
Global-scale service deployment in the XenoServer platform

Evangelos Kotsovinos, Tim Moreton, Ian Pratt, Russ Ross,
Keir Fraser, Steven Hand, Tim Harris∗

University of Cambridge Computer Laboratory
15 J J Thomson Avenue, Cambridge, UK

Abstract

We are building the XenoServer platform for global com-
puting, a public infrastructure capable of safely hosting un-
trusted distributed services on behalf of uncooperative pay-
ing clients. Service components execute on one or more
XenoServers within resource-managed Virtual Machines
(VMs) which provide resource isolation, protection, and al-
low the execution of arbitrary applications and services.

To assist the deployment of services on the platform, we
provide an effective solution that allows users to fully cus-
tomize the VMs to be launched by specifying the operating
system kernel image and distribution file-system to be used.
Moreover, we have implemented mechanisms for facilitat-
ing easy and efficient distribution of those kernel and file-
system images; users build their VMs’ configurations once
and use the platform to efficiently launch VMs on large
numbers of machines around the world.

Initial experiences with our deployment infrastructure
demonstrate that the platform provides a practical substrate
for public global computing; we show how a complex ser-
vice running on the user’s own customized Linux environ-
ment can be deployed to multiple XenoServers around the
world in under 45 seconds.

1 Introduction

The XenoServer project [1] is building a public infrastruc-
ture for global-scale service deployment. XenoServers are
machines that undertake the safe execution of potentially
competing, untrusted services, in exchange for money. We
have devised solutions to several research challenges in our
previous work; allowing the execution of untrusted services
is possible by performing reliable resource isolation on the
servers [2]. Traceability of sponsors of malicious tasks
is ensured by auditing service activity, and our infrastruc-
ture for resource pricing, accounting, billing, and charging
provides support for uncooperative user communities [3].
∗Microsoft Research, Cambridge, UK

Powerful higher-level tools to assist users in server discov-
ery and selection have been developed [4].

This paper focuses on service deployment; this is the
step where users, after having selected a number of
XenoServers on which the service is to be deployed, pro-
ceed to contact the XenoServers to configure and start the
virtual machines that will accommodate the service com-
ponents, and to launch the service components themselves.

The XenoServer platform needs more than the conventional
ad hoc means used to deploy services in the wide-area, due
to the following challenging requirements:

• Ease of deployment: It is necessary that the
cost of deploying large-scale distributed services on
XenoServers is low, both in terms of money and ef-
fort. We envisage offering users mechanisms to “con-
figure once, deploy anywhere”; after preparing their
VM configurations, launching services on large num-
bers of servers should be trivial.

• Performance: As the XenoServer platform is de-
signed to support deployment over short timescales,
it is necessary that launching services on multiple
servers around the world can be done quickly.

• Efficiency: To provide users full and flexible control
of the configuration of their Virtual Machines, each
new VM is specified from the ground up in terms of a
file-system image and kernel. In a naive deployment
model, this would incur transfers of several gigabytes
to each selected XenoServer for each service deploy-
ment, and would raise the cost of deployment to po-
tentially prohibitive heights.

• Support for migration: Services are likely to be lo-
cation sensitive, meaning that service instances may
need to be migrated as search tools determine better
deployment positions within the network. It is neces-
sary that the deployment architecture allows services
to move around at a low cost.



• Parallel deployment: Since services may be widely
replicated, the platform must support parallel deploy-
ment and allow reconfiguration of individual replicas.

In this paper, we propose a model for flexible and efficient
service deployment, allowing dynamic migration of virtual
machines. This model is described in Section 3. Section 4
describes the prototype implementation of our deployment
infrastructure. In Section 5 we present initial experimental
results aiming to determine the efficiency and flexibility of
the proposed architecture.

2 Related Work

Existing distributed deployment infrastructures comprise
deployment models that are often adequate for the needs
of the environments they are designed to serve, but unsuit-
able for general-purpose global-scale service deployment.

The PlanetLab [5] project provides a distributed research
testbed with geographically distributed servers for the re-
search community. It offers only basic support for ser-
vice distribution, requiring users to connect over ssh to
each node individually to copy, configure, and control the
custom service, a process that may be tedious when de-
ploying to hundreds of nodes. More recently, the CoDe-
ploy1 service has been developed. This considerably eases
the task of distributing experimental software to a set of
PlanetLab nodes, and operates efficiently by using the
CoDeen [6] CDN. It is not aimed at distributing operat-
ing system kernels or entire file-system images, however;
our system exploits the high commonality of files in users’
file-systems [7] and uses overlaying techniques to allow ef-
ficient, global-scale parallel deployment.

