

1

Mining Invariants from Console Logs for System Problem
Detection

Jian-Guang LOU

1
 Qiang FU

1
 Shengqi YANG

2
 Ye XU

3
 Jiang LI

1

1Microsoft Research Asia

Beijing, P. R. China

{jlou, qifu, jiangli}@microsoft.com

2Dept. of Computer Science

Beijing Univ. of Posts and Telecom

v-sheyan@microsoft.com

3Dept. of Computer Science

Nanjing University, P.R. China

v-yexu@microsoft.com

Abstract

Detecting execution anomalies is very important to the

maintenance and monitoring of large-scale distributed

systems. People often use console logs that are pro-

duced by distributed systems for troubleshooting and

problem diagnosis. However, manually inspecting con-

sole logs for the detection of anomalies is unfeasible

due to the increasing scale and complexity of distri-

buted systems. Therefore, there is great demand for

automatic anomaly detection techniques based on log

analysis. In this paper, we propose an unstructured log

analysis technique for anomaly detection, with a novel

algorithm to automatically discover program invariants

in logs. At first, a log parser is used to convert the un-

structured logs to structured logs. Then, the structured

log messages are further grouped to log message groups

according to the relationship among log parameters.

After that, the program invariants are automatically

mined from the log message groups. The mined inva-

riants can reveal the inherent linear characteristics of

program work flows. With these learned invariants, our

technique can automatically detect anomalies in logs.

Experiments on Hadoop show that the technique can

effectively detect execution anomalies. Compared with

the state of art, our approach can not only detect nu-

merous real problems with high accuracy but also pro-

vide intuitive insight into the problems.

1 Introduction

Most software systems generate console log messages

for troubleshooting. The console log messages are

usually unstructured free-form text strings, which are

used to record events or states of interest and to capture

the system developers‟ intent. In general, when a job

fails, experienced system operators examine recorded

log files to gain insight about the failure, and to find the

potential root causes. Especially for debugging distri-

buted systems, checking the console logs to locate sys-

tem problems is the most applicable way because the

instrumentation or dump based approaches may make a

system behave differently from its daily execution and

introduce overhead.

We are now facing an explosive growth of large-scale

Internet services that are supported by a set of large

server clusters. The trend of cloud computing also

drives the deployment of large-scale data centers. Typi-

cal systems such as those of Google, Amazon and Mi-

crosoft consist of thousands of distributed components

including servers, network devices, distributed compu-

ting software components, and operating systems. Due

to the increasing scale and complexity of these distri-

buted systems, it becomes very time consuming for a

human operator to diagnose system problems through

manually examining a great amount of log messages.

Therefore, automated tools for problem diagnosis

through log analysis are essential for many distributed

systems.

Several research efforts have been made in the design

and development of automatic tools for log analysis.

Most of the traditional automatic tools detect system

problems by checking logs against a set of rules that

describe normal system behaviors. Such rules are ma-

nually predefined by experts according to their know-

ledge about system design and implementation. SEC

[1], Logsurfer [2] and Swatch [3] are three typical ex-

amples of a rule-based log analysis tool. However, it is

very expensive to manually define such rules because a

great amount of system experts‟ efforts are required.

Besides, a modern system often consists of multiple

components developed by different groups or even dif-

ferent companies, and a single expert may not have

complete knowledge of the system; therefore, con-

structing the rules needs close cooperation of multiple

experts, which brings more difficulties and costs. Fur-

thermore, after each upgrade of the system, the experts

need to check or modify the predefined rules again. In

summary, manually defining rules for detecting prob-

lems from logs is expensive and inefficient.

Recently, there have appeared some statistic learning

based automatic tools that analyze console logs, profiles

and measurements for system monitoring and trouble

shooting. Such approaches extract features from logs,

traces or profiles, then use statistical techniques, such as

2

subspace analysis [5, 6, 13], clustering and classifica-

tion algorithms [7, 8], to automatically build models,

and then identify failures or problems according to the

learned models. However, most of the learned models

are black box models that cannot be easily understood

by human operators [5]. They may detect anomalies in

a high dimensional feature space, but can hardly pro-

vide intuitive and meaningful explanations for the de-

tected anomalies.

In this paper, we aim to automatically mine constant

linear relationships from console logs based on a statis-

tical learning technique. Such relationships that always

hold in system logs under different inputs and work-

loads are considered as program invariants. These linear

relationships can capture the normal program execution

behavior. If a new log breaks certain invariants, we say

an anomaly occurs during the system execution. Here is

a simple example of invariant: in the normal executions

of a system, the number of log messages indicating

“Open file” is usually equal to the number of log mes-

sages corresponding to “Close file”, because each

opened file will be closed at some stage eventually.

Such relationships are often well utilized when we ma-

nually check problems in log files. If it is broken, the

operator can know there must be a system anomaly of

the file operation (e.g. file handler leak) and safely spe-

culate where the problem is. With this observation, we

propose an approach to automatically detect system

anomalies based on mining program invariants from

logs. Unlike other statistical based approaches, program

invariant has a very clear physical meaning that can be

easily understood by human operators. It can not only

detect system anomalies but also give a meaningful

interpretation for each detected anomaly. Such interpre-

tation associates the anomaly with the execution logic,

which can significantly help system operators to diag-

nose system problems.

In our approach, we first convert unstructured log mes-

sages to structured information, including message sig-

natures and parameters, by using a log parser. Then, the

messages are grouped based on the log parameters.

Based on the message groups, we discover sparse and

integer invariants through a hypothesis and testing

framework. In addition, the scalability and efficiency

issues of the invariant search algorithm are discussed,

and some techniques to reduce the computational cost

are introduced. In brief, the main contribution of our

work can be summarized as follows:

 We propose a method to automatically identify a

set of parameters that correspond to the same pro-

gram variable (namely cogenetic) based on the pa-

rameter value range analysis.

 We propose a method to discover sparse and integ-

er invariants that have very clear physical mean-

ings associated with system execution. The compu-

tational complexity of our algorithm can be signifi-

cantly reduced to fit real-world large-scale applica-

tions.

 We apply the mined invariants to detect system

anomalies. By checking the broken invariants, our

method can provide helpful insights about execu-

tion problems.

The paper is organized as follows. In Section 2, we

briefly introduce the previous work that is closely re-

lated to ours. Section 3 provides the basic idea and an

overview of our approach. In Section 4, we briefly de-

scribe the log parsing method that we have used. In

Section 5, we first relate multiple parameters to a pro-

gram variable, and then group log messages to obtain

message count vectors. In Section 6, we mainly present

the invariant searching algorithm. We give a simple

anomaly detection method in Section 7. Section 8 gives

some experimental results on two large scale systems.

Finally, we conclude the paper in Section 9.

2 Related Work

Recently, statistical machine learning and data mining

techniques have shown great potential in tackling the

scale and complexity of the challenges in monitoring

and diagnosis of large scale systems. Several learning

based approaches have been proposed to detect system

failures or problems by statistically analyzing console

logs, profiles, or system measurements. For example,

Dickenson et al. [7] use classification techniques to

group similar log sequences to a set of classes based on

some string distance metrics. A human analyst ex-

amines one or several profiles from each class to de-

termine whether the class represents an anomaly. Mir-

gorodskiy et al. [8] also use string distance metrics to

categorize function-level traces, and identify outlier

traces as anomalies that substantially differ from the

others. Yuan et al. [9] first extract n-grams as features

of system call sequences, and then use Support Vector

Machine (SVM, a supervised classification algorithm)

to classify traces based on the similarity of the traces of

known problems. Xu et al. [5, 6] preprocess log mes-

sages to extract message count vectors as the log fea-

tures, and detect anomalies using Principal Component

Analysis (PCA). From the point of view of a human

operator, the above statistical tools build models of a

black box style, and they can hardly provide human

operators with intuitive insights about abnormal jobs

and anomalies. In [5, 6], the authors try to remedy the

3

defect by learning a decision tree and to visualize the

detection results. However, the decision tree is still

somehow incomprehensible to human operators, be-

cause it does not directly relate to execution flow me-

chanisms. In this paper, we use program invariants to

characterize the behavior of a system. Unlike the black

box models, program invariants often provide intuitive

interpretations of the detected anomalies.

