
SleepServer: A Software-Only Approach for Reducing the Energy
Consumption of PCs within Enterprise Environments

Yuvraj Agarwal Stefan Savage Rajesh Gupta

Computer Science and Engineering
University of California, San Diego
{yuvraj,savage,gupta}@cs.ucsd.edu

Abstract
Desktop computers are an attractive focus for energy sav-

ings as they are both a substantial component of enterprise en-
ergy consumption and are frequently unused or otherwise idle.
Indeed, past studies have shown large power savings if such
machines could simply be powered down when not in use. Un-
fortunately, while contemporary hardware supports low power
“sleep” modes of operation, their use in desktop PCs has been
curtailed by application expectations of “always on” network
connectivity. In this paper, we describe the architecture and
implementation of SleepServer, a system that enables hosts to
transition to such low-power sleep states while still maintain-
ing their application’s expected network presence using an on-
demand proxy server. Our approach is particularly informed
by our focus on practical deployment and thus SleepServer is
designed to be compatible with existing networking infrastruc-
ture, host hardware and operating systems. Using SleepServer
does not require any hardware additions to the end hosts them-
selves, and can be supported purely by additional software run-
ning on the systems under management. We detail results from
our experience in deploying SleepServer in a medium scale en-
terprise with a sample set of thirty machines instrumented to
provide accurate real-time measurements of energy consump-
tion. Our measurements show significant energy savings for
PCs ranging from 60%-80%, depending on their use model.

1 Introduction

“Turn off lights and equipment when they are not in
use.” This simple exhortation heads the list of the En-
vironmental Protection Agency’s “tips” for making busi-
nesses energy efficient. The reasons are straightforward.
In the U.S., commercial buildings consume over one
third of all electrical power [9] and, of these, lighting
and IT equipment are the largest contributors (roughly
25% and 20% respectively in office buildings accord-
ing to one 2005 study [10]). However, while it has been
relatively straightforward to address lighting use (either
through education or occupancy sensors), IT equipment
use has been far more resistant to change. Indeed, in a

recent empirical study across a number of buildings on
our campus, we measured that between 50% and 80% of
all electrical power consumption in a modern building is
attributable to IT equipment (primarily desktops) [4].

This finding can be unintuitive. First, the computer
equipment industry is working hard to reduce power con-
sumption at all levels. Thus, we expect desktop power
consumption to be decreasing, not increasing. Second,
modern hardware and operating systems possess mech-
anisms for entering low-power modes when not in use.
However, the overall impact of both has been limited
in practice. For example, while individual components
are indeed much more energy efficient, the capability per
desktop has also increased. Thus, while a typical desktop
system from 2002 might consume roughly 60-75 watts
when idle, the same is also true for today’s desktops.
Even machines designed and marketed as “low-power”
desktops, such as Dell’s Optiplex 960 SFF, routinely con-
sume 45 Watts when they are unused.

Compounding this issue is the fact that while today’s
machines can enter a low-power sleep state, it is com-
mon that they do not – even when idle. Here the prob-
lem is more subtle. Today’s low power mechanisms as-
sume that – like lighting – the absence of a user is a suf-
ficient condition for curtailing operation. While this is
largely true for disconnected laptop computers (indeed,
low-power suspend states are more frequently used for
such computers), it is not compatible with how users and
programs expect their connected desktops to function.
The success of the Internet in providing global connec-
tivity and hosting a broad array of services has implicitly
engendered an “always on” mode of computation. Ap-
plications expect to be able to poll Internet services and
download in the background, users expect stateful appli-
cations to act on their behalf in their absence, system ad-
ministrators expect to be able to reach desktops remotely
for maintenance and so on. Thus, there is implicitly a
high “opportunity cost” associated with not being able to
access and use computers on demand.

Sep 21 2009 Sep 22 2009 Sep 23 2009 Sep 24 2009 Sep 25 2009 Sep 26 2009 Sep 27 2009

50

100

150

200

250

300
P
o
w

e
r

(K
W

)
Server Room Plug Loads (Desktop PCs) Lighting Mechanical Equipment

Figure 1: Detailed breakdown of the various power consumers inside the CSE building at UC San Diego [4], for
a week in September 2009. Desktop computing equipment, which make up majority of the plug loads, and the IT
equipment in the server rooms account for almost 50% to 80% of the base load of this building.

However, we, as well as others, have observed that this
demand for “always on” behavior is distinct from truly
requiring an “always on” system. Indeed, it can be suffi-
cient to present the illusion that a desktop is always on —
suspending it when idle, proxying minor requests on its
behalf and dynamically waking it up if its power and state
are truly needed [3, 5, 16, 20]. Unfortunately, all of these
systems have imposed significant barriers to deployment
in implementing this illusion — either requiring signifi-
cant modifications to network interface hardware and in
some cases the host OS software. Such requirements not
only represent new expenses, but also require the active
participation of third parties (especially network silicon
merchants) over the full range of systems in broad use.
Thus, in spite of the significant potential for energy sav-
ings, we are unaware of any such systems that have been
fielded in practice or had practical impact on power con-
sumption in the enterprise sector.

In this paper, we focus on this deployment challenge.
Our goal is to provide the same power savings of prior
research prototypes, such as our own Somniloquy sys-
tem [3], yet do so within the confined rubric of exist-
ing commodity network equipment, host hardware, op-
erating systems and applications. Indeed, at the idea
level SleepServer is similar to Somniloquy, but from a
practical standpoint SleepServer addresses a different set
of challenges that arise directly from our experience in
deploying it in our department. The remainder of this
paper describes our two contributions: First, we moti-
vate and explain the architecture and implementation of
the SleepServer system, which transitions machines to
a sleep state when idle, while transparently maintain-
ing the “always-on” abstraction should their services be
needed, using a combination of virtual machine proxies
and VLANs. Second, we present the results of our pilot
SleepServer deployment across a heterogeneous sample
of thirty desktops in active use and monitored in real-
time by dedicated power meters, including an empirical
quantification of the (significant) power savings, an anal-

ysis of our system’s scalability and cost, and a descrip-
tion of our qualitative experience concerning user feed-
back and behavior modification.

2 Background

Over the last several decades, the pervasive adoption of
information technology has created a new demand for
electrical power. Partly due to this reason, the share of
U.S. electrical power consumed by commercial buildings
has grown 75% since 1980 (it is now over a third of all
electrical power consumed) [9]. In a modern office build-
ing, this impact can be particularly striking.

For example, Figure 1 shows the power consumption
of the CSE building at UC San Diego, broken down by
various functions: lighting, server computing, plug loads
and HVAC. While the overall electrical usage varies from
320KW to 580KW over the course of a year [4] — gen-
erally due to increases in air-handling and cooling — the
baseline load is highly stable. Indeed, computer servers
and desktop machines connected as plug loads account
for 50% (during peak hours on weekdays) to 80% (dur-
ing nights and weekends) of the baseline load and vary
by no more than 20KW over the course of the year.

Given their large consumption footprint, it is not sur-
prising that increasing the energy efficiency of IT equip-
ment has long been an active area of research. However,
most of these efforts fall into three distinct categories.
One approach focuses on reducing the active power con-
sumption of individual computing devices by utilizing
lower power components [11] or using them more effi-
ciently [12, 21]. The second class of energy saving tech-
niques, especially popular in data centers, look at migrat-
ing work between machines — either to consolidate onto
a smaller number of servers [8] (e.g., using virtual ma-
chines [19]) or to arbitrage advantageous energy prices in
different geographic zones [23]. Finally, the third class
of energy management techniques consider opportunis-
tically duty-cycling subsystems, such as wireless radios

[2, 22, 24], networking infrastructure [14, 21] or even
entire platforms[3, 18, 25], during periods of idleness or
low use. SleepServer falls into this third category of en-
ergy management approaches.

