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Abstract
UCop, the “utility coprocessor,” is middleware that

makes it cheap and easy to achieve dramatic speedups
of parallelizable, CPU-bound desktop applications using
utility computing clusters in the cloud. To make UCop
performant, we introduced techniques to overcome the
low available bandwidth and high latency typical of the
networks that separate users’ desktops from a utility
computing service. To make UCop economical and easy
to use, we devised a scheme that hides the heterogene-
ity of client configurations, allowing a single cluster to
serve virtually everyone: in our Linux-based prototype,
the only requirement is that users and the cluster are us-
ing the same major kernel version.

This paper presents the design, implementation, and
evaluation of UCop, employing 32–64 nodes in Amazon
EC2, a popular utility computing service. It achieves
6–11× speedups on CPU-bound desktop applications
ranging from video editing and photorealistic rendering
to strategy games, with only minor modifications to the
original applications. These speedups improve perfor-
mance from the coffee-break timescale of minutes to the
15–20 second timescale of interactive performance.

1 Introduction

The hallmark that separates desktop computing from
batch computing is the notion of interactivity: users can
see their work in finished form as they go. However,
many CPU-intensive applications that are best used inter-
actively, such as video editing, 3D modeling, and strat-
egy games, can be slow enough even on modern desktop
hardware that the user experience is disrupted by long
wait times. This paper presents the Utility Coproces-
sor (UCop), a system that dramatically speeds up desk-
top applications that are CPU-bound and parallelizable
by supplementing them with the power of a large data-
center compute cluster. We demonstrate several applica-
tions and workloads that are changed in kind by UCop:

slow jobs that take several minutes without UCop be-
come interactive (15–20 seconds) with it. Thanks to
the recent emergence of utility-computing services like
Amazon EC2 [8] and FlexiScale [45], which rent com-
puters by the hour on a moment’s notice, anyone with a
credit card and $10 can use UCop to speed up his own
parallel applications.

One way to describe UCop is that it effectively con-
verts applicationsoftwareinto a scalable cloudservice
targeted at exactly one user. This goal entails five re-
quirements.Configuration transparencymeans the ser-
vice matches the user’s application, library, and con-
figuration state.Non-invasive installationmeans UCop
works with a user’s existing file system and application
configuration.Application generalitymeans a developer
can easily apply the system to any of a variety of applica-
tions, andease of integrationmeans it can be done with
minimal changes to the application. Finally, the system
must beperformant.

UCop achieves these goals. To guarantee that the clus-
ter uses exactly the same inputs as a process running on
the client, it exclusively uses clients’ data files, applica-
tion images, and library binaries; the cluster’s own file
system is not visible to clients. The application exten-
sion is a simple user-mode library that can be installed
easily and non-invasively. We demonstrate UCop’s gen-
erality by applying it to the diverse application areas
of 3D modeling, strategy games, and video editing; we
also describe six other suitable application classes. Fi-
nally, UCop is easy to integrate: with our 295-line patch
to a video editor, users can exploit a 32-node cluster
(at $7/hour), transforming three-minute batch workflow
for video compositing into 15-second interactive WYSI-
WYG display.

The biggest challenge in splitting computation be-
tween the desktop and the cloud is achieving good per-
formance despite the high-latency, low-bandwidth net-
work that separates them. It is dealing with this chal-
lenge that most distinguishes our work from past “depart-
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ment clusters,” such as NOW [9], MOSIX [12], and Con-
dor [40], which assume users and compute resources are
colocated and connected by a fast network. UCop com-
bines a variety of old and new techniques to address net-
working issues. To reduce latency penalties, we carefully
relax the file consistency contract and use automatic pro-
filing to send cache validation information to the server
before it is needed. To reduce bandwidth penalties,
we use remote differential compression. A library-level
multiplexer on the cluster end of the link scales the ef-
fects of these techniques across many servers. This com-
bination reduces UCop’s overhead for remotely running
a process (assuming most of its dependencies are cached
in the cloud) down to just a few seconds, even on links
with latencies of several hundred milliseconds.

Of course, it makes little sense to pay a remote-
execution overhead of a few seconds for a computation
that could be done locally in less time. UCop is also
not practical for tasks that are I/O bound, or for multi-
threaded applications with fine-grained parallelism. In
other words, UCop will not speed up an Emacs session or
reduce the wait while Outlook indexes incoming email.
However, there is an important class of desktop applica-
tions that are both CPU-bound and parallelizable; UCop
enhances such applications less invasively and at more
interactive timescales than existing systems.

The contributions of this paper are:

• We identify a new cluster computing configuration:
remote parallelization for interactive performance,
which provides practical benefit to independent, in-
dividual users.

• We identify the primary challenges of this new con-
figuration: the latency and bandwidth constraints of
the user’s access link.

• We introduce prethrowing and task-end-to-start
consistencyas techniques for dealing with that link.

• We add remote differential compression, a cluster-
side multiplexer, and a shared cache, resulting in
a system that can invoke a wide parallel computa-
tion using just four round-trip latencies and minimal
bandwidth.

• We show our system is performant, easy to deploy,
and can readily adapt existing programs into paral-
lel services running in the cloud.

We begin with a review of related work in§2. §3
describes UCop’s architecture and implementation, and
§4 describes UCop applications.§5 has several evalu-
ations: microbenchmarks (§5.1), end-to-end application
benchmarks (§5.2), a decomposition of each optimiza-
tion’s effect (§5.3), a sensitivity analysis to latency and

bandwidth (§5.4), and an analysis of the optimized sys-
tem’s time budget (§5.5). Finally,§6 concludes.

2 Prior Work

UCop bears similarity to prior research on computa-
tional clusters, grids, process migration, network file sys-
tems, and parallel programming models.

