
Toward Undetected Operating System Fingerprinting

Lloyd G. Greenwald and Tavaris J. Thomas
LGS Bell Labs Innovations

{lgreenwald, tjthomas}@lgsinnovations.com

Abstract

Tools for active remote operating system fingerprinting
generate many packets and are easily detected by host
and network defensive devices such as IDS/NIDS.
Since each additional packet increases the probability
of detection, it is advantageous to minimize the number
of probe packets. We make use of an information-
theoretic measure of test quality to evaluate fingerprint-
ing probes and use this evaluation to derive effective
probe combinations that minimize probe packets.
While the default configuration of Nmap’s second gen-
eration operating system detection transmits 16 differ-
ent probe packets, we demonstrate successful finger-
printing with one to three packets. Furthermore, these
packets are valid TCP SYN packets to open ports,
which are less likely to be detected as fingerprinting
probes than malformed packets or packets that are not
part of a valid TCP three-way handshake.

1. Introduction
An attacker can use operating system fingerprinting to
discover possible security vulnerabilities and evaluate
the attack potential of a target machine. Open source
tools are publicly available that permit an attacker to
gain this intelligence remotely. However, the use of
these tools may be easily detected because the default
configurations generate too many probe packets or gen-
erate packets that are unusual, malformed, or otherwise
easily identified as probe packets.

To understand how to build operating system finger-
printing tools that are more difficult to detect we make
use of a measure to evaluate fingerprinting tests based
on information gain developed in [11]. Fingerprinting
tests with high information gain eliminate a lot of un-
certainty about the target system while fingerprinting
tests with low information gain leave a lot of uncer-
tainty about the target system and are only worthwhile
if higher quality tests are too costly. Test cost may be
expressed in terms of the number of probes needed for
the test and the likelihood that a probe will be detected
by IDS/NIDS. Once we understand the quality of indi-
vidual fingerprinting tests we can evaluate the quality
of a probe that enables multiple fingerprinting tests.

We can then select a minimum set of probes to perform
operating system fingerprinting with low probability of
detection.

We provide both analytical and empirical support for
building operating system fingerprinting tools that use
very few probes yet provide effective operating system
classifications. The main contribution of this paper is
to demonstrate the use of the theoretical results in [11]
to evaluate fingerprinting probe packets. We addition-
ally provide empirical results to substantiate these ana-
lytical insights. We demonstrate several sets of probes
that provide highly accurate operating system finger-
printing with very few probes. Accuracy is measured
in terms of the probability of correctly guessing the
target operating system based on the results of a prob-
ing experiment. Furthermore, we argue that these
probes are unlikely to be detected or modified by de-
fensive devices. We provide accurate solutions using
as few as a single probe packet.

We first provide, in Section 2, background material on
operating system fingerprinting and theoretical results
applying information gain to evaluate the 13 TCP
probes used in Nmap version 4.21ALPHA4 [8]. Given
the information gain evaluation of Section 2, we de-
velop in Section 3 a set of 23 experiments to determine
how few probes we can apply while still providing ac-
curate classification. We empirically evaluate the accu-
racy of each of these experiments on several target sys-
tems. In Section 4 we argue that subsets of accurate
probes are unlikely to be detected or modified by de-
fensive devices. Finally we provide a discussion of
alternative evaluations and related work in Section 5.
An Appendix is included to summarize the analytical
techniques developed in [11].

2. Evaluating Information Gain across
Tests for Nmap Probes
In order to evaluate a fingerprinting test, we compare
how accurately we could guess the classification of a
target system before and after performing the test. The
difference is called the information gain. The test with
the highest information gain provides the most dis-
criminative power in fingerprinting. Information gain

is built on the principles of information theory [20] and
is an important tool in building decision tree classifiers
[15][17][19]. Information gain is used to select the
next test at each step in growing a decision tree. Deci-
sion tree classifiers have been used in many fields.

Prior to fingerprinting a target system, we can guess the
operating system based on the a priori distribution of
operating system classifications, over all possible clas-
sifications. After performing a fingerprinting test we
can guess the operating system based on the a posteriori
distribution of operating system classifications. Let X
be a random variable that describes the classification of
the operating system of a target system. The entropy in
X is the amount of uncertainty there is in classifying an
unknown system. Let Testi be a random variable that
describes the result of applying test i to the probe re-
sponses of a target system. Knowing the value of Testi
might tell us something about the value of X. This can
be captured in the conditional entropy of X given Testi..
A measure of the amount of information we gain about
X if we know the value Testi is called the mutual infor-
mation, or information gain, of X and Testi. This can
be expressed as the difference between the entropy in
the classification before taking the test and the condi-
tional entropy in the classification, conditioned on the
value of the test. The fingerprinting test with the high-
est information gain removes the most uncertainty
about the OS classification of a target system.

In [11] we detail a method that uses information gain to
evaluate fingerprinting tests. This method is summa-
rized in an appendix below. That paper tackles several
hurdles in order to apply information gain in this con-
text. The first hurdle is that information gain is gener-
ally computed from collections of training samples of
test results from known systems. However, a finger-
printing tool stores information about known systems in
a digested signature database rather than as raw training
samples. This removes and obscures distribution in-
formation. Since a signature database is once-removed
from the training samples used to create the database,
we must derive calculations to take advantage of the
knowledge represented in the signature database and
make assumptions about the knowledge that has been
lost. Our calculation also resolves issues concerning
the use of data that is represented as disjunctive lists
and ranges, and the handling of missing test values.