The model where users have to individually transfer data
required for service deployment to each server involved
and configure the machines is also followed by a number
of other service deployment infrastructures, such as De-
nali [8] and Grid computing projects [9, 10, 11]. Grid ser-
vices are deployed using the APIs provided by the Grid
infrastructure which usually employs mechanisms such as
GridFTP [12] for data distribution. This model may be
adequate for the purposes of applications that Grid com-
puting envisages serving, such as highly immobile, CPU-
bound scientific simulations; however, it is inadequate for
global public computing, where services may be location-
sensitive, mobile, or replicated.

System imaging is a technique that enables archiving and
copying disk images – usually containing operating sys-
tem distributions and applications. Images can be used to
clone servers by automating image deployment and config-
uration. Partition Image2 generates disk images and uses

1http://codeen.cs.princeton.edu/codeploy/
2http://www.partimage.org

domain-specific data compression techniques, while Fris-
bee [13] also employs local-area multicast for efficient dis-
tribution of images in local networks.

Imaging systems focus on the replication of entire disks’
– and sometimes memory – contents to other machines in
the local network for ease of configuration. Our system is
different in that it aims at global-scale data distribution at
deployment time and support for per-node configuration,
parallel deployment and virtual machine migration.

VMatrix [14] follows a similar concept to that of disk imag-
ing, facilitating the imaging of the run-time state of the ma-
chine along with files on the disk, and distributes such “vir-
tual machines” on servers for easier configuration. The In-
ternet Suspend/Resume project [15] allows users to capture
and transfer the state of machines through the network. It
targets the movement of a single virtual machine between
two points, and does not address parallel deployment or
per-node customization.

3 Deployment Model

We use overlaying techniques to allow users to maintain
customized views of common distribution file-systems and
kernel images.

We define a number of immutable template images for op-
erating system kernels, and file-systems; these images are
likely although not guaranteed to be persistently cached at
each XenoServer. Customers describe tailored images in
terms of modifications to these templates, also called over-
lays. This greatly reduces the amount of data that must be
shipped to a XenoServer during deployment, reducing the
setup time for a new virtual machine, as demonstrated in
the next section. This further enables dynamic replication
or migration of services to proactively respond to offered
load.

Although template images are stored locally at the
XenoServer, client overlays are remotely accessed across
the network. This extra level of indirection means that
clients may configure their overlay independently of where
their virtual machine will be instantiated; example cus-
tomizations might include new start-up scripts, SSL certifi-
cates, or software packages. Since the overlay is remote, it
may be shared between multiple virtual machines running
on a set of XenoServers (e.g. to facilitate replicated server
instances) and easily accessed by migrating services. Sev-
eral layers of stacking are also supported, hence allowing
per-service instance customizations and writeable directo-
ries as required. In most deployment scenarios no user will
ever login to the virtual machine; the system will boot and
start services automatically, perhaps writing log informa-
tion to a remote file-system directory.

The configuration used in our implementation, shown in
Figure 1, assumes a trusted (by XenoServers and clients)



XenoServer

Stacking CoW server

Overlaid
namespace

client BMachine-
local

NFS to
client 

domain

Shared FS
Templates

Templates in
local storage

(rw)(ro)

Overlaid
namespace

client A(rw)

Management Virtual Machine

Client specifies
O/S kernel and root FS images
at VM creation time

Guest OS B

Guest OS A

Remote trusted storage system (XenoStore)

Overlays fetched
from XenoStore

XenodAFS
client

Custom overlay
Client A

Custom overlay
Client B

Machine-
local

NFS to
client 

domain

Persistent 
AFS cache

Figure 1: Deploying a Guest OS in the XenoStore model

distributed storage service we call XenoStore. Since Xeno-
Store is trusted, it is reasonable for the management virtual
machine (MVM) – the privileged VM on each XenoServer
that is responsible for launching other VMs – to mount
parts of the clients’ storage area. Hence the overlaying
functionality can be provided within the MVM by a re-
exporting copy-on-write NFS server; client virtual ma-
chines boot from NFS root over the machine-local virtual
network. NFS was chosen as it is supported by a wide range
of Guest OSes.