Computational clustersare collections of computers
that are typically homogeneously configured, geograph-
ically close, and either moderately or very tightly cou-
pled. Sprite [32] is a distributed operating system that
provides a network file system, process-migration facil-
ities, and a single system image to a cluster of worksta-
tions. MOSIX [12] is a management system that runs on
clusters of x86-based Linux computers; it supports high-
performance computing for both batch and interactive
processes via automatic resource discovery and dynamic
workload distribution. Condor [40] is a software frame-
work that runs on Linux, Unix, Mac OS X, FreeBSD, and
Windows, and supports the parallel execution of tasks on
tightly coupled clusters or idle desktop machines. The
Berkeley NOW [9] system is a distributed supercomputer
running on a set of extremely tightly coupled worksta-
tions interconnected via Myrinet. Cluster systems have
been applied to interactive applications, including some
of those we consider in§4, such as compilation [28] and
graphics rendering [25]. However, for transparent paral-
lelization, clusters require the client to be one of the ma-
chines in the cluster, requiring invasive installation. By
contrast, in the UCop system architecture, the client is ar-
bitrarily configured, geographically remote, and largely
decoupled from the cluster.

Computational grids [19] are collections of comput-
ers that are loosely coupled, heterogeneously configured,
and geographically dispersed. Grid systems comprise a
large body of work, encompassing various projects (e.g.,
the Open Science Grid [20] and EGEE [3]), standards
(e.g., WSRF [11]), recommendations (e.g., OGSA [20]),
and toolkits (e.g., Globus [18] and gLite [5]). Although
the majority of work on grid systems is focused on batch
processing, there has been some limited research into
adding interactivity to grid systems. IC2D [14] is a
graphical environment for monitoring and steering ap-
plications that employ the ProActive Java library. I-
GASP [13] is a system that provides grid interactivity
via a remote shell and desktop. It also includes mid-
dleware for matching applications to their required re-
sources, which is considered by some [38] to be a criti-
cal problem for satisfying the quality-of-service require-
ments of interactive applications. The DISCOVER [27]
system provides system-integration middleware and an
application-control network to support runtime moni-
toring and steering of batch applications. The Interac-
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tive European Grid project [6] provides many services
intended to support interactivity, including a migrating
desktop, complex visualization services, job scheduling,
and security services [34]. However, none of this work
supports interactive applications per se, but rather pro-
vides mechanisms for interactively monitoring and ma-
nipulating a long-running distributed computation.

For a few specific types of applications, there ex-
ist massively parallel dedicated services that achieve in-
teractive responsiveness to geographically remote, de-
coupled client machines. Amazon’s Dynamo sys-
tem employs hundreds of machines to provide real-
time response to e-commerce transactions initiated by
clients [16]. Google and other search engines perform
brief bursts of highly parallel computation to answer
clients’ search queries [15]. SABRE and other on-
line reservation systems provide clients with near-instant
searching and booking for travel options [10]. However,
these specialized services do not support arbitrary paral-
lel applications, nor do they support applications whose
authoritative state resides on the client machine.

Research onprocess migration is extensive; several
surveys of this extensive body of work have been pub-
lished [29, 31, 37]. To our knowledge, no prior work
combines mechanisms and techniques as UCop does,
and none of it achieves the same set of benefits. More-
over, the prior systems that are architecturally closest to
UCop are not process-migration systems but network file
systems. In a sense, UCop is a network file system in
which the user’s machine is the file server, tuned for a
specific usage scenario.

Sun’s NFS [36] is a basicnetwork file system; in the
UCop context, NFS’s chatty protocol would make highly
inefficient use of the high-latency connection between
the client and the datacenter. The Andrew File System
(AFS) [23] and Coda [26] avoid chattiness by employ-
ing leases [22]. However, leases require the ability to
inspect the effect of every file system operation, which
would greatly impinge on our goal of non-invasive instal-
lation; rather than simply installing a new applications,
users would have to start using a new file system. UCop’s
prethrowing (§3.3) achieves the same performance ben-
efits as leases without modifying the underlying file sys-
tem.

The Low Bandwidth File System (LBFS) [30] is
specifically aimed at improving performance over low-
bandwidth WAN links. It employs caching, differen-
tial compression, and stream compression, in much the
same manner as UCop does to minimize bandwidth us-
age (§3.4). As a general remote file system, LBFS lacks
crucial optimizations for the UCop context, including our
task-based consistency model, coalescing of tasks into
jobs, cache sharing, and a library interface, all of which
we show to be critical to achieving interactive perfor-

mance (§5.3). In addition, LBFS uses leases instead of
prethrowing, so the machine that holds the authoritative
files (the server in LBFS terms, but the client in UCop
terms) must store its files using the Arla [44] AFS client.
This would require invasive installation in our scenario.

Involvedparallel programming models, such as the
Parallel Virtual Machine (PVM) [39] and the Message
Passing Interface (MPI) [17], serve more tightly-coupled
parallel applications. However, these are mechanisms for
writing new applications. UCop’s simple model, while
less general, offers much easier integration for existing
applications, even those not designed to exploit a cluster.

3 The Utility Coprocessor

In this section, we describe the design and implemen-
tation of the Utility Coprocessor. Sections 3.1 and 3.2
describe the programming model, and outline our im-
plementation of its execution environment. We then de-
scribe the optimizations required to achieve good perfor-
mance over a high-latency, low-bandwidth network link.

3.1 Programming model

We had several goals in designing UCop’s program-
ming model: simplicity for developers, generality across
applications and operating system configurations, and
good performance over slow links.

One of the mechanisms UCop uses to achieve these
goals islocation independence: applications can launch
remote processes, each of which has the same effect
as if it were a local process. Suppose an application’s
work can be divided among a set of child processes, each
of which communicates with the parent through the file
system or standard I/O. UCop provides a command-line
utility, remrun, that looks like a local worker process,
but is actually a proxy for a remotely running process.
A simple change fromexec("program -arg")
to exec("remrun program -arg") provides the
same semantics to the application while offloading the
compute burden from the client CPU.

The consistency contract is simple: each child pro-
cess is guaranteed to see any changes committed to the
client file system before the child was launched, and any
changes it makes will be committed back to the file sys-
tem before the child terminates. Thus, dependencies
among sequential children, or dependencies from child
to parent, are correctly preserved. We refer to this con-
tract astask-end-to-start consistencysemantics. Because
this contract applies to the entire file system, remote pro-
cesses seeall the same files as local client processes,
including the application image, shared library binaries,
system-wide configuration files, and user data.
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Whenremrun is used to launch a proxy child pro-
cess, it transmits anexec message to the cluster that in-
cludes remrun’s command line arguments and environ-
ment variables. The cluster picks a worker node and
launches a worker process with the specified arguments
and a replicated set of environment variables,chrooted
into a private namespace managed by the UCop daemon
(via the FUSE user-space file system framework [4]). On
each read access to an existing file, UCop faults the file
contents from the client; on each write to a non-existing
file name, UCop creates the file in a buffer local to the
node’s file system. To prevent violations of task-end-
to-start semantics from failing silently, UCop disallows
writes to existing files. Standard input and output are
shuttled between the client proxy process and the cluster
worker process. When the worker process exits, UCop
sends any surviving created files to the client. It also
sends the process exit status; the client proxy process
exits with the same status.

