
Dyson: An Architecture for Extensible Wireless LANs
Rohan Murty†, Jitendra Padhye, Alec Wolman, Matt Welsh†

Microsoft Research, †Harvard University

Abstract

Dyson is a new software architecture for building cus-
tomizable WLANs. While research in wireless networks
has made great strides, these advancements have not seen
the light of day in real WLAN deployments. One of the
key reasons is that today’s WLANs are not architected
to embrace change. For example, system administrators
cannot fine-tune the association policy for their particular
environment: an administrator may know certain nodes
in certain locations interfere with each other and cause
a severe degradation in throughput, and hence, such as-
sociations must be avoided in the particular deployment.
Dyson defines a set of APIs that allow clients and APs to
send pertinent information such as radio channel condi-
tions to a central controller. The central controller pro-
cesses this information, to form a global view of the net-
work. This global view, combined with historical infor-
mation about spatial and temporal usage patterns, allows
the central controller enact a rich set of policies to control
the network’s behavior. Dyson provides a Python-based
scripting API that allows the central controller’s poli-
cies to be extended for site-specific customizations and
new optimizations that leverage historical knowledge. We
have built a prototype implementation of Dyson, which
currently runs on a 28-node testbed distributed across one
floor of a typical academic building. Using this testbed,
we examine various aspects of the architecture in detail,
and demonstrate the ease of implementing a wide range of
policies. Using Dyson, we demonstrate optimizing asso-
ciations, handling VoIP clients, reserving airtime for spe-
cific users, and optimizing handoffs for mobile clients.

1 Introduction

Wireless networks are struggling to keep up with the
demands of new applications, such as media streaming,
voice over IP, and the increasing use of mobile devices,
such as Wi-Fi enabled smartphones. Researchers have
proposed numerous ways to cope with these changing
demands, including new approaches to association and
handoff control [22], channel allocation strategies [20,
17], and centralized packet transmission scheduling [26].
However, deploying these innovations in real wireless
LANs remains a significant challenge. Enterprises wish-
ing to roll out new applications, services, or policies in
a wireless LAN are faced with ossified standards and a

wide variety of software, device driver, and hardware im-
plementations of these standards by many different ven-
dors. Compounding this problem is the fact that existing
WLAN standards generally do not allow for much cus-
tomization. In this paper, we argue that it is time to rethink
the architecture of wireless networks from the ground up,
to enable greater observability, control, and extensibility
to meet future needs.

Today, WLAN vendors offer few knobs to customize
network operation. A case in point is the Microsoft cam-
pus enterprise wireless network, which uses access points
supplied a single vendor. These access points are man-
aged by a central controller, which attempts to dynami-
cally tune the assignments for channel selection and trans-
mit power to improve performance. Shortly after these
new APs were deployed, the WLAN administrators re-
alized that the transmit power control algorithm was not
suitable for our campus. Because the algorithm was
geared towards avoiding interference, many APs reduced
their transmit power to such an extent that it left large
holes in coverage. The controller offered no knobs to
allow administrators to customize the power assignment
algorithm; the only option was to disable it entirely.

In the above example, the lack of flexibility does not
arise from the 802.11 standard, which is in fact quite flex-
ible in many respects: it imposes no specific policies on
association, channel assignment, or power control. The
problem is that there is no agreed-upon framework to con-
trol these knobs. Moreover, there are no explicit mecha-
nisms for stations to coordinate with each other to observe
the state of the network, requiring nodes to take a purely
local “every station for itself” point-of-view. This local
viewpoint then encourages vendors to hard-code impor-
tant algorithms into device drivers and firmware that af-
fect WLAN performance, such as those that control AP
associations, PHY data rates, and transmission power.

In this paper, we present a new WLAN architecture,
called Dyson, that is designed to enable extensive cus-
tomization and control over many aspects of network op-
eration and performance. The Dyson architecture is de-
signed to support global network observation, deep con-
trol, and extensibility to meet future needs. In Dyson,
both clients and access points coordinate with the net-
work infrastructure to provide detailed measurements on
location, radio channel conditions, connectivity, and ob-
served performance. Measurements are stored in a per-
sistent database, allowing the infrastructure to adapt its

behavior based on historical knowledge of network state.
Dyson defines a set of APIs that allow clients and APs to
share pertinent performance information such as packet
loss rates and radio channel conditions. Dyson also de-
fines a control interface, supported by both clients and
APs, that permits the infrastructure to manage many as-
pects of their operation, including associations, channel
selection, PHY rate, and transmission throttling. The cen-
tral controller can enact a rich set of policies to control
the WLAN behavior. These polices are built, customized
and extended using a Python-based scripting API. Even
though Dyson benefits when all clients in the WLAN sup-
port the control interface, it can still work with a mix of
legacy and controllable clients.

Dyson’s design hinges on the use of a centralized net-
work controller, a common feature in recent research [22,
26, 11] and commercial [1, 2] WLANs for enterprises.
None of the previous centralized WLAN systems have
considered flexibility and evolvability as their primary de-
sign requirement. Dyson focuses on providing a rich set
of APIs that allow the network’s operation to be extended
to embrace new application demands and site-specific
customizations. Dyson’s Python programming interface
makes it easy to develop new policies and experiment
with a wide range of behaviors. To demonstrate Dyson’s
flexibilty, we have implemented a range of policies for op-
timizing associations, handling VoIP clients, and reserv-
ing airtime for specific users.

This paper makes the following contributions. First,
Dyson is the first wireless LAN architecture that di-
rectly addresses the need for extensibility and evolvabil-
ity, leveraging both centralized control and client-side in-
strumentation to enable a wide range of new policies to be
layered on the existing network. Second, Dyson enables
more efficient use of radio spectrum by taking measure-
ments gathered from both clients and APs into account.
Third, we have implemented Dyson on a 28-node testbed
distributed over one floor of an office building, which we
use to evaluate the system in detail using a range of poli-
cies. We demonstrate how WLAN behavior can be easily
customized via Dyson’s policies to provide better perfor-
mance overall.

2 Dyson Architecture

The Dyson network architecture, shown in Figure 2, con-
sists of a number of wireless clients, access points (APs),
and a single central controller (CC). As described below,
both APs and Dyson-enabled clients report measurements
to the infrastructure, which are used to construct a dy-
namic network map representing the state of the network.
Measurements are also logged to a database for historical
analysis, and static information on AP location and MAC
addresses are stored in a separate AP database. Extensi-

Client Client Legacy
client Client Legacy

client

Measurements
collection

Policies

AP DB

Central
Controller

Measure-
ment DB

Network map

APAP AP

Commands
Measurements

Dyson
client API

Legacy
client API

Figure 1: The Dyson network architecture.

bility is enabled through policies that are used to trigger
network configuration changes via commands delivered
by the central controller to APs and clients.

Dyson builds upon existing 802.11 standards, including
CSMA MAC and the format of the data and management
frames. As a result, Dyson can be implemented entirely
using existing 802.11-compatible hardware. The key dif-
ference between Dyson and existing enterprise WLANs
is the manner in which network management and con-
trol is performed. The Dyson architecture requires APs to
be Dyson-aware. Dyson-aware clients support enhanced
functionality for measurement collection and control, as
described below. Legacy 802.11 clients can be supported
by Dyson, although with reduced functionality. Note
that Dyson-enabled clients remain compatible with legacy
802.11 networks.

The use of a central controller in enterprise WLANs
is widespread.1 For example, in Aruba [1] networks, the
CC is responsible for assigning radio channels and trans-
mission power levels to individual APs based on global
observation of the network traffic. Dyson significantly
augments this design by extending both observation and
control to the wireless clients as well as the APs. Dyson
clients are responsible for collecting periodic measure-
ments of channel and traffic conditions and reporting them
to the CC, as well as responding to commands from the
CC that control many aspects of transmission parameters,
as described below.