2.1 Nmap Probes
By default, Nmap version 4.21ALPHA4 sends a total
of 16 probes (excluding re-transmissions) to a target
system and applies tests to the probe responses. The test

values are combined into a fingerprint, also known as a
signature. The fingerprint of a target system is com-
pared against reference fingerprints in a signature data-
base in order to find matches to help classify the oper-
ating system of the target system. Nmap’s 16 default
probes include six TCP SYN packets to an open port on
the target machine (Pkt1-6), three TCP packets with
various flags to an open port (T2-T4), three TCP pack-
ets with various flags to a closed port (T5-T7), one
TCP packet to an open port with the Explicit Conges-
tion Notification (ECN) control flags set, two ICMP
ECHO packets (IE), and one UDP packet sent to a
closed port to elicit an ICMP port unreachable packet.
In this paper we focus on the 13 TCP probes. We do
not study UDP and ICMP probes because (1) they are
more easily blocked by defensive devices, and (2) our
information gain evaluation reveals that they are of
marginal value. More detail about the evaluation of
ICMP and UDP probes are provided in [10] and [11].

R Responsiveness
DF IP don’t fragment bit
T IP initial time-to-live (TTL)
TG Guessed IP TTL
W TCP initial window size
S TCP sequence number
A TCP acknowledgement number
F TCP flags
O TCP options
RD TCP checksum
TOS IP type of service
Q TCP miscellaneous quirks
SP TCP initial sequence number (ISN)

predictability index
GCD TCP ISN greatest common denomina-

tor
ISR TCP ISN counter rate
TI IP header ID sequence generation
TS TCP timestamp option generation

Table 1: Nmap Tests
Table 1 summarizes the tests applied to the responses
of the 13 TCP probes of Nmap version 4.21ALPHA4.
Pkts 1-6 serve a dual purpose. They are (1) used to
determine TCP/IP properties that can only be derived
by sequences of timed packets and (2) used as addi-
tional sources of TCP initial window size (W) and TCP
options (O) data. These probes vary only in TCP op-
tions and TCP window fields. Pkt1 is also called T1
and its response is subject to the same tests as re-
sponses from probes T2-T7. The sequence tests in-
clude testing the TCP initial sequence number (ISN)
generation algorithm (tests SP, GCD, and ISR). These
tests require responses from at least four of the six

Pkt1-6 probes. Other sequence tests include IP header
ID (IPID) sequence generation (TI), requiring re-
sponses from three of the six Pkt1-6 probes, and TCP
timestamp option generation algorithm (TS), requiring
responses from at least two of the six Pkt1-6 probes.

Probes T2-T7 vary in TCP flags, initial window size,
and don’t fragment bit setting. The responses to each
of the T1-T7 probes are tested for responsiveness (R),
IP don’t fragment bit (DF), IP initial time-to-live (T),
guessed IP initial time-to-live (TG), TCP initial win-
dow size (W), TCP sequence number (S), TCP ac-
knowledgement number (A), TCP flags (F), TCP op-
tions field (O), TCP checksum (RD), IP type of service
(TOS), and miscellaneous quirks (Q). Note that the IP
initial time-to-live value test (T) requires both one of
the T1-T7 probes and the ICMP response from the
UDP probe to reconstruct the initial time-to-live value.
This additional probe can be avoided by guessing the
IP initial-time-to-live value (TG). The ECN probe is
subject to the same tests as responses from probes T2-
T7, as well as a congestion control (CC) test. A de-
scription of these probes and tests is provided in [8].

The different TCP options and initial window sizes sent
in the 13 TCP probes can cause a target system to
change the window size value in its response packet.
Similarly, since TCP options fields are optional, many
TCP/IP implementations differ in how they handle
them. As shown below, TCP options and initial win-
dow size tests are important for accurate fingerprinting.

2.2 Using Information Gain to Minimize
Probing Cost
We apply our information gain calculation to the tests
of Nmap version 4.21ALPHA4 [8]. Table 2 depicts
these results, grouped according to Nmap’s 13 TCP
probes. Each row corresponds to exactly one probe
(except for the IP initial time-to-live (T) test which
makes use of the ICMP response to a UDP probe to
calculate initial time-to-live). Each column in Table 2
corresponds to a test on the response to that probe.
Table 3 depicts the tests that are computed over more
than one probe. The entries in these tables correspond
to the information gain of the corresponding test com-
puted based on the Nmap version 4.21ALPHA4 signa-
ture database. Note that the same type of test may have
a different information gain value depending on the
probe packet sent to the target. Values that are very
similar for the same test may be attributed to noise in
the signature database.

The Nmap version 4.21ALPHA4 signature database
has 417 entries with total entropy prior to testing of
8.70. Values in Tables 2 and 3 are coded based on the
percentage of total uncertainty that is removed by each
test. Values in bold font remove at least 50% of the
total uncertainty, while values in italicized font remove
at least 25%. All other values remove less than 25% of
the total uncertainty. The results in these tables assume
a target system is equally likely to be any entry in the
database and that all possible values of a test for a
given entry are also equally likely. Other assumptions
or a priori information about classification or test value
distributions (e.g. normal distributions over ranges) can
be accommodated by adapting the calculations in [11].