An example best illustrates how UCop provides loca-
tion independence. When compiling a single source file,
UCop’s remrun gcc hello.c produces an output
file identical to a locally rungcc hello.c, because
the remote version

• has the same$PATH as the client, and sees the same
directories, so uses the samegcc;

• sees the same environment, including
$LD LIBRARY PATH (shared library search
path) and$LANG (localization);

• runsgcc in the same working directory, and thus
finds the correcthello.c;

• finds the same compiler configuration and system
include files; and

• writes all its output to the the client file system in
the same place as if it had run locally.

Contrast this approach to other remote execution sys-
tems. Application-specific clusters such as compile and
render clusters [33, 35] must be configured with a ver-
sion of the compiler or renderer that matches that on
the client. Grid and utility computing clusters standard-
ize on a configuration, requiring the client configuration
to conform. Process migration systems such as NOW,
Condor, and MOSIX assume that user and worker ma-
chines have a network-shared/home and identical soft-
ware configurations—for example, so that a dynamically
linked executable built on a user’s machine can find its
shared libraries when it executes on the cluster.

The Utility Coprocessor is meant to be used by dis-
parate independent users. No single configuration is
ideal; various users sharing a cluster may have conflict-
ing configurations. The semantics presented here hide

these conflicts. Each UCop worker process mimics the
client computer, and a single cluster may do so simul-
taneously across users and applications. As we show
in §5.1.2, different Linux distributions can transparently
use the same UCop cluster without any explicit pre-
configuration. Our UCop cluster, which happens to use
GNU libc 2.3.6, never exposes its own libraries to client
applications. We have demonstrated applications that ex-
pect glibc versions as old as 2.3 and as new as 2.9.

3.2 Limitations on location independence

UCop’s location-independent compute model does
have limits: it extends only to the file system, envi-
ronment variables, process arguments, and standard I/O
pipes. Programmers UCopifying an application need to
be aware of these limits. As we will show, these limits
are not stumbling blocks in practice; a variety of appli-
cations can be UCopified easily.

Because UCop supports no interprocess communica-
tion other than standard I/O pipes, it precludes tightly-
coupled computations in which concurrent child pro-
cesses synchronize with each other using shared mem-
ory, signals, or named pipes. Some of the applications
we adapted to UCop used an unsupported mechanism;
our modifications primarily involved rerouting this com-
munication through the file system (see§4).

Another limitation is that the kernel seen by a remote
process is that of the cluster’s worker machine, not the
user’s client. This is significant for two reasons. First, the
semantics of system calls change slightly between kernel
versions. Our application tests have not yet revealed any
failures due to such a kernel incompatibility, but they are
likely in code that is tightly coupled with the kernel. Sec-
ond, there will be detectable differences in the machine-
local state exposed by the kernel, such as process lists
and socket state. UCop hides most of/dev and/proc
from workers, exposing only commonly-used pseudo-
devices such as/dev/null and /proc/self; the
latter supports commonly-used idioms for finding load-
able modules using a path relative to the currently exe-
cuting image’s path.

Finally, regular files on the client machine appear on
the remote machine as symbolic links to files named by
a hash of their contents. This is a workaround for a per-
formance problem discussed in§5.1.3. It has little effect
on most programs in practice.

3.3 Minimizing round trips

At this point, we have a basic system model with se-
mantics suitable for the class of applications we aim
to support. However, a straightforward implementation
would perform poorly on a high-latency, low-bandwidth
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link. We turn now to the problem of using that link ef-
ficiently by minimizing round-trip and bandwidth costs,
starting with the former.

An obvious requirement for reasonable performance is
to cache file contents near the cluster. The classic ques-
tion is how to ensure that cached content is fresh. Neither
frequent validation (̀a la NFS [36]) nor leases (à la AFS
[23] or Coda [26]) are compatible with UCop’s require-
ments, as detailed in§2.

Prethrow. Consistency semantics require that, for
each path a worker touches during its run, we communi-
cate the mutable binding from path to file attributes and
content. A näıve implementation might ask the client for
each binding on-demand, requiring one round-trip per
file. We observe almost all paths touched by an applica-
tion are libraries and configuration data touched onevery
run, making them easy to predict. Rather than wait for
workers to request path information serially, the client
sends a batch of path information likely to be useful be-
fore execution starts. We call this aprethrow—like a
prefetch, but initiated by the sender. A prethrow is a hint:
it can improve performance but does not change seman-
tics if the prediction is wrong.

The client maintains sets of accessed paths, indexed
by the first argument toexec. This way, the set for the
3D modeling program is maintained separately from that
for the video editor. UCop prethrows only those paths
that have been accessed more than once, to prevent pollu-
tion of the prethrow list by temporary files from previous
runs. Currently, paths do not expire out of the prethrow
list; in future versions, the server will provide a list of
useless prethrows to the client after execution, to help
the client decide which paths should expire.

One potential limitation of indexing by executable
name is that UCop does not distinguish between two dif-
ferent programs invoked via the same interpreter (e.g.,
Python). UCop may therefore send information about
paths that are not relevant. Because prethrows are hints,
compact, and cachable (§3.5), this has not been a prob-
lem in practice.

3.4 Minimizing bandwidth

In a bandwidth-constrained environment, caching is
critical. We adopt the well-known approach of caching
by immutable hash, so that if a block of data is referred
to by multiple names we only have to transmit it once.

Remote differential compression. Whole-file
caching works well for files that change rarely, such
as application binaries. However the user’s input often
changes slightly between UCop invocations. For exam-
ple, a video editor’s edit decision list (EDL) is a compact
representation of the user’s proposed manipulations to a
set of (unchanging) video input files. The EDL changes

File foo.c

Block E1A

Block F93

Block 68C

byte 0

byte n

Recipe 29D

E1A
F93
68C

Read/Write

Figure 1:Objects in UCop’s file synchronization protocol. To
make the illustration compact, 20-byte SHA-1 hashes are rep-
resented by three hexadecimal digits.

foo.c RecipeName?

foo.c = 29D

Recipe 29D?

