
Wide-area Network Acceleration for the Developing World

Sunghwan Ihm1, KyoungSoo Park†2, and Vivek S. Pai1

1Department of Computer Science, Princeton University
2Department of Electrical Engineering, KAIST

Abstract
Wide-area network (WAN) accelerators operate by com-
pressing redundant network traffic from point-to-point
communications, enabling higher effective bandwidth.
Unfortunately, while network bandwidth is scarce and
expensive in the developing world, current WAN accel-
erators are designed for enterprise use, and are a poor fit
in these environments.

We present Wanax, a WAN accelerator designed for
developing-world deployments. It uses a novel multi-
resolution chunking (MRC) scheme that provides high
compression rates and high disk performance for a vari-
ety of content, while using much less memory than ex-
isting approaches. Wanax exploits the design of MRC to
perform intelligent load shedding to maximize through-
put when running on resource-limited shared platforms.
Finally, Wanax exploits the mesh network environments
being deployed in the developing world, instead of just
the star topologies common in enterprise branch offices.

1 Introduction
While low-cost laptops may soon improve computer ac-
cess for the developing world, their widespread deploy-
ment will increase the demands on local networking in-
frastructure. Locally caching static Web content can al-
leviate some of this demand, but this approach has limits
on its effectiveness, especially in smaller environments.

We propose to augment these caches with integrated
wide area network (WAN) accelerators that have been
specifically designed to operate in developing-world en-
vironments. WAN accelerators are deployed near edge
routers, and work by compressing redundant traffic des-
tined to locations with other WAN accelerators. To com-
press traffic, the accelerators break the data stream into
smaller chunks, store these chunks at each accelerator,
and then replace future instances of this data with ref-
erence to the cached chunks. By passing references to
the chunks rather than the full data, the accelerator com-
presses the data stream.

Current WAN accelerators are not well-suited for the
developing world. While they typically require server-
class machines with a set of fast disks and a large pool
of dedicated memory, the average school targeted by the
One Laptop Per Child (OLPC) project will have 100 lap-

†Work partly done while at University of Pittsburgh.

tops in the price range of US $100-$200 each, for a total
cost of $10K-$20K [22]. Requiring special server-class
hardware for WAN acceleration alone could increase de-
ployment cost. Other options would be to share the ma-
chine with other services (e.g, mail servers, Web servers,
and proxies) or to use cheap, laptop-class hardware, both
of which would reduce the RAM and disk available to the
WAN accelerator. In addition, existing designs cannot
exploit the mesh network environments being deployed
in the developing world, limiting their potential utility.

We have developed a new WAN accelerator, Wanax,
that is designed to meet these challenges in the devel-
oping world. Our technical contributions are the fol-
lowings: (1) a novel multi-resolution chunking (MRC)
technique, which provides high compression rates and
high disk performance across workloads while having a
small memory footprint; (2) an intelligent load shedding
technique that exploits MRC to maximize effective band-
width by adjusting disk and WAN usage as appropriate;
and (3) a mesh peering protocol that exploits higher-
speed local peers when possible, instead of fetching only
over slow WAN links. The combination of these design
techniques makes it possible to achieve high effective
bandwidth even with resource-limited shared machines.

The rest of this paper is organized as follows:§2 pro-
vides background on WAN accelerators and new chal-
lenges in the developing world.§3 describes the design
of Wanax, and we show the trace-based simulation anal-
ysis in§4. In§ 5, we detail the prototype implementation,
and§6 presents the experimental results. Finally, we dis-
cuss related work in§7, and conclude in§8.

2 Background and Motivation
Our goal is to improve Internet access in the developing
world using WAN accelerators designed to use low-end
hardware. We primarily focus on increasing theeffec-
tive bandwidth (or throughput) of the expensive, low-
bandwidth WAN link in the region. We first provide a
brief introduction to WAN accelerators, and then discuss
the specific problems.

2.1 WAN Accelerators
Content Fingerprinting Content fingerprinting (CF)
forms the basis for WAN acceleration, since it provides a
position-independent and history-independent technique
for breaking a stream of data into smaller pieces, or
chunks, based only on their content.

Figure 1:WAN Accelerator Architecture

While early systems used Manber’s anchor technique
to determine chunk boundaries [18], Rabin’s fingerprint-
ing technique is now widely used for its efficiency and
flexibility [29]. It continuously generates integer values,
or fingerprints, over a sliding window (e.g., 48 bytes) of
a byte stream. When a fingerprint matches a specified
global constantK, that region constitutes a chunk bound-
ary. The average chunk size can be controlled with a pa-
rametern, that defines how many low-order bits ofK are
used to determine chunk boundaries. In the average case,
the expected chunk size is2n bytes. To prevent chunks
from being too large or too small, minimum and maxi-
mum chunk sizes can be specified as well. Since Rabin
fingerprinting determines chunk boundaries by content,
rather than offset, localized changes in the data stream
only affect chunks that are near the changes.

Once a stream has been chunked, the WAN accelerator
can cache the chunks and pass references to previously
cached chunks, regardless of their origin. As a result,
WAN accelerators can compress within a stream, across
streams, and even across files and protocols.

Performance Trade-offs Figure 1 depicts the general
architecture of modern WAN accelerators. Chunk data
is stored on disk due to cost and capacity, but an in-
dex of chunk metadata is partially or completely kept
in memory to avoid disk accesses. Memory also serves
as a cache for chunk data, to reduce disk access for
commonly-used content.

The performance of WAN accelerators is mainly de-
termined by three factors - (1)compression rate, (2)
disk performance, and (3)memory pressure. Compres-
sion rate refers to the fraction of the original data actu-
ally gets sent, and reflects network bandwidth savings
by receiver-side caching. Disk performance determines
the cached chunk access time (seek time) while mem-
ory pressure affects the efficiency of the chunk index and
in-memory caching. These three factors affect the to-
tal latency, which is the time to reconstruct and deliver
the original data. Delivering high effective bandwidth
requires reducing the total latency – havinghigh com-
pression, low disk seeks, and low memory pressure si-
multaneously.

Chunk size directly impacts all three factors, and con-

sequently the effective bandwidth as well. Small chunks
can lead to better compression if changes are fine-
grained, such as a word being changed in a paragraph.
Only the chunk containing the word is modified, and the
rest of the paragraph can be compressed. However, for
the same storage size, smaller chunks create more total
chunks, increasing the metadata index size, and increas-
ing the memory pressure and disk seeks. Large chunks
yield fewer chunks in total, reducing memory pressure
from indexing and providing better disk usage since each
read can provide more data. Large chunks, however, can
miss fine-grained changes, leading to lower compression.
No chunk size is standard in systems that use content
fingerprinting – for example, VBWC [30] uses a 2KB
chunk size, LBFS [21] uses 8KB, and Shark [5] uses
16KB.

2.2 Developing World Challenges
Our target environment, schools in the developing world,
is very different from enterprise branch offices, the typi-
cal candidate for WAN accelerators.

Limited RAM Due to cost, schools want ashared ma-
chine or a cheap laptop with limited RAM running the
WAN accelerator and other services, instead of using a
dedicated server appliance. Also, school children may
want to access any content on the Internet, rather than
just a smaller set of work-related documents in the en-
terprise environment. Thislarger working set requires
more disk storage, more chunks, and more metadata en-
tries, increasing memory pressure.

Poor Disk Performance While disk capacity is cheap
and large (1TB SATA per $100), disk seek performance
is still limited and is often the bottleneck. Modern desk-
top drives typically perform roughly 100 seeks/second,
but cheaper laptop/external drives we may expect in the
developing world are even slower, and are much slower
than the high-RPM SCSI disks commercial WAN accel-
erators use. Also, the larger working set and other ser-
vices sharing the disks further increase the disk load.

Low Compression Rate To handle poor disk perfor-
mance in the developing world, one choice is to use large
chunks to reduce the number of disk accesses, but this re-
duces the compression rate, limiting bandwidth gains.

Mesh Topology Enterprise branch offices typically
communicate with a central office in a star topology,
whereas many schools in a local region may prefer to get
content from each other over cheaper local links rather
than over the WAN link. Current WAN accelerators are
not designed to exploit this opportunity.