The duty-cycling technique exploits the capability of
modern hardware to enter low-power states while main-
taining transient state. For example, modern desktops
support the ACPI S3 (Sleep/Standby) state, which can
reduce power consumption by 95% or more [1]. One
approach to using this capability, embodied in modern
versions of most operating systems, is to simply place
the system in a low-power state after it has been idle for
some period of time. Unfortunately, as mentioned earlier,
this conflicts with the behavior of users and software that
implicitly assume an “always on” abstraction.

To manage this problem, today’s network interfaces
(NIC) implement features, such as “Wake-on-Lan” [17],
that allow sleeping systems to be awakened upon receiv-
ing network traffic (frequently a special packet). While
this mechanism is quite important, it does not address
the key question of when a machine should be woken. If
this mechanism is activated for every packet then energy
savings quickly disappear. Conversely, if its use is too re-
stricted then the “always on” abstraction is lost and users
lose the ability to freely access their machines. Conse-
quently, a gap exists between the abstraction levels over
which WoL works and the level at which its operation is
useful in real-life systems.

Some recent variants have attempted to address these
concerns through proprietary hardware and software sup-
port. For example, Intel Remote Wake allows the “wake
up” capability to be integrated into server software so,
for example, a VoIP server could be enabled to wake one
of its client machines [15]. Apple’s Wake-on-Demand
takes a similar approach, allowing client machines us-
ing Bonjour advertised services to be “woken” when ac-
cessed via Apple networking hardware (WiFi APs) [6].
While neither approach is general, they reflect precisely
the need to encode some dynamic triggering policy to
preserve application and user transparency.

To generalize this policy, several systems incorporate
additional low-power processors into the network inter-
face itself[3, 25]. Using this approach, requests from the
network can be parsed and evaluated even when the rest
of the system itself is in a low-power sleep state. More-
over, due to their generality these low-power processors
can even process requests on behalf of the sleeping sys-
tem instead of waking it, thus maximizing the amount
of power saved. Unfortunately, such approaches face a
significant deployment barrier as they require non-trivial
changes to network interface hardware.

Finally, a set of projects [5, 16, 20] have explored
the notion of implementing this ”always on” function-
ality via network proxies that maintain a limited network

presence on behalf of sleeping PCs. Nedevschi et al.[20]
provide an in-depth look at network traffic to evaluate the
design space of a network proxy, while the Network Con-
nection Proxy (NCP) [16] proposes modifications to the
socket layer for keeping TCP connection alive through
sleep and resume transitions. SleepServer is most sim-
ilar in spirit to these efforts, but is distinguished from
prior work both in offering an actual implementation and
not requiring changes to existing hardware, software or
networking infrastructure. We argue that these are nec-
essary requirements for any system to see practical use
in the enterprise setting.

3 SleepServer: Architecture

We had several goals in mind when we started to design a
network-proxy, especially for an enterprise setting. First,
the proxy must be able to maintain the network pres-
ence of any host on the local network while maintaining
complete transparency to other end hosts in the network
and to network infrastructure elements such as switches
and routers. Second, since the proxies themselves add to
the total power consumption, they must be highly scal-
able and therefore be able to service hundreds of hosts at
any given time for maximum energy savings. Third, the
proxy should be able to provide isolation when it is ser-
vicing individual hosts while providing mechanisms to
scale resource allocation based on the proxying demands
of individual hosts. Fourth, the proxy must address man-
agement aspects, such as providing mechanisms to en-
able and disable the proxying functionality for hosts dy-
namically, viewing the status of supported hosts in the
system, and maintaining security. Fifth, the proxy should
be able to support a heterogeneous environment with dif-
ferent classes of machines running different operating
systems. Lastly, we wanted to achieve all of the above
goals purely in software without requiring any additional
hardware to the individual end hosts or any changes to
the networking infrastructure.

Based on these design goals, our SleepServer—
network-proxy architecture is illustrated in Figure 2.
In an enterprise LAN environment, one or more
SleepServers (SSR) can be added in addition to the
host computers (H) proxied by the SleepServer. These
SleepServer machines have a presence on the same net-
work segments or subnets as the proxied hosts, i.e.
they are on the same Layer-2 broadcast domain. A
SleepServer can proxy for machines on different sub-
nets using existing Virtual LAN (VLAN) support that is
common to commodity routers and switches. Of course,
there can be multiple SleepServers, each servicing only
a particular VLAN(s) for security isolation if required by
enterprise policy.

The various components of a SleepServer are shown

Host H1 Host H98

Host H2

Host H3

.
Host H99

Host H100

h h

Sleep Server
SSR1

Switch Switch

Sleep Server
SSR2

Network Subnet A

Network Subnet B

Host H201

Host H202

Host H200

Router

Sleep Server
SSR3

Host H202

Switch

Figure 2: An example deployment of Sleep Servers in
an enterprise setting. Since there are many more hosts
in Subnet A there may be more than one SleepServer
(SS1 and SS2) to handle the load while there is only one
SleepServer (SS3) needed in Subnet B with fewer hosts.

in Figure 3. As shown in the figure, access to the
underlying hardware is by a resource multiplexer, which
can be either an operating system or a hypervisor/Virtual
Machine Monitor (VMM) such a XEN [7]. For each
host H that the SleepServer is proxying for, there is a
corresponding Image I that is instantiated. This image is
responsible for maintaining the network presence of the
host when it is in a sleep state. Although it is possible
to build a host image as a stand alone process that can
respond to the various network protocols, we chose a
VMM-based architecture for simplicity and expediency.
Since VMs are typically based on existing operating
systems, all the standard protocols (e.g. ARP, ICMP)
are already supported while support for others can be
easily added. In contrast a process based approach
would require adding support for the myriad of standard
protocols. Furthermore, it is unclear how a process
oriented approach would handle stateful applications
that need application specific code (described in Section
3.2). VMMs also already have existing support for
isolation between host images, for resource allocation
and sharing, and for managing security and networking
between images. While VMs may use more resources
than a standalone process, our results show that the VM
solution offers sufficient scalability for our purposes
without requiring significant additional engineering. In
addition to the host images, the SleepServer supports
a privileged controller domain that is responsible for
various SleepServer functions. This SSR-controller
manages the creation and configuration of individual
host images, communication between the SSR-Client
software and the host images, and resource allocation
and sharing among the host images.

SSR‐Con

Im
age for

Im
age for

Im
age fontroller

r H
ost H

1

. r H
ost H

1

r H
ost H

99

Resource Multiplexer
(Operating System or a Hypervisor)

Hardware
(Memory, Network Interfaces, Processors, ..)

Figure 3: A example SleepServer serving a collection of
host PCs (H1, ...H99). All resource sharing and access
to the hardware is mediated by the SleepServer controller
software module running on the SleepServer.

Each host PC using SleepServer has a software com-
ponent installed (SSR-Client) that communicates with
the SSR-Controller. When a particular host is enabled
for use with a SleepServer, the SSR-Client first connects
to the SleepServer machine in its network subnet, and
specifies its network parameters such as its MAC and
IP address and its firewall configurations. In addition,
the SSR-Client sends the state of the running applica-
tions on the host, and any open TCP or UDP ports to the
SSR-Controller. The information sent by the host is re-
ceived by the SSR-Controller which then creates an ‘im-
age’ of that particular host using the specified network
parameters. The network parameters of this image are
configured to mimic those of the particular host. The
base firewall configuration of this image can be identical
to the one on the host, or can be made more restrictive.
When the host is asleep, its image can respond to incom-
ing packets on its behalf. In case an application request is
received that requires the host itself to respond the SSR-
Controller wakes up the host and disables its image on
the SleepServer.