Fingerprinting tests with high information gain elimi-
nate a lot of uncertainty about the target system and
may be used to build effective fingerprinting tools.
Tests with low information gain leave a lot of uncer-
tainty about the target system and are only worthwhile
if higher quality tests are too costly. Even so, they are
unlikely to be useful independently.

Test cost may be expressed in terms of the number of
probes needed for the test and the likelihood that a
probe will be detected by IDS/NIDS. Each row in Ta-
ble 2 corresponds to a collection of tests that cost one
probe total, while the tests in Table 3 are tests that re-
quire between two and six probes. Our goal is to select
the rows from Table 2 and, optionally, tests from Table
3 that provide accurate fingerprinting with low prob-
ability of detection. Information gain provides one
analytical tool for making this optimization choice. In
Section 3 we verify these analytical results with ex-
periments on several target systems using a combina-
tion of probes.

From Table 2 we can see that the W and O tests to open
ports provide the most information gain. These tests
can be achieved with any of the Pkt1-6 probes, the
ECN probe, or the T3 probe. The T2 and T4 probes
provide less information and the probes to closed ports
(T5-T7) provide very little information about W and O.
Probes to closed ports often elicit TCP RST responses
that can provide some information. Of the remaining
tests that can be accomplished with one probe, only the
time-to-live tests (T, TG) remove more than 25% of the
classification uncertainty. The quality of these tests
does not vary much over the applicable probes. To
gain the benefits of the most discriminative tests we can
choose the ECN, T1 or T3 probes. We can substitute
any of the Pkt2-6 probes for the T1 probe, and apply
tests R, DF, T, TG, S, A, F, RD, and Q without addi-
tional cost.

SP (4) GCD (4) ISR (4) TI (3) TS (2)
3.02 1.45 2.62 1.62 2.67

Table 3: Information Gain for Multi-Probe Tests
(number of probes in parentheses)

Several of the sequence generation prediction tests de-
picted in Table 3 remove greater than 25% of the clas-
sification uncertainty. Each has a varying cost. The
SP, GCD, and ISR tests costs at least four probes, while
the TI test requires at least three probes and the TS test
requires at least two. The costs of these tests overlap
each other and the Pkt1-6 test costs. If four probes are
used for SP, GCD and ISR then no additional probes
are needed for TI and TS. If used for sequence predic-
tion, Pkt1-6 incur an additional cost in terms of delay.

In [11] we further derive information gain over the sub-
families of signature entries corresponding to Microsoft
Windows, Linux, and a collection of embedded systems
(routers, firewalls, and switches). There are interesting
differences that lead to variations over which probes
are most effective for detecting systems within these
subfamilies. While the W and O tests remain the most
discriminative over these sub-families, the W test is
more discriminative than the O for Windows and em-
bedded systems while the opposite is true for Linux, by
a substantial margin. The TTL tests are discriminative
for embedded systems and less so for Linux and Win-
dows. The ISN tests are discriminative for Windows
and embedded systems but not discriminative for
Linux. The T3 probe is more useful in differentiating
Linux versions than it is in general.

The composition of a signature database can have a
strong effect on our information gain metric. We re-
view this effect by comparing the tests from the first

generation and second generation Nmap, using their
respective databases. First generation Nmap has four
times as many entries as the current second generation
database (1684 vs. 417). In addition to database size,
the distribution over types of systems (e.g. Linux, Win-
dows, embedded) changes across databases, as does the
distribution of newer versus older systems. The second
generation database is skewed toward newer systems.
W, O and ISN-based tests remain the most discrimina-
tive tests across both databases. However, O is signifi-
cantly more discriminative in the second generation
database than in the first. This may be attributed to the
larger proportion of Linux systems in the second gen-
eration database. This may also be attributed to
changes made between first and second generation
Nmap. First generation Nmap does not test the per-
formance-improving selective acknowledgment
(SACK) option or the value of the window scale op-
tion. Similarly, ISN-based tests are less discriminative
in the second generation database than in the first. This
may be attributed to the larger proportion of modern
OS’s (e.g. Linux 2.6.X, Microsoft Windows XP) in the
second generation database. Modern OS’s have more
random ISN generation algorithms, making this test
less useful for fingerprinting. Finally, note that in [10]
we evaluate Xprobe [2] tests. Xprobe has a signature
database of 224 signatures dating from 2005 and ear-
lier. Despite the smaller database and date of the data-
base, the results are similar. In particular, window size,
options ordering, and TTL prove especially discrimina-
tive.