A key question that arises in this regime is how much
control clients should yield to the infrastructure. At one
extreme, the CC could control clients at a very fine-
grained level, for example, by dictating individual packet
transmission timings [26]. However, this design would
require substantial control overhead, and would fail to re-

1Note that the CC need not be physically centralized, as this func-
tionality can be replicated across multiple physical hosts for reliability
and scalability.

spond rapidly to local changes in channel conditions (e.g.,
interference) at the client. In Dyson, we opt to affect con-
trol at a higher level, via channel allocations, client-AP
associations and throttling. Although cruder than packet-
level control, this design strikes a balance between the
overhead for command issue and the ability of the net-
work to drive towards more efficient configurations.

One implication of this design is that we assume that
Dyson clients are willing participants in the system,
and are capable of accurately and truthfully responding
to measurement requests and commands. There is, of
course, the potential that malicious or buggy clients could
misbehave and degrade network performance. However,
we argue that the degree of trust that Dyson places in
clients is not substantially greater than that in conven-
tional 802.11 networks, in which it must be assumed that
clients correctly obey the protocol. We assume that Dyson
clients are authenticated using 802.1x.

The power of the CC is derived from its global knowl-
edge of the state of the network and ability to control both
APs and clients at fine granularity. It also maintains a
database to store received measurements, permitting long-
term historical analysis of network performance.

A key benefit in Dyson is the ability to collect client-
side measurements, providing the CC with greater visi-
bility and control over the network state. Client-side in-
formation can be used to resolve sources of ambiguity
that would arise with AP-only observations. Examples
include detection of hidden terminals, awareness of mu-
tual connectivity between APs and clients, and mapping
channel airtime utilization. While client participation has
been explored by several previous systems [11, 6], Dyson
provides a flexible framework in which a wide range of
policies can be specified programmatically.

2.1 Measurement collection

In Dyson, both clients and APs are responsible for col-
lecting passive measurements on the state of the network,
reporting measurements to the CC, and responding to
commands issued by the CC to modify local parameters.
As described above, the granularity of measurements and
commands is chosen to avoid high overheads for clien-
t/CC interactions, but still yield adequate control over
client behavior by the infrastructure.

Measurement collection in Dyson supports network-
wide optimizations based on both AP and client-side
knowledge of the network state. This provides the CC
with global information on various factors that affect
client performance, such as traffic patterns, interference,
hidden terminals, and congestion. This approach obvi-
ates the need for a separate wireless monitoring infras-
tructure [13, 7].

Each client and AP in the system records a set of statis-

Measurement Description
numPackets Number of pkts received
totalBytes Total bytes received
totalRSSI Total RSSI of received pkts
connectivity[] List of tuples

〈srcmac,numPkts, totalRSSI 〉
packetsPerPhyRate[]One counter for each PHY rate
totalAirtime Airtime used by packets (size ×

PHY rate)
numTxFailures Number of Tx failures
numRetransmissions Number of ARQ retransmis-

sions
airtimeUtil Channel airtime utilization

Table 1: Measurements collected by Dyson nodes.

tics, summarized in Table 2.1. For each received packet, a
set of counters are incremented to track the total number
of packets, total packet size, total airtime utilization, and
other measures. Dividing counters by the number of re-
ceived packets can be used to calculate mean values over
a measurement window. Clients maintain a single set of
these counters, whereas the AP maintains these counters
on a per-associated-client basis, allowing measurements
to be collected for each separate uplink. In addition to the
these statistics, nodes also record the mean airtime utiliza-
tion (reported by the radio hardware) of the radio channel.

APs periodically query their associated clients to col-
lect their measurements, after which clients reset their
counters. The AP then pushes the collected client mea-
surements, as well as its own, to the CC. The AP’s mea-
surement collection period can be adjusted by the CC to
tradeoff reporting latency and measurement traffic over-
head. Our measurements in Section 4.8 show that for
moderate-sized networks, this overhead is less than 1%.

2.2 Network map
The central controller uses collected measurements to
maintain a network map representing the global state of
the Dyson network. The network map is the key data
structure accessed by Dyson’s policies (Section 4) in or-
der to drive reconfiguration. The network map is updated
each time new measurements are pushed to the CC by an
AP. Policies can read the complete network map and push
new information into the network map. This allows indi-
vidual policies to augment the global state maintained by
the CC, as well as enabling policies to be composed.

The map consists of several components:
Node location: A table of the physical location of each
AP and client in the system, indexed by MAC address.
AP locations are static, whereas client locations are com-
puted using the algorithm described in [12]. This infor-
mation can be used for determining the physical location
of network hotspots, and by policies that consider client
mobility.
Connectivity: A directed connectivity graph is main-

SetRate(r) Set PHY rate
SetChannel(c) Set channel
SetTxLevel(t) Set transmission power level
SetCCAThresh(t) Set CCA threshold
SetPriority(p) Set 802.11e priority
Throttle(r) Throttle outgoing traffic at the spec-

ified rate r
Handoff (c, ap, chan) Handoff client c to AP ap on chan-

nel chan
AcceptClient (c) Associate AP with client c
EjectClient (c) Disassociate client c

Table 2: The Dyson command API. Commands in bold are applica-
ble to APs only.

tained, where vertices represent nodes (clients or APs)
and edges represent the ability of one node to overhear
packets of another node. For each unique MAC address
that a node overhears during a measurement interval, the
mean RSSI value of packets from that MAC address are
reported to the CC. The connectivity graph contains a di-
rected edge for each pair of MAC addresses. While clients
are only capable of reporting links on their current chan-
nel, APs can use a secondary radio to perform background
scanning and report observed connectivity on every chan-
nel. An edge is removed from the graph if no packets
are observed on the link for 30 seconds. The connectivity
graph is used in client-AP associations, detecting hidden
terminals, and managing handoffs.
Airtime utilization: Each node measures the airtime uti-
lization of the radio channel in its vicinity. The network
map includes a hash table mapping a node’s MAC ad-
dress and channel number to its airtime utilization esti-
mate. This information can be used by a wide range of
policies to detect congestion, balance uplink and down-
link fairness, and optimize client/AP associations. APs
can measure airtime on every channel using the secondary
scanning radio.
Historical measurements: Collected measurements are
also stored in a persistent database, permitting policies
to make use of historical information when making de-
cisions about network reconfiguration. As an example,
a policy may wish to consider the historical interference
pattern between two APs, or variance in the network con-
gestion at different hours of the day, when driving net-
work reconfigurations.

The network map serves primarily as input to the vari-
ous policies for driving network configurations. However,
it can also serve an auxiliary role to assist a network ad-
ministrator in understanding AP coverage and sources of
performance degradation. For example, visualizing the
airtime utilization graph as well as the associated client
and AP locations can provide real-time information on
network hotspots.

2.3 Central controller

The central controller is responsible for managing the
entire Dyson network based on collected measurements
from clients and APs. Its job is to apply administrator-
defined policies to the current network map, and issue
commands to set parameters of clients and APs accord-
ing to the policy decisions.

The Dyson command API is shown in Table 2. These
commands are intended to provide a rich set of knobs
for controlling the network’s operation while limiting
overheads for command issue. Commands set parame-
ters such as the transmission power level, CCA thresh-
old, 802.11e priority levels, and PHY data rate. The
Handoff, AcceptClient, and EjectClient com-
mands control client-AP associations, as described in the
next section. Note that clients do not decide themselves
which AP to associate with; this is under the control of
the Dyson infrastructure.

The CC sends commands to APs directly. Commands
to clients are relayed via the AP that the client is currently
associated with; in this way the client need not be aware
of the CC’s identity, and the CC’s functionality can be de-
centralized. Commands are exchanged using MAC-layer
control messages which are ACKed by the receiving node.
For AP-client commands, ARQ is used to ensure com-
mands are delivered reliably.