Client
Machine

Compute
Server

Time

E1A
F93
68C

Figure 2:File transfer protocol with cold caches. To make the
illustration compact, 20-byte SHA-1 hashes are represented by
three hexadecimal digits.

slowly, at keyboard and mouse bit rates.Remote dif-
ferential compression(RDC), used by LBFS [30] and
rsync [42], is useful in this scenario. RDC detects which
parts of a file are already cached and transmits only a
small region around each changed part.

To understand our use of RDC, we first introduce some
terminology (Figure 1). UCop uses the rsync fingerprint
algorithm to divide all files’ contents into blocks with
offset-insensitive boundaries. (We plan future support
for LBFS, which is more robust to modifications.) It then
constructs arecipe for each file: a list of its constituent
blocks’ hashes, plus the file’s permissions and ownership
fields. This recipe can itself be large, so we often com-
pactly refer to it by its hash, called aRecipeName.

UCop rolls whole-file caching and RDC into a sin-
gle mechanism (Figure 2). Worker nodes resolve each
application-requested path to a RecipeName, first by
checking prethrows, then making a request to the client.
If the worker recognizes the RecipeName, it knows that it
already has the whole file cached. Otherwise, it requests
the recipe, then any blocks from that recipe it lacks.

Stream compression. After RDC, the number of
bytes that still must be transmitted can often be reduced
using conventional compression. UCop compresses its
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channels withzlib.
Cache sharing. Multiple worker processes virtually

always share files, such as the C library. It is wasteful
for the client to send this data to each worker over the
bottleneck link. Cluster nodes are interconnected with a
high bandwidth network, so it is better for the client to
send each file once to a cache shared by all workers.

We implemented this scheme by introducing a distrib-
utor node, calledremdis. Remdis has a pass-through in-
terface: it accepts jobs from the client as if it were a (fast)
cluster node, and submits jobs to workers as if it were a
client. Remdis forwards most messages in both direc-
tions without modification. However, it intercepts file
system requests, interposing its own cache. Duplicate
requests for the same content are suppressed, ensuring
that no unique block is sent over the bottleneck link more
than once. The Remdis cache does not change consis-
tency semantics because RecipeNames and content block
hashes describe immutable content.

In our experiments, remdis began to become a bottle-
neck at around 64–128 nodes. Because of its simple in-
terface, however, it would be straightforward to build a
32-wide tree of remdis nodes to extend the distribution
function to higher scales.

Job consistency.Computing and sending a prethrow
message requires the client to look up the modification
times of hundreds of files and transmit a few tens of
KiB across the bottleneck link. Invokingn tasks in-
curs these costsn times. On the other hand, using the
same prethrow message for all tasks, sent once and re-
broadcast by remdis, reduces the prethrow cost by a fac-
tor of n.

Of course, reusing a single prethrow message violates
our consistency model. If a file changes between when
Task A and Task B are launched, but B uses A’s prethrow
message, B will see the file used by A, which is now
stale. This is not a problem for groups of tasks that have
no interdependencies; we call such a collection of tasks
a job. UCop has support forjob-end-to-start consistency
semantics: each task sees any changes committed to the
client file system before its enclosingjob was launched.
Applications that can operate with these semantics group
tasks into jobs and generate one prethrow for each job.
Other thanmake, all of the applications we deployed
bundle their tasks into a job.

3.5 Client-side optimizations

The following two optimizations are performed on the
client and thus involve no changes to the protocol.

Recipe caching. Constructing a recipe on the client
is fast. However, some applications require hundreds of
recipes, and the client can not generate a prethrow until
it has them all. Thus, the client caches recipes, along

with the last-modified time (mtime) of the underlying
file. When a recipe is needed, the client uses the cached
version if the file’s mtime has not changed. For one ap-
plication, this optimization saves the client from hash-
ing 93 MiB of content, saving seconds of computation
(see§5.3).

Thread interface. Theremrun command-line utility
lets applications divide their work in a natural way, creat-
ing what seem to be local worker processes but are actu-
ally proxies for remote processes. This elegance makes
it trivial to expose remote execution opportunities in sys-
tems likemake. However, simply launching 32 or 64
local processes can take several seconds, particularly on
low-end desktop machines. This can consume a signifi-
cant fraction of our budget for interactive responsiveness.

Thus, we added aremrun() library interface. A
client that wantsn remote processes can spawnn threads
and callremrun() from each; the semantics are identi-
cal to spawning instances of the command-line version.
The library obviates the need for extra local processes in
exchange for a slightly more invasive change to the ap-
plication.

3.6 Summary

In the common case, UCop incurs four round trips:
the necessary one, plus three more to fault in changed
user input. (We believe it is possible to eliminate all but
a single RTT; see§5.5.2.) UCop also uses bandwidth
sparingly. It uploads only one copy of the path attributes
required by our consistency model, the per-task parame-
ters with duplication compressed away, and the changed
part of the job input. It downloads only the output data
and the exit codes of the tasks.

Together, these optimizations compose an algorithm
that attaches to application code with a simple inter-
face, yet minimizes both round trips and bandwidth
on the high-latency, low-bandwidth link. UCop effec-
tively transformssoftwarenot originally designed for
distributed computation into an efficient, highly parallel
applicationservicetargeted at a single user.

4 Applications

In this section, we describe various classes of applica-
tions that work well with UCop. We first describe four
applications we have already ported (with performance
evaluations to come in§5.2). We then describe other suit-
able application categories.

4.1 Make

The process of adapting software to UCop is best ex-
plained by starting with a simple example:make, the
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automatic software build tool. The user’s rules in the
Makefile file tell make how to transform input files
into output files, e.g., by invokinggcc. make assumes
that when a command completes, the output file has
been generated, and it is safe to launch a new command
that depends on that output. That is,make assumes
task-end-to-start consistency. Therefore, one can replace
gcc with remrun gcc—literally, in theMakefile
definitions—to push each compilation out to UCop. Ad-
ditionally,make has a built-in facility for exploiting par-
allelism intended to exploit a local multiprocessor:make
-j 20 launches up to 20 concurrent processes that have
no mutual ordering constraints. Withremrun, those
concurrent compiles are delegated to the UCop cluster.