 R DF T TG W S A F O RD Q
Pkt 2 4.76 5.39
Pkt 3 4.74 5.07
Pkt 4 4.75 5.36
Pkt 5 4.76 5.29
Pkt 6 4.76 4.40
ECN 0.09 1.03 2.57 2.57 4.61 4.89 0.23
Pkt1/T1 0.68 1.01 2.55 2.55 4.71 0.19 0.29 0.29 5.27 0.62 0.62
T2 0.89 1.05 1.81 1.80 1.04 1.13 0.95 1.05 0.02 0.93 0.44
T3 0.71 1.49 2.76 2.76 4.51 1.14 1.31 1.61 4.33 0.68 0.26
T4 0.44 1.30 2.73 2.73 1.48 0.52 1.26 0.76 0.02 0.47 0.02
T5 0 0.98 2.57 2.57 0.18 0.44 0.20 0.23 0 0.08 0.04
T6 0.30 1.23 2.67 2.66 0.46 0.44 1.23 0.70 0.02 0.38 0.02
T7 0.55 1.36 2.77 2.77 0.72 0.90 1.52 0.74 0.02 0.59 0.04

Table 2: Information Gain for Single-Probe Tests in Nmap Version 4.21ALPHA4, Grouped by Probe Packets
(each row corresponds to one probe packet)

3. Experimental Evaluation of Nmap
Probes
Given the information gain evaluation above, we de-
veloped a set of experiments to determine how few
probes we can apply while still providing accurate clas-
sification. We chose three target machines from cur-
rent and slightly dated general computing platforms: (1)
Microsoft Windows NT 4.00.1381 SP4, (2) Linux Fe-
dora Core 4 kernel 2.6.11, and (3) Microsoft Windows
XP Professional SP2. The results of 23 experimental
combinations of Nmap probes against each target ma-
chine are reported in Table 4. Each row of this table is
a probing experiment made up of tests from between 1
to 16 probe packets. The number of probes used in
each experiment is given in brackets. We do not in-
clude the cost of the UDP probe for test T, as the test
TG provides equivalent results without the UDP probe.

Each column of Table 4 corresponds to a target system.
The values indicate how accurately the probing ex-
periment classified the target system when choosing
from among all 417 possible classifications in the sig-
nature database. This includes choosing from among
different versions of an OS (e.g. Linux 2.4.22 vs. Linux
2.6.18) and even the same version of an operating sys-
tem on machines that yield differing reference signa-
tures due to differences such as drivers or hardware.

In order to evaluate the accuracy of each probing ex-
periment we must establish what we mean by a “cor-
rect” result. We first run the full set of 16 Nmap probes
against our target machine and call this result the “cor-
rect” baseline classification. Nmap reports an accuracy
percentage for each reference signature that is roughly
the number of tests that match the signature divided by
the total number of tests, assuming no weighting of
tests. To take into account noise in signature entries
and test results, we take each signature entry that re-
ceives an accuracy percentage of at least 95% and call
them all equivalently correct signatures for a target
machine. For each experiment reported in Table 4, we
take as the classification output all signature entries that
receive an accuracy percentage of at least 95%. In
other words, there are a set of signatures that we con-
sider “correct” classifications based on the full set of
probes and a set of signatures that are considered out-
put classifications for each experimental set of probes.
We compare these two sets to yield a new accuracy
result as described below. We experimented with other
thresholds and found that 95% was reasonable across
all experiments. A few experiments in which a thresh-
old of 93% yielded perfect results are marked * in Ta-
ble 4. In a few experiments there were no signatures

that achieved an accuracy percentage greater than 95%.
In those cases we took the signatures with the highest
accuracy percentage below 95% and considered them
the “correct” result. These cases are marked ** in Ta-
ble 4.

The accuracy of each experiment is reported in terms of
the probability of correctly guessing the target OS after
probing. In other words, if we randomly choose from
among the signatures one that has an accuracy greater
than 95% after probing and report it as the classifica-
tion of the target system, what is the probability of be-
ing correct? More specifically, let Bt be the baseline set
of correct signatures for target system t (i.e. signatures
that receive an accuracy percentage of at least 95%
using the full set of 16 Nmap probes). Let Et be the set
of signatures returned as output (with at least 95% ac-
curacy) using experiment E on target system t. The
accuracy of experiment E is the probability that we
would guess one of the correct signatures if drawing
uniformly from the output signatures, namely

t t

t

B E
E
∩

For example, if there are 6 correct baseline signatures
and 10 output signatures in an experiment and 4 of
these signatures are the same as baseline signatures we
have an accuracy of 4/10 or 0.40. If we randomly
choose any signature as our target system classification
from the 10 returned signatures we have a 0.40 prob-
ability of being correct. Note that the accuracy of the
full set of 16 Nmap probes is 1.0 by definition.

There is very little probability guessing the target sys-
tem classification correctly without probing. There are
417 entries in the Nmap 4.21ALPHA4 signature data-
base and the baseline sets (using the 95% accuracy
threshold) for our three target systems have 6, 6, and 10
signatures, respectively. Prior to any testing the prob-
ability of guessing correctly for the NT and Fedora
systems are 6/417 = 0.014 and for the XP system it is
10/417 = 0.024. Thus, we are very unlikely to ran-
domly guess the target system classification without
probing. This assumes that each entry in the signature
database is equally likely a priori. These probabilities
may be modified if distribution information is avail-
able.

We can make many observations about low-cost fin-
gerprinting from these experiments. As expected from
our information gain results, probes T2, T4-T7 are not
very useful by themselves (experiments 11-15), espe-
cially for Linux target systems. Similarly, the ISN pre-
diction tests (experiment 16) are not very useful by
themselves, except for Windows NT, where they are
perfectly accurate. This is consistent with our informa-
tion gain results in which ISN is discriminative overall
but not for Linux systems. In this case Windows XP
has similar behavior to Linux in generating ISNs.