3.1 Handling State Transitions

The basic operation for a SleepServer is as follows. Be-
fore a host PC transitions to a low power mode such as
sleep, the SSR-Client software running on it sends a mes-
sage to the SSR-controller with the state transition in-
formation. The controller then enables the correspond-
ing Image for that host. Additionally, in order to have
packets re-routed to the SleepServer and the Image of
the host, the controller needs to reconfigure the Layer-2
switches to re-learn the network topology. To do this in a
seamless way, without requiring any special functional-

ity provided by only high-end switches, the SleepServer
uses a combination of gratuitous ARPs and packets sent
to the gateway in the subnet. Since these packets are sent
by the Images of the host on the SleepServer, the Layer-2
switches learn the MAC address of the Image and subse-
quent packets for that host are sent to the switch ports
that the SleepServer is connected to.

Similarly, when the host transitions out of a low power
mode, the SSR-Client traps this event and sends a mes-
sage to the SSR-Controller notifying it of the transition.
When the SSR-Controller gets this message it disables
the host image, thus stopping if from responding on the
behalf of the host. The SSR-Client on the host also sends
gratuitous ARP messages and packets to the subnet gate-
way which cause switches in the network infrastructure
to learn the MAC address and forward any subsequent
packets meant for the the host to the switch port that the
host is connected to.

3.2 Host Images on the SleepServer

The host-images on the SleepServer are responsible for
maintaining full network presence on behalf of the host
when they are asleep. In principle, these host-images
have their own TCP/IP stack, memory, processor re-
sources and persistent storage. The host images do not
need to run the same OS as the host computer. The im-
age of a particular host is configured with the identical
network configuration as the host itself (IP, MAC ad-
dress) and it can essentially masquerade as the host and
respond to network events when the host is asleep. How-
ever, processor and memory resources allocated to an im-
age are generally much less than those available on the
host machine itself, as these host images are configured
to only maintain network presence and any application
stubs that may be necessary to run (described later in this
section). For example, a host image on the SleepServer
may only have 64MB of memory allocated, while the
actual host may have several Gigabytes of memory. Fur-
thermore, shared resources such as the processor and net-
work bandwidth allocation of the images are multiplexed
between several other images on the same SleepServer,
providing scalability and the ability to host hundreds of
images on the same SleepServer.

Supporting Stateless Applications: Stateless appli-
cations do not maintain long running sessions or have
a persistent connection open. To support these appli-
cations, the image responds appropriately to connection
requests by doing one of two actions. First, the image
can respond on behalf of the host for certain requests
by sending an appropriate response, such as replying to
ICMP requests or responding to ARP queries. Recall that
since the network parameters of the image are the same
as the host, they appear identical to the other hosts on

the network. Second, for incoming requests that require
the resources of the host itself, for example an incoming
SSH connection to the host or an SMB request for data
stored on the host computer, the image is disabled and
the controller is notified. To ensure that the original con-
nection request is handled appropriately, it is essential
that the image of the host does not respond to it. Instead
we rely on the fact that most applications are based on
protocols, such as TCP, that normally retry connection
requests in case of packet loss. Applications based on
unreliable delivery protocols such as UDP usually han-
dle packet loss at the application layer by retransmitting
requests. Applications that are essentially stateless and
connect to well defined ports, such as remote access re-
quests using RDP (TCP Port 3389) or SSH (TCP Port
22), incoming SMB file sharing requests(TCP port 445),
and requests to a web server (TCP Port 80), can be sup-
ported using this mechanism.

On receipt of the notification from a host image, the
controller automatically generates a wakeup packet to
wake up the host. This can be done using either Wake-
on-LAN (WoL)[17], which can be found on most PCs,
or by utilizing newer technologies like Intel AMT. WoL
allows PCs to be woken up on receipt of several differ-
ent kinds of packets. ’Wake on Directed Packets’ and
’Wake-on-Any Packet’ unfortunately cause too many
wake ups since even broadcast traffic causes the PC to
wake up. Instead, we use the “magic-packet” variant of
Wake-on-LAN which can be sent by a SleepServer in the
subnet to wake up the host from a sleep state.

Supporting Stateful Applications: Stateful applica-
tions maintain continuous state and send periodic keep
alives or keep connections open. For these applications
and protocols, capturing application semantics is essen-
tial in order to proxy for them by the image of the host on
the SleepServer. To support these stateful application we
require application specific code to be running on the im-
ages on the SleepServer. This is in contrast to the state-
less applications mentioned in the previous section that
do not require any application specific code on the im-
ages. A majority of these stateful applications run in the
background, and can be active even when the user is not
present in front of the system. Examples include main-
taining presence on IM networks, long running and unat-
tended web downloads, participating on P2P networks
such as BitTorrent, and advertising available services and
content using protocols such as Bonjour and uPNP.

To support these applications we take an approach
similar to Somniloquy[3] where we run reduced func-
tionality variants of the main applications, called
‘application-stubs’. These stubs have significantly re-
duced processor and memory requirements as compared
to the original applications running on the hosts. The key
idea in developing a stub is to remove all the code com-

ponents of the application that are not needed on the host
image, such as the user interface. Similar to Somnilo-
quy, these stubs can be created by either writing them
from scratch or by removing components of an existing
application. In some cases console versions of the same
applications are already available, such as the pidgin
IM client and its console version called finch, which
can be used as a starting point.

Although the process to build stubs is similar to that
used in Somniloquy, there are several key differences
that make it significantly simpler in the SleepServer ar-
chitecture. First, because SleepServer can be run on
any x86 based server computer, the host images them-
selves can also run on this industry standard architec-
ture. Therefore, porting applications and building stubs
for the SleepServer images is as simple as building an
application for a regular computer with all of the stan-
dard libraries and packages available. In contrast, Som-
niloquy used an additional piece of hardware, with a dif-
ferent processor architecture, and required cross compil-
ing applications. Second, the host images running on a
SleepServer are based on software VMs, and as a result
the amount of resources allocated to each host image can
be dynamically changed. For example, the image of a
particular host performing heavy downloads would have
more memory and processor resources allocated to it,
while the image of another host that is just replying to
ICMP echo requests would have less. This is not pos-
sible with Somniloquy as each host PC has a dedicated
piece of Somniloquy hardware physically attached to it,
each with a fixed amount of resources.

In some cases it becomes necessary to transfer data be-
tween the host and its image running on the SleepServer.
For example, consider a download stub that continues a
long running download on behalf of the host when it is
asleep. Once the host wakes up, the downloaded data
needs to be transferred to the host. In the SleepServer ar-
chitecture this state and data transfer can be handled by
storing the data locally in the persistent storage provided
to each image and then later sending it to the host over
the network when the host is awake. Another option is to
set up a network storage for each host, which can even be
hosted by the SleepServer itself. The host and its image
can then access the same unified storage to store data that
is needed for SleepServer operation.

3.3 Scalability and Resource Sharing

Scalability, in terms of the number of hosts supported
simultaneously on a single SleepServer, is an impor-
tant design goal for both cost and energy savings. To
keep the cost of the SleepServer low, we want to base
the SleepServer on commodity components and have it
support a large number of hosts. Therefore, we ensure

that the individual images start with the smallest possible
footprint, both in terms of disk space used and the num-
ber of processes they create, in order to minimize proces-
sor and memory usage. Furthermore, each image is fur-
ther customizable such that only the application stubs or
software modules that are needed by each host are loaded
onto their respective images.

Beyond CPU usage, the potential scalability bottle-
necks lie in the memory usage and network bandwidth
requirements. Currently we allocate memory statically
to the host images and only have as many images con-
currently running as can fit in the main memory of
the SleepServer. Given that our images start out with
very modest memory allocations (64MB or less), a
SleepServer with 32GB of memory can support over
500 simultaneously executing host images. Furthermore,
since the host images are based on Virtual Machines
(VM), we can employ techniques such as Difference
Engine [13] which exploits memory compression tech-
niques to significantly reduce the memory use of VMs.
For multiplexing access to the processor and the network
interfaces, we rely on the resource sharing provided by
the underlying VMM.