3 Wanax Design
Motivated by the challenges in the developing world, we
design Wanax around four goals - (1) maximize com-
pression, (2) minimize disk seeks, (3) minimize memory

Figure 2:Wanax System Overview

pressure, and (4) exploit local resources.
Wanax works by compressing redundant traffic be-

tween a pair of servers – one near the clients, called a
R-Wanax, and one closer to the content, called an S-
Wanax. For developing regions, the S-Wanax is likely to
be placed where bandwidth is cheaper. For example, in
Africa, where Internet connectivity is often backhauled
to Europe via slow and expensive satellite, the S-Wanax
may reside in Europe.

Since we expect most Wanax usage will be Web-
related, Wanax operates on TCP streams rather than IP
packets since buffering TCP flows can yield larger re-
gions for content fingerprinting. The remote Wanax di-
vides the incoming TCP stream into chunks and sends
chunk identifiers (such as SHA-1 hashes) to the local
Wanax. If the local Wanax has the chunks cached, the
data is reassembled and delivered to the client. Any
chunks that are not cached can be fetched from the re-
mote Wanax or other nearby peer. Figure 2 shows the
overall system architecture. Each machine is capable of
acting as both S-Wanax and R-Wanax, based on the di-
rection of communication.
3.1 Basic Protocol
Wanax uses three kinds of communication channels be-
tween the accelerators – control, data, and monitoring
channels. The control channel is used for connection
management and chunk name exchange. The data chan-
nels are used to request and deliver uncached chunks,
so it is stateless and implemented as a simple request-
reply protocol. Finally, the monitoring channel is used
for checking the liveness and load levels of the peers us-
ing a simple heartbeat protocol. Figure 3 shows typical
data transfer between two Wanax gateways.

Control Channel When client A initiates a TCP con-
nection to client B in the WAN, that connection is trans-
parently intercepted by the Wanax gateway accelerator1,
R-Wanax. R-Wanax selects S-Wanax which is network
topologically closer to B, and sends it anopen connection
message with the IP and the port number of B. S-Wanax
then opens a TCP connection to B and a logical end-to-
end user connection between A and B is established.

1Non-cacheable protocols(e.g., SSH, HTTPS) are bypassed.

Figure 3:Basic Protocol

When the client B sends data back to S-Wanax, S-
Wanax generates chunk names from the data and sends
them to R-Wanax in achunk name message. Each
chunk name message contains a sequence number so
that R-Wanax can reconstruct the original content in the
right order. After R-Wanax reconstructs and delivers the
chunk data to the original client, it sends achunk ac-
knowledgment (ACK) message to S-Wanax. S-Wanax
can then safely discard the delivered chunks from its
memory, and proceed with sending more chunk names.

When the sender or receiver closes the connection,
the corresponding Wanax sends aclose connection mes-
sage to other gateway and the connections between the
gateways and the clients are closed once all the data is
delivered. The control channel, however, remains con-
nected. All control messages carry flow identifiers, so
one control channel can be multiplexed for many data
flows. Control messages can be batched for efficiency.

Data and Monitoring Channels The data channel
useschunk request andchunk response messages to de-
liver the actual chunk content in case of a cache miss at
R-Wanax. We also have thechunk peek message which
is used to query if a given chunk is cached, which is used
in our load shedding system.

Each Wanax accelerator monitors the status of its
peers by exchanging heartbeats on the monitoring chan-
nel. The heartbeat response carries the load level of disk
and network I/Os of the peer so that we can balance the
request load among peers.
3.2 Multi-Resolution Chunking
MRC combines the advantages of both large and small
chunks by allowing multiple chunk sizes to co-exist in
the system. Wanax uses MRC to achieve (1) high com-
pression rate, (2) low disk seeks, and (3) low memory
pressure. When content overlap is high, Wanax can use
larger chunks to reduce disk seeks and memory pres-
sure. However, when larger chunks miss compression
opportunities, Wanax uses smaller chunk sizes to achieve
higher compression. In contrast, existing WAN accel-
erators typically use a fixed chunk size, which we term
single-resolution chunking, or SRC.

�
Figure 4:Multi-Resolution Chunking

Generating Chunks Generating multiple chunk sizes
requires careful processing, not only for efficiency, but
also to ensure that chunk boundaries are aligned. A
naive approach to generating chunks can yield unaligned
chunk boundaries, as shown in Figure 4(a). Here, the
fingerprinting algorithm was run multiple times with
multiple sizes. However, due to different boundary-
detection mechanisms, chunk size limits, or other is-
sues, the boundaries for larger chunks are not aligned
with those of smaller chunks. As a result, when fetching
chunks to reconstruct data, some areas of chunks overlap,
while some chunks only partly overlap, causing wasted
bandwidth when a partially-hit chunk must be fetched to
satisfy a smaller missing range.

Instead, we perform a single-pass fingerprinting step,
in which all of the smallest boundaries are detected, and
then larger chunks are generated by matching different
numbers of bits of the same boundary detection con-
straint. This process produces theMRC tree shown in
Figure 4(b), where the largest chunk is the root, and all
smaller chunks share boundaries with some of their leaf
chunks. Performing this process using one fingerprint-
ing pass not only produces a cleaner chunk alignment,
but also requires less CPU.

Storing Chunks All chunks generated by the MRC
process are stored to disk, even though the smaller
chunks contain the same data as their parent. The ratio-
nale behind this decision is based on the observation that
disk space is cheap, and having all chunks be fully inde-
pendent simplifies the metadata2 indexing process, re-
ducing memory pressure in the system, also minimizing
disk seeks as well. For example, when reading a chunk
content from disk, MRC requires onlyone index entry
access, and onlyone disk seek.

Two other options would be to reconstruct large
chunks from smaller chunks, which we callMRC-Small,
and storing the smaller chunks as offsets into the root
chunk, which we callMRC-Large.

While both MRC-Small and MRC-Large can reduce
disk space consumption by saving only unique data, they
suffer from more disk seeks and higher memory pressure.

2chunk name, disk location of chunk content, and chunk lengthat a
minimum.

Scheme
Compression Disk Memory Index

Rate I/O Pressure Update
SRC-Small High High High Simple
SRC-Large Low Low Low Simple
MRC-Small High High High Complex
MRC-Large High Low High Complex
MRC High Low Low Simple

Table 1:Comparison of Chunking Schemes

To reconstruct a larger chunk, MRC-Small needs to fetch
all the smaller chunks sharing the content, which can sig-
nificantly increase disk access. The metadata for each
small chunk is accessed in this process and loaded in
memory, increasing memory pressure compared to stan-
dard MRC with only one chunk index entry. MRC-Large
avoids multiple disk seeks but complicates chunk index
management. When a chunk is evicted from disk or over-
written, all dependent chunks must also be invalidated.
This requires either that each metadata entry grows to
include all sub-chunk names, or that all sub-chunk meta-
data entries contain backpointers to their parents.

MRC avoids these problems by making all chunks in-
dependent of each other. This choice greatly simplifies
the design at the cost of more disk space consumption. In
practice, however, we can store more than one month’s
worth of chunk data on a single 1 TB disk assuming a 1
Mbps WAN connection. Table 1 summarizes the trade-
offs of different schemes.

Content Reconstruction When an R-Wanax receives
an MRC tree (chunk names only) from an S-Wanax, it
builds acandidate list to determine which chunks can be
fetched locally, at peers, and from the S-Wanax. To get
this information, it queries its local cache and peers for
each chunk’s status, starting from the root. Since Wanax
uses the in-memory index to handle this query, it does
not require extra disk access. If a chunk is a hit, R-Wanax
stops querying for any children of the chunk. For misses,
we find the root of the subtree containing only misses,
and fetch that from S-Wanax. After reconstructing the
content, Wanax stores each uncached chunk in the MRC
to disk for future reference.