Adapting make to UCop is trivial since it was de-
signed to expose parallel work as separate processes
communicating through the file system. For the mono-
lithic applications we describe next, minor modification
is required to expose concurrency as separate processes.

4.2 Blender

Blender [1] is a 3D modeling, animation, and ren-
dering program written in C and C++. A common us-
age mode is to interactively build a model using a real-
time wire-frame or shaded model; then, to refine details
and lighting, the user requests a ray-traced photorealistic
rendering. Since ray tracing is embarrassingly parallel,
Blender has a built-in facility for exploiting local mul-
tiprocessing. Specifically, it can be easily configured to
render different tiles of a scene in different threads, each
accessing the current world model via shared memory.

Blender also includes a notion of a render cluster that
can batch-process an animation. To use it, the user must
configure a cluster with software matching her current
version of Blender, with a network-mounted shared file
system such as NFS, accessible over a high-bandwidth
and low-latency network.

UCop can transform Blender’s minutes-long batch-
style frame render into an interactive-speed preview. We
modified Blender’s preview code to write the current 3D
model to a temporary file, split the frame into very small
(8-pixel-wide) tiles and dispatch a random subset of tiles
to each worker node. The randomization reduces the in-
efficiency introduced by inter-task variance; without it,
worker processes responsible for complex portions of the
scene don’t finish rendering until long after other work-
ers have gone idle. As each worker completes, it writes
its JPEG output tiles back to the file system. The parent
UI processwaits for the children; as each returns, the
tiles are read and displayed, generating a preview that is
gradually completed. These changes comprise 167 state-
ments.

One unfortunate property of Blender is its unstable

model file format: The temporary model file differs sub-
stantially from one render to the next, even when the
model is unchanged. Therefore, even minor changes
to the viewpoint or model require relatively large up-
dates. UCop’s remote differential compression (§3.4) is
able to eliminate all but 11% of the differences. With
warm caches, render requests typically transmit 779 KiB
of blocks to express the input delta. With further effort,
Blender might be updated to use a stable file format.

4.3 Chinese Checkers

Another suitable application class is turn-based strat-
egy games played against a computer opponent. The
effective skill of the computer is tightly linked to the
amount of processing time available, making players
choose between a good artificial opponent or a fast one.
Interactivity is key here: it is not fun to play against an
opponent that takes a dozen minutes to make each move.
Traversal of AI search trees is highly parallelizable, so
these games are good candidates for adaptation to UCop.

The application we use to demonstrate this class is
b1cc, a Java program that plays Chinese Checkers [21].
Its “expert player” mode is based on a 4-deep alpha-beta-
pruned minimax move-tree search.

We modified the tree search to emit a snapshot of the
game configuration using the save-game function, then
dispatch each branch of the first level of the search tree
to a separate process. Each process computes an(n−1)-
level alpha-beta minimax. This sacrifices our ability to
prune across trees, but we expect to make up for this with
the high parallelism UCop can bring to bear.

This approach was easy, but it exposes varying degrees
of parallelism, and its tasks exhibit high variance. A bet-
ter approach might be to locally evaluate the tree to a
greater depth to find low-variance task subsets.

4.4 Cinelerra

Cinelerra [2] is an open-source video editing tool.
With it, the user creates anedit decision list (EDL), a
metadata document that describes how source video is to
be clipped, transformed, and composited into the output
video. Cinelerra then performs these operations.

To test Cinelerra, we constructed a 45-second video
montage composed of 29 MiB of low-resolution clips
from a digicam. This montage uses only simple animated
transformations, but renders 8.3× slower than realtime.
Cinelerra offers many compute-intensive effect plugins
that slow down previewing even more.

Like Blender, Cinelerra includes a notion of a ren-
der cluster that depends on explicit version configura-
tion and a fast network. Its “background render” function
breaks a clip into frames and pre-renders the sequence of
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frames so the operator can preview the sequence at full
frame rate. We modified Cinelerra to emit a set of con-
trol files (in Cinelerra’s native job-control language) that
divide the preview region temporally into brief snippets.
It launches one child process to render each snippet to
MPEG, then collects the MPEGs into a render timeline
and plays them in order.

The biggest constraint on using Cinelerra with UCop
is getting enormous video inputs to the cluster. Our 29-
MiB input videos represent amateur video editing; seri-
ous editing will use multi-GiB input files. While they
are read-only and thus their size does not affect a warm-
cache scenario, big inputs produce substantial transmis-
sion delay in a cold-cache scenario.

Three techniques may mitigate this constraint. First,
UCop might demand-fault individual blocks rather than
entire files; this can help if only small portions of the
input videos are used in the output. Second, Cinelerra
might transcode video at the client into lower-quality
drafts to exploit UCop even when transmission delays
are dominant. Third, a user might fault in media to
a UCop cluster (e.g., by runningremrun md5sum
movie.avi on it) the day before sitting down to edit.

4.5 Other applications

Beyond the applications we have modified, many other
application classes can exploit UCop. The best applica-
tions are those where small changes to input incur CPU-
bound and coarsely parallelizable computation. This sec-
tion has some examples.

One potential class is mathematics software. For in-
stance, numeric modeling packages such as Matlab and
Octave parallelize vector math, and symbolic math pack-
ages such as Macsyma and Mathematica parallelize ma-
nipulation of independent subexpressions. Also, spread-
sheet applications have parallelizable data-flow models.

Speech dictation software often performs a great deal
of processing to parse a small amount of user speech. A
researcher familiar with the area claims desktop access
to parallel resources would improve quality and enable
new applications [43].

Interactive GIS applications often perform CPU-
intensive tasks, such as rendering a large database of
vector data into a bitmap or performing convolutions
on large bitmaps (e.g., reprojecting maps or aerial pho-
tographs). In these applications, small user inputs such
as changes in view or layer registration can change
the global configuration and necessitate CPU-bound re-
rendering.

Photo manipulation software may also be readily
adaptable to UCop. Photoshop and GIMP are adopting
a nondestructive editing model, i.e., recording a stack of
operations rather than just their cumulative effects. This

stack is essentially an edit decision list, which UCop
could send concisely. Image filters are both coarsely par-
allelizable and slow, making them a good fit for UCop.

