
Proxychain: Developing a Robust and Efficient Authentication Infrastructure
for Carrier-Scale VoIP Networks

Italo Dacosta and Patrick Traynor
Converging Infrastructure Security (CISEC) Laboratory

Georgia Tech Information Security Center (GTISC)
Georgia Institute of Technology
{idacosta, traynor}@cc.gatech.edu

Abstract
Authentication is an important mechanism for the reliable
operation of any Voice over IP (VoIP) infrastructure. Di-
gest authentication has become the most widely adopted
VoIP authentication protocol due to its simple properties.
However, even this lightweight protocol can have a signif-
icant impact on the performance and scalability of a VoIP
infrastructure. In this paper, we present Proxychain – a
novel VoIP authentication protocol based on a modified
hash chain construction. Proxychain not only improves
performance and scalability, but also offers additional se-
curity properties such as mutual authentication. Through
experimental analysis we demonstrate an improvement of
greater than 1700% of the maximum call throughput pos-
sible with Digest authentication in the same architecture.
We show that the more efficient authentication mecha-
nisms of Proxychain can be used to improve the overall
security of a carrier-scale VoIP network.

1 Introduction

Voice over IP (VoIP) is fundamentally reshaping the tele-
phony landscape. Instead of using dedicated, circuit-
switched lines, VoIP allows for phone calls to be multi-
plexed with other data traffic over the Internet. This con-
vergence between voice and data communications pro-
vides a number of benefits. For instance, providers can
now offer a range of new services such as video and pres-
ence. Unfortunately, the transition from traditional phone
networks to VoIP also creates a number of new security
challenges.

Authentication represents one of the most important
security issues facing VoIP systems. Providers have re-
sponded by implementing a number of security mecha-
nisms, ranging from SSL/TLS to Digest authentication.
Unfortunately, none of the suggested schemes are simul-
taneously strong, efficient and scalable enough to meet
the needs of carrier-scale networks without vastly increas-
ing the amount of deployed infrastructure.

In this paper, we develop Proxychain, a robust and ef-
ficient authentication infrastructure designed to support
operations in carrier-scale VoIP networks. Our solution
is built around a single centralized authentication service
working with proxy nodes distributed across a wide geo-
graphic area. We reduce the impact of the latency and load
associated with this architecture by using a modified hash
chain construction (a sequence of one-time authentication
tokens generated by applying a hash function repeatedly,
once-per token, to a secret root value). In addition to pro-
viding an efficient mechanism for mutual authentication,
our approach also provides improved scalability through
the secure caching of temporary authentication tokens at
the proxies. To the best of our knowledge, Proxychain is
the first protocol that applies the idea of hash chains in the
SIP domain. Proxychain not only adapts this idea to SIP
authentication but also extends it by including additional
modifications that solve some of the weaknesses associ-
ated with hash chain protocols, resulting in a more robust
protocol.

This paper makes the following contributions:

• Design and implementation of Proxychain: We
develop a construction based on modified hash
chains. Our construction not only dramatically re-
duces the load on the centralized authentication
database and the latencies associated with accessing
it, but also provides mutual authentication for clients
and providers.

• Evaluation of Proxychain through an extensive
measurement study: We measure, characterize and
compare the performance characteristics of our pro-
posed infrastructure against commonly used mech-
anisms. Our results show up to a 1700% improve-
ment over such schemes. Moreover, we demon-
strate the ability to support the authentication needs
of a national-scale VoIP network using unoptimized
COTS hardware and databases.

• Evidence of robustness to outages and downtime:



We demonstrate that our construction allows the net-
work to operate during planned and unplanned out-
ages, and estimate its robustness to such incidents.
We show the ability to support normal operations
with high availability for approximately 6 hours us-
ing only 28 minutes of preemptive computation.

Improvements to the efficiency of SIP authentication
afforded by Proxychain allow us to significantly increase
the overall security of VoIP systems. For instance, several
recently disclosed attacks on VoIP systems [2, 29] can be
mitigated by simply having an authentication infrastruc-
ture scalable enough to cryptographically verify the ori-
gin of multiple SIP signaling request types (e.g., INVITE
and BYE).

The remainder of our paper is organized as follows:
Section 2 discusses a nation-wide VoIP architecture and
provides important background information; Section 3
details our proposed protocol; Section 4 provides the de-
tails of our experimental setup; Section 5 shows the re-
sults of our experiments; Section 6 discusses a number of
additional points; Section 7 presents related work; Sec-
tion 8 offers concluding remarks and future work.

2 A Nationwide VoIP Infrastructure

Telephony networks have long relied on a series of dis-
tributed databases and proxies to implement authentica-
tion. However, advances in processor speeds and ease of
management have prompted a number of cellular [18] and
VoIP providers such as Skype to rely on a central authenti-
cation service.1 Therefore, our authentication mechanism
is designed to work for a similar architecture. Figure 1
shows our simulated testbed.

2.1 Session Initiation Protocol
The Session Initiation Protocol (SIP) [21] is the under-
lying architecture of the majority of VoIP systems. This
application-layer signaling protocol has several compo-
nents. End devices are known as User Agents (UA), and
can act as a client (UAC) or as a server (UAS). UACs gen-
erate SIP requests, while the UAS generates responses to
SIP requests. When attempting to establish a session with
Bob, Alice sends her request to a SIP Proxy server. The
proxy determines the IP address of Bob’s UAS and for-
wards Alice’s request. In addition to routing call setup
requests, a proxy also participates in the process of au-
thentication with the help of an authentication database.

SIP provides two message types: requests (client to
server) and responses (server to client). There are six
types of requests: INVITE (to establish a session be-
tween UAs), ACK (to acknowledge a reliable message ex-
change), CANCEL (to terminate a pending request), BYE
(to terminate a existent session), OPTIONS (to query for

P

DB
P

P

P

P

P

Figure 1: The hypothetical nationwide SIP infrastructure mod-
eled in our experiments using latencies collected from Planetlab.
As it is done by some cellular providers, our authentication ser-
vice (DB) is centrally located, with proxies (P) distributed across
the country.

the capabilities of servers), and REGISTER (used by a UA
to notify its current IP address to a Registrar process run-
ning on the proxy). The responses are grouped into six
categories and indicate the status of a current request. For
example, a 200 OK response indicates a successful trans-
action (more detail in the RFC 3261 [21]).

2.2 Digest Authentication
SIP Digest authentication is a challenge-response au-
thentication protocol based on HTTP Digest authentica-
tion [11]. Digest authentication is used by SIP proxies
to validate the identity of requests received from UAs. It
allows users to prove their knowledge of a shared secret
(e.g., password) to a server without sending the secret un-
protected over the network (protection against eavesdrop-
ping attacks). Digest authentication is widely supported
because it is more efficient and easier to implement than
the other protocols recommended by RFC 3261 (i.e., TLS,
S/MIME, IPsec). Furthermore, it is the only authentica-
tion protocol required in the UAs according to RFC 3261
(support for other protocols is not required).

