because of valid incoming TCP connection at-
tempts and in well configured setups, the number of wake-
ups caused by IT/misconfiguration will be minimal. Thus
savings from more aggressive idle timeouts will be minor.
Incoming TCP connection attempts need to be filtered
by listening port. More incoming TCP connection at-
tempts arrived for non-listening ports, than listening ones.

8 Conclusion & Future Work

We have designed and deployed a light-weight network-
based sleep proxy in an operation enterprise network on



over 50 user workstations - the first such deployment of
which we are aware. During our work, we uncovered and
addressed several practical issues that must be addressed
by light-weight sleep proxying systems in enterprise net-
works. Our system has functioned both to user satisfac-
tion and our own specification for the past several months,
providing significant sleep opportunities and power sav-
ings using a simple reaction policy. However, we find that
significantly more power savings could be achieved by al-
tering the IT setup. Additionally, certain classes of cloud
applications require specialized reaction policies. Should
use of such persistent cloud applications become more
widespread, our reaction policy would need adjustment.

We conclude with a brief discussion of future possibil-
ities and concerns.
IT application coordination and configuration: Cur-
rently IT maintenance tasks are uncoordinated and con-
sequently will keep machines awake during each of their
separate execution time periods. Devising methodologies
that schedule these tasks to overlap as much as possible
can significantly increase sleep opportunities.
P2P sleep proxy: Our current setup requires the use of
a dedicated (albeit low-power) sleep proxy machine on
each subnet. We are working on a p2p architecture in
which machines fall asleep one after the other, while the
“last man standing” keeps watch for the entire subnet.
Security: While the sleep proxying system does not
pose a traditional security concern, we do note that many
machines waking simultaneously could cause significant
power spikes. To reduce the risk of this being exploited
by an attacker, proxies can rate limit WOL packets sent.
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