Probes Pkt1/T1,T3, and ECN (experiments 7, 9, and
10) are each individually almost perfectly accurate pre-
dictors of target system classification at the cost of a
single probe. Interestingly, Pkt1/T1 performs even
better if we only test W and O, rather than the full set
of tests (experiment 4). Experiments 5 and 6 show that
adding the T and/or TG tests to W and O does not im-
prove accuracy, in fact they decrease the accuracy.
This is contrary to our information gain results that
indicate that time-to-live is a discriminative test, inde-
pendent of other tests. The results for Pkt1/T1 hold if
any probe Pkt2-6 is substituted for Pkt1/T1. T3 is es-
pecially effective for Linux but may not be useable in
practice, as discussed below.

To further investigate the value of W and O we see in
experiments 1, 2, 3, and 19 that removing W and/or O
tests from the original set of 16 Nmap probes severely
reduces the accuracy of fingerprinting, especially for
the Linux target system. For Windows the effects are
not as pronounced. Removing O for those systems has
less effect compared to removing W. For Linux, re-
moving W and O together has a cumulative effect
greater than removing each independently, demonstrat-
ing that these are non-overlapping effects.

If the accuracy of the low-cost single probe solutions,
Pkt1-6 using W and O or ECN or T3, are not sufficient
we can augment these probes. Experiment 23 shows
that an effective addition is to combine T3 with W and
O from Pkt1/T1 and TS and TI from Pkt1-6. This re-
quires at least 4 probes and obtains results equivalent to
the 16 probe Nmap detection for the target systems.
Experiments 18 and 21 provide compromises by
achieving almost equivalent accuracy with as few as 3
probes. To summarize, high accuracy can be achieved
with as few as 1 probe packet and perfect accuracy can
be achieved with no more than 3 or 4 probe packets.

 Micro
soft
Win-
dows
NT
4.00.1
381
SP4

Linux
Fedora
Core 4
kernel
2.6.11

Micro-
soft
Win-
dows
XP Pro
SP2

All, Nmap 4.21ALPHA4 1.00 1.00 1.00
1. All, Except W [16] 1.00 0.25 0.48

2. All, Except O [16] 0.86* 0.12 0.91

3. All, Except W,O [16] 0.75 0.07 0.43

4. Pkt1/T1 (W,O) [1] 0.67* 0.86 1.00

5. Pkt1 (W,O,TG) [1] 0.67* 0.86 1.00

6. Pkt1 (W,O,T,TG) [1] 0.50* 0.75 1.00

7. Pkt1 (ALL) [1] 0.50* 0.75 1.00

8. Pkt1 (R,DF,T,TG,S,
A,F,RD,Q) [1]

0.14 0.00 0.24

9. T3 (ALL) [1] 0.50* 1.00 1.00

10. ECN (ALL) [1] 0.50* 0.86 1.00

11. T2 (ALL) [1] 0.15 0.00 0.27

12. T4 (ALL) [1] 0.50* 0.00 0.30

13. T5 (ALL) [1] 0.13 0.04 0.26

14. T6 (ALL) [1] 0.50* 0.00 0.30

15. T7 (ALL) [1] 0.14 0.05 0.28

16. Pkt1-6 (SP,GCD,ISR)
[4-6]

1.00 0.06 0.00

17. Pkt1-6 (TS) [2-6] 0.00 0.00 0.34

18. Pkt1 (W,O), Pkt1-6
(TI) [3-6]

1.0 0.75 1.00

19. Pkt1(W),Pkt1-6(TI)
[3-6]

0.83* 0.11 0.24

20. Pkt1 (W,O,TG),
Pkt1-6 (TS) [2-6]

0.67* 0.86** 1.00

21. Pkt1 (W,O,TG),
Pkt1-6 (TS, TI) [3-6]

1.00 0.86** 1.00

22. Pkt1 (All), Pkt1-6
(TS,TI) [3-6]

1.00 0.86** 1.00

23. Pkt1 (W,O), Pkt1-6
(TS,TI), T3(All) [4-7]

1.00 1.00** 1.00

Table 4: Probability of Correctly Classifying Target
Operating System From 417 Possible Classifications
For Each Probing Experiment Using 95% Accuracy

Threshold (*1.00 for accuracy threshold of 93%; **No
matches above 95% accuracy threshold, but choosing from

among the top matches would yield correct classification with this
probability.)

4. Effective Stealth
In the previous section we identified low-cost sets of
probes that provide highly accurate operating system
fingerprinting. In order for these probes to provide
effective stealth they must be able to reach the target
system and elicit responses unblocked, unmodified, and
undetected by defensive devices. Probes that begin
with TCP SYN to an open port are less likely to be
blocked (i.e. Pkts1-6 and ECN), while many ICMP
packets are commonly blocked by default [22]. ICMP
may further cause alerts by intrusion detection systems
like Snort [18]. Malformed TCP packets (e.g. T3) are
likely to scrubbed or dropped by defensive devices.