Another set of algorithms [15, 16, 17] use Finite State

Automaton (FSA) models to represent log sequences,

which is more easily understood by operators. For ex-

ample, SALSA [15] examines Hadoop logs to construct

FSA models of the Datanode module and TaskTracker

module. In the work of Cotroneo et al. [16], FSA mod-

els are first derived from the traces of Java Virtual Ma-

chine. Then, logs of unsuccessful jobs are compared

with the inferred FSA models to detect anomalies. In

[17], the authors also construct a FSA to characterize

the normal system behaviors. A new trace is compared

against the learned FSA to detect whether it is abnor-

mal. However, these papers do not discuss interleaved

logs which are prevalent in distributed systems. It is

much more difficult to learn state machines from inter-

leaved logs. Our analysis is based on message groups,

which is not affected by the interleaving patterns.

Mining program invariants is a very important step in

our approach. There are some research efforts related to

this subject. Ernst et al. developed Daikon [10] to dis-

cover program invariants for supporting program evolu-

tion. Daikon can dynamically discover invariants at

specific source code points by checking the values of

all program variables in the scope. Jiang et al. proposed

a search algorithm to infer likely invariants in distri-

buted systems [12]. Rather than searching the invariants

of program variables, their algorithm searches invariant

pair-wise correlations between two flow intensities,

such as traffic volume and CPU usage that are moni-

tored in distributed systems. They also proposed an EM

algorithm in [11], and extended their work to mine cor-

relations among multiple flow intensities. In contrast

with these methods, we mine invariant relationships

among the counts of log message types, which present

the characteristics of the program execution flow. In

addition, we focus on sparse and integer invariants that

can reveal the essential relations of the system execu-

tion logic and are easily understood by human opera-

tors.

3 The Approach

3.1 Invariants in textual logs

In general, a program invariant is a predicate that al-

ways holds the same value under different workloads or

inputs. Program invariants can be defined from various

aspects of a system, including system measurements

(e.g. CPU and network utilization [11]) and program

variables [10]. Besides the program variables and sys-

tem measurements, program execution flows can also

introduce invariants. With the assumption that log se-

quences provide enough information for the system

execution paths, we can obtain invariants of program

execution flows through analyzing log sequences. A

simple example of program execution flow is shown in

Fig. 1. At each stage of A, B, C, D, and E, the system

prints a corresponding log message. We assume that

there are multiple running instances that follow the ex-

ecution flow shown in Figure 1. Even different in-

stances may execute different branches and their pro-

duced logs may interleave together; the following equa-

tions should always be satisfied:

𝑐 𝐴 = 𝑐 𝐵 = 𝑐(𝐸) (1)

𝑐 𝐵 = 𝑐 𝐶 + 𝑐(𝐷) (2)

where 𝑐 𝐴 , 𝑐 𝐵 , 𝑐 𝐶 , 𝑐 𝐷 , 𝑐 𝐸 denote the number

of log messages A, B, C, D, and E in the logs respec-

tively. Each equation corresponds to a specific invariant

of the program execution flow, and the validity of such

invariants is not affected by the dynamics of the work-

loads, the difference of system inputs or the interleav-

ing of multiple instances. In this paper, we call them

execution flow invariants. There are mainly two reasons

that we look at linear invariants among the counts of

different type of log messages. First, linear invariants

encode meaningful characteristics of system execution

paths. They universally exist in many standalone or

distributed systems. Second, an anomaly often mani-

fests a different execution path from the normal ones.

Therefore, a violation of such relations (invariants)

means a program execution anomaly. Because log se-

quences record the underlying execution flow of the

system components, we believe there are many such

linear equations, i.e. invariants, among the log se-

quences. If we can automatically discover all such inva-

riants from the collected historical log data, we can

facilitate many system management tasks. For example,

 By checking whether a log sequence violates the

invariants, we can detect system problems. As

mentioned above, a violation of an invariant often

means an anomaly in the program‟s execution.

 Each invariant contains a constraint or an attribute

of a system component‟s execution flow. Based on

the related execution flow properties of the broken

invariants, system operators can find the potential

4

causes of failure.

 The invariants can help system operators to better

understand the structure and behavior of a system.

3.2 Invariant as a Linear Equation

An invariant linear relationship can be presented as a

linear equation. Given m different types of log messag-

es, a linear relationship can be written as follows:

𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚 = 0

where 𝑥𝑗 is the number of the log messages whose type

index is j; 𝜃 = a0, a1, a2, ⋯ , am T is the vector that

represents the coefficients in the equation. So, an inva-

riant can be represented by the vector 𝜃. For example,

the invariant of equation (2) can be represented by the

vector 𝜃 = [0,0,1,-1,-1,0]
T
. Here, the message type in-

dexes of A to E are 1 to 5 respectively. Obviously, in-

dependent vectors correspond to different linear rela-

tions, so represent different invariants. Given a group of

log sequences 𝐿𝑖 , 𝑖 = 1, … , 𝑛, that are produced by past

system executions, we count the number of every type

of log messages in every log sequence, 𝑥𝑖𝑗 , 𝑗 =
1, … , 𝑚. Here, 𝑥𝑖𝑗 is the number of log messages of the

j
th

 log message type in the i
th

 log sequence. If none of

those log sequences contains failures or problems, and

all of log sequences satisfy the invariant, then we have

the following linear equations:

𝑎0 + 𝑎1𝑥𝑖1 + ⋯ + 𝑎𝑚𝑥𝑖𝑚 = 0, ∀𝑖 = 1, … , 𝑛 (3)

Let us denote

𝑿 =

1 𝑥11 𝑥12 … 𝑥1𝑚

1 𝑥21 𝑥22 ⋱ 𝑥2𝑚

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

Then the formula (3) can be reformed as a matrix ex-

pression (4). That is to say, every invariant vector 𝜃

should be a solution of the equation:

𝑿𝜃 = 0 (4)

Formula (4) shows the principle characteristic of the

invariants under the condition that all collected history

logs do not contain any failure or problem. In practice,

a few collected log sequences may contain failures or

problems, which will make equation (4) not be precise-

ly satisfied. We will discuss how to deal with such a

problem in Section 6. Currently, we just focus on ex-

plaining the basic ideas and key concepts related to the

execution flow invariant.

We derive two sub-spaces according to the matrix 𝑿:

the row space of matrix 𝑿, which is the span of the row

vectors of 𝑿, and the null space of matrix 𝑿, which is

the orthogonal complement space to the row space.

Formula (4) tells us that an invariant 𝜃 can be any vec-

tor in the null space of matrix 𝑿. In this paper, we call

the null space of matrix 𝑿 the invariant space of the

program. Each vector in the invariant space represents

an execution flow invariant, and we call the vector in

the invariant space the invariant vector. On the other

hand, any linear combination of the invariant vectors is

also an invariant vector.

A B

C

D

ECond.

X!=0

X==0

Figure 1. An execution flow example.

Sparseness: Although any vector in the invariant space

represents an execution flow invariant, an arbitrary in-

variant vector with many non-zero coefficients often

does not directly correspond to the meaningful work

flow structures of a program and cannot be well unders-

tood by system operators.

