
Lessons from E-speak

Alan H. Karp
Hewlett-Packard Laboratories

alan.karp@hp.com, http://hpl.hp.com/personal/AlanKarp

Abstract

E-speak was the technology base for HP’s E-services ini-
tiative, which was announced in 1999. It was designed
to be a scalable distributed system, and it met all of its
design goals. Although it’s no longer around as a sup-
ported product, the lessons we learned, both positive and
painful, may be helpful to others.

1 Introduction

The basic idea behind e-speak was to improve interoper-
ability in distributed systems that crossed administrative
domains by turning everything into a service. Today this
approach is called Web Services or the Service Oriented
Architecture. For that reason, e-speak has been called
“the industry’s first web services platform.” [5] and “web
services before there were web services”. The most suc-
cinct definition is “E-speak is roughly what you’d get
if you crossed CORBA with LDAP and simplified the
resulting mess a bit.” [6]. Of course, e-speak preceded
SOAP, WSDL, and even the widespread acceptance of
XML, but all the essential elements of web services, and
more, were there.

At one point, over 60 companies were evaluating
or using e-speak [5]. Nevertheless, work on e-speak
stopped when HP dropped its entire suite of middleware
products in 2002. At that time, there were four major
users of e-speak, several of whom continued to use their
e-speak platforms for a year or more.

We did some things right, and we did some things
wrong. After briefly describing what problems e-speak
was intended to solve, I’ll enumerate some of the lessons
we learned. It has been said that a fool learns from his
own mistakes, a wise man learns from the mistakes of
others. At best we fell into the former category. The goal
of this paper is to help you land in the latter one.

2 Architecture

The name e-speak was applied to two, somewhat differ-
ent architectures. The first was built to be a single sys-
tem image for the Internet [1]; the second was a B2B
platform [2]. Because of their different goals, they used
somewhat different mechanisms for authorizing access.
However, they were both based on the same set of as-
sumptions.

Large scale:E-speak was designed for a million ma-
chines. Hence, it did not have anything centralized and
couldn’t rely on ever being in a consistent state.

Dynamic: Something is always changing. It is impor-
tant that we not require developers to deal with such a
dynamic environment; it’s hard enough to write applica-
tions in a static world. The e-speak platform hid many of
the changes from the applications.

Heterogeneous:The world is heterogeneous and get-
ting more so, and not just in hardware platform or op-
erating system, but in device capability as well. E-
speak’s distribution model allowed devices to implement
as much or as little of the protocol and environment as
appropriate.

Hostile: As we know, there are bad people out there.
Some are bad for financial gain; others merely for the
challenge of breaking things. Security is critical, but
it can’t make the system too rigid. E-speak’s secu-
rity mechanisms allowed distrustful parties who imple-
mented completely different security policies to interact
while controlling their risk.

Many fiefdoms: There are a variety of organizations
that want to use such systems, but getting them to change
how they do things is difficult. Getting them all to agree
on a single way is nearly impossible, and once you’ve
got agreement, making changes is even worse. E-speak
allowed interoperation even across organizations with in-
compatible policies.

3 Dos

We did some things right; we did some things wrong.
This section summarizes some of the lessons from what
we did right.

Don’t put policy into the architecture. Too many
systems build specific policies into the architecture. For
example, mandating a specific digital certificate format
for carrying information requires everyone to use this
format, even if they already use a different format inter-
nally. Basing access control on identity requires a unified
identity scheme across the entire environment. Most mil-
itary systems build a particular version of multi-level se-
curity into the architecture, which makes it hard for them
to interact with those with a different definition or num-
ber of security levels. E-speak’s flexible mechanisms al-
lowed us to implement a wide variety of policies.

People who never interact should not have to agree.
Too many of our distributed systems require global
agreement. In the best of these systems, it is only the
version of the protocol that everyone must use. Even
this level of agreement is too much, since it requires syn-
chronous upgrades, which is clearly untenable in a large
scale system. More commonly, numerous policies are
hardwired.

The most common problems concern naming and on-
tologies. Too many systems require the entire system
use a single name system and a single, global ontology.
Since global agreement is needed, updates take too long.
People either abandon the system or implement updates
in their own communities, fragmenting the system into
incompatible parts.