Smart et. al. [21][23] studied the problem of defeating
TCP/IP fingerprinting and found that certain probes
and responses used in fingerprinting tests could be
modified or blocked without affecting TCP/IP perform-
ance. They designed a network scrubber that only al-
lows packets that are part of a standard TCP three-way
handshake. Packets that are not part of a valid three-
way handshake include T2, T3, T4, T6 and T7. A net-
work scrubber can also perform a canonical ordering of
the TCP options. In similar work [12][16] propose
normalizing TCP traffic to remove protocol ambiguities
for use in network intrusion detection. A canonical
ordering of TCP options would affect the information
gain of the O tests. However, the option values cannot
be scrubbed without affecting TCP performance
[21][23], thus, retaining some information gain. Simi-
larly, normalizing the initial window size (W) to defeat
operating system fingerprinting may not be worth the
performance trade-offs [23]. TCP/IP fingerprinting
defeat has also been discussed in [4].

We have empirically demonstrated [10] that defensive
devices like the PF network filter [13], despite having
traffic normalizing features, are not commonly config-
ured to defeat OS fingerprinting. From our results in
Section 3 we empirically observe that, as long as initial
window size and TCP options are not normalized, ef-
fective fingerprinting is possible with very few probes.
Thus, Pkts1-6 and ECN can include the highly dis-
criminative W and O tests and have a high likelihood of
being able to reach a target system undetected. As long
as initial window size and TCP options are not normal-
ized, effective stealthy fingerprinting is possible.

5. Discussion
We provide both analytical and empirical support for
building fingerprinting tools that use few probes yet
provide effective operating system classifications. We

make use of an information-theoretic measure of test
quality to evaluate fingerprinting probes and use this
evaluation to derive effective probe combinations that
minimize probe packets. We demonstrate successful
fingerprinting with as few as one packet. Furthermore,
we use valid TCP SYN packets to open ports, which
are less likely to be detected as fingerprinting probes
than malformed packets or packets that are not part of a
valid TCP three-way handshake.

Fyodor [7] provides a discussion of fingerprinting tests,
including the history and influences of fingerprinting
prior to Nmap. Taleck [22] discusses additional TCP
fingerprinting tests. Arkin [1] provides a study of the
use of ICMP in fingerprinting and implements these
techniques in Xprobe [2]. Zalewski [24] and Auffret
[3] describe fingerprinting using passively captured
packets instead of active probes. Passive fingerprinting
using a single SYN or SYN ACK packet is available in
p0f [24]. The information gain metric presented here
can help establish the quality of the tests used in these
tools and guide the improvement of these tools to be
accurate stealthy alternatives to active probing. The
analytical tools presented here can be used to evaluate
newly developed fingerprinting tests as well as to re-
evaluate the quality of existing tests as TCP/IP imple-
mentations and the distribution of deployed operating
systems change over time.

In [10] we empirically evaluate the robustness of fin-
gerprinting tests to defensive devices. Nmap includes a
system for weighing the comparative value of its fin-
gerprinting tests, called MatchPoints [8]. MatchPoints
are heuristic estimates of fingerprinting test quality that
combine notions of classification value and reliability.
Fyodor [9] mentions that some fingerprinting tests (e.g.
TOS, SP, ISR) are given low weights if they are com-
monly affected by network conditions or otherwise
viewed as unreliable.

Beverly [5] develops a method to classify operating
systems based on passive observation of TCP/IP head-
ers. That study builds classifiers to combine TCP/IP
header fields using probabilistic learning. Burroni and
Sarraute [6] build an operating system classifier using
neural network learning techniques. In that work they
try to improve on Nmap’s classification results by
building and combining a set of hierarchical classifiers
based on Nmap’s fingerprinting tests. Their classifiers
are learned from a dataset created by randomly sam-
pling entries in the Nmap signature database. In our
work, we derive probabilities directly from signature
database entries, rather than through sampling. The
approaches in [5][6] both differ from ours in that we

use signature databases to understand the information
provided by fingerprinting tests used by open source
tools, rather than build classifiers that combine these
tests. In future work we will apply this understanding
toward creating improved operating system classifiers.

In the experimental evaluation in this paper, other al-
ternative measures of “correctness” are possible. One
alternative is to insert exact fingerprints of the target
machines into the database and use those as the correct
signatures. However, those fingerprints would differ
from the generalized fingerprints in the database and
may skew the results. Other alternatives include modi-
fying the threshold accuracy percentage or considering
only perfect matches.

Information gain is not a perfect measure of test qual-
ity. One well-known weakness is that information gain
tends to overestimate the quality of tests that have many
possible values. We discuss the impact of this weak-
ness in [11]. Alternatives to information gain that are
less biased toward multi-valued tests, but retain other
weaknesses, include gain ratio [17] and minimum de-
scription length [14].

An interesting application of this work is to develop
targeted attacks that use the same probe packets to both
test for a specific open port and fingerprint the operat-
ing system, simultaneously. Since effective probes are
TCP SYN packets, the attacker can complete the three-
way handshake and proceed to fingerprint the service
on that port before completing the attack. Following-
up the TCP SYN probe with a complete handshake
further reduces the chance of detection or blocking.

6. REFERENCES
[1] O. Arkin, “ICMP Usage in Scanning: The Com-

plete Know-How,” June 2001, <http://www.sys-
security.com/archive/papers/ICMP_Scanning_v3.0.pdf>.

[2] O. Arkin, F. Yarochkin, and M. Kydyraliev, “The
Present and Future of Xprobe2: The Next Genera-
tion of Active Operating System Fingerprinting,”
Sys-Security Group, July 2003, <http://sys-
security.com/blog/published-materials/papers/>.

