
SplitX: Split Guest/Hypervisor Execution on Multi-Core

Alex Landau? Muli Ben-Yehuda†? Abel Gordon?

lalex@il.ibm.com muli@cs.technion.ac.il abelg@il.ibm.com
?IBM Research—Haifa †Technion—Israel Institute of Technology

Abstract
Current virtualization solutions often bear an unaccept-

able performance cost, limiting their use in many situations,
and in particular when running I/O intensive workloads. We
argue that this overhead is inherent in Popek and Goldberg’s
trap-and-emulate model for machine virtualization, and pro-
pose an alternative virtualization model for multi-core sys-
tems, where unmodified guests and hypervisors run on dedi-
cated CPU cores. We propose hardware extensions to facili-
tate the realization of this split execution (SplitX) model and
provide a limited approximation on current hardware. We
demonstrate the feasibility and potential of a SplitX hyper-
visor running I/O intensive workloads with zero overhead.

1 Introduction

Today, I/O intensive workloads often suffer from unac-
ceptable performance penalty when running in virtual ma-
chines [1, 6]. If it were possible to achieve close to
zero overhead I/O virtualization, many workloads that are
not being virtualized today could move to VMs. Zero-
overhead I/O virtualization would make it possible to con-
solidate traditional datacenter servers which today remain
non-virtualized; it would also make it possible to run I/O
intensive workloads in Infrastructure-as-a-Service clouds.

Zero-overhead I/O virtualization is not feasible with cur-
rent CPU virtualization extensions on the x86 architecture
(Intel VMX and AMD SVM). With Intel VMX and AMD
SVM, guest VMs run directly on the CPU with no emulation
layers in between, as long as the guest only executes non-
sensitive instructions [1, 13, 16]. However, as soon the guest
performs an instruction that necessitates hypervisor inter-
vention (such as accessing an I/O device, or modifying cer-
tain processor control registers), the CPU performs an exit,
thereby suspending guest execution and transferring control
to the hypervisor. I/O intensive workloads typically generate
relatively many hypervisor exits. Therefore, the only prac-
tical way to get to zero-overhead I/O virtualization is to get
the overhead of machine virtualization in general to zero.

Exits are the single most important cause of machine vir-

tualization overhead [1, 6]. Each and every exit causes the
CPU to store its state, restore the hypervisor state, and jump
to the hypervisor. The hypervisor then handles the exit, but
since the CPU caches contain the guest’s data, the hypervi-
sor essentially starts with a cold cache. After handling the
exit the process is repeated the other way around. The over-
head of a single exit is then multiplied by the frequency of
exits, which can be on the order of hundreds of thousands of
exits per second.

An exit has a direct cost, an indirect cost, and a syn-
chronous cost. The direct cost is the cost of the CPU world
switch, when the CPU suspends the guest and jumps to the
hypervisor, and later, when the CPU suspends the hypervi-
sor and jumps back to the guest’s next instruction. The in-
direct cost is the slowdown caused by executing two differ-
ent contexts—guest and hypervisor—on a single CPU core,
and is the result of cache pollution on every world switch.
More often than not, after a switch, the CPU has to fetch in-
structions and the data accessed by those instructions from
main memory, because the caches are filled with instructions
and data belonging to the previous context. The synchronous
cost is the cost of exit handling by the hypervisor.

In Table 1 we present the direct, indirect and synchronous
costs of several exit types as measured on an IBM System
x3550 M2 having a quad-core Intel Xeon X5570 CPU at
2.93 GHz with the KVM hypervisor included in Linux ker-
nel version 2.6.34. The guest was running with 1 vCPU,
with EPT and VPID enabled. The direct cost on its own is
high: 2,000 cycles. The indirect and synchronous cost can
in certain cases be an order of magnitude higher.

Figure 1 depicts the Instructions per Cycle (IPC) of a pro-
gram that scans memory in a loop and has a single exit at
t=940 cycles. This is a null exit—the hypervisor does noth-
ing in response (except the usual state saving and restor-

Exit type Direct Indirect Synchronous
CPUID 2,000 100 100
CR access 2,000 2,300 200
IO instruction 2,000 28,000 6,500

Table 1: Exit costs for several exit types (per exit, in cycles)

1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2000 4000 6000 8000 10000

IP
C

Cycles

Figure 1: Drop in IPC due to an exit

ing, which takes 2,000 cycles) and immediately reenters the
guest. And still, we observe a loss of performance due to this
exit quantified by the colored area. 9,000 cycles are required
to regain the original IPC.

Our vision is that virtualization should be free from per-
formance inefficiencies, and have zero overhead for every
workload. A perfect outcome of the proliferation of multi-
core systems is that today, and more so in future systems,
there are “spare” cores that we can specialize for one task.
To this end, we are departing from the pervasive trap-and-
emulate model which cannot provide zero-overhead virtu-
alization, and instead propose a model where unmodified
guests and the hypervisor run simultaneously on different
cores and communicate via efficient message passing.

For every m guest cores we assign n hypervisor cores,
where m and n are chosen dynamically based on current
workload. For simplicity of presentation, we assume m =
n = 1 in the text that follows. Multiple guest cores are dis-
cussed in Section 2.1.