Figure 2 shows a SIP call dialog using Digest au-
thentication. As in most deployments, only INVITE re-
quests require authentication. First, Alice’s UA sends
an INVITE request to the proxy. The proxy determines
that the request requires authentication and responds
with a SIP 407 response (“Proxy Authentication
Required”) containing a nonce. Alice’s UA acknowl-
edges the reception of the challenge, computes the hash
of the shared secret and the nonce and sends it back to
the proxy using a new INVITE message. The proxy then
computes the answer after querying a database that stores
the user’s shared secret. Finally, the proxy compares both
values and, if they match, forwards the INVITE to the
destination and the SIP dialog continues its standard flow.

Digest authentication efficiency relies on the use of
hash operations and nonces, instead of symmetric or pub-
lic key cryptography. In its basic form, a Digest authenti-



UAC

SIP 
Proxy

UAS

User 1
sip:alice@westcoaststate.edu

User 2
sip:bob@eastcoasttech.edu

INVITE
407 Proxy Auth Req

ACK
INVITE (Response) A

U
TH

INVITE
100 TRYING

180 RINGING
180 RINGING

200 OK
200 OK

ACK
ACK

Call

BYE
BYE

200 OK
200 OK

Digest 
Auth.

Figure 2: SIP call setup using Digest authentication (bold).

cation response is computed as follows:

Response = H( H(uid||realm||pwd) ||n|| H(method||URI) )

where H() is a cryptographic hash function (MD5 is
the default), || corresponds to a concatenation operation,
uid is the user ID, realm is the proxy’s protection do-
main, pwd is the user password, n is a nonce, method
is the SIP request authenticated (e.g., INVITE) and URI
is the destination address Alice is trying to reach (e.g.,
bob@eastcoaststate.edu).

2.3 Problems with Digest Authentication

While more efficient, Digest authentication is less secure
than protocols such as TLS or IPsec. For instance, it does
not provide mutual authentication and complete message
integrity. Limited integrity protection is offered but it is
optional and not widely supported by UAs. Additionally,
current implementations actually send the shared secret
from the database to the proxy in order to calculate the
correct client response. This approach is dangerous if the
proxy is compromised. Several vulnerabilities have been
published regarding commercial SIP deployments due to
these weaknesses [29].

The use of Digest authentication in an environment
with a remote authentication service dramatically reduces
performance. The main reason is that authentication oper-
ations become more expensive - the round-trip time (RTT)
between a proxy and the database (tens of milliseconds) is
now added to each authentication operation (hundreds of
microseconds). The additional time added per call setup
reduces the call throughput of each proxy. The problem
is exacerbated by the fact that proxies have to query the
database for each SIP message that requires authentica-
tion. This action also creates a considerable network load
when the call throughput is high. If multiple proxies are
used, the load could overwhelm the database or its net-
work link. As a result, scalability is also affected.

The use of multiple databases (i.e., one local database

per proxy) or adding more hardware resources to the
database are not efficient solutions. Dacosta et al. [8]
showed that the effects of network latency could be re-
duced by a combination of parallelization and batching
techniques. However, the network load to the database is
still high enough to affect the scalability of the system. A
more efficient approach is to reduce the number of queries
to the database. To achieve this, we can use temporary
authentication credentials that each proxy stores in mem-
ory and that can be used in multiple authentication op-
erations without contacting the database. This approach
reduces the load received by the database and the effects
of network latency. Our proposed protocol follows this
approach.

3 Proxychain Protocol Specification

3.1 Hash Chains
A hash chain is created by applying a cryptographic hash
functionH() (e.g., MD5, SHA-1) multiple times to a ran-
dom value r to generate a sequence of values that can be
used as one-time authentication tokens. A hash chain of
length n is computed as:

Hn(r) = H(. . . H(H(r)) . . .)

Hash chains rely on the preimage resistant (i.e., one-
way) property of cryptographic hash functions. When at-
tempting to authenticate to a server possessing Hn(r),
the client transmits Hn−1(r). The server then hashes
Hn−1(r) a single time and, if the result matches Hn(r),
authenticates C based on the computational infeasibility
of an adversary guessing the correct preimage.

3.2 Design Goals
Proxychain design addresses some of the shortcomings of
Digest authentication in SIP topologies with a centralized
authentication service. Our first goal is efficiency: Proxy-
chain should execute authentication operations faster than
Digest authentication, allowing improved call throughput.
Second, we focus on scalability: Proxychain should sup-
port more users and proxies than Digest authentication
without the need for additional resources. In particular,
Proxychain should reduce the bandwidth and processing
time required by the database to avoid bottlenecks. Fi-
nally, our third goal is security: Proxychain should im-
prove upon the security assurances provided by Digest
authentication.

3.3 Design and Formal Description
Proxychain is designed to reduce the impact of latency
and load on the remote authentication service by caching



UAC Proxy DB UAS

INVITE [ nA,P ]

A, P

Hl(tkA), l, nD,A,  nD,P, tkP

407 Response [ i, P, nD,A, nD,P , HMAC(tkP , nA,P||i) ] 

INVITE [ A, B, i, HMAC(tkP , A||B||i), Hi-1(tkA) ]

INVITE

INVITE [ nA,P ]

407 Response [ i-1, P, nD,A, nD,P , HMAC(tkP , nA,P||i-1) ] 

INVITE [ A, B, i-1, HMAC(tkP,  A||B||i-1), Hi-2(tkA) ]

INVITE

1.
2.

3.

4.

5.

1.

4.

5.

Alice Bob

6.

6.

Figure 3: Call setup flow using Proxychain. For the first request (above dashed line), the proxy must request a temporary credential
from the database. Subsequent requests (below dotted line) can be dealt with immediately by the proxy.

1. A→ P : A,B, nA,P

2. P → D : A,P
3. D → P : H l(tkA), l, nD,A, nD,P , tkP

4. P → A : i, P, nD,A, nD,P ,

HMAC(tkP , nA,P ||i)
5. A→ P : A,B, i,HMAC(tkP , A||B||i),

Hi−1(tkA)
6. P → B

A,B, P,D : Alice, Bob, Proxy, Database
kA,D : Secret key between Alice and database

nD,A, nD,P , nA,P : Nonces
l : Hash chain length
i : Hash chain current sequence number

Hi(x) : i-th hash value of x, H(H(...H(x)...))
HMAC(k, x) : HMAC with key k on x

tkA : HMAC(kA,D, nD,A||P )
tkP : HMAC(kA,D, nD,P ||P )

Figure 4: Proxychain protocol: The formal definition of the Proxychain protocol. We assume that there exists an encrypted channel
(e.g., IPsec connection) between the proxy and the database.

temporary authentication credentials at the proxies. Us-
ing hash chain-based credentials of length l, a proxy can
authenticate multiple requests from a particular user with
only 1

l queries to the database. The database creates cre-
dentials based on the secret it shares with each user and
determines the credential’s parameters, including length,
hash function, and expiration time. This approach is more
secure than the associated Digest authentication mecha-
nism, as the shared secret between the database and the
user is never exposed to the proxies. A compromise of
one of these servers, therefore, does not necessarily re-
quire password resets for large number of users.

Each proxy provides services only to users that are
geographically close to it (i.e., based on IP address or
ZIP code information), much like a traditional telephony

switch. Each proxy accordingly needs to store creden-
tials for only a subset of the total number of users in the
system. We explore the overhead associated with such
credential storage in Section 4.2.