[3] P. Auffret, “SinFP,” Jan. 2007,
<http://www.gomor.org/sinfp/>.

[4] D. Barroso Berrueta, “A Practical Approach for
Defeating Nmap OS-Fingerprinting,” 2003,
<http://www.zog.net/Docs/nmap.html>.

[5] R. Beverly, “A Robust Classifier for Passive
TCP/IP Fingerprinting,” Proc. 5th Passive and Ac-

tive Measurement Workshop (PAM ’04), (Juan-
les-Pins, Fr., 2004), pp. 158–167.

[6] J. Burroni and C. Sarraute, “Using Neural Net-
works for Remote OS Identification,” Proc. Pacific
Security Conf. (PacSec ‘05), (Tokyo, Japan, 2005).

[7] Fyodor, “Remote OS Detection via TCP/IP Stack
Fingerprinting,” Insecure.Org, June 11, 2002,
<http:// insecure.org/nmap/nmap-fingerprinting-
old.html>.

[8] Fyodor, “Remote OS Detection via TCP/IP Fin-
gerprinting (2nd Generation),” Insecure.Org, Jan.
2007, <http://insecure.org/nmap/osdetect/>.

[9] Fyodor, Personal communications, May 2007.
[10] L. Greenwald and T. Thomas, “Understanding and

Preventing Network Device Fingerprinting,” Bell
Labs Technical Journal Special Issue on Security
in IP-based Networks, 12:3, Fall 2007.

[11] L. Greenwald and T. Thomas, “Evaluating Tests
used in Operating System Fingerprinting,” LGS
Bell Labs Innovations Technical Memorandum
TM-071207, July 2007, <http://lgsinnovations.com>
(under Bell Labs tab).

[12] M. Handley, C. Kreibich, and V. Paxson “Network
intrusion detection: evasion, traffic normalization,
and end-to-end protocol semantics,” in Proc. 10th
USENIX Security Symp., Washington, DC, Aug.
2001.

[13] D. Hartmeier, “PF: The OpenBSD Packet Filter,”
OpenBSD, Oct. 2006,
<http://www.openbsd.org/faq/pf/>.

[14] I. Kononenko, “On biases in estimating multival-
ued attributes,” Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelligence
(pp. 1034--1040), Morgan Kaufmann. Hill, 1997.

[15] T. Mitchell, Machine Learning. McGraw Hill,
1997.

[16] V. Paxson and M. Handley, “Defending against
NIDS evasion using traffic normalizers,” 2nd Int.
Workshop Recent Advances in Intrusion Detec-
tion, Sept. 1999.

[17] R. Quinlan, “Induction of decision trees,” Machine
Learning 1 (1986) 81—106.

[18] M. Roesch, “Snort,” Jan. 2007,
<http://www.snort.org>.

[19] S. J. Russell and P. Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall/Pearson Educa-
tion, Upper Saddle River, NJ, 2003.

[20] C. E. Shannon, “A Mathematical Theory of Com-
munication,” Bell Sys. Tech. J., 27:3 (1948), 379–
423, 27:4 (1948), 623–656.

[21] M. Smart, G. R. Malan, and F. Jahanian, “Defeat-
ing TCP/IP Stack Fingerprinting,” Proc. 9th
Usenix Security Symposium (USENIX ’00), (Den-
ver, CO, 2000), pp. 229–240.

[22] G. Taleck, "SYNSCAN: Towards Complete
TCP/IP Fingerprinting", CanSecWest , Vancouver
B.C., Canada, 2004.

[23] D. Watson, M. Smart, and G. R. Malan, “Protocol
Scrubbing: Network Security Through Transparent
Flow Modification,” IEEE/ACM Trans. Network-
ing, 12:2 (2004), 261–273.

[24] M. Zalewski, “the new p0f: 2.0.8,” Sept. 9, 2006,
<http://lcamtuf.coredump.cx/p0f.shtml>.

7. Appendix: Information Gain as a Met-
ric for Evaluating Fingerprinting Tests

In the following discussion we outline the calculation
of information gain using signature databases as data,
including the handling of disjunctive lists and ranges of
values. More detail on these calculations is available in
[11]. Let X be a random variable that describes the
classification of the operating system of a target system.
Let X take on n possible values, each with an a prior
probability p(xj), 1 ≤ j ≤ n. The entropy in X is the
amount of uncertainty there is in classifying an un-
known system. This can also be referred to as the in-
formation content of knowing the correct classification.
It can be expressed as:

2

1

() () log ()
j j

n

j

H X p x p x
=

= −∑

Let Testi be a random variable that describes the result
of applying test i to the probe responses of a target sys-
tem. Let Testi take on ni values, each with probability
p(testik), 1 ≤ k ≤ ni. Knowing the value of Testi may tell
us something about the value of X. This can be cap-
tured in the conditional entropy of X given Testi.. Con-
ditional entropy can be expressed as:

2
1 1

(|) () (|) log (|)
in n

i ik j ik j ik
k j

H X Test p test p x test p x test
= =

= −∑ ∑

A measure of the amount of information we gain about
X if we know the value Testi is called the mutual in-
formation, or information gain, of X and iTest . This
can be expressed as:

(;) () (|)
i i

H X Test H X H X Test= −

The fingerprinting test that tells us the most about the
operating system classification of a target system is the
one that removes the most uncertainty about the classi-
fication, namely the test with the highest information
gain.