Finally, software analysis tools, such as model check-
ers, whole-program static analyzers, and theorem provers
generate substantial parallel workloads and are often
used as part of a developer’s interactive workflow.

Note that like Blender and Cinelerra, some of these
applications already have support for a single-purpose,
locally-administered, tightly-coupled cluster. Some even
sell dedicated cluster hardware [7]. UCop, in contrast, is
general: a single cluster running a single piece of soft-
ware that can service all these applications simultane-
ously.

5 Evaluation

Our evaluation of UCop is divided into five parts. We
begin with microbenchmarks in§5.1. End-to-end appli-
cation benchmarks are described in§5.2. In §5.3, we
analyze the efficacy of UCop’s protocol optimizations,
showing how performance suffers as each is disabled.
We present a sensitivity analysis to latency and band-
width in §5.4. Finally, in §5.5, we decompose how a
typical UCop task spends its time budget.

All of our experimental clusters were constructed from
Amazon’s EC2 “Elastic Compute Cloud” service. Each
VM is one of Amazon’s “high-CPU medium” instances:
a Xen virtual machine with 1.7 GB of memory and 2
CPU cores, each of which is approximately equal to a
2.5GHz Opteron or Xeon processor, circa 2007. Within
EC2, we measured a typical interconnect bandwidth of
800 Mbit/sec and RTT of600 µsec. As we will see in
§5.2, most tests used artificial bandwidth and latency re-
strictions to emulate the typical case of a client separated
from the compute cluster by a bottleneck link.

5.1 Microbenchmarks

5.1.1 Correctness

Our task-close-to-open consistency model and whole-
file-system replication scheme were designed to let re-
mote processes produce results identical to those pro-
duced by local computation. To verify this property,
we used UCop to build GNU Coreutils v7.1, a collec-
tion of 102 system utilities. The build process has an
intricate dependency structure and invokes hundreds of
sub-tasks, many of which redirectstdin orstdout to
other programs or the file system. Errors in UCop’s con-
sistency model or its implementation are likely to cause
build failures (and did so in early versions of UCop).
Adapting the build process to UCop only required typing
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OS Distribution libc gcc kernel
Centos 5.2 2.5 4.1.2 2.6.18
Debian 3.1 2.3.2 3.3.5 2.6.16
Debian 4.0 2.3.6 4.1.2 2.6.21.7
Debian 5.0 2.7 4.3.2 2.6.21.7

Debian 6.0 beta 2.7 4.3.3 2.6.21.7
Fedora Core 8 2.7 4.1.2 2.6.21.7
Gentoo 2008.0 2.6.1 4.1.2 2.6.18
Ubuntu 9.04 2.9 4.3.3 2.6.21.7

Table 1: Linux distributions used as clients to compile GNU
Coreutils with a UCop cluster running Debian 4.0. In each case,
UCop generated binaries identical to those compiled locally.

./configure CC="remrun gcc". We also com-
piled Coreutils locally; all the locally-compiled outputs
were identical to their cluster-compiled counterparts.

Further supporting our claim of location indepen-
dence is our (accidental) discovery thatremrun is
“self-hosting.” An author was tinkering with remrun
commands when he noticed the system had slowed,
and was transferring files that seemed unrelated to his
task. He eventually discovered that he’d accidentally
edited his command-line to readremrun remrun
gcc hello-world.c—that is, a recursive call to
remrun. The command still ran correctly; the remrun
client ran on the server automatically.

We also built this paper usingremrun latex
paper.tex. The emitted .dvi file differed from a
locally-built copy in one byte: the minute field of a time-
stamp.

5.1.2 Configuration Transparency

To test UCop’s insensitivity to heterogeneous clients,
we repeated the Coreutils build test on various distribu-
tions of Linux, only one of which matched the version
running on the UCop cluster itself (Debian 4.0). Each
distribution generated distinct outputs due to variations
in the versions of gcc and libc. Indeed, simply invoking
Debian 5.0’sgcc binary on a Debian 4.0 machine fails
due to shared library incompatibility. Using UCop, how-
ever, every locally-built binary matched the binary the
cluster built on that client’s behalf. The distributions we
tested are shown in Table 1.

5.1.3 FUSE Performance

We implemented UCop’s on-demand file system using
FUSE [4], a user-space file system framework. This sim-
plified development, but proxying every file system op-
eration through user-space has a significant performance
cost for I/O intensive processes. In this section, we eval-
uate a technique to mitigate this cost.
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Figure 3:Log-log plot of the amortized time per syscall after
oneopen, n reads, and oneclose on a file. All reads are
4,096 bytes. The file was resident in the buffer cache.

When a worker process tries to open a path corre-
sponding to an extant file on the client, FUSE instantiates
that path not with a local file but with a symbolic link to
a file with the appropriate contents. This file is kept on
a kernel-managed native file system. Thus, access to ex-
tant files is mediated by FUSE only duringopen; other
operations likeread are handled much more efficiently.

We quantified the advantage of our approach by mea-
suring the time required to open, read, and close a file.
Figure 3 shows the amortized cost per syscall for sequen-
tial 4,096 bytereads with a warm buffer cache, plotted
for a range ofreads peropen.

The top curve shows the performance of a FUSE-
managed file system without redirection. The bottom
curve shows the performance of Linux’s native ext3 file
system. The slowdown is significant, and is worst for
small numbers of reads, ranging from10× to 60×. The
middle curve shows amortized read performance with
our symlink scheme in place. The optimization never
hurts performance, and after about 40reads, improves
amortized performance to within2× native.

Note that the optimization does slightly hurt trans-
parency: all files seen by the workers are symbolic links.

5.2 Application Benchmarks

In this section, we describe end-to-end benchmarks for
three applications run on UCop, tested under realistic
network conditions. In most tests, the client and clus-
ter were both within Amazon EC2, with latency artifi-
cially injected and bandwidth constrained by Linux Traf-
fic Control [24]. The exception is Section 5.2.5, in which
we ran experiments from a real coffee shop.