Chunk Name Hints Optimization Sending full MRC
trees would waste bandwidth if there is a cache hit at
a high level in the tree or when subtrees are all cache
misses. Sending one level of the tree at a time avoids the
wasted bandwidth, but increases the transmission latency
with a large number of round trips. Instead, we have
S-Wanax predict chunk hits or misses at R-Wanax and
prune the MRC tree accordingly. We augment S-Wanax
with a hint table that contains recently-seen chunk names
along with timestamps. Before sending the MRC tree, S-
Wanax checks all chunk names against the hint table. For
any hit in the hint table, S-Wanax avoids sending the sub-
trees below the chunk. If it is a miss or the chunk name

hint is stale, S-Wanax determines the largest subtree that
is a miss and sends one chunk content for the entire sub-
tree. This way, we eliminate any inefficiency exchanging
MRC trees, further increasing effective compression rate.

Here, we assume the S-Wanax and the R-Wanax will
be roughly synchronized over time – what an R-Wanax
receives from an S-Wanax now is likely to be fetched
from the same S-Wanax in the future. We use the times-
tamps to invalidate old hint entries, but even if prediction
is wrong, it does not affect correctness.

3.3 Resource Sharing via Peering
Wanax incorporates a peering mechanism to share the
resources such as disks, memory, and CPU with nearby
peers using cheaper/faster local connectivity. It allows
Wanax to distribute the chunk fetching load among the
peers and utilize multiple chunk cache stores in parallel,
improving performance. In comparison, existing WAN
accelerators support only point-to-point communication.

To reduce scalability problems resulting from query-
ing peers [45], Wanax uses a variant of consistent hash-
ing called Highest Random Weight (HRW) [40]. Regard-
less of node churn, HRW deterministically chooses the
responsible peer for a chunk. We considered other ap-
proaches like Summary cache [12], but HRW consumes
small memory at the expense of more CPU cycles, and
this trade-off fits well in the developing world scenario.
In comparison, periodic rebuilds of a Bloom filter would
require re-scanning all chunk metadata, causing signifi-
cant memory pressure and possibly disk access.

Here is how it works. On receiving thechunk name
message from S-Wanax, R-Wanax sends achunk request
message to its responsible peer Wanax. The message
includes the missing chunk name and the address of S-
Wanax from whom the name of the missing chunk orig-
inates. If the peer Wanax has the chunk, it sends the
requested chunk content back to R-Wanax with achunk
response message. If not, the peer proxy can fetch the
missing chunk from S-Wanax, deliver it to R-Wanax,
and save the chunk locally for future requests. If peers
are not in the same LAN and could incur separate band-
width cost, fetching the missing chunk falls back to the
R-Wanax instead of the peer. After finishing data recon-
struction, R-Wanax also distributes any uncached chunk
to its corresponding peers. We introduce achunk put
message in the data channel for this purpose.

3.4 Intelligent Load Shedding
While chunk cache hits are desirable in general since
they reduce bandwidth consumption, too many disk ac-
cesses may degrade the effective bandwidth by increas-
ing the overall latency. This problem becomes even
worse in the developing world where the disk perfor-
mance is poor. In such cases, we can opportunistically
use network bandwidth instead of queueing more re-
quests to the disk. By using the disk for larger chunks

Algorithm 1 Intelligent Load Shedding
Require: C: all the chunk names to be scheduled

BW , RTT : link bandwidth and RTT
Qi: # of pending disk requests for peeri
Bi: pending network bytes to receive for peeri
S: per chunk disk latency

1: partitionC with HRW
2: resolveC with chunk peek message in parallel
3: generate the candidate list

Di: cache-hit chunks on peeri
N : cache-miss chunks

4: estimate each latency
TDi

= (|Di| + Qi) × S

TN = RTT + {
X

i

Bi +
X

c∈N

length(c)}/BW

5: while max(TDi
) > TN do

6: pick the peerk wheremax(TDi
) = TDk

7: move the smallest chunk fromDk to N
8: updateTDk

andTN

9: end while
10: returnDi andN

and fetching smaller chunks over the network, we can
sustain high effective bandwidth without disk overload.

We introduce intelligent load shedding (ILS), which
exploits the structure of the MRC tree and dynamically
schedules chunk fetches to maximize the effective band-
width given a resource budget. The ILS algorithm is
presented in Algorithm 1, and takes the link bandwidth
(BW) and round-trip latency (RTT) of the R-Wanax as
input. Each peer Wanax also uses the monitoring chan-
nel to send heartbeats that contain its network and disk
load status in the form of the number of pending disk
requests (Qi), and the pending bytes to receive from net-
work (Bi). We assume per-chunk disk read latency (S),
or seek time is uniform for all peers for simplicity.

The first step in the ILS process is generating the can-
didate list. On receiving the chunk names from S-Wanax,
R-Wanax runs the HRW algorithm to partition the chunk
names (C) into responsible peers. Some chunk names
are assigned to R-Wanax itself. Then R-Wanax checks
if the chunks are cache hits by sending thechunk peek
messages to the corresponding peers in parallel. Based
on the lookup results, R-Wanax generates the candidate
list (§3.2). Note that this lookup and candidate list gener-
ation process (line 2 and 3 in Algorithm 1) can be saved
by name hints from S-Wanax, which R-Wanax uses to
determine the results without actual lookups.

The next step in the ILS process is estimating fetch la-
tencies for the network and disk queues. From the candi-
date list, we know which chunks need to be fetched over
network (network queue, N) and which chunks need to
be fetched either from local disk or a peer (disk queues,
Di). Based on this information, we estimate the latency
for each chunk source. For each disk queue, the esti-
mateddisk latency will be per-chunk disk latency (S)
multiplied by the number of cache hits. For the net-

Figure 5: Intelligent Load Shedding: by moving smaller
chunks from the disk queue to the network queue, the overall
latency is further reduced.

work queue, the estimatednetwork latency will be one
RTT plus the total size of cache-miss chunks divided by
BW . If there were pending chunks in the network or disk
queues, each latency is accordingly adjusted. We assume
the latency between the R-Wanax and peers is small, and
do not incorporate it in our model.

The final step in ILS is balancing the expected queue
latencies, but doing so in a bandwidth-sensitive manner.
We decide if we need to move some cache hit chunks
from a disk queue to a network queue – since fetching
chunks from each source can be done in parallel, the total
latency will be the maximum latency among them. If the
network is expected to cause the highest latency, we stop
here because no further productive scheduling is possi-
ble. When disk latency dominates, we can reduce it by
fetching some chunks from the network. We choose the
smallest chunk because it reduces one disk seek latency
while increasing the minimum network latency. We up-
date the estimated latencies, and repeat this process until
the latencies equalize, as shown in Figure 5. After fin-
ishing ILS, R-Wanax distributeschunk request messages
to corresponding peers. We send the requests in the or-
der they appear in the candidate list, in order to avoid
possible head-of-line (HOL) blocking.

Note that ILS algorithm works with both MRC and
SRC. However, by moving the smallest chunk from the
disk queue to the network queue, MRC could further re-
duce the disk latency than SRC, which results in smaller
overall latency. Combined with MRC’s better overall
disk performance and compression, it gives much higher
effective bandwidth.

4 Simulation Analysis
To understand the trade-offs between MRC and other
schemes, we simulate their behavior under a variety of
workloads, comparing bandwidth savings, disk access
overheads, memory pressure, and performance.

4.1 Simulator
We develop a simulator that reads the packet-level traces
from tcpdump [38] and simulates various scenarios us-
ing SRC and MRC. The simulator uses libnids [16] for
stream reconstruction, and consists of 7,000 lines of C

code. The outputs are actual and ideal bandwidth savings
with and without chunk indexing metadata overhead,
disk access overhead for chunk content fetching, and to-
tal memory usage. We use 20-byte SHA-1 hashes for
the chunk names, and model point-to-point deployments
with one S-Wanax and one R-Wanax with no peers. The
simulator implements all of the Wanax design mentioned
earlier, including the chunk name hint optimization used
for both SRC and MRC.