3.4 Management in Enterprises

Security and manageability are important considerations
in enterprises. System administrators are reluctant to add
and support technology solutions that add administrative
costs. We have implemented management modules that
allow administrators to view in real time a ‘heart-beat’
of the systems supported on SleepServer. Since all state
transitions such as hosts going to sleep and resuming are
logged by the SleepServer controller, it can also provide
users of those particular PCs feedback on their energy
usage in real time and their estimated energy savings.
SleepServer administrators can check the health of the
host machines and see if they are transitioning in and out
of sleep modes successfully. SleepServer also adds to
the observability of the state of machines. For example,
it is possible to tell the difference between a computer
in a sleep state against one that has crashed. Through
the centralized management interface, administrators can
also set up host specific policies, such as waking up some
hosts at designated times, and perhaps even staggering
wake ups to minimize spikes in energy usage.

Similarly, failure detection and recovery are impor-
tant, such as handling the case when a SleepServer goes
down. Note that under all circumstances the hosts that
are sleeping can still be woken up normally by a user ac-
tion such as a key press on the keyboard. Hosts that are
awake and were not being serviced by the SleepServer
are not affected by a SleepServer failure, while hosts
that were asleep will lose network connectivity. Fur-

thermore, if the SleepServer is unavailable any hosts
that want to transition to sleep and maintain their net-
work presence and availability can no longer do so. The
SleepServer architecture handles these failure cases us-
ing several mechanisms. First, for a temporary failure
or an intentional reboot after updates the SSR-controller
re-creates the state of the various hosts from its logs and
restarts all the host images to their original conditions.
Second, multiple SleepServers can exist and proxy for
a particular host. The different SSR-Controllers in this
case communicate with each other to provide redundancy
and load balancing. Finally, hosts can discover and check
for the availability of their SleepServer and in case the
SleepServer is not responding, they can look for alter-
natives. If no SleepServer is available the SSR-Client
running on the host alerts the user about the lack of an
appropriate SleepServer in the network and can let the
user decide if they still want to transition to sleep.

Security and Isolation of the Host images: Address-
ing the security implications of SleepServer is impor-
tant since multiple host images are hosted on the same
SleepServer. We need to ensure that the host images do
not increase the attack surface of the hosts within an en-
terprise while keeping them safe from outside attackers.
Furthermore, the individual images should not be able to
receive and intercept each others network traffic.

While we do not currently have a comprehensive se-
curity evaluation, there are several features and safe-
guards in our SleepServer architecture that address se-
curity. First, since the SleepServer is based on a VMM
architecture the SSR-Controller domain runs at a higher
privilege level than the individual images. The SSR-
Controller therefore has the responsibility to add rules
to route traffic to the appropriate image. As such, only
the packets that are meant for a particular host image are
send to it, in addition to broadcast and multicast traffic.
Second, the host images are not accessible by users of the
host PCs directly. Instead, all communication between
the SSR-Client software and the host image goes through
the SSR-Controller. Third, the firewalls on the host im-
ages is configured to be very restrictive and opened only
to the ports for which the host and its application stubs
require. Note that the firewall on the host images can
be configured to be even more restrictive than that of the
actual host. Fourth, the host images only communicate
with the SleepServer controller directly to get configura-
tion changes and can be patched by the controller. Fur-
thermore, we enable only the essential services and pro-
grams in the host images, and as such the attack surface is
relatively narrow. Finally, recall that on a valid incoming
connection request the particular host is immediately wo-
ken up from sleep by the controller and its image stops
responding. In this case, the security implications are
identical to the case where the host remained awake.

4 Implementation

We have implemented SleepServer on a commodity
server computer and are currently serving over thirty
desktop users on it. In this section we outline our imple-
mentation of SleepServer, specifically highlighting how
we support the design goals mentioned earlier in Section
3. There are three primary software components that are
required. The first is the SSR-Client software that runs
on the host computer. The second component is the SSR-
Controller which runs on a SleepServer computer. The
third component are the host images themselves, each
supporting a host PC using SleepServer.

4.1 SS-Client Software for Hosts

SleepServer currently supports several common operat-
ing systems, such as Microsoft Windows (XP, Vista and
7) and Linux (tested on Ubuntu). Windows based operat-
ing systems have standardized power management inter-
faces but different distributions of Linux can have differ-
ent interfaces to handle power management and therefore
require different client software.

While SleepServer can support multiple low-power
states, in our evaluation we use only the standard ‘sleep’
state or suspend-to-RAM (ACPI State S3) across all ma-
chines [1]. In some cases this requires changing the
BIOS settings of the host to enable the S3 state. Since we
are leveraging Wake-on-LAN functionality, and specifi-
cally ‘magic packets’, we require the appropriate options
to be enabled in the BIOS, the device drivers and the
operating system. Most PCs manufactured in the last
decade support S3 and Wake-on-LAN, although these
modes often need to be enabled explicitly.

The SSR-Client software on the host computers is
responsible for providing mechanisms to detect power
management events, such as transitions in and out of
sleep modes, and transfer state information to the SSR-
Controller such as firewall configuration, network infor-
mation (IP, MAC addresses), applications and events that
the host wants to be notified for.

Note that modern operating systems already have user-
configurable power management idle timers that use
events, such as keyboard, mouse, and CPU activity to
determine when the host is inactive and able to sleep.
SleepServer users can use the same interface to configure
their idle preferences. It is important to note that almost
all of the users in our deployment had these power man-
agement timers disabled before using SleepServer since
they wanted to be able to access their PCs at all times. In
our evaluation we compare the additional energy savings
gained by using these automatic idle timeouts, as com-
pared to having no automatic idle timeouts and instead
asking users to manually put their machines to sleep.

Network Subnet A Network Subnet B

Host H2 Host H3Host H1 Host H198 Host H199 Host H200
MAC Address = MAC1

IP Address = IP1 (MAC2, IP2) (MAC3, IP3) (MAC198, IP198) (MAC199, IP199) (MAC200, IP200)

Switch
Switch

. . . .
Switch

Sleep Server
(SSR)

Virtual Switch
Image VM1 Image VM1 (for Host H1)
(for Host H1)

MAC Address = MAC1
IP Address = IP1

VM2 (for H2)

(MAC2 IP2 VLAN A)

. . .

VM200 (for H200)

(MAC200, IP200,)

Packet Analyzer

Firewall Module

Application Stubs

Hardware (Processor, Memory, Network Interfaces, …)

XEN VMM (Hypervisor)

Connected to Virtual LAN A

Sleep‐Server Controller (Domain 0)

(MAC2, IP2, VLAN‐A) VLAN‐B

MAC1, IP1
VLAN‐A

Authentication

.

Hardware (Processor, Memory, Network Interfaces, …)

Figure 4: SleepServer implementation based on XEN.

Windows Platforms: The SSR-Client for Microsoft
Windows is comprised of several programs and services.
The first component is an initial setup program that is
used to read the firewall configuration of the host PC
as well as its network configurations (IP address, Host
name, MAC address) and send this information to the
SSR-Controller. Anytime these parameters change, this
program sends an update to the SSR-Controller. The
second component is a ‘PowerNotifier’ that is responsi-
ble for updating the SSR-Controller of any change in the
power state of the host. Since there are various ways a
user in Windows can transition to sleep modes, the Pow-
erNotifier service installs hooks directly into the Win-
dows Power Management Interface (WMI) so that it is
notified on any power state changes. When a suspend or
resume from sleep event occurs the PowerNotifier com-
ponent sends a message to the SSR-Controller.

Linux Platforms: Similar to our implementation for
Windows platforms, we have several components that
run on the Linux host. The Ubuntu distribution al-
lows access to the power management events through
the ACPI subsystem and our PowerNotifier service for
Linux is installed by placing appropriate hooks into this
ACPI framework. PowerNotifier is called on both sleep
and resume from sleep events and is responsible for
communicating with the SSR-Controller. Additionally,
we use standard Linux tools such as iptables and
ifconfig to get network and firewall configurations.