Nearly everything in e-speak was pairwise. We also
decided that it was all right if two parties could not com-
municate. This decision meant that many problems of
upgrading components could be left to individual poli-
cies instead of being specified in the architecture.

Think about security early and often. Everyone
says that you’ve got to include security from the begin-
ning, but few do, at least in a meaningful way. The first
question to be answered is what you mean by security.
You must identify what assets you’re protecting and the
threats you’re protecting them from. Only then can you
define your security mechanism. Be careful, though, it is
easy to architect policy instead of just mechanisms.

In e-speak everything was a service, so it made sense
to control access to the methods provided by the service.
Because of the large scale and different administrative
domains, basing access control on identity was clearly
untenable. Hence, we settled on a capability-like ap-
proach [4]. Limiting ourselves to mechanisms proved
its value when we found that we could enforce such
disparate policies as Unix-style security, multiple secu-
rity levels, and compartments without any change to the

mechanisms.
Think about naming early and often. Designers

of distributed systems invariably assume that the name
space can be partitioned. However, in a dynamic envi-
ronment with hostile participants, this assumption is un-
warranted. The problem with names is that they reside in
many places – programs, data files, even people’s heads.
The goal is to build a name system in which applications
don’t break when someone renames something.

It has been shown that no single naming system can be
human meaningful, securely collision free, and globally
context free [11]. A human meaningful name has mean-
ing in some particular context. URLs have this prop-
erty to some extent, but they lack other desirable prop-
erties. Securely collision free means that names can’t
be spoofed. Clearly, return addresses on email do not
have this property. The usual approach is to use a pri-
vate key in a private/public key system to construct the
name. Globally context free means that the name doesn’t
depend on the location of the namer or the named. Suffi-
ciently large random numbers have this property.

It is also important that names in a large scale dis-
tributed system have both spatial and temporal integrity.
Spatial integrity means that the name used for something
doesn’t change when the namer or the named changes
locations, as it does today when moving from inside to
outside a corporate firewall. Temporal integrity means
that the name shouldn’t change because the passage of
time caused some external factor to change, as it does to-
day when companies merge or when a private key used
to construct a name must be changed.

E-speak was based on path based names. Each client,
sort of like a process, had a private name space. Pair-
wise translation was used to move the request between
the namer and the named. The advantage was that any
pair could change the name used without affecting any-
one else along the path. The disadvantage was that names
had no meaning out of band. Also, if an intermediary
was unavailable, the service was unreachable. However,
paths could be shortened by introduction.

Avoid special cases.Special cases are an architec-
tural nightmare, a development nightmare, a mainte-
nance nightmare. We went to considerable effort to avoid
special cases in e-speak, and it paid benefits. The ser-
vice engine, analogous to an operating system kernel,
was relatively small and only had about a dozen distinct
resource types to deal with.

Sticking to this policy also had an unexpected benefit.
E-speak provided for service discovery with constraint
based search using vocabularies, an ontology representa-
tion based on attribute value pairs. Since everything in
e-speak was a service, so were vocabularies. That meant
a vocabulary could be advertised as would any other ser-
vice. A search might turn up services and new vocab-

ularies that extended the descriptions used to find them.
The result was that e-speak provided a dynamically ex-
tensible ontology framework.

Plan for delegation/Plan for revocation. Most of
the systems we use today depend on identification or au-
thentication to determine access. There are many prob-
lems with such an approach, such as confused deputy at-
tacks [3], but the biggest problem is the inability to des-
ignate a delegate. The unfortunate result is that people
tend to share their identities.

Delegation also simplifies management when access
crosses administrative domains. In today’s world, I get
a list of employees (or roles, it doesn’t much matter)
in your company who are authorized to use my service.
When someone in your company changes jobs or a role
changes responsibility, you tell me, and I update my list.
The problem is that we each have thousands of partners
and spend all our time updating our respective lists. With
easy delegation, I give your company a delegatable right
to use my service. How you manage it is up to you. If
the right is easily revoked, you can delegate it to the ap-
propriate subset of your employees.