Figures 3 and 4 provide graphical and formal defini-
tions of the Proxychain protocol, respectively. A user
Alice attempts to call Bob by first sending an INVITE
request to her proxy, which contains the source and des-
tination of the call and a nonce nA,P (Message 1). The
proxy checks to see if it has a credential for Alice and,
if not, queries the authentication database with the iden-
tifiers corresponding to Alice and the proxy (A,P ) for a
new hash chain (Message 2). Note that requests between
proxies and the authentication database occur over a long-
lived, encrypted and authenticated channel such as IPsec



or TLS/SSL. The database generates a five-tuple that in-
cludes a new hash chain (H l(tkA)), the length of the hash
chain l, nonces for both the proxy and Alice (nD,P and
nD,A), and a session key tkP . The hash chain is cal-
culated as H l(HMAC(kA,D, nD,A||P )), and the session
key as HMAC(kA,D, nD,P ||P ) (Message 3).

After receiving the tuple from the authentica-
tion database, the proxy returns a 407 Proxy
Authentication Required SIP message to Alice.
This message includes a counter i ≤ l − 1, the proxy’s
identifier P , the two nonces generated by the authentica-
tion database (nD,P and nD,A) and a network authentica-
tion token HMAC(tkp, nA,P ||i) (Message 4). The client
receives the response and uses kA,D to calculate the ses-
sion key tkP and then authenticates the message from
the proxy. If the message authenticates properly, Alice
then generates her session key tkA and hashes it i − 1
times to generateHi−1(tkA). Alice responds to the proxy
by sending a new INVITE message containing A, B, i,
HMAC(tkP , A||B||i) and Hi−1(tkA), which the proxy
hashes forward a single time (assuming that the HMAC
properly verifies) (Message 5). If H(Hi−1(tkA)) =
Hi(tkA), then the proxy records Hi−1(tkA) as the next
legitimate credential, decrements i and the INVITE re-
quest is forwarded to Bob (message 6). On subsequent
authentication attempts by Alice where c < i − 1, the
proxy responds to Message 1 with Message 4, which con-
tains c, P, nD,A, nD,P , HMAC(tkP , nA,P ||c).

Note that unlike Digest authentication, Proxychain pro-
vides mutual authentication. Specifically, the network
authentication token HMAC(tkp, nA,P ||i) can only be
produced with knowledge of tkP and using the nonce
supplied by the user Alice. Moreover, because only the
user and the authentication database could have created
tkP (because only they have knowledge of kA,D), an ad-
versary can not create legitimate hash chains without the
assistance of the authentication database.

4 Experimental Setup

4.1 Experimental Testbed

Our experimental testbed is based on the VoIP infrastruc-
ture depicted in Figure 1. As this figure shows, the testbed
is composed of three main components: the authentica-
tion database, SIP proxies and the user clients (UAs). The
database and proxies are run on servers from the Georgia
Tech Emulab testbed.2 We use seven servers to represent
the infrastructure (one database and six proxies). These
servers run Linux Kernel 2.6.26 (Fedora Release 8), have
two 2.80 GHz Intel Xeon processors and 512 MB of mem-
ory. The UAs are run on servers from our research lab. A
total of nine servers are used, each running multiple UA
instances to generate call traffic. These servers run Linux

Kernel 2.6.24 (Ubuntu 8.04.2), eight (8) 2.00 GHz Quad-
Core AMD Opteron processors and 16 GB of memory.

The network latency between the proxies and the
database is simulated using Emulab’s traffic shaping func-
tionality. In order to use realistic latency values, we
performed measurements using the Planetlab network
testbed.3 Using the ping network tool, we measured the
round-trip time (RTT) between a Planetlab node located
in the University of Kansas and Planetlab nodes located
at UC Berkeley (67.6 ms), Georgia Tech (33.1 ms), MIT
(44.7 ms), Princeton (43.8 ms), the University of Texas
(20.6 ms), and the University of Washington (43.4 ms).
The RTT data was collected during a 24 hours period and
average values were calculated. Finally, no additional la-
tency values were simulated between the proxies and the
UAs (latency was around 1 ms). The reason is that our
testbed assumes physical proximity and low latency val-
ues (e.g., < 10 ms) between the UAs and the proxies.
Simulating this latency is not necessary because it would
not affect the test load generated by the UAs and our re-
sults (it would slightly affect the setup time of each call).

The proxies are implemented using OpenSIPS4 1.5.2.
OpenSIPS is a mature open source SIP proxy optimized
for high performance. The proxies are configured with
minimal functionality (stateless configuration and basic
modules required for routing). We run MySQL5 5.0.45
as our database, a well-known open source relational
database management system. MySQL is run with a
default configuration (no optimizations). Finally, SIPp6

3.1 is used to generate the UAs’ workload, which con-
forms to a uniform random distribution. SIPp is an open
source traffic generator for the SIP protocol. A total of 36
SIPp instances are used in our experiments (18 UACs and
UASs). Default SIPp scenarios are modified to support
INVITE and BYE authentication for Digest and Proxy-
chain authentication (SIP call flows in Figures 2 and 3).

Each proxy serves requests for 200,000 unique users.
The number of users per proxy is limited by the proxy’s
available memory, disk space in the database and the size
of authentication credentials (see Section 4.2). As a result,
the total number of users in the database is 1,200,000. All
the users are part of a single SIP domain (no inter-domain
calls).

4.2 Proxychain Implementation
Implementing Proxychain requires a combination of new
code modules and modifications to existing software. In
the proxies, OpenSIPS (≈ 320000 lines of code (loc))
required approximately 710 loc to support Proxychain.
In the UAs, SIPp (≈ 3000 loc) required around 140
loc. In the database, we built a separate concurrent-
process server application to handle queries from prox-
ies and the associated cryptographic operations. This
server application required approximately 880 loc. The



MySQL database software itself was unmodified. All
of our experimental code, which was written in C, and
supporting scripts are available at http://www.cc.
gatech.edu/˜idacosta/proxychain.html

Proxychain uses the same SIP headers in the chal-
lenge and response messages. For example, a Proxy-
Authenticate header (challenge) looks as follows:

Proxy-Authenticate:PC realm="CISEC", i="10",

nda="0ec497d9a5ba5e1f2b2177d83fb3d341",

ndp="f1e992583dd5daecddea3309a01e5347",

hmac="15f5d33206e79eaea7245682d9953164"

where PC indicates the use of the Proxychain protocol,
realm is proxy’s identifier, i is the sequence number, nda
and ndp are the nonces and hmac is the network authenti-
cation token.

The corresponding Proxy-Authorization header using
Proxychain looks as follows:

Proxy-Authorization: PC username="0000001",

realm="CISEC", i="10",

response="a0843d4b8a712284ff5a6fcd136c4b47,"

hmac="f9fd4ef6689850406a560965a4381c57"

where response is the next value in the hash chain se-
quence. The other parameters have the same meaning as
in the Proxy-Authenticate header.

Our Proxychain implementation uses the MD5 hash
function in order to compare it more directly and fairly
to Digest authentication. Nevertheless, our code requires
few modifications to support SHA-1. With MD5, the size
of a temporary authentication credential is 134 bytes. As
a result, each proxy in our testbed requires a minimum of
26 MB of free memory for serving 200,000 users.