Generally, the whole work flow of a program consists

of a lot of elementary work flow structures, such as

sequential structures, branched structures, and looping

structures. The elementary work flow structures are

often much simpler than the whole work flow structures

and can be easily understood by system operators. As in

the example shown in Figure 1, the sequential structure

of A to B, the branch structure of B to C or D, and the

joint structure of C or D to E are elementary work flow

structures that compose the whole work flow. The inva-

riants corresponding to the elementary work flow struc-

tures can usually give system operators intuitive inter-

pretations of the system execution flow. For example,

the invariant of 𝑐 𝐵 = 𝑐 𝐶 + 𝑐(𝐷) tells us that there

may be a join or branch structure in the workflow.

Because the elementary work flow structures in the

program are often quite simple, the invariants corres-

ponding to such elementary work flow structures may

involve only a few types of log messages. Therefore,

compared to the number of all log message types, the

number of message types involved in an elementary

invariant is often very small, that is, the vector repre-

sentations of such elementary invariants are often very

sparse. Accordingly, the sparse vectors in the invariant

space may correspond to elementary invariants, and

general vectors in the invariant space may be linear

5

combinations of the elementary invariant vectors. For

example, the equations (1) and (2) represent the ele-

mentary invariants that can directly reflect the elemen-

tary work flow structures in Figure 1. Each of them

involves only two or three types of log messages. How-

ever, their linear combination, i.e. the invariant

𝑐 𝐴 + 3𝑐 𝐵 − 2𝑐 𝐸 − 2𝑐 𝐶 − 2𝑐 𝐷 = 0, does

not directly correspond to a concrete work flow struc-

ture in Figure 1 and is not easily understood by system

operators.

In this paper, we assume that the number of log se-

quences is larger than the number of log message types.

This assumption is reasonable because the number of

log message types is constant and limited, while many

logs can be collected while the system is running. If the

dimension of the invariant space is 𝑟, then the dimen-

sion of the row space is (𝑚 + 1 − 𝑟) because the di-

mension of the whole space is (𝑚 + 1). Therefore, we

can always find a vector with no more than (𝑚 + 2 −
𝑟) non-zero coefficients in the invariant space. That is

to say, the number of non-zero coefficients in a sparse

invariant vector should be at most (𝑚 + 1 − 𝑟), or it is

not viewed as sparse because we can always find out an

invariant vector with (𝑚 + 2 − 𝑟) non-zero coeffi-

cients. We denote the upper bound of the number of

non-zero coefficients for sparse invariant vectors

as 𝐾 𝑿 , and 𝐾 𝑿 = 𝑚 + 1 − 𝑟. In real systems, the

dimension of the row space is often quite small, so

𝐾 𝑿 is small too. For example, by investigating a lot

of software systems, the authors of [5] observed that the

effective dimensions of all row spaces are less than 4.

Compactness: For a set of invariant vectors, it is called

a redundant invariant vector set if there is at least one

invariant vector in the set that can be a linear combina-

tion of the other invariant vectors in the same set. On

the other hand, if the set does not contain any invariant

vector that can be a linear combination of the other in-

variant vectors in the same set, we call the set a com-

pact invariant vector set. Because invariant vectors are

essentially equivalent to invariants, it is natural to say

that an invariant set is compact if its corresponding in-

variant vector set is compact, and vice versa. For exam-

ple, the set {𝑐 𝐴 = 𝑐 𝐵 , 𝑐 𝐴 = 𝑐 𝐸 , 𝑐 𝐸 = 𝑐 𝐵 }

is a redundant set, because the invariant 𝑐 𝐸 = 𝑐 𝐵

can be deduced from the other two invariants in the set.

On the other hand, the set {𝑐 𝐴 = 𝑐 𝐵 , 𝑐 𝐴 =
𝑐 𝐸 , 𝑐 𝐵 = 𝑐 𝐶 + 𝑐 𝐷 } is a compact invariant set.

Obviously, a redundant invariant set contains redundant

information. If the dimension of the invariant space is

𝑟, there exists at most 𝑟 different invariants satisfying

that each of them cannot be a linear combination of the

others. Therefore, for any compact invariant set 𝐶, the

number of invariants in the set, i.e. 𝐶 ., is not larger

than r.

Integer constraint: Another important property of the

program execution flow invariants is that all coeffi-

cients are integer values. The reason is that all elemen-

tary work flow structures, such as sequence, branch,

and join, can be interpreted by the invariant vectors

whose elements are all integers. For example, the inva-

riant vectors represented in equations (1) and (2) are all

integer values, i.e. [0,1,-1,0,0,0]
T
, [0,0,1,0,0,-1]

T
 and

[0,0,1,-1,-1,0]
T
. At the same time, integer invariants are

easily understood by human operators. In this paper, we

aim to automatically mine the largest compact sparse

integer invariant set of a program. In the remainder of

this paper, the term “invariant” is used to refer to

“sparse integer invariant” unless otherwise stated.

3.3 Practical Challenges

In real world systems, some collected historical log

sequences contain failures or noise, i.e. they are abnor-

mal log sequences. There also may be some partial log

sequences, which are generally caused by inconsistent

log data cuts from continuously running system (such

as large-scale Internet Services). An invariant may be

broken by these log sequences, because the abnormal

execution flows are different from the normal execution

flows. The results of this are that some of the equations

in formula (3) may be not satisfied. With the assump-

tion that failure logs and noise polluted logs only take

up a small portion of the historical log sequences (e.g.

<5%), we can find all invariants by searching the sparse

resolutions of Equ. (4). This can be realized by mini-

mizing the value of 𝑿𝜃 𝟎 . Here, 𝑿𝜃 𝟎 equals the

number of log sequences that violates the invariant 𝜃.

Generally speaking, minimizing the value of 𝑿𝜃 𝟎 is an

NP-Hard problem [19]. To find a sparse invariant with

𝑘 non-zero coefficients, the computational cost is about

𝑂(𝐶𝑚
𝑘). Fortunately, in many systems, log messages may

form some groups in which the log messages contain

the same program variable value. Such groups usually

represent meaningful workflows related to the specific

program variable. For example, log messages contain-

ing an identical user request ID can form a group that

represents the request handling execution flow in the

program; there is a strong and stable correlation among

log messages within the same group. On the other hand,

inter-group log message types are often not obviously

correlated. Furthermore, the number of log message

types in each message group is usually much smaller

than the total number of log message types. If we can

divide all log messages into different groups properly

6

and mine the invariants on different kinds of groups

respectively, the search space of the algorithm can be

largely reduced. There are some systems in which log

messages do not contain such parameters. Just as prior

work [5], our approach does not target these systems.

Even with the grouping strategy, the computational cost

of invariant searching is still quite large. We try to fur-

ther reduce the computational cost by introducing early

termination and pruning strategies which will be dis-

cussed in Section 6.3.

3.4 Workflow of our approach

Figure 2 shows the overall framework of our approach,

which consists of four steps: log parsing, log message

grouping, invariant mining, and anomaly detection. We

will provide further explanation in the corresponding

sections.

Figure 2. The overall framework of our approach.

Log parsing. In most systems, log messages are usually

unstructured free-form text messages, and are difficult

to be directly processed by a computer. In the log pars-

ing step, we convert a log message from an unstruc-

tured text string to a tuple-form representation that con-

sists of a timestamp, a message signature (i.e. a constant

free form text string to represent a log message type),

and a list of message parameter values.