Support Voluntary Oblivious Compliance. There
will be people who want to break the rules. Not just
strangers, but people in your organization, too. Unfortu-
nately, there’s nothing you can do to prevent misuse of a
legitimate authority. Don’t even try. In other words, DP-
WYCP (Don’t Prohibit What You Can’t Prevent). How-
ever, those who want to follow the rules need some help.
The rules are complex, and they frequently change. If
your system requires that everyone know these rules in
order for them to be enforced, they won’t be.

E-speak supported what we now call “Voluntary
Oblivious Compliance” (VOC). Let’s say you ask me for
access to a service. Should I give it to you? I could cer-
tainly expend some effort to find out, but there’s a race
condition. Your access might be revoked just after I ask.
E-speak took a different approach. I’d just send you a
reference to the service, and the platform would prevent
you from using it if you shouldn’t have gotten it. The
specific mechanism, negative permissions from split ca-
pabilities [4], isn’t as important as the ability to support
the concept.

Design for Consistency Under Merge.People will
build private copies of your distributed system. At some
later date they will want to merge these copies. If you’re
not careful, one side or the other will have to go through
painful modifications in order to eliminate conflicts be-
tween the systems.

You can’t rely on a partitionable name space to help
you, either. A major supercomputer center spent sev-
eral weeks trying to merge two large clusters until they
discovered that two ethernet cards had the same MAC
address. In fact, AOL at one time assigned the same

MAC address to every dial-in user. Several attempts at
merging private UDDI repositories failed due to conflict-
ing GUIDs, even though the GUID algorithm supposedly
generates unique strings. E-speak was consistent under
merge because of the name system and the distribution
model.

Don’t authenticate when you want to authorize.
Too many times our systems ask “Who are you?” when
they want to know if your request should be honored.
Most times knowing who you are doesn’t carry enough
information to make an informed decision. If my ac-
cess is granted because I work for a business partner, you
don’t want to know who I am. You only want know that
business partner has authorized me to make the request.

Relying on identity also makes delegation difficult.
The unfortunate result is that people share their pass-
words, which loses a valuable use for identity, audit
trails. A final problem is that it isn’t a person making the
request; it’s software. There is no assurance that the soft-
ware is acting in the user’s best interest. A virus certainly
doesn’t. If access is controlled by identity, then the soft-
ware necessarily runs with the user’s privileges. E-speak
properly separated identification, authentication, autho-
rization, and access control.

4 Questionable Decisions

Some decisions we made weren’t obviously right or
wrong. We had good reasons for doing what we did, but
perhaps those reasons didn’t justify the decisions.

We listened to the experts even when we knew their
conclusion was based on a misconception.Shortly be-
fore the release of the Beta version, we commissioned a
well-known security firm to do a review of the architec-
ture. The rules they insisted on were that we give them
any documentation we had, and they would prepare a re-
port. No interaction with them was allowed during the
review process, and their conclusion was final. No re-
sponse from us would affect their report.

They stated that the security model was flawed be-
cause it was based on “name hiding”. We knew this state-
ment was due to a misconception on their part, but there
was no procedure for correcting it. Nevertheless, this re-
view was an important factor in the decision to change
the basic access control mechanism.

It was too late to change the architecture for the Beta
release, but the decision was made to change the archi-
tecture for Release 1.0. I argued for keeping split capa-
bilities in spite of the flawed review. The main opposing
argument was that we could hardly go to market with a
version that a well-known security company said wasn’t
secure. I felt that we could if we showed the flaw in their
understanding of the system. Needless to say, I lost that

argument. Split capabilities were replaced with Simple
Public Key Infrastructure (SPKI) attribute certificates.

The change to SPKI certificates had a number of ef-
fects. First of all, the architecture was better suited to
a B2B environment. It made certain end-to-end guaran-
tees easier to enforce and, equally importantly, easier to
explain. SPKI, because of its PKI heritage, was more fa-
miliar to our customer base, even though our use of the
certificates was quite different from their conventional
use. Increasing marketability in B2B was an attractive
proposition considering the projections of a market size
of $1,600B by 2004 [10].