4.2 SleepServer

We have implemented the SleepServer on a commod-
ity Dell PowerEdge PE2950 server, which is config-
ured with two quad-core Intel XEON 5550 processors,
32GB of RAM, a 1TB SATA disk drive and dual gi-
gabit interfaces. Figure 4 illustrates the logical organi-
zation of our SleepServer prototype, and the host im-

ages running on it. The SleepServer runs a XEN 4.0
[7] hypervisor/VMM (using the 2.6.32 pvops kernel)
and the SSR-Controller (domain0 in XEN) is based on
Ubuntu 9.10. We have modified the XEN utilities to
allow creation of customized SleepServer Virtual Ma-
chines (VM) (domU’s in XEN) representing host im-
ages based on supplied network parameters such as Host
name, IP address, MAC address, etc. We configured the
SSR-Controller to have several virtual interfaces that al-
low it to be placed on all of the VLANs (eight different
subnets) in the CSE department network at UCSD. We
also configured the department managed switches so that
traffic on all these VLANs is forwarded to the switch port
that the SleepServer is connected to. The SSR-Controller
then sets up software network bridges automatically for
each configured VLAN. We initialize the VMs to only
have access to those VLANs that the host they represent
are originally on, with identical network parameters (IP,
MAC address etc) as the hosts. For example, image VM1
for Host H1 can only access VLAN A and will have the
same IP and MAC addresses as the host H1 (Figure 4).
Additionally, the SSR-Controller and the host VMs com-
municate over a separate private network.

The SSR-Controller listens for messages from the
hosts on several well defined UDP and TCP ports. Re-
call that our SSR-Client software running on the hosts
automatically sends state transition messages to the SSR-
Controller. On receipt of these messages the SSR-
Controller enables (if the host is going to sleep) or dis-
ables (if the host is resuming from sleep) the VM for
the appropriate host. The SSR-Controller is also re-
sponsible for reconfiguring the VM for a particular host
when the SSR-Client sends an update, such as adding
or deleting new applications. Additionally, the SSR-
Controller maintains a log of all sleep/resume events re-
ceived. These recorded events are used by a separate
status module which allows users to view the status of
their PCs. This log is also key in calculating the duty-
cycle of all the hosts served on the SleepServer, and can
provide estimates of energy savings given the average
power draw of the machine in sleep and active modes.
The SSR-Controller has a wake-up module that is used
to generate wakeup packets using Wake-on-LAN to re-
sume a sleeping host when needed. Note that since both
the SSR-Controller and the wakeup-module have a pres-
ence on all the VLAN’s, they can send Wake-on-LAN
magic packets on any department subnet (same layer-2
domain) without any router configuration. Finally, the
SSR-Controller has a performance monitor module that
periodically measures statistics such as processor usage,
network throughput, and free memory using hooks pro-
vided by XEN. Feedback from this module can be used
by the SSR-Controller to wakeup some hosts and dis-
able their corresponding VM images in case the load

on the SleepServer exceeds capacity. In case of mul-
tiple SleepServers on the same subnet, individual SSR-
Controllers communicate with each other to provide load
balancing and redundancy.

Although we have implemented SleepServer on a sep-
arate server machine, it is feasible to have a scenario
where the SleepServer functionality can be supported on
enterprise PCs themselves. A subset of enterprise PCs
can run a hypervisor and the SSR-controller and can host
the images of other PCs that are asleep thus proxying for
them. However, there may be other implications of this
approach that we have not fully evaluated such as main-
taining security, resource allocation and isolation.

4.3 Host VM Image Image

The host images running on the SleepServer are XEN
VMs based on the standard x86 architecture executing a
stripped down version of Ubuntu Linux. After installa-
tion the VMs take up less than 300MB out of their ini-
tially allocated 1GB disk image. Given that only the es-
sential services are run inside the VM, our initial memory
allocation of 64MB is more that sufficient with most of
the memory free (>40MB) after boot up.

Each VM is configured to have several software mod-
ules to support SleepServer operation, as illustrated in
Figure 4. Each VM has a full TCP/IP stack and can
therefore respond on behalf of the host to packets such
as ICMP echo-requests or ARP queries. The VMs have a
firewall based on the iptables package which is con-
figured to be identical to the host firewall by the SSR-
Controller. The ‘Packet-Analyzer’ (PA) module is used
to support stateless applications such as incoming RDP
or SSH requests. The PA module is based on the BSD
raw socket interface and is used to parse incoming pack-
ets to look for matches on one or more fields of packet
headers, such as incoming requests on particular TCP
and UDP ports. In case the incoming packet matches
one of the application ports, the firewall is configured
to not send a response to the initial request. Instead the
PA sends a message to the SSR-Controller and disables
the network interface of the VM. Upon receipt of this
message, the SSR-Controller uses the wakeup module
to send a wakeup packet to the host as described ear-
lier that relies on retries inherent in TCP. When the host
resumes, it receives one of the retransmits and the ses-
sion can be established. For stateful applications we have
implemented application stubs similar to those proposed
in Somniloquy [3]. We currently support several appli-
cation stubs namely a multi-protocol instant messaging
stub, a background web download stub and a BitTorrent
stub that allows participation in P2P networks. Given
the x86 compatible architecture of the VMs, and the
availability of standard libraries and tools, implementing

these stubs is significantly easier than on the specialized
Somniloquy hardware device.

In a way, supporting a large number of stateful appli-
cations may be considered a barrier to deployment since
each application requires its own corresponding stub. In
our experience with deploying SleepServer, we did not
observe this to be an issue, especially in enterprise set-
tings, for several reasons. First, a significant portion of
users can be supported without requiring stubs, as long as
seamless connectivity (responding to ARPs, ICMP) and
user selectable wakeup on incoming connections is han-
dled (e.g. SSH, RDP, SMB, backups and updates). This
observation is in fact similar to the findings of previous
measurement based studies [5, 20] in this space. The rest
of the users in our deployment requested support for a
relatively small number of common services (and hence
stubs). The “fall-back” position of waking up the PC
provides a fail-safe default for those applications or pro-
tocols that we do not yet proxy. Indeed, additional stubs
will only improve upon the energy results we report.

4.4 Discussion

An emerging use model in enterprising computing is
based around Virtualized Desktops environments. The
common scenario is when all desktops reside on a cen-
tralized server and users utilize thin clients to connect
over the network to their desktops. In this setting
we believe the lightweight proxying functionality that
SleepServer offers can potentially increase the density of
inactive desktops, thus improving scalability. Another
scenario is based on the assumption that each Desktop
PC runs a Hypervisor itself (e.g. XEN or VMware) and
the actual users ‘virtual desktop’ runs as a VM on top of
the VMM/hypervisor. When the user is in front of his
actual PC, his virtual desktop runs on the local VMM
and when the user steps away or logs out the entire VM
can be migrated to a central server, or pool of servers.
The advantage of this architecture over SleepServer is
that no application stubs are needed since entire VMs
are migrated. However, a potential drawback of this ap-
proach is its limited scalability since the amount of state
that needs to be transferred for each virtual desktop can
be quite large. For example, the memory footprint alone
may be up to several gigabytes based on the hardware
configuration of the host PC and the entire OS state, in-
cluding all applications. is transferred and has to be kept
running even if the user only wants a small subset of the
functionality when they are away. Furthermore, the lo-
cal persistent storage may also need to be migrated. De-
spite using techniques like memory ballooning and de-
duplicating memory, the scalability of a virtual desktop
based infrastructure will most likely be significantly lim-
ited than that of SleepServer which uses very lightweight

Machine Type Year OS Average Power Average Power Time to Resume
in S3 when on (idle) from S3 (network)