To determine what network conditions should be em-
ulated for our EC2-based experiments, we tested the
networks at various locations in Seattle that offer pub-
lic wireless Internet access. These included two coffee
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shops, a cell phone company hot-spot, and a restaurant.
At each, we characterized the access-link bandwidth and
latency to EC2 (which is across the country, in Virginia).
Average latency ranged from 121 ms for the cell phone
company to 199 ms for one of the coffee shops. Up-
stream bandwidth occupied a fairly narrow range: from
1300 Kib/s for one of the coffee shops to 1500 Kib/s for
the restaurant. Downstream bandwidth also occupied a
narrow range: from 1400 Kib/s for the same coffee shop
to 1600 Kib/s for the restaurant.

In the experiments that follow, thecoffee-shopcon-
figuration models a round-trip time of 160 ms, an up-
stream available bandwidth of 1400 Kib/s, and a down-
stream available bandwidth of 1500 Kib/s. A second
cable-modemconfiguration, based on the authors’ home
offices, models 70 ms RTT, 4 Mib/s upstream, and
16 Mib/s downstream.

In most experiments, the local-computation measure-
ments are run on exactly the same kind of machine as the
cluster worker nodes. The exception is§5.2.5, where, out
of necessity, the client was a laptop.

5.2.1 Cold cache performance

When caches are cold, UCop is slow. Files are faulted
in serially over the bottleneck link, necessitating at least
as many RTTs and transfer delays are there are files. Fig-
ure 4 shows that warm-up times are from 2 to over 10
minutes. Cinelerra is slowest, with round trips propor-
tional to its 484 paths, and bandwidth costs proportional
to its 93 MiB of files.

The evaluations that follow all measure performance
once the caches are warm. In each experiment, we first
destroy all cached data, then warm the caches by in-
voking the test application twice. Finally, we collect a
data point by timing the application’s performance when
given a new (uncached) input for the first time: a tweaked
Cinelerra edit decision list, a modified Blender model, or
a new move in a game of Chinese Checkers. We repeat
each experiment 10 times and plot the mean. Around
each mean we show, using error bars, the 95% confidence

interval for the mean using Student’st-distribution.
Cold-cache performance is slow; UCop performs

poorly for applications run only once. Of course, the
same can be said of client software, whose installation
also typically takes several minutes. Though currently
unimplemented, caches could be made persistent across
cluster instances and even users; clusters would then boot
ready-to-use in the common case.

5.2.2 Blender

The first application we test is Blender (§4.2). This test
renders a 14.2-MiB model of the Starship Enterprise [41]
at HD quality (1920×1080). Figure 5 compares the time
to run locally with the time to run at various levels of
parallelism in UCop.

First, observe that in the local case, rendering takes
137 sec, a duration most users would consider non-
interactive and that would cause them to task-switch.
Next, observe that in either of our network configura-
tions, a cluster size of two breaks even with the local
case; even a small degree of parallelism overcomes the
overhead of remote operation. Finally, observe that from
the coffee shop, 64 workers render the scene in 20 sec,
and, using a cable modem, 64 workers take 18 sec. These
results show that even on long-delay, low-bandwidth net-
works, UCop can perform complex rendering in seconds,
turning it from a batch to an interactive operation.

5.2.3 Chinese Checkers

The next experiment measures the time it takes for
the Chinese Checkers expert algorithm to make a move.
As described earlier, in the local case, Chinese Checkers
uses a sequential pruning tree search; for both local and
remote tests, we use only one core per machine. We au-
tomate the game by driving the expert mode (with and
without UCop) against a locally-executed novice oppo-
nent. We measure only the time taken to compute the
expert’s most complex move.

Figure 5 shows the results. Computed locally, the
computer’s move takes 317 sec, a long enough wait that
the game might not be fun. UCop overcomes the remote-
processing overhead by degree 3. With a 64-node clus-
ter, the worst-case move time is reduced to 26 sec in the
coffee shop, and to 23 sec with a cable modem. This il-
lustrates how UCop can make strategy games enjoyably
interactive even at expert levels.

5.2.4 Cinelerra

The third application is the Cinelerra video editor. Be-
cause video playback results play out over time, total
completion time is not an interesting metric; therefore,
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our measure of interactive latency for Cinelerra ispre-
roll time. This is the delay until video playback could
theoretically begin and still allow uninterrupted complete
playback. The workload is a 20-second clip of the digi-
cam montage described in§4.4.

Figure 5 shows the results. In the local case, the delay
is 166 sec, a long time to preview a clip. UCop begins
showing benefit at degree 2, readily overcoming the re-
mote overhead. Finally, by degree 32, Cinelerra delivers
the same clip in only 23 sec from a coffee shop, or 15 sec
using a cable modem.

5.2.5 Tests from a real coffee shop

The previous sections reported experiments done in a
controlled environment meant to emulate a coffee shop.
We now discuss experiments using anactualcoffee shop.
In these tests, the client is a laptop, a Lenovo z61p with
a 2GHz Core Duo running Debian Lenny. The workers
are still EC2 cluster machines. Blender is linked against
Debian Etch, and thus runs from inside akvm hardware
virtual machine, which is limited to one core. Figure 6
shows the results; they are essentially similar to, and thus
validate, our earlier emulated-environment results.

5.2.6 Discussion

UCop’s goal is to improve interactive performance by
achieving low latency; computationalefficiencyis less
important. Indeed, speedup per node in these tests peaks
at 1–2 nodes (56–85%) and decreases monotonically
thereafter, sinking to 12–35% for 32–64 nodes. For this
reason, in the following experiments we consider only
32-node clusters, as they provide reasonably low laten-
cies at reasonable cost.

“Reasonable” latency is difficult to define objectively.
Results are highly sensitive to workload characteristics;
any selection is, to some degree, arbitrary. Had we cho-
sen simpler workloads, the desktop might have rendered
them quickly, obviating the need for the remote cluster.
More complex workloads favor UCop: Overheads limit
UCop’s ability to use a larger cluster to reduce wait time,
but UCopcanoften use a larger cluster to hold wait time
constant as the workload complexity increases dramati-
cally. Similarly, due to the preroll metric, a short Cinel-
erra clip duration favors local computation, and longer
durations favor UCop.

5.3 Decomposition

The preceding section shows that UCop is performant.
We now break down the contribution of each optimiza-
tion described in§3. As Figure 7 shows, each optimiza-
tion is necessary for good performance, although some
are more important for certain applications.