The downside was that we no longer had a general pur-
pose, low latency base. When the B2B boom failed to
materialize, we couldn’t easily build other kinds of sys-
tems. The very features that made the e-speak product
attractive to our B2B customers, particularly the heavy
reliance on expensive cryptographic protocols, made it
hard to go after other businesses. For example, e-speak
could have made a good platform for building a dis-
tributed collaboration system, but the SPKI operations
made the latencies too large for interactive use.

We sacrificed an important architectural principle.
We wanted the core (analogous to an OS kernel) to han-
dle one request in its entirety before starting work the
next one. Doing so would avoid any possible race condi-
tions since message handling would be logically atomic.
Of course, that meant that our throughput was controlled
by the slowest commands. Discovering locally available
resources used an SQL-like repository lookup, which
was very slow when the repository was large.

We tried to find a way to make the repository a client
of the core, but we didn’t like the idea that this client
would be able to use all system resources. Subverting
this client would give an attacker full control over the
system. We ultimately decided to add additional threads
to the core solely to handle lookup requests. The result
was a considerable increase in the core’s complexity. We
might have done better by taking our chances with an
external lookup service.

We invented something new before thinking hard
about possible optimizations. The original prototype
for e-speak used capability lists (c-lists) for access con-
trol. Each client had a list of resources it could name.
No attack was possible against a resource not in this list.
Each entry in the c-list included the specific permission,
such as read or write, it granted. Each separate permis-
sion required a separate c-list entry. The problem was
that each entry had a considerable amount of metadata,
typically 100-1,000 bytes. It was this extra metadata that
concerned us.

Since most of the metadata was the same on all the
entries for a given resource, we thought we could come
up with an optimization. However, we decided to im-

plement split capabilities [4] instead. Split capabilities
solved the metadata problem and made configuring a va-
riety of security policies quite straightforward. However,
by separating designation from authorization we opened
up the system to some attacks. More importantly, adding
something completely new made it even harder for peo-
ple to understand the system.

We didn’t control the urge to add new features.Part
of the reason e-speak was hard to understand was that we
had too many features. They were all useful in the sense
that every feature was used in least one deployment, but
it took a trained eye to sort through the features to find the
relevant ones for a particular service. Paraphrasing Ein-
stein, “E-speak needed to be as simple as possible but no
simpler”. It wasn’t. Even if the architecture included all
the features, we would have done better had we turned
on only a basic set for the earlier releases. Once de-
velopers got used to thinking the e-speak way, we could
have made the additional features available in steps. The
hard part, of course, is deciding which features are really
needed.

5 Don’ts

Flaws in an architecture are usually subtle and depend
on specific details. After all, if they were obvious, they
wouldn’t have made it into the release. Understanding
these flaws, then, necessarily requires a reasonably deep
understanding of the architecture. Space does not permit
a sufficiently detailed description of e-speak here. Still,
it’s important to document what was wrong. See the rel-
evant architecture documents [1, 2] if you want to under-
stand this section.

Don’t let the implementation drive the architec-
ture. Our first implementation was dreadfully slow.
Some investigation showed that each name resolution re-
quired an average of 500 hash table lookups. Some peo-
ple argued that we should fix the problem by abandoning
our naming scheme. Here we held firm. After some tun-
ing, we reduced the name resolution to an average of two
hash table lookups.

We weren’t so fortunate in two other cases. The initial
architecture called for the explicit rights being requested,
e.g., read or write, to be associated with the correspond-
ing resource. Somewhere along the line, this feature got
optimizedso that there was only one place to specify
the rights for all the resources named in a request. This
change made the system susceptible to a confused deputy
attack [3].

The second failing was the handling of incoming mes-
sages. The original architecture specification was un-
clear on whether all messages went to one inbox or there
was a separate inbox for each message. The latter is more
secure since there’s less chance of mixing the authorities

from different senders. However, the former had an even
worse problem. Since there was no way for the system
to know when the client no longer needed an entry, they
just kept piling up until the JVM ran out of memory. This
choice also meant that the sender could not choose the
name the receiver would use for the resource, a definite
change in the architecture.