XenoStore nodes are well-provisioned and well-connected
servers, and so access latency should be low and data avail-
ability high. However it does require that users buy storage
from XenoStore. We have also implemented an alternative
approach that does not require XenoStore, where clients
implement the copy-on-write functionality within their vir-
tual machine directly, and fetch overlays from their own,
untrusted storage servers. The private storage approach
may have potentially lower barrier to entry for some users;
any user with a file-server may remotely access this to pop-
ulate their overlay file-system. However it requires some
additional complexity at virtual machine boot time to han-
dle a secure remote mount. Due to lack of space, the private
storage approach is not discussed further in this paper.

4 Implementation

Copy-on-write file server. A key component is a stack-
ing copy-on-write file-system server, which overlays tem-

plate images with one or more user-provided file-systems
to construct the root file-system for a client VM. Our im-
plementation interprets a .mount file in any directory to
specify a list of file-systems to overlay at that subtree; this
is presented as a unified namespace in which the order of
the mounts specified determines which of two identically-
named objects overrides the other, reminiscent of union di-
rectories in Plan 9 [16]. Modifications are written through
to the first listed writeable file-system on a per file copy-
on-write basis.

XenoStore. Our current implementation of XenoStore
simply uses an existing distributed file-system to provide
remote storage for users of the platform. We use the An-
drew File System [17] since its persistent caching provides
greatly increased performance relative to NFSv3 when
used in the wide-area. To deal with security issues, we use
an IPSEC VPN to connect to remote servers. Although
we are working to replace AFS with a file-system designed
precisely for our requirements, the current setup is certainly
adequate to validate our approach and, as shown in Sec-
tion 5, performs more than adequately well.

Deployment infrastructure. When using the XenoStore
model (Figure 1), the user-provided deployment specifica-
tion includes a URL identifying the overlaid file-system.
A software component called Xenod parses the URL, and
uses the scheme portion (e.g. nfs://, afs://) to de-
termine the file-system type. It then mounts the remote



overlay so that it is accessible by the MVM at a path cho-
sen according to the new VM’s identifier, and notifies the
copy-on-write NFS server. This then exports that locally-
accessible path as / such that it may only be mounted by
the user’s virtual machine; the link-local address Xen as-
signs to each virtual machine is unforgeable, and so is used
for this purpose.

Subtrees in multiple file-systems can be overlaid at any
point in a path, and hence mounting may be required on-
demand. The stacking file-system server invokes Xenod

to mount any such remote storage systems. This gives a
clear separation between the manipulation of the overlaid
namespace—performed by the stacking file-system—and
the mounting of templates and remote file-systems.

By convention, Xenod uses the convention template://

to name read-only operating system distribution templates.
Immutable naming schemes provide a guarantee to a client
using the template that the contents underneath it will not
change. Mappings are also maintained from well-known
names (e.g. template://RedHat/9/current) to these
immutable identifiers, allowing ‘default’ distributions to be
updated or have security patches applied. Choice of reso-
lution of template identifier allows a client to specify the
degree to which a service’s file-system is subject to any
template maintenance process.

5 Evaluation

In this section we evaluate the process of deploying a ser-
vice both from scratch and by ‘resuming’ it from a pre-
viously suspended image. We focus on two applications
illustrative of the types of service that might be common
on the XenoServer platform — an Apache web server, and
a Quake 3 game server. We breakdown the costs of the var-
ious deployment steps, using the XenoStore deployment
model described in Section 3. Initial results obtained for
the private storage model suggested almost identical per-
formance.

All experiments were performed between machines con-
nected to our local Gigabit Ethernet. Our XenoServers
were Dell 2650 machines configured with dual 2.4GHz
Xeon processors, 2GB RAM, Broadcom Tigon 3 Giga-
bit Ethernet NICs, and Hitachi DK32EJ 146GB 10k RPM
SCSI disks. Overlays were stored on a dual processor
2.4GHz machine with 1GB RAM running a stock Andrew
File System [17] server.

In order to measure wide area network effects under con-
trolled conditions, the NISTNet [18] emulator was de-
ployed on another machine configured as an IP gateway.
We specified delay and bandwidth limits at 85ms and 108
KBytes/sec respectively, so that our configuration was il-
lustrative of an arrangement in which the client and the
XenoStore AFS server were in Cambridge, UK, the three

Service Overlay (KB) Total FS (KB) Proportion
Apache 23,695 2,318,937 1%
Quake3 533,671 2,828,913 18.8%

Table 1: Size of copy-on-write overlays compared to total
file-system size.

XenoServers in New York. All RTTs were distributed nor-
mally with a standard deviation of 5% of the mean shown.