We vary the chunk size for both schemes, with SRC
using chunks from 32 bytes to 64 KB, and MRC using
three tree configurations, with a 64 KB root chunk with
tree degrees 2, 4 and 8 each. The child chunk size is
obtained by dividing the parent chunk size by the degree.
For example, a degree-2 tree (d = 2) starts with a 64
KB root chunk and two 32 KB children chunks. Each
child chunk recursively forms a subtree with the same
degree until the chunk size reaches 32 bytes. A degree-4
tree has 64 bytes as leaf node size while a degree-8 tree
has 128 bytes as the minimum size. If needed, we also
change the height of the MRC tree of the same degree,
by controlling the smallest chunk size,m.

4.2 Workload
We choose two types of workloads – dynamically-
generated Web content and redundant large files. We
focus on dynamic content because the static content is
likely to be handled by a standard Web proxy, and we can
further reduce bandwidth consumption on uncacheable
content with Wanax. We select a number of popular news
sites, fetch the front pages every five minutes, and mea-
sure the redundancy between the fetches.3 To gener-
ate traffic close to what actual users would produce, we
use Firefox 3.0 [13] to fetch the content, and we enable
the browser cache to avoid re-fetching cacheable content.
We collect packet-level traces for three days, yielding a
1GB trace with 102K TCP sessions and a 72% redun-
dancy. We refer to this workload as “news sites”.

The large-file workload represents long-lived connec-
tions for videos or software packages. For this, we down-
load two different versions of the Linux kernel source
tar files, 2.6.26.4 and 2.6.26.5, one at a time and gather
packet-level traces as well. The size of each tar file is
about 276 MB, and the two files are 94% redundant. We
refer to this workload as “Linux kernel”.

Cacheability Breakdown Table 2 separates the poten-
tial bandwidth savings on the news sites by their HTTP
cacheability, as determined by checking the cache con-
trol directives in the response headers. The top two num-
bers represent the portion of HTTP-uncacheable bytes
(H-U), while the bottom two indicate HTTP-cacheable
bytes (H-C). The middle two numbers show the portion

3CNN, Google News, NYTimes, Slashdot, Digg, Fark, Salon, Ya-
hoo News, and Drudgereport.

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1K 2K 4K 8K 16K32K64K

Ba
nd

w
id

th
 S

av
in

gs
 (%

)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

Ideal
SRC

MRC, d=2
MRC, d=8

(a) News Sites

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1K 2K 4K 8K 16K32K64K

Ba
nd

w
id

th
 S

av
in

gs
 (%

)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

Ideal
SRC

MRC, d=2
MRC, d=8

(b) Linux Kernel

Figure 6:Potential Bandwidth Savings (d:degree) – SRC overheads prevent it from reaching ideal savings for smaller chunk sizes.
MRC savings are close to ideal across all chunk sizes.

 10

 100

 1000

 10000

32 64 128256512 1K 2K 4K 8K 16K32K64K

of

 D
is

k
R

ea
ds

 (x
10

3)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

SRC
MRC, d=2
MRC, d=4
MRC, d=8

(a) News Sites

 1

 10

 100

 1000

 10000

32 64 128256512 1K 2K 4K 8K 16K32K64K

of

 D
is

k
R

ea
ds

 (x
10

3)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

SRC
MRC, d=2
MRC, d=4
MRC, d=8

(b) Linux Kernel

Figure 7:Disk Operation Cost (d:degree) – By using larger chunks whenpossible, MRC dramatically reduces the number of disk
operations needed for a given workload. Note: Y axis is thousands of operations.

SRC MRC-2 MRC-4 MRC-8
H-U/W-U 20 20 21 23
H-U/W-C 62 62 61 59
H-C/W-C 10 10 9 8
H-C/W-U 8 8 9 10

Table 2: News Sites Cacheability Breakdown (%) – as a re-
sult of browser caching, most traffic in this workload is HTTP-
uncacheable (H-U). However, it still has much redundancy,
making most bytes Wanax-cacheable (W-C).

of Wanax-cacheable bytes (W-C), while the outer two de-
pict the Wanax-uncacheable portion (W-U).

We see that most of the bytes are not cacheable by
HTTP, but are cacheable by Wanax. Of the bytes that
are not HTTP cacheable, about 75% are redundant and
can benefit from Wanax. Of the HTTP-cacheable bytes,
more than half are Wanax-cacheable as well. This re-
sult suggests that Wanax plus a browser cache can handle
much of the traffic, but that Wanax with an HTTP proxy
can provide even greater savings. Using an HTTP proxy
with Wanax also allows HTTP-cacheable responses to be
served directly from the proxy without re-contacting the
content provider.

4.3 Results
Potential Bandwidth Savings Figure 6 shows the
ideal and actual bandwidth savings on both workloads
for various chunk sizes. As expected, the ideal band-
width savings increases as the chunk size decreases.
However, due to the chunk indexing metadata transmis-

sion overhead, the actual savings with SRC peaks at a
chunk size of 256 bytes with 58% bandwidth savings on
the news sites, and 82% on the Linux kernel. The band-
width savings drops as the chunk size further decreases,
and when the chunk size is 32 bytes, the actual savings is
only 25% on the news sites and 36% on the Linux kernel.

On the other hand, MRC approaches the ideal savings
regardless of the minimum chunk size. With 32 byte
minimum chunks, it achieves close to the maximum sav-
ings on both workloads – about 66% on the news sites
and 92% on the Linux kernel. This is because MRC uses
larger chunks whenever possible and the chunk name
hint significantly reduces metadata transmission over-
heads. When comparing the best compression rates,
MRC’s effective bandwidth is 125% higher than SRC’s
on the Linux kernel while it shows 24% improvement on
the news sites.

Disk Operation Cost MRC’s reduced per-chunk in-
dexing overhead becomes clearer if we look at the num-
ber of disk I/Os for each configuration, shown in Fig-
ure 7. SRC’s disk fetch cost increases dramatically as the
chunk size decreases, making the use of small chunks al-
most impossible with SRC. MRC requires far fewer disk
operations even at small chunk sizes. When the leaf node
chunk size is 32 bytes, SRC performs 8.5 times as many
disk operations on the news sites, and 22.7 times more
on the Linux kernel.

 0.1

 1

 10

 100

32 128 1K 32K

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

238

851

198 113

279

 86

 19

 34

 15

 6
 5 5

893

232

 26

 5

MRC-Small
SRC

MRC-Large
MRC

(a) News Sites

 0.1

 1

 10

 100

 1000

32 128 1K 32K

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

404

6760

400 234

2284

230
 87

290

 84

 4 4 3

4926

1666

230

 4

MRC-Small
SRC

MRC-Large
MRC

(b) Linux Kernel

Figure 8:Memory Footprint Comparison. Note log-scale Y axis. MRC’s memory pressure is typically one-tenth that of SRC and
MRC-Small. MRC-Large typically uses twice the memory due tobackpointer overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 4 2 SRC

B
a
n
d
w

id
th

 S
a
v
in

g
 p

e
r

T
re

e
 L

e
v
e
l
(%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(a) News Site

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

8 4 2 SRC

B
a
n
d
w

id
th

 S
a
v
in

g
 p

e
r

T
re

e
 L

e
v
e
l
(%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(b) Linux Kernel

Figure 9: Per-level Bandwidth Savings in the MRC Tree –
most MRC savings are from larger chunk sizes, reducing disk
access and memory pressure.

Memory Pressure Memory pressure limits the amount
of cache storage that a WAN accelerator can serve and
the amount of RAM it requires for that storage. Figure 8
compares the memory footprint with different chunking
approaches. We count the number of chunk index entries
that are used during the simulation, and calculate the ac-
tual memory footprint. Each bar represents the memory
footprint (MB), and the numbers on top of each bar show
the number of used cache entries in thousands. Due to
space constraints, we show only the MRC trees with the
degree 2, but other results follow the same trend.

MRC incurs much less memory pressure than SRC
does, since MRC requires one cache entry for any large
chunk while SRC needs several cache entries for the
same content. MRC-Small, however, requires even more
cache entries than SRC does since reconstructing a larger
chunk requires accessing all of its child entries. At a 32-
byte chunk size, MRC-Small consumes almost 300 MB
for the linux kernel while MRC requires only about 10
MB for the cache entries. MRC-Large shows a similar
number of cache entries as MRC. However, the actual
memory consumption of MRC-Large is much worse than
MRC because every child chunk has a back pointer to
its parent. MRC-Large consumes almost twice as much
memory as MRC on the news workload.