1 Dimension 4500 2002 WinXP 2.5 Watts 75 Watts 29 (+/- 4.1) seconds
2 Dimension 4500 2002 WinXP 2.4 Watts 61 Watts 28 (+/- 1.6) seconds
4 Dimension 4600 2004 WinXP 4.4 Watts 76 Watts 29 (+/- 3.0) seconds
4b (Same as above - Dual Boot) 2004 Ubuntu 4.6 Watts 74 Watts 12 (+/- 1.8) seconds
5 Dimension 4700 2005 WinXP 2.2 Watts 111 Watts 30 (+/- 10.0s) seconds
6 Optiplex SX260 Small Form Factor 2004 Ubuntu 5.1 Watts 67 Watts 10 (+/- 7.44) seconds

(Desktop + SSH/CVS Server)
7 Optiplex GX280 Small Form Factor 2005 WinXP 3 Watts 86 Watts 25 (+/- 5.3) seconds
8 Optiplex 755 2007 Ubuntu 2.8 Watts 84 Watts 14 (+/- 2) seconds

(Desktop, SSH + file server)
9 Optiplex 745 2007 Vista 3.3 Watts 107 Watts 8 (+/- 1.4) seconds
10 DELL XPS 720 2008 Win XP 4.2 Watts 314 Watts 9 (+/- 7.7) seconds

(Drives LCD Display + Webserver)
11 Optiplex 960 Small Form Factor 2009 Win 7 2.3 Watts 45 Watts 12 (+/- 5) seconds

Table 1: Power consumption for an example set of PCs in our deployment. Resume from S3 times are much better
for newer machines and operating systems. Base power consumption of newer PCs still remains high and power
consumed in S3 ranges from 1/20 to 1/75 of that in idle mode.

VM images which can be as low as 32MB in footprint.
Going forward, we do believe that Virtual Desktop based
solutions and the significantly lightweight proxying ap-
proach offered by SleepServer are synergistic and both
may be useful based on specific use cases. For exam-
ple, a SleepServer can potentially host full virtual desk-
tops when particular stubs may not be available. We
also believe that any investments that application ven-
dors make into building stubs for their applications will
be useful for both a lightweight VM based approach
taken by SleepServers, as well as potential hardware so-
lutions that add proxying functionality to network inter-
face hardware[3, 16].

5 Evaluation

We first present micro benchmarks highlighting our ex-
perience with deploying SleepServers to various hosts in
our department. We then evaluate the SleepServer it-
self, benchmarking its power consumption under vari-
ous loads and measuring the latencies for management
tasks such as creating, starting and shutting down new
host images. We also present experimental data about
the scalability of SleepServers demonstrating that we
can easily scale to serve several hundred hosts on a sin-
gle SleepServer machine. Finally, we present data that
shows the energy savings of the various host PCs in our
deployment.

5.1 Micro Benchmarks

We have deployed SleepServer on a variety of host PCs
in our department building. In total we have over thirty

desktop PC users including a couple of laptop users par-
ticipating in our SleepServer deployment. The users
range from faculty and students to full time staff workers
to give us a mix of use-scenarios. Also, the mix of ma-
chines range from PCs that are well over 7 years old to
those that are fairly new. The operating systems running
on these PC range from Linux (Ubuntu) to all versions of
Windows, including numerous Windows XP machines.

Table 1 shows the distribution of some representative
PCs that are part of our SleepServer deployment. Our
goal in benchmarking these systems was to see whether
we could observe any trends in the design of PCs and op-
erating systems. We benchmarked these systems based
on power consumption in various states of operation,
and the latency of these systems when they resume from
sleep. We only show the latency measurements to resume
from sleep, since latency to go to sleep is less impor-
tant from a usability standpoint. We have instrumented
all the machines in our deployment to provide real time
energy measurements using a commercial energy meter
from WattsUP devices1. We have also made this energy
data available to SleepServer users to view over the web
using an ‘Energy-Dashboard’ interface that we have de-
signed [4]. In addition to viewing their power usage in
real time, users can also look at long term trends such as
comparing their usage over different time periods.

Our instrumentation of the thirty desktop computers in
our SleepServer deployment using energy meters gives
us long term power use data, allowing us to measure and
quantify the impact of using SleepServers under differ-
ent usage scenarios. We observed that most users in our
deployment did not put their machines to sleep before

1www.wattsupmeters.com

they started to use SleepServers, as measured by over
five months of power usage data by these machines.

Table 1 reports the power consumption and latency
values for an example set of SleepServer PCs. We do
not include the power consumed by LCD displays con-
nected to these PC, since most of them are configured
to go into sleep modes on inactivity. Several interest-
ing observations can be made from the table. First, the
power consumption in sleep (S3) mode for most of the
PCs is significantly less than when they are in idle mode.
This is even true across operating systems (line 4 and 4a
for the same PC in the table). Second, the power con-
sumption of PCs has not come down significantly dur-
ing the last 7-8 years, as idle power for desktops remains
around 80 Watts for even new PCs. Third, the latency to
resume from sleep varies significantly across platforms.
We measure the latency to resume by measuring the time
from a wakeup event, such as a key press on the key-
board, to the time it takes for the network stack on the
host PC to respond to an incoming ICMP packet. Al-
though the display and logon screens on the host may
come up earlier, we believe measuring the latency for a
network response is a better metric to use. Table 1 shows
that in some cases resume latencies are up to 30-40s (line
5), with a large standard deviation in time to resume.
We also notice that the resume time on different oper-
ating systems (line 4 and 4a) on the same hardware plat-
form are significantly different. We believe this is mostly
due to the different applications, devices and drivers that
are installed on PCs over time and can cause delays in
startup. Importantly, as we can see from the table, re-
sume times are getting significantly better as we move
to more recent hardware (2007 and newer) and modern
operating systems.

5.2 Scalability of SleepServer

The hardware and software configuration of our
SleepServer prototype was presented earlier in Section
4. We measured the power consumption of our proto-
type under various operating conditions using a WattsUP
device. We also measured the latency to create a new
SleepServer image for a particular host, and the time to
start up an existing VM and shut it down. These laten-
cies are important to consider for dynamically creating
new VMs when new hosts are added to a SleepServer.

The latency and the power consumption values are
shown in Table 2. The latency to create a new host im-
age from scratch is on the order of two minutes. This in-
cludes creating the image, installing the SleepServer sup-
porting software, configuring the SleepServer controller
and updating all packages and security updates. To re-
duce this latency, the SleepServer allows creation of a
pool of VMs, which can be updated with the network

SleepServer function Time
(seconds)

1 Creating a new host image 120s (+/- 10)
2 Starting up a host image 11s (+/- 1)
3 Shutting down a new host image 12s (+/- 1)

Sleep-Server - State Power
(Watts)

4 Idle State, no host images running 213 W
5 Hosting 200 idle host images 221 W
6 Download + Write to Disk 255 W
7 CPU benchmark, (100% CPU util.) 308 W

Table 2: Benchmarking the Sleep-Server: Latency and
Power Measurements

configuration of a host. The time to start up an existing
VM and shut it down is around ten seconds. To reduce
the startup latency even more we have enabled only the
essential services in the VMs. This latency is important,
since it means that given the transition times presented
earlier in Table 1, it is possible to dynamically start up
VMs and have them activated by the time the host fin-
ishes its transition to sleep. Alternatively, the host VMs
can be started up if memory and CPU on the SleepServer
are not a constraint. Finally, the time taken for our proto-
type SleepServer machine to boot up from a powered off
state, to recreate state information from its logs, and to
start up the VM images is on the order of a few minutes.

Next, we tested the scalability of our SleepServer pro-
totype by instantiating a large number of VMs on it and
measuring the effect on the processor and the memory
utilization and impact on I/O performance. Since we al-
locate 64MB of memory to each VM, that gives an upper
bound of approximately 500 VMs executing simultane-
ously for the 32GB of main memory in our SleepServer
prototype. Unfortunately due to some limitations in XEN
and the Linux kernel, we were unable to scale beyond
200VMs. The limitations relate to the low number of
statically defined software interrupts in the XEN kernel,
as well as the number of block devices (disks) supported.
We have reported these limitations and the fix should be
released in an upcoming update.