To calculate information gain we need the probability
of each classification, p(xj), 1 ≤ j ≤ n, the probability of
each test value, p(testik), 1 ≤ k ≤ ni, for test Testi, and
the conditional probability of each classification with
respect to each test value, p(xj |testik), 1 ≤ j ≤ n and 1 ≤
k ≤ ni. Given a collection of training samples and the
assumption that the data are representative of the fre-
quency with which classifications and test values occur
in practice, these probabilities can be calculated di-
rectly. However, we assume access to a signature data-
base rather than a collection of training samples. Sig-
nature databases remove much of the information about
distributions over classifications and distributions over
test values that are represented in sets of training sam-
ples. To make up for this lost information, we need to
re-express p(testik) and p(xj |testik) in terms of p(xj) and
p(testik | xj). These latter quantities are more easily
measured from a signature database or other sources.

Through a combination of marginalization and the
product rule we obtain:

1

() () * (|)
n

ik j ik j
j

p test p x p test x
=

= ∑

Thus, we can calculate the probability of each test value
by summing, over all classifications (entries in the sig-
nature database), the multiplication of probability of
that classification times the probability of the test value
given the classification.

Making use of Bayes rule we can express the probabil-
ity of a classification given a specific test value, p(xj
|testik), as the following ratio:

1

() * (|)
(|)

() * (|)

j ik j

j ik

j ik j

n

j

p x p test x
p x test

p x p test x
=

=

∑

These equations allow us to calculate information gain
as long as we have the distribution over classifications
p(xj) and distributions over test values given a known
classification p(testik | xj). There is not enough infor-
mation in a signature database to tell us anything di-
rectly about p(xj). We can, however, make use of in-
formation in a signature database to calculate

p(testik| xj). To do so we must take into account the
four types of database entries:

1. tests that match a single discrete value
2. tests that match one of a disjunctive set of val-

ues
3. tests that match one of a range of values
4. tests that match a disjunctive set of discrete

values or ranges

Prior to fingerprinting a target system, we can guess the
operating system based on the a priori distribution of
operating system classifications, p(xj), over all possible
classifications. After performing a fingerprinting test
we can guess the operating system based on the a pos-
teriori distribution of operating system classifications,
p(xj |testik). This a posteriori distribution is conditioned
on the test result. For tests with a single discrete value
per operating system, the tests partition the database
into mutually exclusive sets. p(xj |testik) can then be
computed by just considering the set in which xj falls.
When we consider tests with disjunctions or ranges of
values, the resulting sets are not mutually exclusive.
Each classification may contribute to the probability of
more than one test value per test. We must consider
each set that a classification can be in (i.e. each value it
takes on) and combine the probability of each set in
order to derive p(xj |testik).

We first consider the case in which a test has one dis-
crete value, testik, per classification, xj. In this case,
p(testik|xj)=1 for that value and p(testik|xj)=0 for all oth-
ers. The remaining three cases require information
about distributions over test values given a classifica-
tion. If this information is indicated in the signature
database we can use it here. Without that information
we assume that each test value specified in a classifica-
tion is equally likely. Other assumptions or a priori
information about test value distributions (e.g. normal
distributions over ranges) can be accommodated.

Let sizeij be the number of values that Testi can take on
in classification entry xj. If Testi is disjunctive this is
the sum of discrete values; if Testi is a range this is the
size of the range; if Testi is a combination of disjunctive
values and ranges this is the sum of sizes of each dis-
junct. If we assume that each test value is equally
likely, then p(testik | xj)=1/sizeij for each test value testik
that occurs in the classification entry for classification
xj and zero for all other test values. We then have:

 includes test

1
() () *

ik j

j ijx ik

p test p x
size

= ∑

One way to interpret this is that each classification con-
tributes a fractional value to the total probability of
each test value, weighted by the probability of the clas-
sification and the probability of the value within the
classification. Note that this subsumes the first case,
where 1/sizeij =1 for each test value testik that occurs in
the classification entry for classification xj and zero for
all other test values. We then have p(xj |testik)=0 for
each value testik that is not included in xj, and for each
value testik that is included in xj:

 includes test

()

(|)
()

j

j

ij

j ik

j

ijx ik

p x

size
p x test

p x

size

=

∑

Recall that there is not enough information in a signa-
ture database to tell us anything directly about p(xj). If
we assume that all classifications xj are equally likely
we have p(xj |testik)=0 for each value testik that is not
included in xj, and for each value testik that is included
in xj:

 x includes testj

1

(|)
1

ij

j ik

ijik

size
p x test

size

=

∑

Let sumsize-1
ik =

1

 includes testj

ij
x ik

size −∑
. For uniformly

distributed classifications and uniformly distributed test
values per classification, conditional entropy can be
expressed as:

1 1

2
1 1

1
1 1

1
(|) log

i

ik

ik ik

n n
ij ij

i
k jn

size size
H X Test sumsize

sumsize sumsize

− −

= =

−

− −
−= ∑ ∑

We may then calculate information gain from a signa-
ture database as follows:

1 1

2
1 1

1
2 1 1

1
(;) loglog

i

ik

ik ik

n n
ij ij

i
k jn

size size
H X Test sumsize

sumsize sumsize
n

− −

= =

−
− −= + ∑ ∑