MRC Chunk Size Breakdown Figure 9 shows the
breakdown of bandwidth savings by different chunk

sizes. We present all three MRC configurations and SRC
with a 32-byte minimum chunk. For MRC, chunk sizes
are sorted from smallest at top to largest at bottom, and
the bottom bar shows the root chunk size of 64KB.

The results explain MRC’s low disk overhead and low
memory pressure – only a small fraction of the total
savings is handled by the smallest chunks with MRC,
whereas all of the savings is handled by 32-byte chunks
with SRC. Most of MRC’s bandwidth reduction comes
from larger chunks, which results in a much smaller
number of disk I/Os and cache entries. We can see the
similar trend across different MRC degrees. For exam-
ple, the portion handled by a 4KB chunk size in MRC
degree 4 is handled by 8KB chunk size as well in MRC
degree 2. This means that some portion of 4KB chunks
are merged into 8KB chunks in MRC degree 2. In all the
MRC scenarios, chunks that are 4KB or larger provide
40-50% of the bandwidth savings, drastically reducing
disk I/O.

Intelligent Load Shedding Based on the previous re-
sults of bandwidth savings and disk performance, we
simulate the effective bandwidth improvement (times)
given a target link capacity using ILS in Figure 10. We
vary the link capacity from 1Mbps to 5Gbps, and assume
one 7200RPM SATA disk.

We see that the effective bandwidth improvement of
both MRC and SRC approaches one as link capacity in-
creases, but SRC drops much faster than MRC. With
smaller chunk sizes, SRC shows a high effective band-
width with slow links due to its high compression rate,
but the effective bandwidth quickly degrades as the link
capacity grows. This is because with small chunks, the
disk soon becomes the bottleneck of the system. In the
same context, SRC with larger chunk sizes performs bet-
ter with fast links, but shows a worse bandwidth im-
provement for slow links due to its low compression rate.

MRC outperforms SRC regardless of link speed, and
it sustains high effective bandwidth by leveraging mul-
tiple chunk sizes. If the link is slow, MRC fetches
even the smallest chunks from disk, suppressing most re-
dundancy. As the link capacity increases, MRC stops

 0.5

 1

 2

1 2 5 10 20 50 100200 500 1K 2K 5K

Ba
nd

w
id

th
 Im

pr
ov

em
en

t (
x)

Link Bandwidth (Mbps)

MRC, d=2, m=32
SRC, c=1K

SRC, c=16K
No ILS

(a) News Sites

 0.5

 1

 2

 4

 8

1 2 5 10 20 50 100200 500 1K 2K 5K

Ba
nd

w
id

th
 Im

pr
ov

em
en

t (
x)

Link Bandwidth (Mbps)

MRC, d=2, m=32
SRC, c=1K

SRC, c=16K
No ILS

(b) Linux Kernel

Figure 10:Effective Bandwidth Improvement over Link Capacity (c: avgchunk size, d: degree, m: min chunk size) – as link
capacity increases and disk performance becomes a bottleneck, MRC sheds cache hits on smaller chunks first, leading to a graceful
degradation in effective bandwidth. With ILS disabled, thebandwidth collapses to the bottleneck disk speed. Note log-scale Y-axis.

fetching the smaller chunks from disk, and focuses on
the larger chunks rather than completely disabling com-
pression, gracefully degrading the effective bandwidth.
When ILS is disabled, the effective bandwidth of all three
configurations collapses to the bottleneck disk speed.

5 Implementation
The Wanax prototype consists of about 18,000 lines of
C code sharing the same MRC/SRC code base with the
simulator in§4.

PPTP/GRE Tunneling To provide easy access to end
users, Wanax is implemented as an Internet gateway
with PPTP/GRE tunneling, with TUN/TAP [42] support
planned for the near future. Currently, users need to spec-
ify the IP address of Wanax in their PPTP client on Linux
(or to set up a VPN client on Microsoft Windows), after
which all traffic from the user is forwarded to the Wanax
system. Wanax performs content fingerprinting only on
TCP streams, and bypasses all non-TCP packets.

Reconstructing TCP Byte Streams While a fully
transparent solution could intercept all IP packets and
reconstruct TCP streams, that creates unnecessary com-
plexity between layer 3 and 4. Instead, we intercept each
TCP connection from the client, and redirect it to Wanax.
This greatly simplifies the buffering process since Wanax
can use the regular socket interface to recover the origi-
nal content. We implement this in the PPTP server [26]
by modifying the destination address and port of the in-
coming packets from the client, to those of Wanax. Sim-
ilar to network address translation (NAT), we store this
mapping in the address translation table, and recover the
original address and port for the outgoing packets from
Wanax to the client. This requires about 500 lines of
PPTP server code modification.

Storage System We use HashCache [6] not only as
an HTTP proxy, but also as scalable storage for storing
and retrieving the chunk content as well as the chunk
name hint. With a highly memory-efficient indexing
scheme, HashCache fully utilizes a Terabytes-sized disk
with less than 256 MB of physical memory, which is

an ideal storage system for developing regions. Hash-
Cache is designed to use at most one disk seek for read-
ing a random chunk, and performs group writes of re-
lated chunks to minimize disk latency for future reading.
Wanax uses two special HashCache APIs,hc peek()
andhc hint(). hc peek() tells the existence of a
chunk without performing actual disk I/O, and we use
it for ILS and chunk name hints.hc hint() exports
the queuing status of the disk I/Os and is used for ILS
calculations.

Optimizing Transport Protocol Inter-Wanax com-
munication uses a set of techniques to improve network
performance over high-latency WANs. While imple-
menting a fully-custom transport protocol might yield
some additional benefit, we opt for simplicity and use
TCP variants optimized for high-delay, low-bandwidth
links [14, 15]. They modify the congestion avoidance
algorithm so that they can quickly increase the conges-
tion window even under high latency. In addition, Wanax
multiplexes all communication over a set of long-lived
TCP connections, avoiding an extra connection setup
overhead of one RTT [23]. We also disable slow-start
after idle time because we carefully control the number
of connections per link.4 These techniques are help-
ful especially for short-lived HTTP connections, which
dominates traffic in the developing world [11]. In our
tests, we find this combination yields close to the line
speed even for many short connections.

Minimizing MRC Computation Overhead While
MRC preserves high bandwidth savings without sacri-
ficing disk performance, it consumes more CPU cycles
in fingerprinting and hash calculation due to an increased
number of chunks. Figure 11 shows average time for run-
ning Rabin’s fingerprinting algorithm and SHA-1 on one
chunk with an average size of 64 KB from a 10 MB file.
Surprisingly, Rabin’s fingerprinting, though it is known
to be computationally efficient, turns out to be still quite
expensive, taking three times more than SHA-1. How-

4sysctl ’tcp slow start after idle’ in Linux.

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

R
un

ni
ng

 T
im

e
(m

s)

Average Chunk Size (bytes)

Rabin, Pentium III 850Mhz
SHA-1, Pentium III 850Mhz

Rabin, Pentium D 2.8Ghz
SHA-1, Pentium D 2.8Ghz

Figure 11:MRC Computation Overhead for 64KB Block

ever, the aggregate SHA-1 cost increases as MRC’s leaf
chunk size decreases. If naively implemented, the total
CPU cost of an MRC tree with a heightn would ben ×

Rabin’s fingerprinting time + sum of SHA-1 calculation
of each level.

We consider two general optimizations which can be
applied to both S-Wanax and R-Wanax. First, we run
Rabin’s fingerprinting on content only once, detect the
smallest chunk boundaries, and derive the larger chunk
boundaries from them. Second, we compute SHA-1
hashes only when necessary using the chunk name hint.
For example, if S-Wanax knows that this chunk has been
sent to R-Wanax before, S-Wanax assumes all of its chil-
dren are already in R-Wanax and sends only the name
of the parent. Likewise, if R-Wanax knows that a chunk
has been stored on disk before, it does not re-store its
children.