Support for legacy clients: Dyson can support legacy
802.11 clients without the extensions described above. Of
course, this implies reduced functionality as it is not pos-
sible to directly obtain client-side measurements, nor con-
trol many aspects of client operation. The CC is able
to control client-AP associations for legacy clients, giv-
ing the infrastructure control over at least which APs and
channels those clients occupy. AP-side measurements can
account for any associated legacy clients allowing the sys-
tem to have visibility into the impact of legacy client traf-
fic. Dyson policies use a reduced control API (that only
contains the relevant calls) to interact with legacy clients.

2.4 Policy Engine

Dyson’s architecture is designed to support extensibil-
ity, composability, and separation of concerns, in order
to tune network performance as well as impose site- and
client-specific policies. Each policy is encapsulated in a
software module that runs on the CC, takes the network
map as input, and issues commands to APs and clients as
output. As described above, policies can also update and
augment the network map itself.

Dyson has a predefined set of policy modules providing
commonly-used functionality, but it is possible for new
policies to be implemented and loaded into the central
controller as needed. Policies are implemented in Python

Figure 2: Dyson testbed deployment

and are relatively easy to write, as we will show below.
This approach enables network designers to update the
policies used by a Dyson network installation over time in
response to new demands or shifting priorities. We also
envision third parties developing new policies for Dyson
that can be readily plugged into an existing deployment.

In our current design, policy composition and depen-
dencies must be handled manually by policy designers.
There is nothing to prevent two policies from “compet-
ing” (say, by issuing conflicting commands in response to
the same event in the network); each policy should clearly
document its own behavior to avoid unexpected results.

Each policy runs as a separate thread on the CC and
is responsible for its own scheduling. Typically, a policy
will run with some predefined period, but a policy can
also trigger execution on some condition being met (for
example, an update to some element in the network map).
Standard thread synchronization primitives can be used to
implement more sophisticated cross-policy interactions.

In Section 4, we demonstrate a set of policies that high-
light different aspects of Dyson’s global network visibility
and deep control over both APs and clients.

3 Implementation and Testbed

We have implemented a prototype of the Dyson ar-
chitecture using the ALIX 2c2 single-board computer
(500 MHz AMD Geode processor with 256 MB DRAM)
running FreeBSD 7, coupled with dual CM 9 Atheros-
based 802.11a/b/g radios. Each node can act as either a
Dyson client or an AP; only APs make use of the second
radio for collecting channel utilization measurements.

We have deployed a testbed of 28 nodes across one
floor of an academic office building, as shown in Figure 2.
Each node is connected to an Ethernet network for con-
trol. The central controller is implemented on a separate
machine running FreeBSD with 2 GB of RAM. All exper-
iments presented in this paper use 802.11a to avoid inter-
ference with existing 802.11b/g networks in the building.

To support Dyson, we modified the FreeBSD Atheros
driver to add support for statistics collection and the
Dyson command API, as well as to disable local rate
adaptation. Each node runs a Python-based daemon that

exposes the Dyson measurements and command API via
an XML-RPC interface, and communicates with the mod-
ified Atheros driver through ioctl calls. The central con-
troller is also implemented in Python; policies are loaded
as Python modules at startup time.

The commands listed in Table 2 were implemented via
modifications to the Atheros driver. Most of the com-
mands (such as SetTxLevel, SetChannel, and so
forth) simply set driver parameters. Handoff informs
a client to switch channels and associate with the spec-
ified AP. This eliminates the need for scanning, pro-
vided the destination AP is still on the specified chan-
nel. The Throttle command makes use of dummynet, a
FreeBSD traffic shaping tool, to limit the rate of outgoing
traffic. Throttle simply sets the dummynet outgoing
bandwidth limit on the radio interface to the specific rate.

4 Policies and Evaluation

The primary goal of this section is to demonstrate that the
extensibility afforded by the Dyson architecture is both
desirable and feasible. To do so, we focus on five inter-
related issues.

First, we show that the Dyson architecture enables in-
teresting, non-trivial customizations of WLAN deploy-
ment that either improve performance, or enable new fea-
tures. This is our key contribution.

Second, we show that the customizations are easy to re-
alize. Unless Dyson makes it easy to customize WLANs,
the fact that it enables interesting customizations is of lit-
tle practical value. Also, demonstrating the ease of cus-
tomization reaffirms our programming model, and val-
idates our contention that our chosen API provides the
right level of control for our purposes.

To address these two issues, we demonstrate a set of
four policies that customize WLAN deployments in a va-
riety of ways. We show how these policies can be re-
alized via simple Python scripts, and illustrate how our
APIs provide the right level of abstraction to achieve this.

Third, we discuss how multiple policies co-exist within
the Dyson framework. We will show how Dyson allows
different policies to be run in different parts of the net-
work. Dyson requires policies to document their behavior
and it lets the system administrator decide which polices
can run safely together.

Fourth, we show that Dyson can operate at a suffi-
ciently large scale to be of practical use. We demonstrate
this via large-scale experiments with one of our policies,
and also by careful micro-benchmarking of several as-
pects of the Dyson architecture.

Fifth, we show although Dyson can operate without
client-side modifications, using Dyson-enabled clients
significantly improves performance, and enables features

Input: client MAC, list of (AP MAC, RSSI) for
each received probe request
Output: client MAC, AP with highest
available capacity
def (clientmac, heard_list):
global ap_list, ap_list_lock, ratemap
best_ap = None
max_ac = -1

Compute available capacity for each AP
Pick AP with the highest value
for (apmac, rssi) in heard_list:
ap_list_lock.acquire()
data_rate = ratemap.get_rate(rssi)
airtime = ap_list[apmac].airtime
avail_capacity = data_rate * (1.0 - airtime)
if avail_capacity > max_ac:
max_ac = avail_capacity
best_ap = ap_list[apmac]

ap_list_lock.release()

Assign channel if no clients already
if (best_ap.channel == -1):
best_ap.assign_channel()

Associate client
best_ap.AcceptClient(clientmac)

def run(self):
global pending_associations
global pending_associations_lock

while (True):
pending_associations_lock.acquire()
map(compute_ac, pending_associations)
pending_associations = []
pending_associations_lock.release()
time.sleep(5)

Figure 3: The Dyson capacity-aware association policy.

that would not otherwise be possible. This is essential be-
cause client modifications are generally considered to be
disruptive and expensive. We illustrate this by running
one of the policies both with and without client modifica-
tions.

4.1 Customizing associations
We begin with a simple demonstration of Dyson’s exten-
sibility mechanisms at work. In Figure 3, we present a
policy that associates clients with access points based on
the estimated channel capacity at each AP. This policy is
similar to the one proposed in DenseAP [22], but rather
than being implemented as a complete, standalone sys-
tem, using Dyson we implement it in approximately 40
lines of Python code.

The key idea is to use information on airtime utilization
and an estimate of the feasible PHY rates to determine the
best AP with which to associate a given client. The pol-
icy runs every 5 seconds. On each iteration, it scans over
a list of probe requests received from clients. A given
probe request may have been overheard by multiple APs.
For each AP, the available channel capacity is computed,
which is the product of the estimated PHY rate at which
the client and AP will communicate, and the inverse of the
AP’s measured airtime utilization. The PHY rate is deter-
mined using a rate map that maps the RSSI of the received

Compute available capacity for each AP
Pick AP with the highest value. But ensure
this association is not an exception
for (apmac, rssi) in heard_list:
ap_list_lock.acquire()
data_rate = ratemap.get_rate(rssi)
airtime = ap_list[apmac].airtime
avail_capacity = data_rate * (1.0 - airtime)

#Check if this association is prohibited
(Code not shown ...)
if is_exception(clientmac, apmac):

if avail_capacity > max_ac:
max_ac = avail_capacity
best_ap = ap_list[apmac]

ap_list_lock.release()

Figure 4: A snippet of modifications necessary to the capacity-aware
association to account for interference.

probe request to the maximum feasible PHY rate for that
client/AP pair. The rate map computation is performed
separately and is not shown in the code in Figure 3.