4.3 Methodology
We perform a number of different experiments in order
to characterize Proxychain. We specifically compare our
protocol against a system with no authentication mecha-
nism and one using Digest authentication. We do not mea-
sure more computationally expensive mechanisms such
as TLS/SSL as previous studies have demonstrated that
they provide significantly lower throughput [5, 6, 15, 16].
We collect the following metrics in most of our experi-
ments: call throughput, message retransmissions, failed
calls, bandwidth utilization and database CPU utilization.
These are global metrics, the totals for the whole infras-
tructure (i.e., the call throughput is equal to the sum of the
call throughput measured in each proxy).

The call throughput refers to the number of successful
calls per second (cps) measured every five seconds.

Message retransmissions corresponds to the number of
SIP messages retransmitted due to the expiration of timers
in the UAs. Our tests use the default retransmission time

Protocol Digest Stdev Proxychain Stdev
Response (µsec) 116.81 13.59 184.76 49.92

Verification (µsec) 197.24 21.51 66.97 15.07

Table 1: Response computation time at the UA and verifica-
tion time at the proxy for Digest and Proxychain authentication.
Proxychain adds little overhead to the response computation and
it is more efficient performing verifications.

Length 10 100 1000 10000
Time (µsec) 294.10 335.15 1383.53 11875.71
Stdev (µsec) 18.42 15.28 18.07 120.44

Table 2: Time required by the database to compute credentials
with different hash chain lengths. For lengths < 100, the over-
head is small.

defined by SIP standards (500 ms). Failed calls refer to
the total number of unsuccessful calls measured in the last
period. In our experiments, we consider only calls fail-
ures due to maximum number of retransmissions (maxi-
mum number of UDP retransmissions attempts has been
reached). We use the default values in SIPp for the max-
imum number of retransmissions: five for INVITE mes-
sages and seven for others. Finally, bandwidth utilization
corresponds to the total network throughput (KBytes/sec)
measured from the database during each test.

During our experimental analysis, each test was run at
least 10 times to ensure the soundness of the results. Aver-
age values are used in our analysis and a 95% confidence
interval is provided in most of the graphs. Note that these
bounds are often difficult to observe in our graphs as the
values are generally very close to the mean.

5 Experimental Results

5.1 Microbenchmarks

To understand the computational differences between Di-
gest and Proxychain authentication, we measure the time
to compute a response in the UA and the time to verify a
response in the proxy. To measure these values, we use
network traces (100 samples per value). For Proxychain,
the measurements are performed the first time a credential
is used (hash chain length of 10). This corresponds to the
worst case for response computation because it requires
the highest number of hash operations (9 operations).

Table 1 shows the results. The UA running Proxychain
requires approximately 70 µsec of additional computation
than one running Digest authentication. This difference
is due to the additional integrity checks and hash oper-
ations required by Proxychain in the UA. However, this
difference is not significant as individual UAs does not
perform large amounts of computation in this system. In-
terestingly, the response verification is nearly three times
faster when Proxychain is used by the proxy. The rea-



 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000  25000  30000  35000

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Offered Load (cps)

No Authentication
Digest Authentication

Proxychain

Figure 5: Total call throughput for no, Digest and Proxychain
authentication. Proxychain’s maximum call throughput is close
to the one obtained without authentication.

son is that Proxychain only requires two hash operations
to verify a response. On the contrary, Digest authentica-
tion requires three hash operations and additional checks
to verify a response. Based on these results, we argue
that the computational overhead added by Proxychain is
not significantly different from the one added by Digest
authentication.

We also evaluate the overhead of generating hash
chains of varying lengths. Specifically, we measure the
time required by the authentication database to generate
credentials of lengths 10, 100, 1000 and 10000. As be-
fore, we use network traces to measure the time for each
configuration (100 samples per configuration). Table 2
shows the results of these experiments. As expected, in-
creasing the hash chain size increases the time required to
generate credentials. The additional time remains small
for hash chains with length up to 100 (< 350 µsec).

5.2 Call Throughput

Microbenchmarks provide insight into the overhead that
can be expected at each component of the network. How-
ever, they do not provide a picture of the overall behavior
of a system. Accordingly, we characterize the interac-
tion of those components by measuring total call through-
put. We compare throughput for systems configured to
use Digest authentication, Proxychain and no authenti-
cation mechanism. UAs generate an increasing call load
(270 cps increments every 5 seconds) over the course of
10 minutes. In addition, we evaluate the best configu-
ration for each protocol. For Digest authentication, we
use close to 100 concurrent proxy-processes per proxy.7

For Proxychain, we preload each proxy with all its user
credentials (200K credentials with hash chain length of
10) before each experiment and use 8 concurrent proxy-
processes per proxy (OpenSIPS recommended value).

Figure 5 shows the results of these experiments. With-
out authentication (baseline configuration), the network

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  100  200  300  400  500  600

M
yS

Q
L 

%
 C

P
U

 u
til

iz
at

io
n

Time (sec)

Digest authentication.
Proxychain

Figure 6: Percentage of CPU required by the database process
for Digest and Proxychain authentication. The database process
is virtually idle when Proxychain is used.

supports a maximum call throughput of nearly 24,000
cps. When Digest authentication is used, the maxi-
mum call throughput drops dramatically to approximately
1,160 cps. This result represents a 95% reduction in call
throughput when compared with the baseline configura-
tion. For Proxychain, the result is more favorable: a total
call throughput of over 19,700 cps. In this case, the call
throughput drops by only 18% when compared with the
baseline configuration. However, when compared to Di-
gest authentication, Proxychain allows an increase of over
1,700% (more than an order of magnitude). Accordingly,
Proxychain is significantly more efficient than Digest au-
thentication in this architecture.

Figure 6 provides insight into the poor performance
of Digest authentication. The database process rapidly
reaches 175% CPU utilization (dual-core machine). This
behavior indicates that queries from the proxies satu-
rate the authentication database, making it a bottleneck.
We observe the opposite when using Proxychain. The
database was virtually idle (< 5% CPU utilization) be-
fore the system reaches its maximum call throughput, at
which point the system becomes unstable due to the high
number of retransmissions.

A naı̈ve solution to improve Digest authentication per-
formance would be to use a more powerful database.
Therefore, we repeated the experiment using a quad-
processor server for the database. As expected, the maxi-
mum call throughput increases, but only to approximately
4,000 cps. However, in this experiment the database does
not saturate - CPU utilization is below 300%. In this case,
throughput fails to increase further due to the network la-
tency between the proxies and the database.

Another important difference is the total bandwidth re-
quired for both configurations. The message overhead be-
tween a UA and the proxy are arguably equivalent. Mes-
sage 4, the challenge, requires an additional 92 B and 165
B for Digest and Proxychain authentication, respectively.
The response in Message 5 similarly requires an addi-



 0

 5000

 10000

 15000

 20000

 25000

 3  4  5  6

M
ax

im
um

 u
sa

bl
e 

th
ro

ug
hp

ut
 (c

ps
)

# of proxies

Digest authentication.
Proxychain

Figure 7: Throughput measured for a range of proxies using
Digest and Proxychain authentication. Proxychain is consider-
ably more scalable than Digest authentication.

tional 199 B and 153 B. At its maximum call through-
put (measured from the database), Digest authentication
required almost 130 and 430 KBytes/sec for queries and
responses respectively. In contrast, Proxychain required
less than 1 KByte/sec for both, queries and responses. As
expected, the use of temporary credentials significantly
reduces the total number of queries to the database.