In addition, we implement an R-Wanax specific opti-
mization. When the top-level chunk is a miss with R-
Wanax but there are some chunk hits in the lower lev-
els in the MRC tree, we only need to run fingerprinting
with the cache-missed candidate list chunks. In order to
support this, we now store a Rabin’s fingerprint value (8
bytes) along with each chunk name hint. If a chunk in
the candidate list is a cache hit, we can retrieve the fin-
gerprint value for the chunk. If a chunk is a cache miss,
we run the fingerprinting function to find and store any
smaller chunks. We now know Rabin’s fingerprint values
for all chunks in the candidate list, so we can also recon-
struct any parents without running the fingerprinting on
the cache-hit chunks.

These optimizations are mainly for the case of chunk
cache hits, where more CPU cycles are needed to deliver
the chunks to the client. In case of a chunk cache miss,
the bottleneck will still be in the slow WAN link for the
developing worlds and consuming extra CPU cycles will
not affect the download throughput.

6 Evaluation
In this section, we evaluate our prototype implementa-
tion of Wanax. Except for the realistic traffic test in the
middle of this section, our tests use 1GHz AMD Athlon
64 X2 CPU machines equipped with 1GB RAM and a
SATA disk. We divide them into two regions to rep-

 0.3

 0.35

 0.4

 0.45

 0.5

-50 -40 -30 -20 -10 0

T
h
ro

u
h
g
p
u
t
(M

b
p
s
)

Bandwith Saving (%)

128B

64KB
 BASE

SRC
MRC

(a) 100% Cache Miss

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

T
h
ro

u
h
g
p
u
t
(M

b
p
s
)

Bandwith Saving (%)

128B

64KB BASE
SRC
MRC

(b) 100% Cache Hit

Figure 12:Cache Miss and Cache Hit Performance – even on
all-hit or all-miss workloads, the extra overheads of MRC are
small compared to SRC. The best SRC performers on this set
use large chunk sizes, which would produce poor compression
on realistic workloads.

resent the content provider and the developing region,
with intra-region bandwidths set to 100Mbps. We vary
the bandwidth and latency of the bottleneck WAN link
connecting the two regions, depending on the evaluation
scenarios. We have an origin server and an S-Wanax in
the content provider side, and a client and two R-Wanax
nodes in the developing region. Both the SRC and MRC
tests are conducted using the same Wanax servers with
the same TCP optimizations. To emulate the effect of
large working sets which do not fit in memory, we dis-
able in-memory cache for serving chunk content.

Microbenchmark For our microbenchmark, we use
two 1 MB files that have 90% redundancy using a 64-
byte chunk size. The bottleneck WAN link is set to
512Kbps with a 200ms RTT. We download the first file
twice to generate a cold cache miss and a complete cache
hit, and then download the second file to generate a par-
tial cache hit. We repeat the experiment by increasing
the number of peers, and performing ILS. The down-
loading throughput (effective bandwidth) without Wanax
(BASE) is only 0.41 Mbps due to the high WAN latency.
We test SRC with chunk sizes from 128 bytes to 64KB,
and a degree-8 MRC using a 128-byte minimum and
64KB maximum chunks.

Figure 12 (a) shows the bandwidth savings and
throughputs when downloading the first file. Since ev-
ery chunk is a cache miss, S-Wanax sends the content as
well as the chunk name. Due to the chunk name over-
head, SRC consumes more bandwidth than BASE, with
up to 48% overhead for 128-byte chunks. However, the
throughput is higher than BASE, reaching 0.45Mbps for
64KB chunks, due to the optimized TCP between Wanax
nodes. On the other hand, the overhead of MRC is neg-
ligible since it uses the largest chunk size of 64KB for
most cache misses, yielding an overhead of 5.6% and a
throughput of 0.43Mbps.

Figure 12 (b) compares MRC with SRC for a second
download of the same file. As expected, SRC with the

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100

Th
ro

uh
gp

ut
 (M

bp
s)

Bandwith Saving (%)

128B

1KB

64KB

 BASE
SRC
MRC

MRC-ILS

(a) One node

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100

Th
ro

uh
gp

ut
 (M

bp
s)

Bandwith Saving (%)

128B

1KB

64KB

 BASE
SRC
MRC

(b) Two nodes

Figure 13:Performance with 90% redundancy and 512Kbps WAN link – MRC without ILS produces much better compression
than any SRC configuration, and throughput is comparable to the best SRC. With ILS enabled, MRC produces better compression
and throughput than any SRC configuration. When peering is used, disk is not a bottleneck, and enabling ILS has no effect.

large chunk sizes (16, 32, and 64KB) shows the best
throughput of 15Mbps.5 As the chunk size decreases,
the throughput degrades, and the bandwidth savings is
also reduced due to the per-chunk metadata overhead.
However, MRC achieves both high throughput and band-
width savings since they use the largest chunk size in this
case. The slightly lower throughput of MRC versus SRC
with large chunks is because MRC generates multiple
chunk sizes for the first download, spreading the layout
of the large chunks on disk, whereas the SRC download
stores all of the chunks in sequence on disk.

Figure 13 (a) depicts the performance of download-
ing the second file after warming the cache with the
first file (90% redundancy). In this particular workload,
SRC with 1KB chunks is the best configuration achiev-
ing both the highest bandwidth savings (80%) and high-
est throughput (2Mbps). MRC, in comparison, provides
a higher bandwidth savings (89%) than any SRC scheme,
but without ILS, the disk becomes the bottleneck and the
throughput is almost the same as the best SRC. Enabling
ILS raises the MRC throughput to 2.4Mbps at the cost of
bandwidth savings, but beats every SRC configuration on
both bandwidth savings and throughput – ILS automati-
cally finds the sweet spot regardless of the workload.

Figure 13 (b) presents the effect of peering. The exper-
iment is the same as the previous test, but now includes
another Wanax peer in the developing region. Since peer-
ing allows Wanax to access multiple disks in parallel, we
can expect improved throughputs by mitigating the disk
bottleneck. However, for SRC, the lower compression
rate causes the WAN bandwidth to be the bottleneck, so
peering does not help. In comparison, MRC benefits sig-
nificantly from peering, achieving 3.4Mbps throughput.
With disk no longer the bottleneck, ILS is not necessary,
and enabling it does not shed any load.

Realistic Traffic To test more general Web browsing
in the developing regions, we use Alexa Top Sites [3]

5The throughput is limited by the 200ms link latency since thetotal
download time is 500-600ms. Downloading a larger file (10 MB)yields
44 Mbps throughput.

and YouTube [46] for testing using realistic traffic. We
use the “pc850” nodes on Emulab [43], each equipped
with an 850MHz Pentium III CPU and 512MB RAM.
The bottleneck WAN link is set to 1Mbps with a 1000ms
RTT, mimicking a satellite link commonly found in the
developing world. First, we collect packet-level traces
from Alexa’s top 10 sites for Ghana and Nigeria, to re-
flect common Web browsing activity in these regions,
including both cacheable and uncacheable objects. We
replay 5,000 connections with 200 simultaneous clients
on the traffic, and measure the response time. We also
pick one of the most popular videos at the time of test-
ing 6 from YouTube, and have 100 clients simultaneously
download the whole 18 MB clip. YouTube’s video con-
tent is not cacheable by standard Web proxies since its
URL is in a customized format and changes for each
download. This test is intended to reflect a classroom
scenario where a number of students watch the same
clip roughly at the same time. We introduce an 1 sec-
ond interval between the client requests, and measure the
throughput of each transfer. For these experiments, we
use only one R-Wanax, configured with either a degree-
8 MRC tree or a 1 KB SRC configuration, which has
shown good performance and bandwidth savings.

Figure 14 (a) shows the response time CDFs for the
Alexa workload. The average object size is 5,425 bytes
and the median is 570 bytes. MRC outperforms both
SRC and direct transfer (BASE), and shows the median
response time of 1.5 seconds while BASE and SRC show
6.7 and 3.8 seconds each. MRC and SRC are generally
faster than BASE because they fetch most objects from
the local disk cache. However, on this workload, MRC
typically uses one disk read per object while SRC fre-
quently uses multiple disk I/Os per object. This behav-
ior explains the performance difference between the two,
and the disk latency sometimes makes SRC worse than
BASE.