Don’t make the easy way the insecure way.We
wanted to be able to delegate revocable authorities, so
we introduced the idea of key rings. Each user also had
a mandatory key ring, which was needed to support neg-
ative permissions [4]. Unfortunately, we let users add
keys to their mandatory key ring. The result was that
users tended to put all their keys on this key ring, making
them susceptible to confused deputy attacks.

Even had we not given users access to their manda-
tory key rings, having such a thing in the system encour-
aged grouping large collections of authorities. Later in
the process we realized that we could clone keys to make
revocable authorities, obviating the original reason for
key rings.

Don’t ignore end-to-end issues. The Beta release
was path based; all requests passed through a series of
intermediaries unless the end points were introduced ex-
plicitly. While the message payloads could be encrypted,
the headers were necessarily visible to the relaying ma-
chines. The original architecture did not attempt to pro-
tect the headers from prying or tampering. By the time
the problem was identified, signing the headers to pre-
vent tampering was a problem because the naming sys-
tem required a change on each hop. A proposal to im-
plement tunneling (e-speak in e-speak) was never imple-
mented because the decision was made to change the ar-
chitecture.

Don’t forget about performance. The Beta release
was designed to be sort of like an operating system, so
we worried quite a bit about performance. Any interac-
tion between machines that exceeded a few tens of ms
was a target for optimization. The e-speak product was
built for a different environment, B2B systems. A B2B
interaction often takes minutes or even days to complete.
That being the case, we didn’t worry too much about per-
formance. The unfortunate consequence was that setting
up a connection took several seconds of CPU time, and
each interaction involved a reasonably expensive crypto-
graphic calculation. Although the latency of these steps
wasn’t an issue, the CPU load was. As a consequence,
our customers needed more machines than they would
have liked to support their business partners. Planned
optimizations never got into the system.

6 Why E-speak Died

HP abandoned E-speak in 2002 for a number of reasons.
Had we been able to build a larger user base in the time
we had, e-speak might still be in use. Unfortunately, we
made some mistakes that slowed e-speak’s spread.

We didn’t do a good job explaining the system.
When we described all of what e-speak could do, cus-
tomers told us it was too much to grasp. When we ex-
plained only the part relevant to their particular environ-
ment, they told us it was just CORBA or DCE or . . . (fill
in your favorite environment). We never did find the mid-
dle ground.

Although e-speak has fewer than 20 components that
need to be understood, the system was quite flexible be-
cause of the way they could be combined. For example,
events are based on e-speak vocabularies and split capa-
bilities. That meant that events could have a variety of
personalities depending on how these pieces were used.
We kept trying to show users how flexible the system
was, which only served to confuse them. We would have
been better had we settled on a small number of use pat-
terns to present.

We made people change their mental models too
much. We thought we were starting a revolution, but
businesses want evolution. Kannan Govindarajan, one of
the e-speak architects, has said that we needed to “evolve
users, not revolve them”. Indeed, some of them told us
that we made their heads spin.

Once we got past that barrier and started showing peo-
ple how to use it, we ran into another problem; develop-
ers had to change their way of thinking. It isn’t difficult
for people to think of a print service as a service, but we
also wanted them to think of the file being printed as a
service. Doing so had a lot of advantages, such as not ac-
cidentally printing a confidential document on the printer
in the lobby. Once users adopted this way of thinking,
they found their problems were easier to solve. We just
didn’t have a good way to get them across that barrier.

We focused on the technology, not the business
problem. We’re technologists, and we developed some
pretty neat technology. Unfortunately, we turned off
some customers who wanted us to help them solve their
problems, not demonstrate our cool stuff. The customers
we ended up with were the ones who couldn’t see any
other way to build their business, so they listened to our
techno-babble. We might have built a big enough cus-
tomer base to avoid being shut down had we focused
more on the customer’s problems.

We didn’t give adequate attention to the develop-
ment environment. It’s one thing to have a good solu-
tion to people’s problems, but it’s got to be something
they want to use. If the only debugging tool is “Sys-
tem.println”, you’re not going to attract many develop-

ers. It’s a credit to e-speak’s potential that we had as
many as we did. We would have been better off devot-
ing a bigger part of our budget to building a good devel-
opment environment and a smaller part to adding more
features.