Figure 5a shows how increasing the number of VMs
impacts the overall CPU and the memory utilization of
the SleepServer. The processor utilization increases lin-
early and remains low (20%) even at 200 VMs (idle),
giving almost 80% idle time for the CPU. The low CPU
utilization is as expected, since most of the idle VMs are
in a blocked state waiting for I/O (e.g. network pack-
ets) requests. The memory utilization also increases lin-
early as we increase the number of VMs, since each VM
uses an additional 64 MB. Next we benchmark the per-
formance of these VMs under I/O load, by setting up an
experiment where a number of VMs download data from
a fast local webserver using a web download stub. As

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

%
 C

P
U

 /
M

em
or

y
U

se
d

Number of VMs

%Memory Used (VMs idle)
%CPU Used (VMs idle)

%CPU Used (Download only)
%CPU Used (Download + Write to Disk)

(a)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

 A
cr

os
s

al
l V

M
s

Number of VMs

Throughput (Download only)
Throughput (Download + Write to Disk)

(b)

Figure 5: Effect of scaling the number of VMs. The graph on the left (a) shows the memory and the CPU utilization as
we increase the number of VMs. The amount of memory used under additional network traffic by the individual VMs
does not change and is therefore not shown. The graph on the right (b) shows the total aggregate throughout observed
by all the VMs as we increase the number of downloads.

we increase the number of VMs simultaneously running
this benchmark, we measure the CPU and memory usage
and the aggregate throughput observed by the VMs. We
report these figures for two cases: when the download is
not saved to disk marked as ‘Download Only’, and when
the VMs save the downloaded data to their local storage
marked as ‘Download + Write’. When the VMs are not
saving the data to disk, the aggregate network throughput
is shared evenly between all VMs, and the downloads al-
most saturate the 1Gbit link (>800Mbps for 200VMs).
The CPU utilization increases to 40% even at 200 simul-
taneous downloads. However, when the VMs are writ-
ing to disk, CPU utilization rises to about 35%, while the
download throughout reduces to about 136Mbps (Fig 5b)
for 50 simultaneous downloads and to 126Mbps for 100
downloads. This can be explained by disk seek times,
caused by each VM writing to its image, starting to dom-
inate as the number of VMs increase, thus limiting per-
formance. We did not measure ’Download Write’ per-
formance beyond 100VMs since we started to observe
disk driver timeouts for some of the VMs. Using faster
disk drives or striping the VMs across separate local hard
drives on the SleepServer, or by using a network storage
element should expectedly improve performance. As di-
cussed in Section 4 earlier, the SSR-Controller can detect
this condition and choose to wake a few of the hosts to
alleviate any I/O bottlenecks. We measured the average
ICMP latency from a local machine to the VMs on the
SleepServer, as a measure of network responsiveness of
the VMs under load. The round-trip latency was under
5ms under all conditions.

The primary goal of SleepServer is to enable users to
put their PCs to sleep to save energy, while maintaining

their availability to both network and application level
events. Using the power consumption logs captured by
the WattsUP meters, we can calculate the energy con-
sumed by the various PCs over different periods of time
and use that to calculate the energy savings. The energy
savings for users is also dependent on how often users
actively put their machines to sleep. As an experiment,
we first let users use SleepServer in a mode where they
were responsible for putting their machines to sleep man-
ually. For the next week we modified the standard power
management settings for some users such that after one
hour of idleness, as detected by the power management
functions of the host OS, the PC would automatically go
to sleep. Note that for both these cases, the users were
aware that they would be able to use the SleepServer
functionality to access their machine and maintain con-
nectivity when their computers were in sleep mode.

Figure 6 shows the power consumption trace for a
typical user of our system drawn from the group of
thirty users. This figure compares the power consump-
tion of the user’s PC over a 2 week period, first with-
out SleepServer (August 31st - September 13th) and then
when the user started to utilize SleepServer (September
14th - September 27th). Additionally, for the first week
of deployment (Sept 14th - Sept 20th) the users were
asked to put the machine to sleep manually when it was
not in use, while for the second week (Sept 21st - 27th)
the one hour idle-timeout was instituted. For the first
week the energy consumption of this user dropped by
30% as seen by the frequent transitions to sleep. There
were however several cases during the first week when
the users forgot to put their machines to sleep despite the
fact that they were not actively using the PC (e.g. Sept

Sep 14 2009 Sep 15 2009 Sep 16 2009 Sep 17 2009 Sep 18 2009 Sep 19 2009 Sep 20 2009 Sep 21 2009

20

40

60

80

100

120

140

160

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
(W

a
tt

s)

Sleep-Server Enabled Sleep-Server Disabled

Sep 22 2009 Sep 23 2009 Sep 24 2009 Sep 25 2009 Sep 26 2009 Sep 27 2009

20

40

60

80

100

120

140

160

P
o
w

e
r

C
o
n
su

m
p
ti

o
n
(W

a
tt

s)

Sleep-Server Enabled Sleep-Server Disabled

Figure 6: Comparing the Power Consumption for a Desktop PC with and without Sleep-Servers. For the first two
weeks from August 31st - Sept 13th the user was not using SleepServer, while from Sept 14th to September 28th,
SleepServer operation was enabled. Additionally, from Sept 22nd onwards the PC was set to automatically go to sleep
within one hour of idleness.

15th, Sept 20th and 21st). In Week 2, when we insti-
tuted the one hour timeout policy, there were more tran-
sitions to sleep (Sept 22nd, Sept 24th), even during the
day. The end result was that the user saved an additional
54% energy between Sept 21st - 27th over the previous
week, giving a total enegy savings of 68% over the pe-
riod where the PC was always on. We also notice that
the user logged in to his PC remotely during the weekend
(September 27th and 28th), and that the PC went back to
sleep afterwards.

5.3 Energy Savings Using SleepServer
Of course, the energy savings for a particular user or a PC
are based on its usage scenario. Graduate students in our
department tend to stay longer, while most staff and fac-
ulty have relatively fixed hours. A significant fraction of
people do however connect to their PCs remotely, and in
some cases even run services like a web server or a CVS
repository on their machines which would normally pre-
clude them from putting their machines to sleep. Using
SleepServer our entire deployed set of more than thirty
users were able to put their machines to sleep. In Fig-
ure 7 we have plotted a representative set of eight host
PCs for two weeks in September 2009. To simplify the
chart, we have plotted a step function denoting the state
of these PCs rather than absolute power consumption val-
ues. The times when the host is active (and its image on
the SleepServer is disabled) is marked by an ’A’, while
’S’ marks the times when the PC is asleep (and its image
on the SleepServer is enabled). The hosts are ordered
from top to bottom in terms of energy savings, with PC1
seeing the most savings and PC8 seeing the least.