The AP with the maximum available capacity is se-
lected as the one that the client should associate with. If
the AP currently has no clients, a channel is assigned to it,
and the AP is then instructed to accept the client’s probe
request, by sending a probe response. This policy is used
as the default association policy in Dyson and is used by
the subsequent policies unless otherwise specified. We
have performed experiments to confirm that its perfor-
mance is similar to DenseAP’s association scheme [22].
The key takeaway from this example is the ease and con-
ciseness of writing a Dyson policy whose functionality
mimics that of a system proposed earlier.

4.2 Interference-aware association policy
The association policy described in the previous section
does not explicitly take interference into account. Recent
research [26] has shown the benefits of explicitly account-
ing for interference between clients. A system administra-
tor may wish to utilize such knowledge to improve associ-
ations in the WLAN. Prior systems [26, 22] do not permit
such rapid changes to the WLAN.

However, due to the flexibility of Dyson, as seen in Fig-
ure 4, we can easily modify the basic policy shown in Fig-
ure 3 to account for interference. The change to the policy
is minor because it checks if a particular client associating
with an AP is part of the same exception.

A simple case of interference is when two clients, asso-
ciated with different APs, can hear each other. The Dyson
central controller can easily detect such cases (see Fig-
ure 5, based on information reported by clients and can
take remedial action if necessary. For example, it can
change the channel of one of the APs.

The interference-aware association policy periodically
scans the global connectivity graph and detects cases in
which two APs and two clients form an interference rela-
tionship similar to that in Figure 5. The policy changes the

C1AP 1

C2

AP 2

Figure 5: Interference example. The two clients determine they in-
terfere with each other, despite being associated with different APs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Total Capacity (Mbps)

With Intf.-Aware Policy
Default Assoc. Policy

Figure 6: Impact of interference mitigation policy on throughput of
nodes across the entire floor across 20 separate runs.

channel of the particular AP (and its clients) with fewer
associated clients. The affected nodes are informed of the
channel switch directly via a command, thereby avoiding
the overhead of re-discovery and re-association if the pol-
icy were to simply change the channel of the AP. Note that
this simple greedy algorithm might induce a new inter-
ference condition elsewhere in the network, necessitating
another channel switch. To avoid oscillations, we do not
change an AP’s channel more than once every 10 minutes.

To demonstrate the impact of this policy, we ran an ex-
periment with 5 of the testbed nodes acting as APs and
16 nodes acting as clients. The APs and clients were dis-
tributed roughly evenly across the testbed. The clients
generated uplink traffic using greedy TCP flows for 5 min-
utes. We first ran the experiment using the association
policy described in Figure 3, and then repeated the exper-
iment using the modification described in Figure 4. We
repeated the entire experiment 20 times.

For each run, we obtained the total capacity of the net-
work by summing up the total throughput achieved via
each AP. The results, as seen in Figure 6 show that the in-
terference aware association policy significantly improves
the capacity of the network.

There are two key takeaways from this example. First,
we show how interesting performance optimizations can
be enabled in Dyson with just a few lines of Python code.
Second, we show the usefulness of modifying clients:

#Returns clients whose airtime reservations
#have not been met
def cull_special_clients(clients):
resv_clients = []
resv_count = 0
for c in clients:
if is_reserved(c)
resv_count = resv_count + 1
if c.get_airtime() < c.res_airtime:
resv_clients[] = c

return (resv_clients, resv_count)

#Throttle other clients as necessary
def throttle (ap, c,f):
for client in ap.clients:
if client.mac != c.mac and

!is_reserved(c):

#throttle/de-throttle by f%
throttle(client.mac, f)

#Returns residual airtime at ap
def get_residual_at(ap):
(Code not shown ...)

def run(self):
global ap_list, ap_list_lock
global client_list, client_list_lock
while (True):
ap_list_lock.acquire()
for ap in apmap:
residual_at = get_residual_at(ap)
(res_clients, resv_count) =

cull_special_clients(ap.clients,
residual_at)

if len(l) > 0:
#For each special client, throttle other
#associated APs until targets are met
for c in res_clients: throttle(ap, c, F)
elif resv_count > 0:
#needs of special client are met
#de-throttle other clients
for c in res_clients: throttle(ap, c, -F)

ap_list_lock.release()

Figure 7: The air-time reservation policy

without detailed measurements from the clients, it would
not have been possible to identify interfering pairs.

A more complex version of this policy can take histori-
cal knowledge of the network into account. For example,
once an interference pattern between locations is deter-
mined, the system can proactively assign APs and clients
in those locations to different channels.

4.3 User-specific airtime reservation
We now demonstrate that the Dyson architecture can en-
able new functionality that is not available in traditional
WLAN systems, namely, reserving airtime for a specific
user or group of users. Note, while some Wi-Fi networks
do enable 802.11e for prioritization, 11e lacks the ability
to reserve a certain fraction of airtime for a given station.

The network designer can easily accomplish this task
with Dyson using the policy shown in Figure 7. A high-
priority client ch is identified by its MAC address. For all
other clients {c1, c2, ...ck} associated with the same AP,
the residual airtime R = 1 −

∑
i ATU (ci) is computed.

If R is less than the target airtime for ch, the policy iter-
ates through the list of low-priority clients, and throttles
each of their transmission rates by a fraction f of their
current throughput. This is performed using the Dyson
Throttle command, shown in Table 2. Throttling is
performed periodically until the residual airtime exceeds
the target. On the other hand, if there are special users
and their needs are being met, the policy then attempts to
de-throttle other clients which may have been throttled.

This approach makes no assumptions about the nature
of client traffic, and simply “searches” for the throttle
setpoints that yield adequate airtime to the high-priority
client. It is also conservative in the sense that clients
are throttled equally, without regards to their load. A
straightforward enhancement would throttle higher-load
clients first. Note that when ch disassociates with the AP,
the low-priority clients are unthrottled; likewise, when a
client moves to another AP is throttle is released. Multi-
ple high-priority clients can also be supported on a single
AP as long as their airtime targets do not exceed 100%;
in that case, each high-priority client receives a weighted
proportional share of the airtime. Note that this policy re-
quires the ability to control clients directly, and hence is
not possible to implement without client modifications.

We demonstrate this policy using the following exper-
iment. The setup consists of four APs and 11 clients.
One of the clients is given an airtime reservation of 50%.
For this experiment, we manually set the APs to differ-
ent channels, and associate one non-privileged client with
AP1, two non-privileged clients with AP2, and so on. The
privileged client is nomadic. It associates with each of the
four APs in turn for 10 minutes each. All clients down-
load data as fast as they can using iperf UDP flows. We
first perform the experiment without any reservation pol-
icy, and then repeat it after reserving 50% of the airtime
for the privileged user. We repeat the entire experiment
10 times for statistical significance.

The impact of the policy is shown in Figure 4.3. In
the absence of the reservation policy, the fraction of air-
time received by the privileged user drops as the number
of non-privileged clients increases. However, when the
reservation policy is in force, the privileged user always
receives the 50% reserved fraction of the airtime.