Prethrow. The first group in both graphs of Figure 7
shows that prethrowing is the most important optimiza-
tion. Cinelerra, which accesses 484 paths, is most af-
fected by the loss of prethrown attributes. Because files
are validated sequentially, the worst slowdown is seen in
the highest-latency configuration,coffee-shop.

Remote differential compression. The next group
shows performance when RDC is disabled. That is, ev-
ery byte of changed files must be uploaded, rather than
just the changed bytes. Blender fares worst without this
optimization, since its input file is the largest.
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Stream compression.In the next group, we show the
effect of disabling stream compression. Again, this af-
fects Blender the most, since even with RDC, Blender’s
unstable output requires UCop to transmit 779 KiB of
changed blocks; performance suffers in this test because
the blocks are compressible.

Cache sharing. Without cache sharing within the
cluster, all worker nodes must get everything directly
from the client via the bottleneck link. This inflates
all overheads by a factor equal to the cluster size.
Clearly, this is unscalable. Indeed, this experiment
ran so slowly that we abandoned collecting statistically-
significant data; none appear in the figures.

Job consistency. The next group of bars shows the
benefit of job-end-to-start consistency. Here, no two
tasks share the same job, and hence consistency seman-
tics demand that each task prethrow its own path list.
This has no effect on round-trips, but congests the link
with duplicate data.

Recipe caching.In the next group of bars, the client
does not cache recipes as described in§3.5; therefore,
the client must compute megabytes of hashes before it
can begin the transaction with a prethrow.

Thread interface. The last group shows the value
of launching UCop tasks from threads rather than pro-
cesses. Here, the cost is the serialized overhead on the
client machine. Chinese Checkers suffers the most be-
cause it launches 86 tasks; the other applications launch
32. This optimization will be more important on slow
clients (our experimental client is fast), and at higher de-
grees of parallelism.

5.4 Sensitivity analysis

Figures 8 and 9 show the sensitivity of our results to
network characteristics. UCop is effective at dramati-
cally reducing sensitivity to poor latency and bandwidth
conditions. These experiments also show how UCop
achieves this. Without prethrow, performance is highly
sensitive to latency. Without compression and RDC, per-
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formance is highly sensitive to bandwidth, at least for
Blender, which is bandwidth-intensive.

5.5 Remaining costs

The previous section explained the techniques that
achieve interactive-scale performance. This section ex-
plores the present limits to performance and how it might
be further improved.

5.5.1 Latency breakdown

To guide this discussion, Figure 10 provides a rough
analysis of how the 20 sec of interactive latency for our
Blender workload arose. We estimated the latency com-
ponents as follows:

Launch overhead. We measuredremrun on EC2
with no artificial latency or bandwidth throttling. It spent
about 1 sec launching 32 job requests, including time to
stat the file system for each prethrow path and fault in
missing blocks.

Process start. We asked Blender to load the Enter-
prise model, then exit without rendering anything; this
took about 1.5 sec.
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Computation. Rendering one of the 32 tiles takes
6.7 sec on average, with a maximum of 10.5 sec. This
variance arises because nodes rendering the blackness of
space surrounding the Enterprise become idle long be-
fore the most-loaded node puts finishing touches on the
glow of the warp nacelles. Thus, we account for the time
as 6.7 sec of computation plus 3.8 sec of inter-task vari-
ance. Contrary to prior reports [46], we observed no sig-
nificant effect from inter-machinevariance; the time re-
quired to complete a task correlated with the task’s work-
load, not the machine that ran it.

Results download.Our test with an unthrottled EC2
network showed that UCop spends 1.8 sec organizing
and returning the result tiles.

Real network costs.The costs above account for all
but 5 sec of the cable-modem time. We attribute these
remaining 5 sec to the network delays due to increased
RTT and reduced available bandwidth.

5.5.2 Opportunities for improvement

The firmest contributor to latency is the compute time
itself. Of course, wider parallelization can help, but the
benefit is constrained by inter-task variance and offset by
an increase in network launch and return costs.

The four round trips we spend are three more than
strictly necessary. Eliminating them as follows could
save as much as 0.5 sec in the coffee shop. The prethrow
technique already profiles applications to predict paths
with stable contents. The same technique could detect
repeatedly-used paths with consistently fresh contents,
and use that cue to eliminate the RecipeNameRequest
round-trip. Reasonably assuming that the RecipeName
itself is fresh, the client could pipeline the recipe as well.
Finally, by maintaining a shadow index of blocks the
cluster already knows, the client could further pipeline
the set of new blocks, eliminating a third RTT.

Process startup might be mitigated by checkpointing
the client-side process after basic initialization or after
parsing stable inputs. In addition, each process’s com-
pute time might be predictable in some cases; shorter
subtasks might automatically be run locally, or run lo-
cally in the case of network failure.

6 Conclusions

The Utility Coprocessor is a new use for utility com-
pute clusters: dramatically enhancing the performance
of CPU-intensive, parallelizable desktop applications.
UCop’s non-invasive installation and automatic support
for arbitrary client software configurations lets users
farm their desktop compute tasks out to the cloud with-
out changing their model of where files are stored or how
new software is installed.

The primary challenge in making a system like UCop
performant is overcoming the relatively high latency and
low bandwidth of the link separating the user’s desktop
from the compute cloud. We introduce the techniques
of task-end-to-start consistency and prethrowing to avoid
latency penalties. We avoid bandwidth penalties using a
combination of cluster-wide cache sharing, remote dif-
ferential compression, and the notion of job-end-to-start
consistency. We also use a variety of techniques to mini-
mize the client’s CPU and I/O load when sending work to
a cluster. Taken together, these techniques allow UCop
to efficiently execute wide parallel computations in the
cloud with low overhead, even though all the canonical
state is on the client.

Our evaluation demonstrates speedup with only 2–3
nodes even in a challenging coffee-shop network envi-
ronment, and 15–20 second interactive performance with
32–64 nodes. We show the necessity of each of UCop’s
optimizations, and that the optimized system is insensi-
tive to latency and bandwidth variations. We also iden-
tify further opportunities for improving performance.

The Utility Coprocessor is a novel and practical sys-
tem for easily and inexpensively improving the perfor-
mance of CPU-bound desktop applications. It is gen-
eral to many applications, and UCop support is easy
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for developers to integrate. Thanks to the availability
and low cost of utility computing clusters like Amazon
EC2, the power of UCopified applications is available to
individuals—today.
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