5.1 Overlay size

Before measuring the deployment process for the two ser-
vices, we prepared overlays for them using the copy-on-
write file-system server mounted loopback by a local NFS
client over an immutable template. Table 1 shows that the
total size of modified files required to support the services
is a small fraction of the total file-system size. The impact
on network traffic is discussed below.

5.2 Deployment timeline

Here we measure the time necessary for a complete service
deployment. Each experiment was repeated 100 times, and
measurements are taken from the UK client’s perspective,
including latency between the appropriate components.

For service deployment, the user contacts the XenoServers
directly, which perform admission control, and assuming
they accept the job, configure and instantiate virtual ma-
chines. The guest operating systems (Linux 2.4.26 in this
example) boot and then deploy the target applications.

Our findings are shown in Figure 2. Users can deploy a new
web server on several machines around the world in less
than 41 seconds and a new Quake3 server in just over 43
seconds. Most of the time taken is spent booting the guest
OS to host the new service. The timeline also shows an
example of using Xen’s capability to suspend, migrate, and
resume entire guest operating system images. By restoring
an operating system image from a previously saved snap-
shot the application deployment time is reduced substan-
tially, to just over 2 seconds in this example.

5.3 Network traffic

Table 2 shows the average network traffic generated, in
terms of bandwidth and messages exchanged for the de-
ployment of an Apache service, (a) using a completely new
VM and (b) resuming a previously suspended VM.

The User–XenoStore figure accounts for the transfer of the
Apache overlay from the AFS server. Since this will only
be performed once for each service deployment – or more
rarely, if overlays can be shared – we gain a significant



time 
(sec)

resume guestOS
running Apache

40.8

launch
Apache

2.1 43.10

launch guestOS

40.3

launch guestOS launch Quake3

XenoServer 1

XenoServer 2

XenoServer 3

Figure 2: Service deployment timeline, showing individual operations and the time needed for each one.

Components New Resumed
User - XenoServer 255 (37KB) 35 (6.5KB)
User - XenoStore 25193 (25.6MB) none
XenoServer - XenoStore 1055 (731KB) 714 (720KB)

Table 2: Messages exchanged deploying a service from
a new guest OS and a previously suspended one (total
amount of data exchanged in brackets).

saving on simpler models which require a transfer per vir-
tual machine instantiation. This shows the efficiency of
our service deployment mechanisms, and emphasizes the
ease of service migration and redeployment using the sus-
pend/resume mechanism.

6 Discussion

Our approach of using overlays allows the user to trade off
the degree of customization they require against the ensu-
ing impact on performance and real-world cost. As we have
demonstrated in Section 5, the relative size of an overlay
for realistic service deployments is generally small; how-
ever there is nothing to prevent a user from specifying an
entirely bespoke file-system should they require it.

Using overlays also significantly eases management of
replicated and mobile services. Since overlays can be con-
structed ahead of time and may be applied to more than
one deployed instance, no administrative intervention is re-
quired when an instance migrates or is replicated. This is
in contrast to PlanetLab [19] or Grids [20], for example,
which require the user to actively transfer files to servers.

In the context of service deployment, the copy-on-write
NFS server we have developed has mainly been used for
additive overlaying; client overlays specify files to be
added to the template file-systems persistently cached on
servers, or to customise existing files. While our copy-on-
write server does support shadowing — specifying that par-
ticular files of the immutable templates are invisible in the
overlaid file-system, the applicability of this approach to

the wide-are has not been examined in detail.

7 Conclusions and Future Work

In this paper, we have addressed challenges in wide-area
data distribution so as to substantially lower the barrier
to entry for deploying new services and applications on a
global scale in the XenoServer platform. Furthermore, our
system allows for migrating and replicated services to con-
veniently access their data without requiring large amounts
of data to be transferred over the network, or additional
administrative effort. Our initial evaluation shows that the
system can operate efficiently and provide rapid service de-
ployment.

Using AFS over IPSEC in the prototype XenoStore has
been a pragmatic solution that has given us useful expe-
rience. On the other hand, neither of these are particularly
well-suited to our platform’s environment, particularly in
terms of their administrative model. We hope to incor-
porate ideas from SFS [21], Pond [22] and Pasta [23] to
produce a more appropriate realization of XenoStore in the
near future. In particular, we are developing a file-system
which seamlessly combines the ‘push’ model of our distri-
bution templates with the ‘pull’ model of demand caching.