As a side note, remember that providing guaranteed
airtime does not translate to guaranteed throughput, be-
cause of the variability in radio link quality of the link
between the privileged client and each of the APs. The
throughput received by the privileged client in the previ-
ous experiment is shown in Figure 8(b). Even though the
privileged client receives a fixed amount of airtime, the
throughput it achieves varies for different APs. We can
easily modify the policy described above to ensure that the
reserved airtime varies in inverse proportion to the quality
of the channel seen by the privileged user, to ensure that

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

M
ea

n
A

ir-
tim

e
ut

ili
za

tio
n

Number of contending nodes

With Reservation Policy
Without Policy

(a) Impact on airtime

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

Number of contending nodes

With Reservation Policy
Without Policy

(b) Impact on throughput

Figure 8: Impact of airtime reservation policy on the airtime and
throughput received by a single privileged user competing with sev-
eral other clients. Error bars represent 10th and 90th percentiles.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 1 2 3 4 5

M
ea

n
A

irt
im

e

Node ID

Channel Reservation (no client control)
Airtime Reservation (with client control)

Figure 9: Benefit of client control. This figure compares two different
policies: one that exercises control over clients (airtime reservation)
to one that only controls APs (channel reservation) only. Node 5 is
the special user guaranteed at least 50% of the airtime. Client-side
throttling leads to a more fair distribution of airtime across clients
than reserving channels alone.

the bulk transfers done by the user receive certain guaran-
teed target throughput. Though we have implemented and
tested this policy, we elide details due to lack of space.

There are two key takeaways from this example. First,
we show that Dyson can enable novel functionality, that
is not otherwise available. Second, this example also
demonstrates that certain kinds of functionality can only
be enabled via client modifications.

Benefits of client-side control: Throttling airtime us-
age at the client gives Dyson direct control over client be-
havior. The question that arises is whether such client
control is strictly necessary. As an alternative, consider
a policy that does not assume any client extensions. As
opposed to reserving airtime, the policy reserves an en-
tire channel on a given AP for special users, requiring
changes to client-AP associations in order to avoid inter-

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

Node ID

With Policy
Without Policy

(a) Throughput for various nodes with/with-
out load balancing

 0

 5

 10

 15

 20

 25

1 2 3 4

M
ea

n
T

hr
ou

gh
pu

t (
M

bp
s)

AP

With Policy
Without Policy

(b) Total throughput at each AP with/with-
out load balancing

Figure 10: Large-scale load balancing experiment.

ference between special users and regular users. We have
implemented such a policy and compared it against the
airtime reservation policy. The setup consists of two APs
and four clients (two associated with each AP) performing
uplink TCP traffic. A fifth client arrives, one of which is
guaranteed 50% of the airtime. In the channel reservation
policy, clients from one AP are moved to the other, which
has four clients contending. The fifth user is given exclu-
sive access to the vacated AP. With the airtime reservation
policy, the fifth user associates with one of the APs where
the other clients are throttled (the clients at the other AP
are left untouched). The results are shown in Figure 4.3,
which shows that the channel reservation policy leads to
a less fair distribution of airtime than the airtime reser-
vation policy. This experiment demonstrates the added
value of control over both clients and the infrastructure.
Note, another possible approach here would have been to
enable 802.11e priority queues. However, our intention
is to demonstrate the ease with which different kinds of
policies, each offering a different degree of control, can
be implemented and deployed in Dyson.

4.4 Uplink/downlink load balancing
In this section, we show how Dyson can be used to correct
a basic flaw in the 802.11 architecture, called the upload-
download anomaly [24]. The 802.11 MAC ensures that
each node with pending packets gets equal opportunity to
access the channel. Consider a WLAN with ten clients
associated with a single AP. Nine of these clients down-
load data from the network, while one client uploads data
to the network. Because the AP and the upload client are

the only two nodes that have pending data to send, they
share the airtime equally. The upload client gets to trans-
mit roughly half the time, while the nine download clients
together share the remaining time!

Although traditionally the majority of the traffic in
WLANs has been download traffic [4], this pattern is ex-
pected to change as WLANs become more popular as ac-
cess networks. As the above example shows, only a few
upload clients are needed to cause significant unfairness.

In a Dyson-enabled network, we can easily address this
problem via the following simple policy. The policy at-
tempts to balance the total volume of uplink and downlink
traffic handled by an AP. For each AP, associated clients
are classified as either predominantly upload or download,
based on the ratio of their throughput in each direction.
We then compute the ratio of the mean throughput for up-
load and download clients. If the ratio exceeds a specified
threshold, it suggests that upload clients are dominant and
that rebalancing is required for this AP.

As a simple approach, the policy throttles upload
clients in an attempt to bring the upload/download ratio
closer to 1. Upload clients are ordered by decreasing up-
link throughput, and the “heaviest” upload client is throt-
tled to 50% of its current throughput. The policy then
sleeps for 10 sec and re-evaluates the upload/download
ratio, iteratively throttling the highest-throughput upload
client until the ratio between the mean upload and mean
download throughput at the AP falls to less than 1.5.

This policy relies on client cooperation to solve the
problem. This is not strictly necessary, but other reme-
dies are more disruptive. For example, the policy could
attempt to modify client-AP associations to balance the
number of download clients across APs. However, such
a policy is not always guaranteed to achieve the correct
distribution of clients required. The client-throttling ap-
proach described above is much simpler to implement.

To demonstrate this policy, we performed an experi-
ment with 4 APs and 15 client nodes. Client-AP associ-
ations were determined using the capacity-aware associ-
ation policy (Section 4.1). Note that different APs have
a different number of associated clients. Each AP is as-
signed to a different channel by the policy.

One client associated with each AP generates upload
traffic, while others generate download traffic. We ran the
experiment twice, first without the uplink/downlink load
balancing policy running, and then with the policy en-
abled. Figure 10(a) shows the distribution of the through-
put obtained by each of the clients with and without the
policy running. There is a clear bandwidth inequity in the
default case, but the policy produces a much more bal-
anced distribution of network capacity to each client.

Of course, achieving fairness is often at odds with max-
imizing overall network capacity. Figure 10(b) shows the
aggregate throughput at each AP before and after the pol-

icy was enabled. As the figure shows, there is a slight dip
in overall bandwidth usage at each AP: 5.7% on average.

This example illustrates that a simple Dyson policy can
correct problems inherent in the 802.11 architecture by
using feedback from the client and by exercising control
over clients.

4.5 VoIP-aware handoffs

As a another example of Dyson’s ability to enable
network-wide optimizations, we present an example pol-
icy that assigns VoIP clients to a different set of APs
than other clients, to increase overall VoIP call capacity
and avoid bulk transfers from impacting VoIP call qual-
ity. This policy assumes that clients have been classified
as VoIP or non-VoIP clients, for example, based on the
client’s MAC address (e.g., for WiFi VoIP handsets). Due
to lack of space, we omit the python code for this policy.

For each VoIP client that is assigned to a non-VoIP AP,
the policy identifies a new VoIP-specific AP with which
to associate. For each VoIP AP that the client can po-
tentially connect to (based on the connectivity graph), the
available capacity metric is computed, as described ear-
lier. The client is simply handed off to the VoIP AP with
the highest available capacity.

Although there are more sophisticated techniques to
improve VoIP capacity in WiFi networks [29], this pol-
icy is simply intended to demonstrate Dyson’s interfaces
and programmability. This simple policy can be extended
in various ways. For example, the assignment of APs as
VoIP or non-VoIP (which is currently static) can be per-
formed in a dynamic fashion based on VoIP call load.
Likewise, the number of VoIP clients assigned to each AP
could be taken into consideration. We elide the details due
to lack of space.

We carry out the following experiment. We config-
ured two nodes near each other as APs, and another four
nodes as clients. The capacity-aware association policy
described in Section 4.1 was used, resulting in two clients
being associated with each AP. The APs were assigned to
different channels by the association policy.