We didn’t devote enough resources to the Open
Source effort.We knew that keeping e-speak proprietary
to HP would doom it, so we released it under the GNU
Public Licenses. Unfortunately, we didn’t realize until
too late that this was not enough. We needed to devote
substantial resources to building a community of devel-
opers. Without that push on our part, we never developed
a critical mass that could convince potential customers
that e-speak wasn’t just an HP product.

We worked in the wrong industry. E-speak was soft-
ware. Even worse, it was middleware, which is soft-
ware that’s supposed to be invisible. HP at that time
was largely a hardware company. In fact, we started in
the business unit that sold HP-UX servers. Everything
about software is different from hardware. It’s made dif-
ferently; it’s sold differently; it’s procurement cycle is
different; it’s support structure is different. All these dif-
ferences made it hard both for HP management to know
how to deal with it and for customers to deal with HP in
this new way. HP could certainly make a wonderful re-
frigerator, but it would be hard to break into the market
because refrigerators are so far from customer’s expecta-
tions of HP. In 2000, middleware was farther from HP’s
core business than are refrigerators today.

7 Conclusions

E-speak is no longer a supported product, but aspects of
it still live on. NTT still has a web site describing the
services platform it built with e-speak [9]. More signifi-
cantly, various aspects of e-speak have influenced the de-
velopment of the E language for secure distributed com-
puting [8]. The e-speak vocabulary system [7] has taken
on a life of its own because of the way it solves the prob-
lems people try to address with global ontologies. Fi-
nally, some groups trying to build scalable systems with
the web services standards and finding them inadequate
are taking a look at e-speak. Maybe our biggest mistake
was being too early.

8 Acknowledgements

Guillermo Rozas, Arindam Banerji, Rajiv Gupta, and I
are mainly responsible for any failings in the original ar-
chitecture. Nigel Edwards and Michael Wray made im-
portant contributions to the product version.

9 Availability

E-speak was released under GNU Public Licenses and is
available for download from the author’s web site.

References

[1] Hewlett-Packard Company.E-speak Architecture
Specification, September 1999. http://www.hpl.-
hp.com/personal/AlanKarp/espeak/version2.2/-
Architecture2.2.pdf.

[2] Hewlett-Packard Company. E-speak Arch-
itectural Specification, Release A.0, January 2001.
http://www.hpl.hp.com/personal/AlanKarp/-
espeak/version3.14/Architecture3.14.pdf.

[3] Norm Hardy. The confused deputy.Operating
Systems Reviews, 22(4), 1988. http://www.cap-
lore.com/CapTheory/ConfusedDeputy.html.

[4] Alan H. Karp, Guillermo Rosas, Arindam Banerji,
and Rajiv Gupta. Using split capabilities for ac-
cess control. IEEE Software, 20(1):42–49, Jan-
uary 2003. http://www.hpl.hp.com/techreports/-
2001/HPL-2001-164R1.html.

[5] Jim Kerstetter and Peter Burrows. HP’s e-speak:
Good products, botched marketing.Businessweek
Online, July 3 2000. http://www.businessweek.-
com/2000/0027/b3688173.htm.

[6] Eric Kidd. CustomDNS. http://customdns.source-
forge.net/internals.php.

[7] Wooyoung Kim and Alan H. Karp. Customiz-
able description and dynamic discover for web
services. ACM Conference on Electronic Com-
merce (ACM EC’04), 2004. http://www.hpl.hp.-
com/techreports/2004/HPL-2004-45.html.

[8] Mark Miller. Open source distributed capabilities.
http://erights.org.

[9] NTT. TeaTray. http://www.nttcom.co.jp/teatray/-
english/base/.

[10] Rob Rosenthal. The Internet commerce market
model: B2B versus B2C around the world. Techni-
cal Report 22745, IDC, July 2000.

[11] Bryce Wilcox-O’Hearn. Names: Decentralized,
secure, human-meaningful: Choose two. http://-
zooko.com/distnames.html, September 2003.