Log message grouping and counting. Once parameter

values and log message signatures are separated from

all log messages, we first automatically discover

whether a set of parameters correspond to the same

program variable. Then, we group log messages that

contain the same value of the same program variable

together. For example, the log messages containing the

same request ID value are grouped together. As men-

tioned above, dividing log messages into some close

inner-related groups can largely reduce the computa-

tional cost. For each message group, we count the num-

ber of log messages for each message type to obtain a

message count vector for further processing.

Invariant mining. Next, we try to find a compact

sparse integer invariant set for each type of the log mes-

sage groups. Message groups extracted according to the

same program variable are considered as the same type

of group. For example, the group of log messages with

request ID #1# and the group of log messages with re-

quest ID #2# are the same type of message groups. In

this paper, we combine a brute force searching algo-

rithm and a greedy searching algorithm to make the

searching process tractable.

Anomaly detection. We apply the obtained set of inva-

riants to detect anomalies. A log sequence that violates

an invariant is labeled as an anomaly.

4 Log Parsing

Each log message often contains two types of informa-

tion: a free-form text string that is used to describe the

semantic meaning of the recorded program event and

parameters that are often used to identify the specific

system object or to record some important states of the

current system.

New job added to schedule, jobid = 8821, priority = 64

Message Signature

Parameters

Figure 3. A log message contains two types of infor-

mation: a message signature and parameters.

In general, log messages printed by the same log-print

statement in the source code are the same type of mes-

sages because they all correspond to the same execution

point and record the same kind of program events with

the same semantic meaning. Different types of log mes-

sages are usually used to record different program

events with different semantic meanings, and printed by

different log-printed statements. Naturally, we can use

the free-form text string in the log-print statement as a

signature to represent the log message type. Therefore,

a message signature corresponds to the constant content

of all log messages that are printed by the same log-

print statement. Parameter values are the recorded vari-

able values in the log-print statement, and they may

vary in different executions. For example, in Figure 3,

the log message signature is the string “New job added

to schedule, jobId =, priority =”, and the parameter val-

ues are “8821” and “64”.

The log parsing aims to extract message signatures and

parameters from the original log messages. If the source

Unstructured
logs

Structured
logs

Log
Parsing

Message
Count

Grouping
and
Counting

Invariants

Mining

Anomalies

Detecting

7

code of the target program is available, the method pro-

posed in [5] can automatically parse the log messages

with a very high precision. However, in some systems,

the source code is not available because it is usually

stripped of programs' distribution packages. Therefore,

it is still necessary to design a log parser that does not

depend on any source code. In this paper, we use the

algorithm that we have previously published [14] to

extract message signatures and parameter values from

log messages. It can achieve an accuracy of more than

95% [14]. Because the log parser is not the focus of this

paper, we do not discuss the details of the algorithm.

Once the message signatures and parameter values are

extracted from the original log messages, we can con-

vert the unstructured log messages to their correspond-

ing structured representations. For a log message 𝑚, we

denote the extracted message signature as 𝐾(𝑚), the

number of parameters as 𝑃𝑁(𝑚), and the ith parame-

ter‟s value as 𝑃𝑉(𝑚, 𝑖). After message signature and

parameter value extraction, each log message 𝑚 with its

time stamp 𝑇(𝑚) can be represented by a tuple 𝑇 𝑚 ,
𝐾 𝑚 , 𝑃𝑉 𝑚, 1 , 𝑃𝑉 𝑚, 2 , … , 𝑃𝑉 𝑚, 𝑃𝑁 𝑚 , we

call such tuples the tuple-form representations of the

log messages.

5 Log Message Grouping

The above log parsing procedure helps us to extract the

message signature and parameter values for each log

message. Each parameter is uniquely defined by a pair

consisting of a message signature and a position index.

Taking Figure 3 as an example, the pair (“New job add-

ed to schedule, jobid=[],priority=[] ”, 1) defines a pa-

rameter, and its value is 8821 in the log messages. Note

that a parameter is an abstract representation of a

printed variable in the log-print statement, while a pa-

rameter value is the concrete value in a specific log

message.

Developers often print out the same important program

variable in multiple log-print statements. Therefore,

multiple parameters may correspond to the same pro-

gram variable, and we call these parameters cogenetic

parameters. For example, a program variable, i.e. re-

quest ID, can appear as a parameter in different log

message types, and these message types are often re-

lated to the execution flow of the request processing.

Traditional log analysis tools heavily depend on appli-

cation specific knowledge to determine whether a set of

parameters correspond to the same program variable.

However, in practice, most operators may not have

enough knowledge about the implementation details. In

this paper, we automatically determine whether two

parameters are cogenetic. Our algorithm is based on the

following observations:

 In a log bunch
1
, if two parameters (e.g. 𝑃𝑎 and 𝑃𝑏)

either have the same value ranges (i.e. 𝑉𝑟(𝑃𝑎) =
𝑉𝑟(𝑃𝑏)), or one parameter‟s value range is a sub-

set of the other‟s (e.g. 𝑉𝑟 𝑃𝑎 ⊆ 𝑉𝑟 𝑃𝑏), then they

are cogenetic (denoted as 𝑃𝑎 ≅ 𝑃𝑏). Here, the value

range of a parameter (𝑉𝑟(𝑃𝑎)) is defined by the set

of all distinct values of the parameter in the log

bunch.

 Two parameters with a large joint set 𝑉𝑟 𝑃𝑎 ∩
𝑉𝑟 𝑃𝑏 (namely the overlapped value range) will

have a high probability to be cogenetic. For two

parameters that are not cogenetic, they may have a

few identical values in log messages by chance.

However, if they have a lot of identical values, it is

unlikely that it happens by chance. Therefore, a

large overlapped value range often means that two

parameters are likely cogenetic.

 The larger the length of each parameter value (i.e.

the number of characters of the value in a log mes-

sage) in the joint set 𝑉𝑟 𝑃𝑎 ∩ 𝑉𝑟 𝑃𝑏 is, the higher

the probability the parameters are cogenetic. Intui-

tively, it will be more difficult for two parameter

values with a large length to be identical by chance.

For each parameter, we first count its value range in

each historical log bunch through scanning log messag-

es one by one. Then, we check whether there are pair

wise cogenetic relationships using Algorithm 1. For two

parameters, if the size of the overlapped value range is

larger than a threshold, and the minimal length of the

parameter value is larger than 3 characters (Note that

we use the text string form of the parameter values in

the log messages for analysis), we can determine that

the parameters are cogenetic. Finally, based on the ob-

tained pair-wise cogenetic relationships, we can gather

a set of parameters that are cogenetic into a parameter

group. The detail of the algorithm is described in Algo-

rithm 1.

According to the above algorithm, we obtain a set of

parameter groups, with the parameters in each group

being cogenetic. Intuitively speaking, each parameter

1
 In this paper, we can collect log messages several

times as the target program runs under different work-

loads. At each time, one or more log files may be col-

lected from distributed machines. The set of all the col-

lected log messages at one time of collection are de-

fined as a log bunch.

8

group corresponds to a program variable. We group log

messages with the same program variable values to-

gether. Specifically, for each group of cogenetic para-

meters denoted as A, we group together the log messag-

es that satisfy the following condition: the messages

contain the parameters belonging to the specified para-

meter group A, and the parameter‟s values in the log

messages are all the same.

Algorithm 1. Log parameter grouping

1. For each log parameter (defined by its message

signature and its position index), we enumerate its

value range (i.e. all distinct values) within each log

bunch.

2. For every two parameters (e.g. 𝑃𝑎 and 𝑃𝑏) that

satisfy the following rules, we conclude that they

are cogenetic parameters.

o For every log bunch, we have 𝑉𝑟 𝑃𝑎 ⊆ 𝑉𝑟 𝑃𝑏

or 𝑉𝑟 𝑃𝑎 ⊇ 𝑉𝑟 𝑃𝑏 .

o 𝑚𝑖𝑛(|𝑉𝑟 𝑃𝑎 , |𝑉𝑟 𝑃𝑏) ≥ 10

o Each value in 𝑉𝑟 𝑃𝑎 and 𝑉𝑟 𝑃𝑏 contains at

least 3 characters.