Two clients, on separate APs, initiated a bidirectional
VoIP flow while the other two clients began large saturat-
ing download traffic using iperf. The VoIP flows each use
a standard g729 VoIP codec that generates 50-byte pack-
ets at a rate of 31.2 Kbps.

The bulk flows adversely affect the VoIP flows in terms
of introducing increased packet jitter, which causes the
quality of the VoIP call to degrade. A common require-
ment for VoIP calls is that jitter should be no greater than
2ms [3]. Figure 4.5 shows that with the default configu-
ration, up to 2.17 ms of jitter is induced by the bulk flows
on each VoIP call. Note, this is done with a few clients.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Default 11e(VO+BE) 11e(VO+BK) Handoff policy

Ji
tte

r
(m

s)

VoIP Client 2
VoIP Client 1

Figure 11: Effect of 802.11e prioritization and VoIP-aware handoffs
on VoIP jitter. This is an experiment with two VoIP clients competing
with two bulk-download clients, with two APs on different channels.
Using the default policy, one VoIP client and one bulk client are as-
signed to each AP. The 11e(VO+BE) policy uses 802.11e prioritization,
assigning bulk clients to the best effort queue. 11e(VO+BK) assigns
bulk clients to the background queue.

Next, we enabled the VoIP handoff policy, which mi-
grates VoIP clients to one of the APs and the bulk flows to
the other. As Figure 4.5 shows, this substantially reduces
the jitter to a mean of 0.02 ms. This also causes the bulk
transfers to share the channel on a single AP, causing their
throughputs to degrade; prior to migration, each bulk flow
obtained 24 Mbps of throughput. After migration, each
bulk flow degrades to 12 Mbps. This is an explicit trade-
off between providing good service to VoIP clients versus
the (arguably less severe) impact on bulk flows.

As an alternative, we also experimented with using
802.11e priority levels, with a simple policy that uses
the SetPriority command. We set up one experi-
ment in which the VoIP clients were configured to use
the 802.11 voice priority and the bulk clients to use the
802.11e best effort priority, while maintaining the origi-
nal AP associations. Another experiment uses the 802.11e
background priority, which is lower than best-effort. As
the figure shows, 802.11e priorities do mitigate some of
the jitter effects, but do not operate as well as the handoff
policy. Each bulk client received 24 Mbps of through-
put using the best-effort priority, and 18 MBps using the
background priority. In general, it will not always be pos-
sible to cleanly separate VoIP clients from others in the
network, so in general a combination of migration (where
possible) and 802.11e priority levels is likely to be the
most effective solution.

Note this policy could have been implemented in
prior systems, such as SMARTA [6], MDG [11], or
DenseAP [22]. Note, however, that this is easy to do so in
Dyson via the exposed API. The key takeaway from this
example is the platform Dyson provides to develop and
deploy such polices very quickly.

4.6 Running multiple policies together

So far, we have demonstrated each policy in isolation.
However, a network administrator will often want to run

1

2 3

4

Figure 12: The floor map for our testbed, which was divided into
four regions. Each region is configured to run a different set of poli-
cies.

multiple policies simultaneously and compose their be-
havior. For example, different types of traffic may need to
be given different priorities in different parts of the build-
ing, or at different times of day.

Dyson supports running multiple policies on different
spatial regions of the network, and varying the set of poli-
cies that are active over time. Furthermore, Dyson can
track client locations, and ensure that appropriate polices
are applied depending on the client’s location.

To illustrate the use of multiple policies, we ran the fol-
lowing experiment on our testbed. We divide our floor
into four regions as shown in Figure 4.6. Regions 1, 3, and
4 do not overlap with each other, whereas region 2 over-
laps with 1 and 3. For each region, we configure Dyson
to run the following policies.
Region 1: We reserve one of the APs (and one of the
channels) for VoIP traffic and enable the VoIP sifting pol-
icy described in Section 4.5. This ensures we dedicate
resources to VoIP clients in this area.
Region 2: In this region, we run the interference-aware
association policy described in Section 4.2.
Region 3: In this region, we reserve 80% of the airtime
for a set of users. For example, the administrator may
want to deploy such a policy in a region where faculty
offices are located, giving faculty members preferential
treatment.
Region 4: In this region, we disable all VoIP calls using a
policy that dissociates any client that is transmitting VoIP
traffic.

Each region contains at least two APs, and each AP
has anywhere between 2–4 clients associated with them
performing variable bit rate UDP traffic. In addition,
there are two nomadic users, whose behavior we monitor.
User 1 is a VoIP client who starts walking in region 1, 2, 3,
and finally ends in 4. User 2 is another nomadic user who
is performing bulk TCP transfers. This user is a faculty
member who is guaranteed by the policy in Region 3 to
get 80% of the airtime. Each user spends approximately
60 seconds in each location.

The jitter for User 1 and airtime for User 2 are shown
in Figure 4.6. As the figure shows, the VoIP user expe-
riences significantly less jitter when she is in Region 1,
compared to other regions, because an AP and a channel
are reserved for VoIP calls in this region. Furthermore,
when she enters Region 4, her service is cut off. We also

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

Ji
tte

r
(m

s)

Time (s)

1 2 3 4

(a) Nomadic VoIP User

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

A
irt

im
e

Time (s)

1 2 3 4

(b) Nomadic Prioritized User

Figure 13: Time series graphs for the two different nomadic users as
they walk through the various regions.

see that User 2 gets her reserved airtime only when she is
in Region 3, as expected.

The key takeaway from this example is that Dyson can
successfully run multiple policies in a single network and
apply policies in a location-specific manner.

This example does not address how multiple polices
may interact with each other. In our current implemen-
tation, we rely on the network administrator to determine
if policies may have adverse interactions or may simply
cancel out each other’s decisions. It is assumed that poli-
cies themselves are well-documented and that the admin-
istrator can reason about the possible interactions between
multiple policies running on the same parts of the net-
work. In our future work, we plan to build tools to help
administrators detect and resolve such conflicts.

4.7 Other Policies
Due to a lack of space, we are unable to present results
from other policies we have implemented and experi-
mented with, in the Dyson system. One such policiy is a
one that reduces the cumulative handoffs for certain mo-
bility paths. Dyson can use historical knowledge of client
mobility patterns to optimize AP handoffs. Since mobile
handoffs are expensive and can lead to temporary connec-
tivity loss, it is important to avoid redundant or poorly-
chosen handoffs. The key idea is to predict the next AP
a client will encounter while roaming, in order to avoid
handing off to a different AP that will quickly go out of
range. This is possible, since in many workplaces, users
are more likely to travel along certain paths than others.
We built and deployed this policy on our floorwide testbed
and we found, on average it halves the number of handoffs

Stats interval (s) 10th Median 90th
1 3.5% 4.3% 9.3%
5 0.8% 3.9% 6.1%

10 0.0% 3.5% 6.2%

Table 3: CPU utilization at an AP with eight clients measured over a
period of 10 minutes, for various statistics reporting intervals.

for well traversed paths.
Along the lines of the airtime reservation policy, we

have also implemented a bandwidth reservation policy
whereby we guarantee a certain bandwidth to a user, and
we throttle other clients nearby until we reach the desired
target. There are host of other policies that are variants of
the policies described in this paper, that we are currently
working in the Dyson system.