Figure 14 (b) shows the YouTube results. The bitrate
of the video is 490 Kbps and the BASE curve shows

6The first weekly address by President Obama on 01/24/09

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

%
 U

se
rs

Response Time (sec)

BASE
MRC-8, m=128

SRC, c=1K

(a) Alexa

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

%
 U

se
rs

Throughput (Kbps)

BASE
MRC-8, m=128

SRC, c=1K
Normal Quality

High Quality

(b) YouTube

Figure 14:Realistic Traffic – both MRC and SRC provide compression on the Alexa workload, but MRC’s median response time
is 1.5 seconds, compared to 3.8 for SRC. For the YouTube test,all students would be able to view the video without interruption
using MRC, while with SRC, it would be 20% for the high-quality version and 50% for the low-quality version.

 0

 10

 20

 30

 40

 50

Slides A Slides B

T
hr

ou
gh

pu
t (

M
bp

s)

SATA
SCSI

Figure 15:Enterprise Environment – with no link bottleneck,
the underlying system performance can be measured. No stan-
dard test exists for these systems, but these figures are compa-
rable to those published for commercial systems.

that nobody would be able to watch the clip reliably on
a 1 Mbps link. SRC would satisfy only about 20% of
the users while MRC would deliver the video to all 100
clients without interruption. The median throughputs are
809 Kbps and 309 Kbps for MRC and SRC each. We
test the lower quality video (320 Kbps) of the same con-
tent, and find that SRC satisfies half of the users. Without
a WAN accelerator, only two or three clients can watch
the clip at any given time, which makes using classroom
video problematic.

Enterprise Environment Finally, we evaluate Wanax
in an enterprise-like environment to determine how well
it performs compared to commercial WAN accelerators.
Unfortunately, while vendors publish performance fig-
ures, none appear to publish the test scenarios they use.
Testing in industry magazines uses LANs to remove net-
work capacity as the bottleneck, which we also use in
this test. That is, we focus on the impact of disk per-
formance by separating the network delay from the over-
all throughput. This is because the disk performance is
the bottleneck in higher link capacity enterprise environ-
ments. A high-end commercial product targeting large
offices or data centers uses multiple small capacity SCSI
disks,7 rather than one large capacity disk [32].

71U product supporting 45Mbps uses 4 disks, 3U product support-
ing 310Mbps uses 16 disks.

We create three sets of PowerPoint slides – an original
deck that is 11.9 MB, and two modified decks that add
slides to this deck, yielding a 13.9 MB file (Slides A)
and a 14.9 MB file (Slides B). Compared with the origi-
nal deck, these have redundancies of 86% and 81%. This
represents a scenario where multiple people in different
offices are collaborating on a presentation. We first warm
the Wanax cache with the original file, and measure the
throughput of the two modified slide decks. The mea-
sured bandwidth savings correspond to the redundancy
in the files. We use MRC degree 8 with the minimum
chunk size of 128 bytes, and repeat the experiments with
two different disks.

As shown in Figure 15, both file downloads achieve
slightly more than 20 Mbps with a single 7200 RPM
SATA disk at R-Wanax. The slightly larger redundancy
of Slides A (86%) incurs more disk hits than Slides B
(81%), and it is reflected in B’s slightly larger through-
put. With a faster 15K RPM SCSI disk, the throughput
almost doubles in both cases. In examining the config-
urations of one of the leading WAN accelerator compa-
nies [32], we see that their per-disk performance ranges
from 8 Mbps to 20 Mbps depending on the configura-
tion. Since we have incomplete information about the
testing scenario, we cannot draw any firm conclusions,
but our range of 20-40 Mbps suggests that we have at
least comparable performance to commercial solutions
in these higher-end configurations, and our memory pres-
sure analysis suggests that Wanax does so using a small
fraction of the memory of these systems.

7 Related Work
Much work, both commercial and academic, has been
done in the broad area of redundancy elimination for net-
work traffic. Web caching has been an active field, with
the first-generation caches [8, 17] storing unchanging ob-
jects in their entirety, often with protocol support. Later
techniques included delta encoding [19] to reduce traffic
for object updates, and duplicate detection to suppress
downloading of aliased HTTP objects [20].

Spring and Wetherall [36] further extend the pre-

vious approaches to sub-packet granularity, and de-
velop a protocol-independentcontent fingerprinting (CF)
scheme that eliminates redundancy over a single link.
Recently, Anandet al. [4] extend this idea on ISP routers,
with an emphasis on redundancy-aware routing algo-
rithms. RTS-id [2] also eliminates redundancy in the
wireless environment by caching recently transferred
packets through eavesdropping. However, they all work
on a per-packet basis at the link layer, which limits the
potential bandwidth saving to the packet size. Since
Wanax operates on byte streams, it does not have such
limits.

Content fingerprinting has been widely adapted in
many applications, including network file systems [5,
21], Web proxies [7, 30], file transfer services [27, 28],
and Web servers [24]. However, all of these systems
are application-specific, and do not work across pro-
tocols. DOT [41] proposes a flexible architecture for
generic data transfer, which is protocol independent, but
not transparent, and requires application-level modifica-
tion. Ditto [10] extends DOT, and targets wireless mesh
network environments. It is complementary to Wanax
since Wanax focuses on eliminating redundancy on the
bottleneck WAN link.

There are a number of commercial WAN accelera-
tors [9, 33, 35] as well. They operate below the appli-
cation layer, so they are both transparent and protocol
independent. However, they are designed to run on ded-
icated server-class appliances with fast disks and a large
pool of memory. Also, their typical enterprise deploy-
ment scenario is a star topology where branch offices are
speaking only to a central office. Running them on the
resource-limited shared machines with mesh topology in
the developing world would be problematic leading to
poor performance if possible at all. Instead, Wanax is
designed from the scratch to specifically address the de-
veloping world’s needs, and we believe some of our tech-
niques such as MRC and ILS can also be applied to the
enterprise scenarios to reduce the deployment cost.

To the best of our knowledge, Wanax is the first
system to simultaneously use multiple chunk sizes.
Riverbed [33] uses a bottom-up segmentation scheme [1]
that first uses 100 byte chunks, and then creates larger
pseudo-chunks that contain the names of the smaller
chunks [31], which is similar to MRC-Small. This ap-
proach provides some of the disk efficiency and band-
width benefits of MRC, but still requires access to all
of the metadata of the 100-byte chunks, thereby retain-
ing the memory pressure of the smaller chunks. In
the context of large file replication, Remote Differential
Compression [39] uses a similar recursive segmentation
scheme with a minimum chunk size of 1 KB, in order to
reduce the size of chunk names sent over the network.
Most recently, multi-resolution handprinting [37] pro-

poses an efficient technique for choosing the best chunk
sizes for the given similar files, by comparing handprints
- a deterministic subset of chunk hashes with different
chunk sizes. We share the same spirit of exploiting trade-
offs of multiple chunk sizes. However, their method is
based on static analysis on the files they already have.
MRC is a dynamic counterpart, and is directly applica-
ble for online processing.

Finally, there are a number of active research projects
for the developing world. DitTorrent [34] shares the
same idea of exploiting better regional connectivity as
Wanax, but focuses on scheduling P2P dialup connec-
tions. As systems like rural WiFi [25] or WiMAX [44]
extend the Internet to new regions, Wanax can help im-
prove the effective bandwidth delivered.

8 Conclusion
We have presented the design and implementation of
Wanax, a flexible and scalable WAN accelerator target-
ing developing regions. Using a novel chunking tech-
nique, MRC, Wanax provides high compression and high
throughput, while maintaining a small memory footprint.
This profile enables it to run on resource-limited shared
hardware, an important requirement in developing-world
deployments. By exploiting MRC to direct load shed-
ding, Wanax is designed to maximize the effective band-
width even when disk performance is poor due to over-
loading. The peering scheme used in Wanax allows mul-
tiple servers in a region to share their resources, and
thereby exploit faster and cheaper local-area connectivity
instead of always using the WAN. In summary, through
a careful design addressing the developing world chal-
lenges, Wanax provides customized, cost-effective WAN
acceleration to the region with commodity hardware. We
have begun deploying Wanax at a few partner sites in
Africa, and expect to have more results about real-world
operation in the future.