3. We use the following rules to identify the group of

cogenetic parameters:

o If 𝑃𝑎 ≅ 𝑃𝑏 and 𝑃𝑎 ≅ 𝑃𝑐 , we can conclude that

𝑃𝑎 , 𝑃𝑏 , and 𝑃𝑐 are cogenetic parameters.

6 Invariant Mining

After the log message grouping step, we can obtain a

set of log message groups for each program variable.

Each message group describes a program execution

path related to the program variable. Since the logging

points are chosen by developers, log messages are often

very important for problem diagnosis. We collect the

log message groups corresponding to the same program

variable together and discover their invariants as de-

scribed in Algorithm 2. At first, for each log message

group, we count the number of log messages for each

log message type in the message group to obtain one

message count vector. For all log messages groups that

are related to the same program variable, we can extract

a set of message count vectors. The message count vec-

tors that correspond to the same program variable form

the count matrix 𝑿 (Eq. 4). Then, we need to identify

the invariant space and the row space of X by using

singular value decomposition and analysis. Next, we

find the sparse invariant vectors in the invariant space.

To find a sparse invariant vector with 𝑘 non-zero coef-

ficients with a small value of 𝑘 (e.g, <5 in most cases),

we can use a brute force search algorithm to obtain the

optimal solution. However, when k is large, the brute

force algorithm has to search in a huge searching space.

In this case, we use a greedy algorithm [19] to obtain an

invariant candidate. Finally, we validate the found inva-

riants using the collected historical logs.

6.1 Estimate the invariant space

Once we have constructed the matrix 𝑿 from the col-

lected historical logs, we can estimate the invariant

space by singular value decomposition (SVD) opera-

tion.

Instead of the energy ratio, we use the support ratio as a

criterion to determine the invariant space (and, at the

same time, the row space). It can directly measure the

matching degree between the collected logs and the

invariants. For an invariant, the support ratio is defined

as the percentage of the log message groups that do not

break the invariant. Specifically, we first use SVD to

obtain the right-singular vectors. After that, we evaluate

the right-singular vectors one by one in increasing order

of singular values to check whether they are a part of

the invariant space. For a right-singular vector 𝑣𝑖 , if

there are more than 98% log message groups satisfying

the condition 𝑋𝑗𝑣𝑖 < 𝜖, we treat 𝑣𝑖 as a validated inva-

riant. Otherwise, it is an invalidated invariant. Here 𝑋𝑗

is a message count vector of the message group 𝑗, 𝜖 is a

threshold. The right-singular vector with the smallest

singular value is evaluated first. Then, the vector with

the second smallest singular value is evaluated, and so

on. If a singular vector is verified as an invalidated in-

variant, the evaluation process is terminated. The inva-

riant space is a span of all right-singular vectors that

have been validated during this process. In our imple-

mentation, the threshold 𝜖 is selected as 0.5 (≈ 4 4)

because most of our invariants at most contain 4 non-

zero coefficients.

6.2 Invariant searching

In this section, we introduce an invariant searching al-

gorithm which aims to find a compact set of program

invariants based on a log message count matrix 𝑿. Be-

cause we have little knowledge about the relationship

between different log message types, we try any hypo-

theses of non-zero coefficients in different dimensions

to construct a potential sparse invariant, and then con-

tinue to validate whether it fits with the historical log

data.

Specifically, we define an invariant hypothesis as its

non-zero coefficient pattern {𝑝𝑗 , 𝑗 = 1,2, ⋯ , 𝑘}, where

𝑝𝑗 is the index of the non-zero coefficient of the inva-

9

riant hypothesis, and 0 ≤ 𝑝𝑗 < 𝑝𝑗 +1 ≤ 𝑚. For any non-

zero coefficient pattern, we check whether there is an

invariant, i.e. {𝑎𝑝𝑗
, 𝑗 = 1,2, ⋯ , 𝑘}. There are two steps.

At first, we try to obtain an invariant candidate 𝜃 that

satisfies the given non-zero coefficient pattern and mi-

nimizes the value of 𝑿 𝜃
𝟎

, namely

𝜃 = argmin𝜃 (𝑿 𝜃
𝟎

) . Here, 𝑿 is a matrix that con-

tains only 𝑘 column vectors of matrix 𝑿 whose column

indexes are {𝑝𝑗 , 𝑗 = 1,2, ⋯ , 𝑘} . We ignore other col-

umns in X for constructing 𝑿 because those columns

correspond to zero coefficients of the invariant vectors.

Because an optimization operation over zero norm is

often not tractable, we estimate 𝜃 through 𝜃 =
argmin𝜃 (𝑿 𝜃

𝟐
). The coefficients of the estimated 𝜃

are often within the range of (−1.0, 1.0). In order to

obtain integer invariant candidates, we scale up 𝜃 to

make its minimal non-zero coefficient equal to an in-

teger 𝑙 , and round other non-zero coefficients to an

integer accordingly. In this paper, we set 𝑙 = 1,2, ⋯ , 𝑝

respectively. Therefore, we obtain 𝑝 integer invariant

candidates. Then, we verify each of them by checking

its support ratio based on the log message groups. If

there is an invariant whose support ratio is larger than

𝛾, we set it as a validated invariant, otherwise, we con-

clude that there is no invariant that satisfies the non-

zero coefficients pattern {𝑝𝑗 , 𝑗 = 1,2, ⋯ , 𝑘}. Here, 𝛾 is

a user defined threshold, which is set as 98% in our

experiments. In our implementation, we can handle all

cases that we have studied by selecting 𝑝 = 3. A large

value of 𝑝 is often not necessary, because most com-

plex invariants are linear combinations of simple local

invariants.

Algorithm 2. Mining Invariants

1. For all message groups related to a specific para-

meter group, we construct the matrix 𝑋 using their

message count vectors, and estimate the dimension

of the invariant space (denoted as 𝑟).

2. We use a brute force algorithm to search invariants

that contains 𝑘 non-zero coefficients, where 𝑘 in-

creases from 1 to 5 in turn. The algorithm exits

when one of following conditions is satisfied:

o 𝑟 independent invariants have been obtained.

o 𝑘 > (𝑚 − 𝑟 + 1)

3. If 𝑚 − 𝑟 + 1 > 5 and no early terminate condi-

tion has be satisfied, we use a greedy algorithm

[19] to find potential invariants for k >5.

6.3 Computational Cost and Scalability

In general, it is an NP-Hard problem to find a sparse

invariant vector. The computational complexity of the

above search algorithm is about 𝑂 𝐶𝑚
𝑖𝑚−𝑟+1

𝑖=1 . Al-

though it has been largely reduced from the computa-

tional cost of full search space (i.e. 𝑂 𝐶𝑚
𝑖𝑚

𝑖=1), it is

still not a trivial task if the number of dimensions of

matrix 𝑿‟s row space (i.e. 𝑚 − 𝑟 + 1) is large. Fortu-

nately, in real world systems, the dimensions of the row

spaces are often very small, which helps us to avoid the

problem of combinatorial explosion. For example, in

Table 1, we list the row space dimensions of different

types of log message groups. Many of them are not

larger than 4. Therefore, the computational cost can

usually be controlled below 𝑂 𝐶𝑚
𝑖4

𝑖=1 .