4.8 Microbenchmarks
In this section, we study the overheads imposed by the
Dyson architecture on clients and APs and the amount of
control traffic generated by Dyson nodes. We will also
study the performance penalty caused by client handoffs,
as Dyson uses this mechanism often.
AP and client overheads: We examine the CPU utiliza-
tion of the AP. Recall that we use an ALIX 2c2 with a
500 MHz AMD Geode, and the Dyson software is imple-
mented in Python. We configured an AP with eight clients
and varied the intervals at which the AP reported statistics
to the CC. As seen in Table 3 the median utilization is still
low. Since clients are periodically sending statistics to the
AP, we also measured the CPU utilization at a client over
a period of ten minutes. We found the modified Dyson
drivers added negligible overhead in terms of CPU and
memory utilization (< 1%).
Traffic overhead for measurments collection: We also
measured the traffic sent by clients and APs to the CC.
The AP’s measurement collection period can be adjusted
by the CC to tradeoff reporting latency and measurement
traffic overhead. As an estimate of this overhead, each
client measurement packet requires at most 850 bytes, in-
cluding MAC headers. At the lowest OFDM PHY rate
of 6 Mbps, this requires 1184µs to transmit (accounting
for MAC and framing overheads). Therefore, an AP with
20 clients will require less than 1% of the radio channel
for statistics collection. The AP sends all client statistics
as well its own statistics to the CC. We measured the traf-
fic sent by an AP with six clients to the CC. With a statis-
tics reporting interval of 5 sec, the AP generates 1638
bytes/sec in traffic to the CC, which includes overheads
induced by the use of XML-RPC. This is a small fraction
of the backhaul wired network capacity.
Handoff overhead: We measured the time taken for a
MAC-layer handoff of a client from one AP to another.
We configured two APs (on different channels) and a sin-
gle client, which was initially associated with AP1. The

Step Time(ms)
Handoff command executed 0
Message reception (at client) 0.120

Channel change 5.6
Authentication 0.159

Association 0.359
Total 6.238

Table 4: Handoff overhead in Dyson.

CC then issued a Handoff command to migrate the
client to AP2. AP1 receives this command and relays it
to the client who quickly switches channels and associa-
tions. This process also includes informing AP2 to permit
the new association.

The MAC-layer handoff overhead includes the time for
the command transmission to the client, the time for the
client to switch channels (between to 5 to 7 ms on the
Atheros chipset), and the client’s reassociation with the
new AP. The end-to-end delay experienced by an applica-
tion may be longer, for example, due to the settling time
of the spanning-tree algorithm on the wired backbone.

The results are shown in Table 4, which shows that a
MAC-layer handoff requires approximately 6.2 ms in our
current prototype. This process can be further optimized,
as demonstrated in [25]. Also, the use of protocols such
as IAPP (Inter-Access Point Protocol) at a higher layer,
in which APs cache packets during a handoff and forward
them to the destination AP, can mitigate the packet loss
incurred during a handoff. We have not yet implemented
this approach in Dyson.
Central controller scalability: Dyson uses a central con-
troller to control the APs and the clients. This raises ques-
tions about the scalability and fault tolerance of our archi-
tecture. If necessary, fault tolerance can be achieved using
standard techniques such as primary-backup. We believe
that scalability is not a concern, since the processing done
at the central controller is not CPU or memory intensive
for most polices that we envision. In all our experiments,
the load on the central controller was negligible. How-
ever, it may be the case that certain policies or certain de-
ployments may require extensive processing capabilities
at the central controller. In such a case, it may be possible
to use multiple machines to act as central controllers and
use standard load balancing techniques to prevent any one
machine from becoming a bottleneck. We plan to study
these issues in detail as part of our future work.

5 Related Work

Dyson is complementary to a broad class of prior work
on improving the performance and scalability of wireless
networks through new techniques at the MAC and PHY
layers [28, 9]. Our focus is on the higher-level aspects of
network management that can be obtained through global
observation and deep control.

Dyson is inspired by the same vision that inspired
projects such as OpenFlow [19] and 4D [14], where sig-
nificant intelligence resides in a central controller. The
central controller makes use of global knowledge to make
network-wide decisions. We note that the Dyson archi-
tecture is quite compatible with the overall OpenFlow de-
sign. We are currently investigating whether some parts
of Dyson functionality (especially AP controls) can be re-
cast in the OpenFlow model.

Several commercial systems use some form of global
knowledge or a central controller for managing WLAN
deployments. Aruba [1] uses central controller to do
network-wide channel and power management to mitigate
interference, while Meru [2] uses a central controller to
speed up handoffs for mobile clients. Detailed informa-
tion on how these systems work is difficult to come by -
the marketing literature does not reveal much. However,
commercial vendors are hampered by the need to maintain
backwards compatibility with existing 802.11 networks.
To the best of our knowledge, no commercial system in-
cludes a client component.

Research systems such as DenseAP [22] and
DIRAC [32] also propose a centralized architecture.
However, both systems explicitly assume that no special
software can be run on clients, and thus are limited in
what they can accomplish. Centaur [26] does use some
form of client modifications, along with centralized
control. However, Centaur has a narrow goal: to avoid
hidden and exposed terminal issues. Dyson is a much
more general system. In fact, in Section 4.2, we have
shown how Dyson can find and avoid certain kinds of
interference and hidden terminal problems.

Several research systems use a limited form of client
cooperation. In MDG [11], clients get information from
APs via special fields in the Beacon packets, and the client
driver uses this information to make various decisions
(e.g. associations). However, the specified interface is
quite limited, and is more akin to the one proposed in the
802.11k standard [15]. Similarly, [21] uses feedback from
clients to enable use of partially overlapping channels, [6]
uses client-cooperation via micro-probing [5] to construct
a conflict graphs [23] of the network.

The Dyson architecture, on the other hand, provides a
general-purpose API for managing clients and APs, and
can be viewed as a generalized version of these systems.

Systems such as SoftRepeater [8] and CMAP [30]
specifically focus on client cooperation to improve
WLAN performance. In SoftRepeater, clients with good
connections relay packets for poorly-connected clients.
Similar functionality can be implemented as a policy in
the Dyson framework. In CMAP, clients collaborate to
build an interference map of the network, which is used to
schedule transmissions. Dyson’s network map is a gener-
alized version of CMAP’s interference graph.

Another interesting design point is explored in [27].
The idea is to use bare-bones APs with analog-to-digital
converters such that they are oblivious to the PHY/MAC
layers being used at the client. As a result, all intelligence
in the network is pushed to the clients. The Dyson ap-
proach is practical, and can be deployed with off-the-shelf
802.11 hardware.

Outside of the networking space, many systems have
explored the use of extensibility via add-on modules with
a well-defined programmatic interface. SPIN [10] and Ex-
okernel [16] are classic examples of opening up the op-
erating system interface to permit greater flexibility and
application-specific control. Likewise, Lance [31] pro-
vides a policy module interface to customize data collec-
tion from a wireless sensor network.

6 Discussion and Future Work

Our prototype of Dyson has shed light on several direc-
tions for future work. First, our current design assumes
that Dyson-enabled clients will be able to provide peri-
odic measurement reports regardless of their power state.
Power-constrained clients such as mobile phones rou-
tinely turn off their Wi-Fi interfaces (power save mode),
and hence may not always be able to collect or report
these measurements. This raises the question of what
the impact of intermittent measurements collection will
have on efficacy of Dyson policies. If the density of non-
power-constrained clients (e.g. laptops on people’s desks)
is sufficiently high, good measurements can still be col-
lected. Alternatively, a separate monitoring system like
DAIR [7] can be used. In some cases, the design of po-
lices itself will have to change to deal with partial infor-
mation. We are exploring these alternatives further.

We have designed Dyson primarily for enterprise net-
works, where clients are under the control of a central
IT department and do not need incentives for running the
measurement software. We have also not considered the
impact of malicious users reporting false measurements
or not responding to commands. These concerns are ad-
dressed partially by the fact that in most enterprise net-
works, WLAN users are explicitly authenticated using
protocols such as 802.1x. Another interesting possibility
is to identify malicious users by comparing measurement
reports from different clients [18].