We are in the process of preparing for a medium-scale
XenoServer deployment, leasing a number of servers in
commercial co-location facilities around the world. We
welcome expressions of interest from members of the re-
search community to act as beta testers.

References

[1] Keir A. Fraser, Steven M. Hand, Timothy L. Harris, Ian M.
Leslie, and Ian A. Pratt. The Xenoserver computing infras-
tructure. Technical Report UCAM-CL-TR-552, University
of Cambridge, Computer Laboratory, January 2003.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In



Proc. 19th ACM symposium on Operating Systems Princi-
ples (SOSP19), pages 164–177. ACM Press, 2003.

[3] Steven Hand, Timothy L Harris, Evangelos Kotsovinos, and
Ian Pratt. Controlling the XenoServer Open Platform. In
Proc. 6th Int’l Conference on Open Architectures and Net-
work Programming (OPENARCH), April 2003.

[4] David Spence and Tim Harris. XenoSearch: Distributed
Resource Discovery in the XenoServer Open Platform. In
Proc. 12th IEEE symposium on High Performance Dis-
tributed Computing (HPDC-12), June 2003.

[5] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into the in-
ternet. In Proc. 1st Workshop on Hot Topics in Networks,
Princeton, NJ, October 2002.

[6] Limin Wang, Vivek Pai, and Larry Peterson. The Effective-
ness of Request Redirecion on CDN Robustness. In Proc.
Fifth Symposium on Operating Systems Design and Imple-
mentation, Boston, MA USA, December 2002.

[7] Calicrates Policroniades and Ian Pratt. Alternatives for De-
tecting Redundancy in Storage Systems Data. In USENIX
2004 Annual Technical Conference, pages 73–86, Boston,
MA, June 2004.

[8] A. Whitaker, M. Shaw, and S. Gribble. Scale and perfor-
mance in the Denali isolation kernel. In Proc. 5th Sym-
posium on Operating Systems Design and Implementation,
Boston, MA USA, December 2002.

[9] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The Int’l Journal of Supercomputer
Applications and High Performance Computing, 11(2):115–
128, Summer 1997.

[10] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The condor experience. Concurrency and
Computation: Practice and Experience, 2004.

[11] I. Foster, D. Gannon, and H. Kishimoto. Open grid services
architecture (OGSA). Technical report, Global Grid Forum,
March 2004.

[12] W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak,
and S. Tuecke. GridFTP Protocol Specification, March
2003. Global Grid Forum – GridFTP Working Group Doc-
ument.

[13] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci, and
Chad Barb. Fast, scalable disk imaging with frisbee. In Proc.
of the 2003 USENIX Annual Technical Conf., pages 283–
296, San Antonio, TX, June 2003. USENIX Association.

[14] Amr Awadallah and Mendel Rosenblum. The vMatrix: A
network of virtual machine monitors for dynamic content
distribution. In Proc. 7th Int’l Workshop on Web Content
Caching and Distribution (WCW 2002), August 2002.

[15] Michael Kozuch and M. Satyanarayanan. Internet sus-
pend/resume. In Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, page 40.
IEEE Computer Society, 2002.

[16] R. Pike, D. Presotto, K. Thompson, H. Trickey, and P. Win-
terbottom. The use of name spaces in Plan 9. In Proc. 5th
ACM SIGOPS European Workshop, pages 72–76, 1992.

[17] Mirjana Spasojevic and M. Satyanarayanan. An empirical
study of a wide-area distributed file system. ACM Transac-
tions on Computer Systems, 14.

[18] N. Davies, G.S. Blair, K. Cheverst, and A. Friday. A Net-
work Emulator to Support the Development of Adaptive Ap-
plications. In 2nd USENIX Symposium on Mobile and Lo-
cation Independent Computing, 1995.

[19] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawr-
zoniak. Operating System Support for Planetary-Scale Net-
work Services. In Proc. 1st Symposium on Networked Sys-
tems Design and Implementation, March 2004.

[20] Gridftp protocol specification, March 2003. Global Grid
Forum Recommendation GFD.20.

[21] David Mazieres, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from file
system security. In Proc. 17th ACM Symposium on Operat-
ing Systems Principles, pages 124–139, 1999.

[22] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The oceanstore prototype. In Con-
ference on File and Storage Technologies, 2003.

[23] T. Moreton, I. Pratt, and T. Harris. Storage, Mutability and
Naming in Pasta. In Proc. Int’l Workshop on Peer-to-Peer
Computing at Networking 2002, Pisa, Italy., May 2002.