There are several important observations from Figure

7. First, we can clearly see the advantages of institut-
ing the one hour idle timeout for certain users. Users of
PC2 and PC3 forget to put their machines to sleep and as
a result their PCs remained on through the weekend of
Sept 12th/13th (marked by a ‘1’ in the chart). When the
automatic timeouts were instituted, most of the PCs re-
mained asleep for longer periods of time including over
the weekend of September 19th/20th (marked by a ‘3’
in the chart). Second, while there were some trends in
terms of machines being turned on in the morning when
the users came in to work, the distribution of when the
machines are on or sleeping using SleepServers is quite
varied over the week. Users of PC4 and PC8 for exam-
ple log in to their PCs to work over the weekend (marked
by a ‘2’ in the chart). This points to the fact that a sim-
ple scheduled policy of waking up PCs at pre-determined
work times does not suffice. By mining the SleepServer
controller logs we can also determine what caused par-
ticular PCs to wakeup. PC1 for example runs a Web
server; any request to access the website therefore causes
the SleepServer to wake up the machine. After a config-
ured period of inactivity PC1 goes back to sleep causing
frequent state changes. It is important to note that a ma-
jor fraction of the users in our deployment were running
one or more application that otherwise would have re-
quired the user to keep their machine powered on. Dur-
ing the course of our study, for example, our measure-
ments show that 22 out of the total 30 machines needed
to be woken up. Furthermore, despite the limited number
of stubs we currently support, 6 out of 30 users utilized
one or more stubs during our study. Of course the partic-
ular stubs that are required may depend on the enterprise
environment, and we expect to gain more experience as

Figure 7: Showing eight different hosts on using SleepServer over a two week period. For each host the graph shows
the times when the host was on and its image on the SleepServer was disabled (denoted by A) and when the host as
asleep and the SleepServer was proxying for it (denoted by S).

we deploy SleepServers further. However, we do believe
that it is important to support the capability of handling
stateful applications in the SleepServer architecture for
widespread adoption. The energy savings for the exam-
ple set of 8 PCs shown in Figure 7 is significant, ranging
from 27% (PC1) to 81% (PC8) for this two week period.
The measured energy savings across all machines in our
deployment for the month of September range from 27%
to 86%, with an average savings of 60%.

6 Conclusion

In this paper we have presented SleepServer, a software-
only implementation of proxy architecture that allows
end hosts to utilize low power sleep modes frequently
and opportunistically to save energy, without sacrific-
ing network connectivity or availability. Within enter-
prise networks, a SleepServer machine can maintain net-
work presence on behalf of a host while its sleeping by
responding on behalf of the host seamlessly and wak-
ing it only when required. SleepServers are easily de-
ployable since they require no changes to existing hard-
ware, software or networking infrastructure and can be

supported entirely using a simple software agent on the
end hosts. We demonstrate that SleepServer is portable
across a range of operating systems and hardware plat-
forms and show how our prototype implementation can
scale to support hundreds of client hosts on a single com-
modity server.

SleepServer is both practical, easy to deploy and very
scalable. A large number of clients (and thus VMs) that
are doing intensive disk activity might limit scalability
due to heavy disk I/O. However, a case can be made to
limit or avoid putting such machines to sleep. Instru-
menting thirty heterogeneous desktop users, we show en-
ergy savings ranging from 27% to 86% with an average
savings of 60%. Extrapolating from these results and as-
suming an average idle power consumption of 93Watts
per desktop (from Table 1), and a use factor of 40%
(machines are asleep for 60% of the time), we expect
to reduce the baseline power use of the CSE building
from 320KW to 245KW during nights and weekends. At
current California energy prices of 9 cents per KW-Hr,
this translates to over US$ 35,000 in annual cost savings
alone, easily paying for the cost of a Sleep-Server within
a few months.

7 Acknowledgements

We would like to acknowledge Thomas Weng for his
feedback on the paper and his invaluable help with set-
ting up the energy vizualization framework, the Energy
Dashboard. We also wish to thank the anonymous re-
viewers of our paper for their detailed feedback. Fi-
nally, we are grateful to our shepherd, Orran Krieger
for guiding us towards the final version of the paper.
This work is in part supported by the NSF CNS-0932360
grant and Multiscale Systems Center (MuSyc) under the
Focus Center Research Program (FCRP) supported by
DARPA/MARCO.

References

[1] ACPI. Advanced Configuration and Power Interface
Specification, Revision 3.0b, 2006.

[2] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin,
and R. Gupta. Wireless Wakeups Revisited: Energy Man-
agement for VoIP over Wi-Fi Smartphones. In MobiSys
’07: Proceedings of the 5th International conference on
Mobile Systems, Applications and Services, 2007.

[3] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta. Somniloquy: Augmenting Network Interfaces
to Reduce PC Energy Usage. In Proceedings of USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’09), 2009.

[4] Y. Agarwal, T. Weng, and R. Gupta. The Energy Dash-
board: Improving the Visibility of Energy Consumption
at a Campus-Wide Scale. In in BuildSys ’09.

[5] M. Allman, K. Christensen, B. Nordman, and V. Paxon.
Enabling an Energy-Efficient Future Internet Through Se-
lectively Connected End Systems. In 6th ACM Workshop
on Hot Topics in Networks (HotNets).

[6] Apple. Wake-on-Demand. http://support.
apple.com/kb/HT3774.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the Art of Virtualization. ACM SIGOPS Operating
Systems Review, 37(5):164–177, 2003.

[8] J. Chase, D. C. Anderson, P. Thakkar, A. Vahdat, and R. P.
Doyle. Managing Eenergy and Server Resources in Host-
ing Centers. In Proceedings of SOSP ’01, 2001.

[9] DOE. Buildings Energy Data Book, Department of En-
ergy, March 2009. http://buildingsdatabook.
eren.doe.gov/.

[10] DOE. CEC End-Use Survey, CEC-400-2006-005, March
2006. http://www.energy.ca.gov/ceus/.

[11] K. Flautner, S. K. Reinhardt, and T. N. Mudge. Auto-
matic Performance Setting for Dynamic Voltage Scaling.
In Proceedings of MobiCom ’01, 2001.

[12] J. Flinn and M. Satyanarayanan. Managing Battery Life-
time with Energy-Aware Adaptation. ACM Trans. Com-
put. Syst., 22(2):137–179, 2004.

[13] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren,
G. Varghese, G. Voelker, and A. Vahdat. Difference En-
gine: Harnessing Memory Redundancy in Virtual Ma-
chines. In Proc. of 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’08), 2008.

[14] M. Gupta and S. Singh. Greening of the Internet. In
SIGCOMM ’03: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2003.

[15] Intel. Intel Remote Wake Technology. http://www.
intel.com/support/chipsets/rwt/.

[16] M. Jimeno, K. Christensen, and B. Nordman. A Network
Connection Proxy to Enable Hosts to Sleep and Save En-
ergy. In IEEE IPCCC ’08.

[17] P. Lieberman. Wake-on-LAN technology.
http://www.liebsoft.com/index.cfm/
whitepapers/Wake_On_LAN.

[18] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap:
Eliminating Server Idle Power. In Proceedings of ASP-
LOS ’09. ACM New York, NY, USA, 2009.

[19] R. Nathuji and K. Schwan. Virtualpower: Coordinated
Power Management in Virtualized Enterprise Systems.
ACM SIGOPS Operating Systems Review, 41(6):265–
278, 2007.

[20] S. Nedevschi, J. Chandrashekar, B. Nordman, S. Rat-
nasamy, and N. Taft. Skilled in the art of being idle:
reducing energy waste in networked systems. In Proceed-
ings of USENIX NSDI ’09.

[21] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing Network Energy Consumption
via Sleeping and Rate-Adaptation. In Proceedings of
USENIX NSDI ’08.

[22] T. Pering, Y. Agarwal, R. Gupta, and R. Want. CoolSpots:
Reducing the Power Consumption of Wireless Mobile
Devices with Multiple Radio Interfaces. In MobiSys,
2006.

[23] A. Qureshi, H. Balakrishnan, J. Guttag, B. Maggs, and
R. Weber. Cutting the Electric Bill for Internet-Scale Sys-
tems. In SIGCOMM, 2009.

[24] E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless:
An Event Driven Energy Saving Strategy for Battery Op-
erated Devices. In MobiCom ’02: Proceedings of the 8th
Annual International Conference on Mobile Computing
and Networking, pages 160–171, New York, NY, USA,
2002. ACM Press.

[25] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Tur-
ducken: Hierarchical Power Management for Mobile De-
vices. In MobiSys ’05: Proceedings of the 3rd Interna-
tional Conference on Mobile Systems, Applications and
Services, 2005.