The previous results also mean that increasing the hash
chain length (>10) will not help to improve performance
in our testbed. The reason is that the load in the database
is already low with a hash chain length of 10. Using a
longer size will make the load even lower but the differ-
ence will not affect the overall performance of the system.
On the contrary, using hash chains that are too long could
affect performance because of the additional hash opera-
tions that will be needed by the UACs and the database.

Finally, for the baseline and Proxychain configurations,
the maximum call throughput is limited by the proxy ap-
plication itself: OpenSIPS. Analyzing the resources usage
statistics (memory, CPU and bandwidth) collected during
the experiments for the different testbed components, we
find that none of the resources are completely used (no
shortage of resources) when the two configurations reach
the maximum call throughput. Based on this evidence and
in our experience with OpenSIPS, we can conclude that
the OpenSIPS software is the performance bottleneck for
no authentication and Proxychain configurations. Using
an optimized version of OpenSIPS or a faster proxy server
application will provide higher call throughput values.

5.3 Scalability

In this set of experiments, we evaluate how the testbed
handles an increasing number of users, and therefore, an
increasing load. To simulate a varying number of users,
we measure performance with a varying number of prox-
ies, where each proxy represents 200,000 users. Using
a similar procedure as in the previous test, we measure

the call throughput for 3, 4, 5 and 6 proxy configurations
(600K, 800K, 1M and 1.2M users respectively).

The results are presented in Figure 7. We can see that
for Digest authentication, the maximum call throughput
measured is approximately the same (≈1,200 cps; lin-
ear regression: y = −79.6x + 1670.5 R2 = 0.848
8) for all the configurations. The reason is that even
for a three-proxy configuration, the database becomes
saturated rapidly (see previous test). Therefore, Digest
authentication limits the scalability of the system. For
Proxychain, the maximum call throughput increases lin-
early with the number of proxies (≈3,250 cps per proxy;
linear regression: y = 3243.9x + 416.5 R2 = 0.998).
From these results, we can conclude that Proxychain al-
lows the system to grow by just adding new proxies and
without requiring changes to the database.

5.4 Credential Preloading in the Proxies
In the previous tests, we evaluated Proxychain’s perfor-
mance using a best-case scenario: each proxy had all the
credentials in memory before the tests started. We now
evaluate performance when a lower number of credentials
are preloaded in each proxy. For this purpose, we use a
similar procedure as in previous tests but with two excep-
tions. First, we use a constant workload of 10,000 cps
with no ramp-up period. Second, we preload the proxies
with 200K, 150K, 100K and 50K credentials in each test.

Figure 8 shows the results for all the configurations.
For the 200K configuration (best-case, Figure 8a), the call
throughput reaches 10,000 cps quickly (< 10 sec) with
virtually no message retransmissions or failed calls. For
the 150K configuration (Figure 8b), the call throughput
jumps to approximately 3,000 cps, and then continues in-
creasing until it reaches almost 10,000 cps by the end of
the test. However, a large number of retransmissions and
failed calls occur. Finally, for the other two configurations
(Figures 8c and 8d), the behavior is worse. The maximum
call throughput measured was around 2,000 and 1,000
cps respectively during the experiments. The number of
retransmissions and failed calls is also constantly high.
In theory, each configuration should have reached 10,000
cps after some period of time. However, the large num-
ber of retransmissions makes the system unstable. These
results show the importance of having most of the creden-
tials stored in the proxies to avoid the negative effects of
retransmissions, especially when high loads are expected.

5.5 Prefetching mechanism
The previous test shows that Proxychain is more effective
if each proxy has credentials for almost all its users (best
case scenario). However, credentials are stored or updated
in the proxy only after a user request that requires authen-
tication. Therefore, we implement a prefetching mecha-



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(a) 200K credentials (100 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(b) 150K credentials (75 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(c) 100K credentials (50 %)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  100  200  300  400  500  600

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Time (sec)

Throughput (cps)
Failed calls

Retransmissions

(d) 50K credentials (25 %)

Figure 8: Call throughput measured for different number of credentials preloaded in the proxies and a constant offered load (10K
cps). Proxychain requires that proxies have most of the credentials in memory for maximum performance.

nism that automatically queries the database for creden-
tials without requiring any user action. This mechanism,
running as a separate proxy process, checks if a user has
a credential in the proxy or if her credential has already
expired (i.e., l = 0). In short, the prefetching mechanism
guarantees the best case scenario for Proxychain.

In this experiment, we characterize the effect of the
prefetching mechanism on the call setup time for individ-
ual UAs (time elapsed between the first INVITE request
and the 200 OK response). We use a UA sending a low
load (< 5 cps) to a single proxy and estimate the call setup
time using network traces (100 samples). Four proxy con-
figurations are used: no authentication, Digest authentica-
tion, Proxychain and Proxychain with prefetching.

Figure 9 shows the results for each configuration. As
expected, when no authentication is used (Figure 9a), the
call setup is the fastest: 1.47 ms on average. For Digest
authentication (Figure 9b), we can observe the effects of
the RTT between the proxy and the database (≈33 ms) on
the call setup time. Two call setup times are measured: 36
and 71 ms approximately. The reason is that for the first

value, only one RTT is required during call setup, while
for the second value, two RTTs are required due to the low
test load used (no TCP piggybacking). In general, only
one RTT is required, so we can assume that the call setup
time for Digest authentication is approximately 36 ms. In
the case of Proxychain, Figure 9c shows how the tempo-
rary credentials reduced the call setup time while they are
valid. While the credentials are active (hash chain size >
0), the call setup time is only 2.27 ms on average. Once
a credential expires (hash chain size = 0), a query to the
database is required, so the call setup time increased by
one RTT: 36.28 ms on average. When Proxychain is used
with prefetching (Figure 9d), the average call setup time
is only 2.67 ms. The reason is that no credential updates
are performed during call setups. Instead, credentials are
updated by the prefetching process automatically, before
they are required in a call setup. Therefore, the call setup
time when Proxychain is used with prefetching is close to
the call setup time when no authentication is used (≈1 ms
difference). Accordingly, prefetching helps to eliminate
the effect of network latency on call setup time.



 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

se
c)

Call setup attempts

No authentication

(a) No authentication

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

se
c)

Call setup attempts

Digest authentication

(b) Digest authentication

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

se
c)

Call setup attempts

Proxychain

(c) Proxychain

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

se
c)

Call setup attempts

Proxychain with prefetching

(d) Proxychain with prefetching

Figure 9: Call setup time for four different configurations: no, Digest, Proxychain and Proxychain with prefetching authentication.
The call setup time for Proxychain with prefetching is similar to the one obtained with no authentication.

5.6 Authenticating Multiple Message Types
In our final set of experiments, we explore the effect of au-
thenticating multiple SIP message types request per ses-
sion (call dialog). For example, the lack of authentication
of BYE requests allows several reported attacks against
SIP deployments [29]. However, if BYE requests are
also authenticated using Digest authentication, the per-
formance of the system will decrease even more due to
the additional operations and queries to the database. In
this experiment, we evaluate the impact of authenticating
INVITE and BYE requests on performance when Proxy-
chain is used. We use a similar procedure as in Section 5.2
(i.e., no prefetching). The only difference is that the prox-
ies and UACs are configured to authenticate BYE in addi-
tion to INVITE requests.