In addition, most real world sparse invariants often only

contain 2 or 3 non-zero coefficients. Because we can

obtain at most 𝑟 independent invariants, we do not need

to search the combinations of 5 or more non-zero coef-

ficients if we have obtained r independent invariants

when k<5. For example, the 4
th

 row of Table 3 is such a

case. This allows us to terminate the search process

early, and to reduce the computational cost.

Table 1. Low dimensionality of row space

Message group of related object iden-

tifier

m 𝒎 − 𝒓
+ 𝟏

Hadoop logs with MapTask ID 7 3

Hadoop logs with ReduceTask ID 3 2

Hadoop logs with MapTask Attempt

ID

28 4

Hadoop logs with ReduceTask At-

tempt ID

25 6

Hadoop logs with JVM ID 7 2

Table 2. Reduce computational cost

Message group of re-

lated object identifier

Original

search space

Result

search space

Hadoop logs with

MapTask ID

63 37

Hadoop logs with Re-

duceTask ID

6 6

Hadoop logs with

MapTask Attempt ID

24157 3310

Hadoop logs with Re-

duceTask Attempt ID

15275 730

Hadoop logs with JVM

ID

28 16

Furthermore, we can reduce the computational cost by

skipping the searching on some hypothesis candidates.

As discussed in Section 3, any linear combination of

invariants is also an invariant. Therefore, we need not

search the invariants that can be a linear combination of

10

the detected ones. Then, the search space can be largely

reduced by skipping the search on such combinations.

At the same time, the skipping strategy also guarantees

the compactness of our discovered invariants. Table 2

shows the effectiveness of our early termination and

skipping strategy. The numbers of hypotheses in the

original search space (i.e. 𝑂 𝐶𝑚
𝑖𝑚−𝑟+1

𝑖=1) are listed in

the second column. The third column contains the size

of the search space after applying the early termination

and the skipping strategy. By comparing the search

space size in the two columns, we can find that the ear-

ly termination and the skipping strategy largely reduce

the search space, especially for the message groups

with high dimension values.

In our implementation, we only search the invariant

hypotheses up to 5 non-zero coefficients. If no early

termination condition is met, we then find potential

invariants by using a greedy algorithm [19] on the mes-

sage types that do not appear in the existing invariants.

However, the greedy algorithm cannot guarantee to find

all invariants in logs. The overall algorithm is presented

in Algorithm 2.

From the view of scalability, there are a huge amount of

log messages in a large scale system with thousands of

machines. Therefore, the row number 𝑛 of matrix 𝑋 is

often very large. Directly applying SVD on matrix 𝑋 is

often not scalable. Fortunately, the number of message

types (i.e. 𝑚) is usually limited, and it does not increase

as the system scales up. We can replace the SVD opera-

tion by an Eigen Value Decomposition (EVD) opera-

tion to calculate the right-singular vectors, because

𝑿 = 𝑈𝛬𝑉𝑇 ⇒ = 𝑿𝑇𝑿 = 𝑉𝛬𝑇𝛬𝑉𝑇 . Here, matrix

 = 𝑿𝑇𝑿 is a 𝑚 × 𝑚 matrix. It can be easily calculated

by a MapReduce-like distributed program. Similarly,

we can also use an EVD operation to estimate 𝜃 based

on a matrix = 𝑿 𝑇𝑿 for each invariant hypothesis.

The matrix can directly be calculated from the matrix

 . At the same time, the support ratio counting proce-

dure can also be easily performed in a distributed man-

ner. Therefore, our algorithm can be easily scaled up. In

addition, most program invariants do not depend on the

scale of the system. We can learn invariants from the

logs of a small scale system deployment, and then use

these invariants to detect problems of a large scale dep-

loyment.

7 Problem Detection

Once the program invariants are discovered, it is

straightforward to detect problems from console logs.

For a new input console log, we first convert the un-

structured log messages to tuple-form representations

using the log parser, and then group log messages and

calculate a count vector for each message group. After

that, we check every message count vector with its re-

lated learned invariants. The message group whose

message count vector violates any one of its related

invariants is considered as an anomaly.

The automatically mined invariants by our approach

reflect the elementary execution flows. These program

invariants often provide intuitive and meaningful in-

formation to human operators, and help them to locate

problems on the fine granularity. Therefore, we relate

each detected anomaly with the invariants that it breaks

so as to provide insight cues for problem diagnosis.

Operators can check which invariants are broken by an

anomaly, and how many anomalies are raised by the

violation of a specific invariant.

8 Case Study and Comparision

In this section, we evaluate the proposed approach

through case studies on two typical distributed compu-

ting systems: Hadoop and CloudDB, a structured data

storage service developed by Microsoft. We first set up

a testing environment and collect console logs. And

then, we begin our experiments of anomaly detection

on these two systems. The detection results are pre-

sented and analyzed in the following subsections. Un-

like CloudDB, Hadoop is a publicly available open-

source project. The results on Hadoop are easy to be

verified and reproduced by third parties. Therefore, we

give more details about the results on Hadoop.

8.1 Case Study on Hadoop

Test Environment Setup: Hadoop [18] is a well-

known open-source implementation of Google‟s Map-

Reduce framework and distributed file system (GFS). It

enables distributed computing of large scale, data-

intensive and stage-based parallel applications.

Our test bed of Hadoop (version 0.19) contains 15 slave

workstations (with 3 different hardware configurations)

and a master workstation, and all these machines are

connected to the same 1G Ethernet switch. We run dif-

ferent Hadoop jobs including some simple sample ap-

plications, such as WordCount and Sort, on the test bed.

The WordCount job counts the word frequency in some

random generated input text files, and the Sort job sorts

the numbers in the input files. During the running of

these jobs, we randomly run some resource intensive

programs (e.g. CPUEater) on the slave machines to

compete for CPU, memory and network resources with

Hadoop jobs. Rather than active error injection, we

11

hope such intensive resource competition can expose

inherent bugs in Hadoop. We collect the produced log

files of these jobs 4 times at different time points. Each

time, we put the collected log files into a single file

folder. The log data is not uniformly distributed in these

folders. The smallest folder contains about 116 mega-

bytes, and the largest folder contains about 1.3 giga-

bytes. The log messages in each folder are considered

as a log bunch. There are totally about 24 million lines

of log messages.

Results of Parameter Grouping: Our parameter

grouping algorithm identifies several parameter groups

as meaningful program variables. By manually check-

ing the log messages and the parameters, we find that

they corresponded to the following meaningful program

variables: Map/Reduce Task ID, Map/Reduce Task

Attempt ID, Block ID, and JVM ID, Storage ID, IP

address and port, and write data size of task shuffling.

These variables include both object identifiers (such as

Task ID) and system states (such as IP address and

Port). It is interesting that the packet size during shuf-

fling operations is also detected as a parameter group.

We discover one invariant from its related message

group, and learn that the number of MA-

PRED_SHUFFLE operations is equal to the number of

messages of “Sent out bytes for reduce:## from map:##

given from with (#,#)”.

Table 3. Invariants found in Hadoop logs

Message groups of related

object identifiers

Invariants

(≤3 coef.)

Invariants

(≥4 coef.)