Acknowledgment
We would like to thank Anirudh Badam for providing
HashCache, and Marc Fiuczynski for arranging and co-
ordinating our deployments in Africa. We also thank our
shepherd, Michael Isard as well as anonymous USENIX
ATC reviewers. This research was partially supported
by NSF awards CNS-0615237 and CNS-0916204, and
KAIST awards G04100004.

References
[1] US patent #7,116,249: Content-based segmentation scheme for

data compression in storage and transmission including hierar-
chical segment representation, 2006.

[2] A FANASYEV, M., ANDERSEN, D. G., AND SNOEREN, A. C.
Efficiency through eavesdropping: Link-layer packet caching. In
USENIX NSDI (Apr. 2008).

[3] A LEXA THE WEB INFORMATION COMPANY.
http://www.alexa.com/.

[4] A NAND , A., GUPTA, A., AKELLA , A., SESHAN, S., AND

SHENKER, S. Packet caches on routers: The implications of uni-
versal redundant traffic elimination. InSIGCOMM (2008).

[5] A NNAPUREDDY, S., FREEDMAN, M. J., AND MAZIERES, D.
Shark: Scaling file servers via cooperative caching. InUSENIX
NSDI (2005).

[6] BADAM , A., PARK , K., PAI , V., AND PETERSON, L. Hash-
cache: Cache storage for the next billion. InProceedings of the
6th conference on Networked Systems Design and Implementa-
tion (NSDI’09) (2009).

[7] CHAKRAVORTY, R., CLARK , A., AND PRATT, I. Optimizing
web delivery over wireless links: Design, implementation and ex-
periences. InIEEE Journal of Selected Areas in Communications
(JSAC) (2003).

[8] CHANKHUNTHOD , A., DANZIG , P. B., NEERDAELS, C.,
SCHWARTZ, M. F., AND WORRELL, K. J. A hierarchical in-
ternet object cache. InUSENIX ATC (1996), pp. 153–163.

[9] CITRIX SYSTEMS. http://www.citrix.com/.

[10] DOGAR, F., PHANISHAYEE, A., PUCHA, H., RUWASE, O.,
AND ANDERSEN, D. Ditto - A System for Opportunistic Caching
in Multi-hop Wireless Mesh Networks. InMobiCom (2008).

[11] DU, B., DEMMER, M., AND BREWER, E. Analysis of WWW
traffic in Cambodia and Ghana. InWWW (2006).

[12] FAN , L., CAO, P., ALMEIDA , J., AND BRODER, A. Z. Sum-
mary cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking 8, 3 (2000), 281–293.

[13] FIREFOX WEB BROWSER.
http://www.mozilla.com/firefox/.

[14] FLOYD , S. Highspeed tcp for large congestion windows. RFC
3229, 2003.

[15] HA , S., RHEE, I., AND XU, L. Cubic: a new tcp-friendly
high-speed tcp variant.SIGOPS Operating Systems Review. 42, 5
(2008), 64–74.

[16] L IBNIDS. http://libnids.sourceforge.net/.

[17] MALTZAHN , C., RICHARDSON, K. J., AND GRUNWALD , D.
Performance issues of enterprise level web proxies. InIn Pro-
ceedings of the SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (1997).

[18] MANBER, U. Finding similar files in a large file system. In
Proceedings of the USENIX Winter 1994 Technical Conference
(1994).

[19] MOGUL, J., KRISHNAMURTHY, B., DOUGLIS, F., FELDMANN ,
A., GOLAND , Y., VAN HOFF, A., AND HELLERSTEIN, D. Delta
encoding in HTTP. RFC 3229, January 2002.

[20] MOGUL, J. C., CHAN , Y. M., AND KELLY, T. Design, im-
plementation, and evaluation of duplicate transfer detection in
HTTP. InUSENIX NSDI (2004).

[21] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A
low-bandwidth network file system. InSOSP (2001).

[22] ONE LAPTOPPER CHILD . http://www.laptop.org/.

[23] PADMANABHAN , V. N., AND MOGUL, J. C. Improving http
latency. Computer Networks and ISDN Systems 28, 1-2 (1995),
25–35.

[24] PARK , K., IHM , S., BOWMAN , M., AND PAI , V. S. Supporting
practical content-addressable caching with czip compression. In
USENIX ATC (2007).

[25] PATRA , R., NEDEVSCHI, S., SURANA , S., SHETH, A., SUBRA-
MANIAN , L., AND BREWER, E. Wildnet: Design and implemen-
tation of high performance wifi based long distance networks. In
USENIX NSDI (2007).

[26] POPTOP- THE PPTP SERVER FORL INUX .
http://www.poptop.org/.

[27] PUCHA, H., ANDERSEN, D. G.,AND KAMINSKY, M. Exploit-
ing similarity for multi-source downloads using file handprints.
In USENIX NSDI (Cambridge, MA, Apr. 2007).

[28] PUCHA, H., KAMINSKY, M., ANDERSEN, D. G., AND

KOZUCH, M. A. Adaptive file transfers for diverse environ-
ments. InUSENIX ATC (2008).

[29] RABIN , M. O. Fingerprinting by random polynomials. Tech.
Rep. TR-15-81, Harvard University, 1981.

[30] RHEA, S., LIANG , K., AND BREWER, E. Value-based web
caching. InProceedings of the Twelfth International World Wide
Web Conference (May 2003).

[31] RiOS 5.5 Technical Whitepaper.
http://www.riverbed.com/docs/
TechOverview-Riverbed-RiOS_5.5.pdf.

[32] RIVERBED STEELHEAD PRODUCT FAMILY DATASHEET.
http://www.riverbed.com/docs/
DataSheet-Riverbed-FamilyProduct.pdf.

[33] RIVERBED TECHNOLOGY, INC. http://www.riverbed.
com/.

[34] SAIF, U., CHUDHARY, A. L., BUTT, S.,AND BUTT, N. F. Poor
man’s broadband: peer-to-peer dialup networking.SIGCOMM
Computer Communication Review. 37, 5 (2007), 5–16.

[35] SILVER PEAK SYSTEMS, INC.
http://www.silver-peak.com/.

[36] SPRING, N. T., AND WETHERALL, D. A protocol-independent
technique for eliminating redundant network traffic. InACM SIG-
COMM (2000).

[37] TANGWONGSAN, K., PUCHA, H., ANDERSEN, D. G., AND

KAMINSKY, M. Efficient similarity estimation for systems ex-
ploiting data redundancy. InProc. IEEE INFOCOM (San Diego,
CA, Mar. 2010).

[38] TCPDUMP.http://www.tcpdump.org/.

[39] TEODOSIU, D., BJRNER, N., GUREVICH, Y., MANASSE, M.,
AND PORKKA , J. Optimizing file replication over limited-
bandwidth networks using remote differential compression. Tech.
Rep. MSR-TR-2006-157, Microsoft Research, Nov. 2006.

[40] THALER, D. G.,AND RAVISHANKAR , C. V. Using name-based
mappings to increase hit rates.IEEE/ACM Transactions on Net-
working 6, 1 (Feb. 1998), 1–14.

[41] TOLIA , N., KAMINSKY, M., ANDERSEN, D. G., AND PATIL ,
S. An architecture for internet data transfer. InUSENIX NSDI
(2006).

[42] UNIVERSAL TUN/TAP DRIVER.
http://vtun.sourceforge.net/tun/.

[43] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND

JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. InOSDI (2002).

[44] WIMAX. http://www.wimaxforum.org/home/.

[45] WOLMAN , A., VOELKER, G. M., SHARMA , N., CARDWELL ,
N., KARLIN , A. R., AND LEVY, H. M. On the scale and per-
formance of cooperative web proxy caching. InSymposium on
Operating Systems Principles (1999).

[46] YOUTUBE. http://www.youtube.com/.