Figure 10 shows the call throughput for the two con-
figurations: INVITE and “INVITE and BYE” Proxychain
authentication. As expected, the maximum call through-
put supported by the testbed decreases when two requests
are authenticated to approximately 12,000 cps. This rep-
resents a performance drop of nearly 50%. The reason is

that credentials are used faster (twice as fast) because two
authentication operations are required per call, making the
number of queries to the database increase, resulting in
higher CPU and bandwidth utilization. However, the use
of Proxychain to authenticate two types of signaling mes-
sages still provides over 800% greater throughput than Di-
gest authentication authenticating a single message.

Finally, we test if increasing the hash chain length im-
proves the performance in this scenario. The idea is that,
if credentials are used faster when two requests per call
are authenticated, increasing the hash chain length should
reduce how fast they need to be replaced. This will result
in lower load to the database and increased throughput.
The experiment confirms our hypothesis: using a hash
chain length of 20 results in a maximum call throughput
of almost 14,000 cps. This represents an improvement of
almost 17% when compared to using hash chain length
of 10. However, increasing the hash chain length further
does not improve performance. On the contrary, the per-
formance drops back to almost 12,000 cps with a hash
chain size of 30 (using a longer hash chain caused ear-



 0

 5000

 10000

 15000

 20000

 0  5000  10000  15000  20000  25000  30000  35000

M
ea

su
re

d 
Th

ro
ug

hp
ut

 (c
ps

)

Offered Load (cps)

Proxychain (INVITE)
Proxychain (INVITE and BYE)

Figure 10: Throughput for INVITE and INVITE and BYE
Proxychain authentication. Proxychain allows authentication of
two requests per call while still supporting high throughput.

lier retransmissions, which affects the performance). The
reason for these results is that we again reach the limits
of the proxy application. The call throughput achieved is
lower because the authentication of two requests involves
additional messages and operations.

6 Discussion

6.1 Performance

The results presented in the previous section show that
Proxychain effectively addresses the limitations of Digest
authentication in VoIP topologies with a centralized au-
thentication service. Specifically, Proxychain reduces the
effects of network latency, allowing higher throughput. In
our testbed, Proxychain’s performance improvement was
enough to reach the limits imposed by the proxy applica-
tion (OpenSIPS). Moreover, Proxychain reduces the load
received by the database, improving scalability.

The caching of temporary authentication credentials
across the proxies allows our solution to perform so much
better than Digest authentication. Not surprisingly, cellu-
lar networks perform a similar distributed caching of cre-
dentials, which are generated by a Home Location Reg-
ister (HLR) and stored in the Mobile Switching Cen-
ter/Visitor Location Register (MSC/VLR) closest to the
client. However, the Proxychain approach is more effi-
cient in terms of memory. Specifically, the current ap-
proach used in cellular networks requires that multiple
credentials are stored in the MSC/VLR per user. Should
the authentication database (HLR) wish to reduce its load,
the proxies (MSC/VLRs) would need to be equipped with
additional memory. Because Proxychain authentication
credentials require a constant amount of memory regard-
less of the hash chain length, our approach is also more
scalable than traditional caching. This property is partic-
ularly advantageous as it allows for more dynamic behav-
ior by the infrastructure. For example, a database could

monitor the received load and automatically increase the
length of the hash chains in response to a spike in the load
(e.g., busy hours, DoS attack or a flash crowd). We plan
to explore such dynamic reprovisioning in future work.

The performance gains obtained in our experiments are
based on the assumption that each proxy has most of its
users’ credentials most of the time. We also assumed that
each proxy has a fixed set of registered users and that users
do not register with other proxies often (e.g., traveling to
another state). These assumptions can be relaxed by pro-
viding additional cache space in the proxies. For example,
each proxy will have a cache of fixed size, and keep in the
cache the credentials of the most active users. When new
users register with a proxy, the proxy can use an eviction
policy to replace the credentials in the cache based on fre-
quency of use. In this way, each proxy could handle a
variable number of users (more flexibility). This approach
will be evaluated in future work.

The call throughput numbers achieved in our testbed
could be considered high for commercial VoIP deploy-
ments. For example, AT&T average nationwide call vol-
ume is estimated to be around 300M calls per day, or an
average of 3,472 cps [10], or roughly 17% of the through-
put provided by our architecture. We note that while
our testbed lacks some of the other functionality that a
provider may chose to deploy (e.g., billing, media gate-
ways), the performance benefits provided by Proxychain
represent a significant potential improvement to real net-
works. Specifically, the additional capacity offered by
Proxychain can serve as a defense mechanism to handle
unexpected increments of requests for service.

The performance gains obtained by Proxychain re-
quires some trade-offs. First, a proxy using Proxychain
requires to keep a small amount of state for all its users
(credentials), which is not necessary for Digest authen-
tication. However, our experiments demonstrated that
this was not a significant burden. UACs also need to
perform more authentication operations when Proxychain
is used. Specifically, Proxychain requires additional in-
tegrity checks and hash chain computations required to
create a response. Nevertheless, the most expensive op-
erations are hash computations that are in general very
efficient to execute. In addition, the use of adequate hash
chain lengths (i.e., < 100) and caching intermediate re-
sults in the UAC can reduce these overheads. Third, the
database also requires to perform computation to create
the user credentials. However, this is a one-time cost and
it is lower than processing an equivalent number of re-
quests per user as in Digest authentication.

In general, any SIP infrastructure with multiple proxies
and a remote central authentication service will benefit
from Proxychain, even if the performance requirements
are not carrier-level. For example, the SIP infrastructure
of a multinational corporation where each regional office



has a SIP proxy and the central database is located in
the headquarters. The use of Proxychain in this scenario
will reduce the load to the database (lower bandwidth and
CPU utilization) and provide more security. As our re-
sults shows, the main requirement is to cache the creden-
tials of most of the users (e.g., > 75%) served by each
proxy. This is not a hard requirement given the size of the
credentials and the memory costs. Even in environments
with high mobility requirements, caching the credentials
of all the users in all the proxies or using caching algo-
rithms are reasonable options. Finally, the concepts be-
hind Proxychain can also be used in other domains with
similar topology requirements. For example, remote au-
thentication services such as RADIUS or DIAMETER,
or authentication in IP Multimedia Subsystem (IMS) de-
ployments could benefit from the performance, scalability
and security advantages offered by Proxychain.

6.2 Security and Threat Analysis
Proxychain not only offers the security advantages of hash
chains protocols (i.e., protection against eavesdropping
and replay attacks), but also solves some of the weak-
nesses associated with these protocols [17]. For example,
Proxychain provides integrity protection of the challenge
in the form of an HMAC. This feature protects against an
attacker located between the proxy and the client trying
to change the counter (i) in the challenge to a lower value
(i = 1) to obtain the complete hash chain sequence (small
n attack [12]). Also, Proxychain provides mutual authen-
tication between the UA and the proxy through the use of
the session key generation based on a shared secret. The
mutual authentication provided by Proxychain is less ex-
pensive and easier to implement than the one provided by
protocols such as TLS or IPsec. In addition, Proxychain
does not require hash chain synchronization9 as S/Key
does. The reason is that the hash chains are generated
based on a secret derived from users’ passwords.