Hadoop logs with Map-

Task ID

3 0

Hadoop logs with Redu-

ceTask ID

1 0

Hadoop logs with Map-

Task Attempt ID

21 3

Hadoop logs with Redu-

ceTask Attempt ID

17 0

Hadoop logs with Data

Block ID

9 0

Hadoop logs with JVM ID 5 0

Hadoop Logs with Sto-

rage ID

3 0

Logs with IP/port 4 0

Logs with task write

packet size

1 0

Learned Invariants: In the Hadoop experiments, we

discover 67 invariants in total. 64 of them only contain

at most three non-zero coefficients, and 3 invariants

have 4 non-zero coefficients. Table 3 shows the num-

bers of the learned invariants for different program va-

riables. To validate our learned invariants, we manually

verify our learned program invariants by carefully stud-

ying the Hadoop source code, the documents on Ma-

pReduce, and the sample logs. By comparing with the

real program work flows, we find that our discovered

invariants correctly describe the inherent linear rela-

tionships in the work flow. No false positive invariant is

found. To vividly illustrate our discovered invariants,

we present an example - the learned ternary invariant of

the MapTask log group. The invariant equation is

𝑐 𝐿113 + 𝑐 𝐿114 = 𝑐(𝐿90), where 𝐿113 , 𝐿114 , and 𝐿90

are the log message types of “Choosing data-local task

##”, “Choosing rack-local task ##”, and “Adding task

'##' to tip ##, for tracker '##'” respectively. In our test

environment, all 16 machines are connected to a single

Ethernet switch, and they are configured as one rack.

Therefore, for each MapTask, it selects its data source

from either local disc or local rack. The above invariant

correctly reflects this property because the equation

shows that each “Adding task” corresponds to either a

“data-local” or a “rack-local”. This proves our claim in

Section 3 that invariants encode the properties of work

flow structures.

Table 4. Detected true problems in Hadoop

Anomaly Description PCA based

Method

Our

Method

Tasks fail due to heart beat

lost.

397 779

A killed task continued to be

in RUNNING state in both the

JobTracker and that

TaskTracker for ever

730 1133

Ask more than one node to

replicate the same block to a

single node simultaneously

26 26

Write a block already existed 25 25

Task JVM hang 204 204

Swap a JVM, but mark it as

unknown.

87 87

Swap a JVM, and delete it

immediately

211 211

Try to delete a data block

when it is opened by a client

3 6

JVM inconsistent state 73 416

The pollForTaskWithClosed-

Job call from a Jobtracker to a

task tracker times out when a

job completes.

3 3

Anomaly Detection: We use the learned invariants to

detect anomalies by checking whether a log sequence

12

breaks a program invariant. By manually checking

these detected anomalies, we find that there are 10

types of different execution anomalies, which are listed

in Table 4. Note that each anomaly in Table 4 corres-

ponds to a specific pattern corresponding to a certain

set of violated invariants, and its description is manual-

ly labeled by our carefully studying the source code and

documents of Hadoop. Many of them are caused by the

loss of the heart beat message from Tasktracker to Job-

tracker. Our method also detects some subtle anomalies

in Hadoop. For example (the 4th row of Table 4), we

detect that Hadoop DFS has a bug that asks more than

one node to send the same data block to a single node

for data replication. This problem is detected because it

violates a learned invariant of “count(„Receiving block

##‟) = count(„Deleting block file ##‟)”. A node receives

more blocks than it finally deletes, and some duplicated

received blocks are dropped.

At the same time, we find that our approach can well

handle the problems that cause the confusion in the

traditional keyword based log analysis tools. Here is

one typical example. In Hadoop, TaskTracker often

logs many non-relevant logs at info level for Disk-

Checker$DiskErrorException. According to Apache

issue tracking HADOOP-4936, this happens when the

map task has not created an output file, and it does not

indicate a running anomaly. Traditional keyword-based

tools may detect these logs as anomalies, because they

find the word Exception. This confused many users.

Unlike keyword-based tools, our approach can avoid

generating such false positives.

Table 5. False positives

False Positive Description PCA

Method

Our

Method

Killed speculative tasks 585 1777

Job cleanup and job setup tasks 323 778

The data block replica of Java

execution file

56 0

Unknown Reason 499 0

Just like all unsupervised learning algorithms, our ap-

proach does detect some false positives. As shown in

Table 5, we detect two types of false positives. Hadoop

has a scheduling strategy to run a small number of spe-

culative tasks. Therefore, there may be two running

instances of the same task at the same time. If one task

instance finishes, the other task instance will be killed

no matter which stage the task instance is running at.

Some log groups produced by the killed speculative

task instances are detected as anomalies by our ap-

proach, because their behaviors are largely different

from normal tasks. The other false positives come from

job cleanup and setup tasks. Hadoop schedules two

tasks to handle job setup and cleanup related opera-

tions. Since these two tasks, i.e. job setup task and job

cleanup task, print out the same type of log messages as

map tasks. Many users are confused by these logs. Be-

cause their behaviors are quite different from the nor-

mal worker map tasks, our approach also detects them

as anomalies.

Comparison with the PCA Based Algorithm: We

compared our approach with the PCA based algorithm

of [5]. Because our running environment, work load

characteristics, and Hadoop version are different from

the experiments in [5], we cannot directly compare our

results with theirs. We implement their algorithm and

test it on our data set. From Table 4 and Table 5, we

can find that both algorithms can detect the same types

of anomalies, which is reasonable because both ap-

proaches utilize the inherent linear characteristics of the

console logs. In some cases, our approach can detect

more anomalies than the PCA based approach. If a set

of log messages appear in almost all log message

groups, the PCA based algorithm will ignore them by

giving a very small TF/IDF weight. Therefore, the PCA

based algorithm cannot detect the anomalies exposed as

abnormal relationships among the log message types.

For example, in a case of “JVM inconsistent state” (re-

fer to the 10
th

 row of Table 4), our algorithm detects the

anomaly because the message “Removed completed

task ## from” abnormally appears twice for the same

task instance (i.e. breaking an invariant of one message

for each task). However, the PCA based algorithm can-

not detect these anomalies because it ignores the mes-

sage. On the whole, in our test data, our approach can

detect all the anomalies that can be detected by the PCA

based method.

Unlike the PCA based approach, our invariant based

approach can give human operators intuitive insight of

an anomaly, and help them to locate anomalies in finer

granularity. For example, the fact that an anomaly of “a

task JVM hang” (refer to the 5
th

 row of Table 4) breaks

the invariant of “count(„JVM spawned‟) = count(„JVM

exited‟)” can give operators a very useful cue to the

understanding of the anomaly: a JVM spawned but does

not exit, which may indicate the JVM is hung. At the

same time, because the anomaly does not break

“count(„JVM spawned‟) = count(„JVM with ID:# given

task:#‟)”, we can conclude that the JVM got hung after

it was assigned a MapReduce task. However, the PCA

based approach can only tell operators that the feature

vector of the anomaly is far away from the normal fea-

ture space, i.e. the residential value of the feature vector

13

is larger than a certain threshold value. This can hardly

help operators to diagnose the problems, and they have

to check the original log sequence carefully for problem

analysis. In the PCA based approach, the decision tree

technique makes its decision based on the count of one

type of log messages at each step of the decision tree

[5]. In contrast, our invariant based approach utilizes

the numerical relationships among different types of log

messages.

The 4
th
 row of Table 5 shows another advantage of our

approach. In order to rapidly distribute the Java execut-

able files (e.g. JAR file) of jobs, Hadoop sets the replica

number of these files according to the number of slave

machines. For example, in our test environment, the

replica number of a job JAR file is set as 15. The PCA

based algorithm detects them as anomalies, because 15

is far from the normal replica number (e.g. 3 in most

systems) of the data block. Our approach does not

detect them as anomalies because their work flows do

not break any invariant. There are some other false pos-

itive cases (refer to the 5
th

 row of Table 5), e.g. some

log groups of successful tasks, in the results of PCA

based algorithm. We speculate that these false positives

may be caused by the different characteristics of work

load (WordCount and Sort are different), but currently,

we do not know the exact reason. It seems that the PCA

based method is more sensitive to the workload and

environment. Our algorithm is much more robust. Fur-

thermore, our algorithm only detects two types of false

positives, while the PCA based method detects more

than 4 types (we believe that the unknown reason false

positives belong to many different types.). We argue

that, rather than the number of false positives, the num-

ber of false positive types is more important for a prob-

lem detection tool. In fact, when the tool detects an

anomaly, if a human operator marks it as a false posi-

tive, the tool can automatically suppress to pop up false

positives of the same type. Therefore, a tool with few

types of false positives can reduce the operator‟s work-

load.