In the current Dyson prototype, clients perform only
passive measurements. This was done for the sake of sim-
plicity. We plan to explore the possibility of asking clients
to perform active measurements, e.g., asking a client to
transmit a series of probe packets to measure loss rate
more accurately. Concerns about overhead and battery
drain will likely limit how often such active measurements
are carried out. In the same vein, one may also ask certain
clients to relay packets for other clients [8]. We have not

considered such possibilities in the current prototype.
Finally, we note that while it is easy to write new Dyson

policies, it does require some expert knowledge, espe-
cially to avoid unwanted interactions between polices that
run simultaneously. We do not expect an average system
administrator to have the requisite skill set. We believe if
Dyson is deployed in a widespread manner, a new class of
experts in programmable network management will arise
who will write and distribute pre-packaged policies.

7 Conclusions

We have presented Dyson, a new architecture for extensi-
ble wireless LANs. Dyson provides an extensible network
architecture that evolves with new challenges and applica-
tion demands. Dyson’s programmable policy framework
makes it easy to customize the network’s operation for
site-specific needs and new services. The framework also
makes it easy to store historical information about net-
work performance, and leverage it to fine-tune network
parameters. By “opening up” clients for measurements
collection and control, Dyson breaks down the traditional
barrier between the infrastructure and its clients, offering
substantial benefits for network management.

We demonstrated how Dyson can support a wide range
of policies for managing associations, specialized traffic
classes (such as VoIP), mitigating interference and airtime
reservations for specific users. We demonstrated the ben-
efits of these policies using our 28-node testbed.

References
[1] Enterprise solutions from aruba networks,

http://www.arubanetworks.com/solutions/enterprise.php.
[2] Meru networks - virtual cell,

http://www.merunetworks.com/pdf/whitepapers/.
[3] A reference guide to all things voip, http://www.voip-

info.org/wiki/view/qos.
[4] AHMED, N., BANERJEE, S., KESHAV, S., MISHRA, A., PAPA-

GIANNAKI, K., AND SHRIVASTAVA, V. Interference Mitigation
in Wireless LANs using Speculative Scheduling . In MobiCom
(2007).

[5] AHMED, N., ISMAIL, U., KESHAV, S., AND PAPAGIANNAKI, D.
Online Estimation of RF Interference. In CoNEXT (2008).

[6] AHMED, N., AND KESHAV, S. SMARTA: A Self-Managing Ar-
chitecture for Thin Access Points. In CoNEXT (2006).

[7] BAHL, P., CHANDRA, R., PADHYE, J., RAVINDRANATH, L.,
SINGH, M., WOLMAN, A., AND ZILL, B. Enhancing the Security
of Corporate Wi-Fi Networks Using DAIR. In MobiSys (2006).

[8] BAHL, V., CHANDRA, R., LEE, P., MISRA, V., PADHYE, J.,
RUBENSTEIN, D., AND YU, Y. Opportunistic Use of Client Re-
peaters to Improve Performance of WLANs. In CoNext (2008).

[9] BEJERANO, Y., AND BHATIA, R. S. MiFi: a framework for fair-
ness and QoS assurance in current IEEE 802.11 Networks with
Multiple Access Points. In Infocom (2004).

[10] BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
BECKER, D., FIUCZYNSKI, M., CHAMBERS, C., AND EGGERS,
S. Extensibility, safety and performance in the SPIN operating
system. In Proc. the 15th SOSP (SOSP-15) (1995).

[11] BROUSTIS, I., PAPAGIANNAKI, K., KRISHNAMURTHY, S. V.,
FALOUTSOS, M., AND MHATRE, V. MDG: Measurement-driven
Guidelines for 802.11 WLAN Design. In MobiCom (2007).

[12] CHANDRA, R., PADHYE, J., WOLMAN, A., AND ZILL, B.
A Location-based Management System for Enterprise Wireless
LANs. In NSDI (2007).

[13] CHENG, Y.-C., AFANASYEV, M., VERKAIK, P., BENKO, P.,
CHIANG, J., SNOEREN, A. C., VOELKER, G. M., AND SAV-
AGE, S. Automated Cross-Layer Diagnosis of Enterprise Wireless
Networks. In SIGCOMM (2007).

[14] GREENBERG, A., HJALMTYSSON, G., MALTZ, D., MYERS, A.,
REXFORD, J., XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A
Clean Slate 4D Approach to Network Control and Management.
In SIGCOMM CCR (2005).

[15] IEEE. IEEE 802.11k-2008 — Amendment 1: Radio Resource
Measurement of Wireless LANs. June 2008.

[16] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
BRICEÑO, H. M., HUNT, R., MAZIÈRES, D., PINCKNEY, T.,
GRIMM, R., JANNOTTI, J., AND MACKENZIE, K. Application
performance and flexibility on Exokernel systems. In Proc. the
16th SOSP (SOSP ’97) (October 1997).

[17] KO, B.-J., MISRA, V., PADHYE, J., AND RUBENSTEIN, D. Dis-
tributed channel assignment in multi-radio 802.11 mesh networks.
In WCNC (2007).

[18] MAHAJAN, R., RODRIG, M., WETHERALL, D., AND ZAHOR-
JAN, J. Sustaining Cooperation in Multi-Hop Wireless Networks.
In Proc. NSDI (2005).

[19] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks.

[20] MISHRA, A., BRIK, V., BANERJEE, S., SRINIVASAN, A., AND
ARBAUGH, W. A Client-driven Approach for Channel Manage-
ment in Wireless LANs. In Infocom (2006).

[21] MISHRA, A., SHRIVASTAVA, V., BANERJEE, S., AND AR-
BAUGH, W. Partially-overlapped Channels not considered harm-
ful. In ACM Sigmetrics (2006).

[22] MURTY, R., PADHYE, J., CHANDRA, R., WOLMAN, A., AND
ZILL, B. Designing High-Performance Enterprise Wireless Net-
works. In NSDI (San Francisco, CA, April 2008).

[23] PADHYE, J., AGARWAL, S., PADMANABHAN, V., QIU, L., RAO,
A., AND ZILL, B. Estimation of Link Interference in Static Multi-
hop Wireless Networks. In IMC (2005).

[24] PILOSOF, S., RAMJEE, R., RAZ, D., SHAVITT, Y., , AND SINHA,
P. Understanding TCP fairness over Wireless LAN. In INFOCOM
(2003).

[25] SHARMA, A., AND BELDING, E. M. FreeMAC: Framework for
Multi-Channel MAC Development on 802.11 Hardware. In ACM
SIGCOMM PRESTO (2008).

[26] SHRIVASTAVA, V., AHMED, N., RAYANCHU, S., BANERJEE, S.,
KESHAV, S., PAPAGIANNAKI, K., AND MISHRA, A. CENTAUR:
Realizing the Full Potential of Centralized WLANs through a Hy-
brid Data Path. In MOBICOM (2009).

[27] SINGH, S. Challenges: Wide-Area wireless NETworks
(WANETs). In MOBICOM (2008).

[28] VASAN, A., RAMJEE, R., AND WOO, T. ECHOS - Enhanced
Capacity 802.11 Hotspots. In Infocom (2005).

[29] VERKAIK, P., AGARWAL, Y., GUPTA, R., AND SNOEREN, A. C.
SoftSpeak: Making VoIP Play Fair in Existing 802.11 Deploy-
ments. In NSDI (2009).

[30] VUTUKURU, M., JAMIESON, K., AND BALAKRISHNAN, H. Har-
nessing Exposed Terminals in Wireless Networks. In NSDI (2008).

[31] WERNER-ALLEN, G., DAWSON-HAGGERTY, S., AND WELSH,
M. Lance: Optimizing high-resolution signal collection in wire-
less sensor networks. In Proc. Sensys (2008).

[32] ZERFOS, P., ZHONG, G., CHENG, J., LUO, H., LU, S., AND
L, J. J.-R. DIRAC: a software-based wireless router system. In
MOBICOM (2003).