Proxychain’s threat model assumes that the database
has a high level of security (a central database model fa-
cilitates this assumption). Only trusted entities (i.e., prox-
ies) are allowed to communicate with the database using
a robust security protocol (e.g., TLS or IPsec). Therefore,
threats against the database can be considered low risks.
In contrast, the proxies and the network traffic between
proxies and UAs have a higher risk of being targeted by
both, active and passive attackers.

An active attacker could try to compromise a proxy and
steal its cached credentials. However, Proxychain creden-
tials cannot be used to impersonate users (another advan-
tage of hash chains). Instead, stolen Proxychain creden-
tials could only be used to impersonate the proxy to the
users due to the session key included in the credentials.
In this scenario, only mutual authentication will be af-
fected, resulting in the same security level provided by

Digest authentication or S/Key (no server authentication).
Therefore, an attacker will still need considerable effort to
impersonate users even if she manages to steal the creden-
tials cached by the proxy. While not implemented in our
testbed, Proxychain can also include a revocation mech-
anism where the database can invalidate the credentials
cached in a proxy. This mechanism will be useful in situ-
ations where a user needs to change her password or when
a proxy has been compromised.

In addition, an active attacker could try to resend a pre-
viously captured user’s response to make unauthorized re-
quests in behalf of the user (replay attack). Proxychain
provides a stronger defense against this type of attacks
than Digest authentication due to the one-time password
property of hash chains. Even if the attacker manages
to capture a valid user’s response (e.g., a MITM attack
where the attacker prevents the user’s response to reach
the proxy), she will not be able to use it arbitrarily. The
reason is that a Proxychain response includes the origin
and destination of the request which are verified by the
proxy (the attacker cannot modify the response because
its integrity is protected).

Passive attackers (e.g., eavesdroppers) can monitor and
record the communication between the UAs and the prox-
ies. Proxychain protocol provides no additional informa-
tion that passive attackers could use to impersonate users.
Dictionary attacks against the challenge and the response
values are still possible, but they require more effort than
in Digest authentication due to the additional hash opera-
tions used in Proxychain.

Finally, Proxychain makes SIP authentication cheap
enough to authenticate more than one message per ses-
sion. Authenticating more SIP messages per session pro-
vides protection against several known attacks that target
current SIP deployments. From the security perspective,
all the messages should be authenticated to avoid vulnera-
bilities. Proxychain represents a first step in this direction.

6.3 Availability
The availability of the database is critical in scenarios
with a central authentication service. For example, if the
database becomes unavailable, the proxies will be unable
to authenticate UAs requests. As a result, no call sessions
can be established until the database is back online. This
risk can be mitigated through mechanisms such as high
availability clusters or backup sites. However, these alter-
natives are typically expensive and complex to manage.

Proxychain offers a cheaper alternative for database
outages. The idea is that the database can create a list of
authentication credentials with long enough hash chains
and no expiration time. These backup-credentials can
be stored offline in each proxy location and be activated
when the database is not available. Once each proxy loads
the backup-credentials in memory, they will be able to



authenticate UA requests as long as the credentials are ac-
tive (sequence counter > 0). A naı̈ve approach would be
to generate backup-credentials with uniformly long hash
chains (i.e., length = 1,000) to reduce the risks of users
finishing their credentials before the database is back on-
line. However, this approach is inefficient because very
long hash chains will cause unnecessary overheads in the
database and the UAs and lower performance during their
generation. A more efficient approach would be to es-
timate the necessary length of the hash chains based on
the expected time that the database is going to be unavail-
able. For example, a provider needs to install new hard-
ware, requiring the database to be offline. The provider
can estimate how many authenticated requests occur in a
period of six hours based on its call statistics. For exam-
ple, the provider can determine the call rate of its most
active users. Assuming that the most active users make
10 calls per hour during busy hours, backup-credentials
with a hash chain length of at least 60 will be required
(also assuming that only one request per call is authenti-
cated). Using Table 1, we know that the time to compute
one credential with hash chain length = 100 is approxi-
mately 335 µsecs. Therefore, if the provider has 5 million
users, the database will require approximately 28 minutes
of computation to generate backup-credentials that will
be active during 6 hours. This simple calculation could be
made more robust by identifying those users most likely
to far exceed the uses of the temporary credentials (i.e.,
profiling via long-term logging) and selectively increase
the length of their hash chains.

7 Related Work

Authentication is a required service in most SIP deploy-
ments. The VoIP standard (RFC 3261 [21]) recommends
the use of robust security mechanisms such as TLS, IPsec
and S/MIME to provide authentication and other secu-
rity guarantees. However, these mechanisms are com-
putationally expensive [5, 6, 15, 16] and complex to man-
age (i.e., client certificates are required). Digest authen-
tication, also recommended by RFC 3261, is more effi-
cient and simpler authentication mechanism with lower
implementation requirements than the previous schemes.
As a result, it is the preferred authentication mechanism
for most SIP deployments. However, previous research
shows that Digest authentication can still have a con-
siderable impact on the performance of a SIP infras-
tructure [19, 22], specially when a remote authentication
database is employed [8]. In addition, in scenarios where
the remote database is shared by multiple proxies, the
database could become a bottleneck due to the high load
the it receives. In this case, the database could be sus-
ceptible to DoS attacks. For example, multiple mali-
cious clients could generate enough load to saturate the

database, as was demonstrated by Traynor et al. [24] in
cellular networks.

The impact on performance caused by authentication is
also one of the reasons why only a few messages are au-
thenticated in a SIP call transaction. This fact and the lack
of mutual authentication lead to several possible attacks
against a SIP infrastructure [2, 29]. Moreover, Digest au-
thentication is considered a weak authentication protocol
by today’s cryptographic standards given its lack of mu-
tual authentication and susceptibility to a number of other
attacks [3, 9, 26, 27]. Several alternative schemes have
been proposed to overcome the weaknesses of Digest au-
thentication. Most of these alternatives focus on provid-
ing stronger security guarantees [4, 25, 27, 28], while oth-
ers also focus on better performance [7]. However, these
alternatives do not provide an implementation and experi-
mental performance analysis to determine their impact on
the performance of a SIP server.

To avoid the saturation of the database and improve per-
formance, we present a new authentication mechanism
based on temporary authentication vectors stored in the
proxies. A similar idea is used in the Authentication and
Key Agreement (AKA) [1] security protocol for 3G cellu-
lar networks. However, instead of using multiple authen-
tication vectors as AKA does, our scheme uses a modified
hash chain construction [13] to provide mutual authenti-
cation. Hash chains have been used in security protocols
in different domains where efficiency is critical such as
sensor networks [14, 20] and RFID tags [23]. Our work
is the first to take advantage of the security, performance
and space efficient properties of hash chains to reduce the
overhead of the authentication process in SIP.