8.2 Case Study on CloudDB

MS CloudDB is a structured data storage service devel-

oped for internal usage in Microsoft. It can scale up to

tens of thousands of servers and runs on commodity

hardware. It is capable of auto-failover, auto-load ba-

lancing, and auto-partitioning. In our experiments, we

use the log messages of Fabric and CASNode levels,

which implement the protocols and life cycles of distri-

buted storage nodes, to learn invariants and detect po-

tential anomalies. About 12 million log messages are

analyzed in the experiment. We first manually construct

some work flow models based on the documents pro-

vided by the product group. Due to the insufficiency of

documents, not all work flows involved in these two

levels are constructed. Then, we compare the invariants

automatically mined by our approach (266 invariants

are learned in this experiment) with the manually con-

structed work flow models. The mined invariants not

only correctly reflect the real work flows, but also help

us to find out some mistakes in the manually con-

structed work flow models that are caused by the mi-

sunderstanding of some content in the documents.

Table 6. Detected anomalies in CloudDB

Anomaly Description PCA

Method

Our

Method

Data store operation finished

without client response

0 2

Service message lost 8 8

Refresh config message lost 0 2

LookupTableUpdate message

lost

0 1

AddReplicaCompleted mes-

sage lost

1 8

Fail to close channel 2 67

No response for an introduce

request

0 2

Send depart message excep-

tion

0 2

Add primary failed 0 2

After that, we also use the learned invariants to perform

anomaly detection. Table 6 summarizes the detected

anomalies in the experiment. By comparing Table 6 and

Table 4, we can obtain a similar conclusion as that in

Section 8.1 about the performances of the two methods.

As mentioned in Section 8.1, the PCA based algorithm

fails to detect lots of anomalies because it gives a very

small TF/IDF weight to each routine message.

9 Conclusions

In this paper, we propose a general approach to detect-

ing system anomalies through the analysis of console

logs. Because the log messages are usually free form

text strings that can hardly be analyzed directly, we first

convert unstructured log messages to structured logs in

tuple-form representations. The parameters that

represent the same program variable are classified into

a parameter group. We identify parameter groups by

analyzing the relationships among the value ranges of

the parameters. Then, according to these parameter

groups, we classify the log messages to log message

14

groups, and construct message count vectors. After that,

we mine the sparse, integer valued invariants from the

message count vectors. The mined invariants can reflect

the elementary work flow structures in the program.

They have physical meanings, and can be easily unders-

tood by operators. Finally, we use the discovered inva-

riants to detect anomalies in system logs. Experiments

on large scale systems such as Hadoop and CloudDB

have shown that our algorithm can detect numerous real

problems with high accuracy, which is comparable with

the state of art approach [5]. In particular, our approach

can detect anomalies with finer granularity and provide

human operators with insight cues for problem diagno-

sis. We believe that this approach can be a powerful

tool for system monitoring, problem detection, and

management.

Acknowledgements

We thank Wei XU from UC Berkley for his helpful

discussion, and our colleagues, Zheng Zhang, Lidong

Zhou and Zhenyu Guo, for their valuable comments on

the project. We also thank our paper shepherd, Emin

Gün Sirer, and the anonymous reviewers for their in-

sightful comments and advice.

10 References

[1] J. P. Rouillard, Real-time Log File Analysis Using

the Simple Event Correlator (SEC), In Proc. of the

18
th

 Usenix LISA‟04, Nov. 14-19, 2004.

[2] J. E. Prewett, Analyzing Cluster Log Files Using

Logsurfer, In Proc. of Annual Conference on Linux

Clusters, 2003.

[3] S. E. Hansen, and E. T. Atkins, Automated System

Monitoring and Notification with Swatch, In Proc.

of the 7
th

 Usenix LISA‟93, 1993.

[4] A. Oliner and J. Stearley. What supercomputers say:

A Study of Five System Logs. In Proc. of IEEE

DSN‟07, 2007.

[5] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.

Jordan, Detecting Large-Scale System Problems by

Mining Console Logs, In Proc. of ACM SIGOPS

SOSP‟09, Big Sky, MT, Oct. 11-14, 2009.

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M.

Jordan, Mining Console Logs for Large-Scale Sys-

tem Problem Detection, In Proc. of SysML, Dec.

2008.

[7] W. Dickinson, D. Leon, and A. Podgurski, Finding

Failures by Cluster Analysis of Execution Profiles,

In Proc. of ICSE, May 2001.

[8] A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller,

Problem Diagnosis in Large-Scale Computing En-

vironments, In Proc. of the ACM/IEEE SC 2006

Conference, Nov. 2006.

[9] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M.

Wang, and W. Y. Ma, Automated Known Problem

Diagnosis with Event Traces, In Proc. of Eu-

roSys‟06, Apr. 2006.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.

Notkin, Dynamically Discovering Likely Program

Invariants to Support Program Evolution, In IEEE

Trans. on Software Engineering, pp. 99-123,

Vol.27, No.2, Feb. 2001.

[11] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira,

Exploiting Local and Global Invariants for the

Management of Large Scale Information Systems,

In Proc. of ICDM‟08, Pisa, Italy, Dec. 2008.

[12] G. Jiang, H. Chen, and K. Yoshihira, Efficient and

Scalable Algorithms for Inferring Likely Invariants

in Distributed Systems, In IEEE Trans. on Know-

ledge and Data Engineering, pp. 1508-1523, Vol.19,

No. 11, Nov. 2007.

[13]H. Chen, G. Jiang, C. Ungureanu, and K. Yoshihira,

Failure Detection and Localization in Component

Based Systems by Online Tracking, In Proc. of

SIGKDD, pp. 750-755, 2005.

[14] Q. Fu, J.-G. Lou, Y. Wang, and J. LI, Execution

Anomaly Detection in Distributed Systems through

Unstructured Log Analysis, In Proc. of ICDM,

Florida, Dec. 2009.

[15] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Na-

rasim-han, SALSA: Analyzing Logs as State Ma-

chines, In Proc. of WASL, Dec. 2008.

[16] D. Cotroneo, R. Pietrantuono, L. Mariani, and F.

Pastore, Investigation of Failure Causes in Work-

load Driven Reliability Testing, In Proc. of the 4th

Workshop on Software Quality Assurance, Sep.

2007.

[17] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihi-

ra. Multi-resolution Abnormal Trace Detection Us-

ing Varied-length N-grams and Automata, In Proc.

of ICAC, Jun. 2005.

[18] Hadoop. http://hadoop.apache.org/core.

[19] D. Donoho, Y. Tsaig, I. Drori, and J. Starck,

Sparse Solutions of Underdetermined Linear Equa-

tions by Stagewise Orthogonal Matching Pursuit,

Technical Report of Department of Statistics,

Standford, TR2006-02, 2006.

	Introduction
	Related Work
	The Approach
	Invariants in textual logs
	Invariant as a Linear Equation
	Practical Challenges
	Workflow of our approach

	Log Parsing
	Log Message Grouping
	Invariant Mining
	Estimate the invariant space
	Invariant searching
	Computational Cost and Scalability

	Problem Detection
	Case Study and Comparision
	Case Study on Hadoop
	Case Study on CloudDB

	Conclusions
	References