8 Conclusions

VoIP has and will continue to change telephony. These
systems not only drastically reduce the costs associated
with building and providing such services, but also offer
the potential for rich new sets of features. Unfortunately,
the large-scale usage of VoIP also creates a number of new
security concerns. In this paper, we develop Proxychain,
a mechanism that provides strong authentication between
VoIP providers and their customers. Unlike previously
deployed mechanisms, Proxychain is highly scalable and
offers throughput improvements of greater than an order
of magnitude. This increased efficiency allows providers
not only to support a much larger customer base on a rel-
atively limited hardware footprint, but also increases the
overall security of the network by allowing for multiple
message types to be authenticated. In so doing, we have
significantly increased the robustness of VoIP systems.



Acknowledgments

We wish to thank Kevin Butler and our shepherd Galen
Hunt for their valuable comments. This work was sup-
ported in part by the US National Science Foundation
(CNS-0916047). Any opinions, findings, conclusions or
recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References
[1] 3GPP. ETSI Technical Specification 133 102 v7.1.0 - Security

Architecture, 2006.

[2] ABDELNUR, H., AVANESOV, T., RUSINOWITCH, M., AND
STATE, R. Abusing SIP Authentication. In Proceedings of the
International Conference on Information Assurance and Security
(2008).

[3] BLACK, J., COCHRAN, M., AND HIGHLAND, T. A Study of
the MD5 Attacks: Insights and Improvements. In Fast Software
Encryption (2006).

[4] CAO, F., AND JENNINGS, C. Providing Response Identity and
Authentication in IP Telephony. In Proceedings of the First In-
ternational Conference on Availability, Reliability and Security
(ARES) (2006).

[5] CHA, E.-C., CHOI, H.-K., AND CHO, S.-J. Evaluation of Secu-
rity Protocols for the Session Initiation Protocol. In Proceedings of
16th International Conference on Computer Communications and
Networks (ICCCN) (2007).

[6] COARFA, C., DRUSCHEL, P., AND WALLACH, D. S. Perfor-
mance analysis of TLS Web servers. ACM Transactions on Com-
puter Systems 24, 1 (2006), 39–69.

[7] CUI, T., GAO, Q., AND HE, B. A lightweight authentication
scheme for Session Initiation Protocol. In International Confer-
ence on Communications, Circuits and Systems (2008).

[8] DACOSTA, I., BALASUBRAMANIYAN, V., AHAMAD, M., AND
TRAYNOR, P. Improving Authentication Performance of Dis-
tributed SIP Proxies. In Conference on Principles, Systems and
Applications of IP Telecommunications (IPTComm) (2009).

[9] EL SAWDA, S., AND URIEN, P. SIP Security Attacks and Solu-
tions: A state-of-the-art review. In 2nd International Conference
on Information and Communication Technologies (2006).

[10] FISHER, K., AND GRUBER, R. PADS: Processing arbitrary data
streams. In Proceedings of Workshop on Management and Pro-
cessing of Data Streams (2003), DIMACS.

[11] FRANKS, J., HALLAM-BAKER, P., HOSTETLER, J.,
LAWRENCE, S., LEACH, P., LUOTONEN, A., AND STEW-
ART, L. RFC 2617: HTTP Authentication: Basic and Digest
Access Authentication. IETF RFC Editor (1999).

[12] KAUFMAN, C., PERLMAN, R., AND SPECINER, M. Network
Security: Private Communication in a Public World, second ed.
Prentice Hall, 2002.

[13] LAMPORT, L. Password authentication with insecure communi-
cation. Communications of the ACM 24 (1981), 770–772.

[14] LIU, D., AND NING, P. Multilevel µTESLA: Broadcast authenti-
cation for distributed sensor networks. ACM Trans. Embed. Com-
put. Syst. 3, 4 (2004), 800–836.

[15] MEENAKSHI, S., AND RAGHAVAN, S. Impact of IPSec Over-
head on Web Application Servers. In International Conference on
Advanced Computing and Communications(ADCOM) (2006).

[16] MILTCHEV, S., IOANNIDIS, S., AND KEROMYTIS, A. D. A
Study of the Relative Costs of Network Security Protocols. In
Proceedings of the FREENIX Track: USENIX Annual Technical
Conference (2002).

[17] MITCHELL, C. J., AND CHEN, L. Comments on the S/KEY user
authentication scheme. SIGOPS Oper. Syst. Rev. 30 (1996), 12–16.

[18] MUKERJEE, S. Subscriber management for next-
generation networks. http://www.xchangemag.com/
webexclusives/62h2815505.html, 2006.

[19] NAHUM, E. M., TRACEY, J., AND WRIGHT, C. P. Evaluating
SIP server performance. In Proceedings of the ACM SIGMET-
RICS international conference on Measurement and modeling of
computer systems (2007).

[20] PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TY-
GAR, J. D. SPINS: Security Protocols for Sensor Networks. In
Proceedings of the International Conference on Mobile Comput-
ing and Networks (MOBICOM) (2001).

[21] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G., JOHN-
STON, A., PETERSON, J., SPARKS, R., HANDLEY, M., AND
SCHOOLER, E. RFC 3261: SIP: Session Initiation Protocol. IETF
RFC Editor (2002).

[22] SALSANO, S., VELTRI, L., AND PAPALILO, D. SIP security
issues: the SIP authentication procedure and its processing load.
IEEE Network 16 (2002), 38–44.

[23] SYAMSUDDIN, I., DILLON, T., CHANG, E., AND HAN, S. A
Survey of RFID Authentication Protocols Based on Hash-Chain
Method. In ICCIT: Proceedings of the Third International Confer-
ence on Convergence and Hybrid Information Technology (2008).

[24] TRAYNOR, P., LIN, M., ONGTANG, M., RAO, V., JAEGER, T.,
LA PORTA, T., AND MCDANIEL, P. On cellular botnets: Measur-
ing the impact of malicious devices on a cellular network core. In
Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS) (2009).

[25] WANG, F., AND ZHANG, Y. A new provably secure authentication
and key agreement mechanism for SIP using certificateless public-
key cryptography. Computer Communications 31 (2008), 7.

[26] WANG, X., AND YU, H. How to Break MD5 and Other Hash
Functions. In Proceedings of EUROCRYPT (2005).

[27] YANG, C.-C., WANG, R.-C., AND LIU, W.-T. Secure authenti-
cation scheme for session initiation protocol. Computers and Se-
curity 24 (2005), 381–386.

[28] YOON, E.-J., AND YOO, K.-Y. A New Authentication Scheme
for Session Initiation Protocol. Complex, Intelligent and Software
Intensive Systems, International Conference (2009).

[29] ZHANG, R., WANG, X., YANG, X., AND JIANG, X. Billing
attacks on SIP-based VoIP systems. In Proceedings of the first
USENIX workshop on Offensive Technologies (2007).

Notes
1Note that calls are placed through “Super-Nodes” in Skype, but that

users sign on through a server located at 80.160.91.11.
2http://www.netlab.cc.gatech.edu/
3https://www.planet-lab.org/
4http://www.opensips.org/
5http://www.mysql.com/
6http://sipp.sourceforge.net/
7Based on empirical evaluation, not shown for space reasons.
8R2 is the correlation coefficient, which indicates goodness of fit,

with 0 being no match and 1 being perfect.
9Setting a new hash chain once the current one expires, using a se-

cure secondary channel