In our model there are no exits, and the cache is not pol-
luted since only one context is executed on each core. Fur-
thermore, for some exits the hypervisor can handle requests
originating from a guest asynchronously while the guest con-
tinues executing on a different core. As a result, the direct
cost, the indirect cost, and in many cases the synchronous
cost are reduced or eliminated. We call our model SplitX,
for Split eXecution.

SplitX employs the same spatial division of guest and hy-
pervisor cores—as opposed to temporal division used in the
trap and emulate model—that was proposed by Kumar et
al. [9]. This sidecore approach of dedicating cores to specific
functional tasks is known to bring high performance results
on multicore and future manycore systems [2, 4, 7, 9, 19].

Our main contributions are (1) a novel scheme for running
unmodified guests and the hypervisor simultaneously on dif-
ferent cores, which can reduce the overhead of I/O virtual-
ization to statistical insignificance, and (2) a set of proposed
architectural changes to the x86 architecture to support effi-
cient simultaneous execution of guests and the hypervisor.
We also provide a limited approximation of the proposed
hardware support on current hardware.

Exit notificationGuest code 1

Exit

Entry

Hypervisor –
handle exit

Guest code 2

Ti
m

e Cache pollution

Guest code 3

Guest code 1

Guest code 2

Guest code 3

Hypervisor –
handle exit

Entry notification

Trap-and-emulate SplitX

Shared core Guest core Hypervisor core

Figure 2: Guest-hypervisor interaction in current CPUs (left)
and SplitX (right) for exits which the hypervisor can handle
asynchronously while the guest continues executing

2 SplitX Architecture

In SplitX, the guests and the hypervisor each have a set of
dedicated cores. For ease of explanation, we assume that
each has only one core. Whenever a guest’s action requires
hypervisor intervention, instead of issuing an exit, the guest
core communicates the details of the required operation to
the hypervisor core. The hypervisor then decodes the re-
quest, checks for eligibility and executes it on behalf of the
guest. In the meantime, depending on the request, the guest
core may continue executing code. This guest-hypervisor
interaction may be viewed as an asynchronous Remote Pro-
cedure Call (RPC), where the guest core is the client and the
hypervisor is the server. Any high-performance RPC mech-
anism can be employed, such as the Multikernel model [4].

In Figure 2 (left) we see the path of an exit in the current
model, where the guest is suspended while the hypervisor
handles an exit. The guest-hypervisor interaction depicted
in Figure 2 (right) shows the SplitX model for exits which
the hypervisor can handle while the guest continues execut-
ing and works as follows. Whenever hypervisor interven-
tion is required, the guest core posts a request containing the
details of the intervention (e.g., PIO instruction) to an inter-
core communication channel and notifies the hypervisor core
of the new request in the channel. This channel can be im-
plemented on top of existing bus protocols such as QPI or
HyperTransport. The guest core may decide to batch several
requests and send only one notification, thereby increasing
throughput at the expense of latency. The guest continues
running up to a synchronization point where the result of the
operation should be visible, at which point it stalls. Modern
processors already contain support for out-of-order code ex-
ecution and data dependency tracking. This support can be
extended to also track guest/host synchronization points.

The hypervisor running on a separate core is made aware
of pending work either by means of an interrupt, or using
cache line monitoring or polling (polling may be desirable to
provide smaller latencies if the hypervisor has no other work

2

to do). The hypervisor analyzes the request and can elect to
execute it immediately, such as in the case of a fast opera-
tion (e.g., changing a privileged register value), or issue an
asynchronous operation executed on a different hypervisor
core in case of a slow (e.g., I/O) operation. In both cases,
the current request is removed from the queue and the next
request is serviced.

The SplitX architecture has multiple benefits: First, the
direct cost of exits, namely, the cost of a world switch, is
eliminated as the guest now runs without causing any exits.
Second, the indirect cost is also eliminated, as the guest and
hypervisor are running on different cores and are not pollut-
ing each others’ caches. Third, many guest operations that
require hypervisor intervention can be executed fully asyn-
chronously or asynchronously to some degree.

Hypervisors can virtualize I/O using different models:
device emulation [2, 21], para-virtualization [3, 15, 17, 18]
or device assignment [10, 14, 22, 23]. For emulated de-
vices, SplitX can mitigate the overhead by running the vir-
tual hardware emulation on a different core [2, 9]. In this
case, the guest core will reach its synchronization point
before the hypervisor is able to finish handling the notifi-
cation. When using para-virtualization the guest OS effi-
ciently communicates with the hypervisor via shared ring
buffers, but both sides still send notifications when buffers
are produced or consumed. SplitX can handle these notifica-
tions asynchronously and remove the overhead they cause in
the traditional trap-and-emulate model. Last, for device as-
signment, interrupt acknowledgment and external interrupts
force a transition to the hypervisor, even when they corre-
spond to the assigned device/virtual function. With SplitX,
these events can be handled on a separate core, removing the
expensive transitions they would otherwise cause.

From an architectural point of view, SplitX also has the
advantage that it facilitates core specialization. For exam-
ple, hypervisors do not usually make use of floating point in-
structions. Therefore, if a core will only execute hypervisor
code, as in the SplitX case, it may be replaced by a simpler,
cheaper and less power-hungry core without a floating point
unit, while using a full-featured core for the guest. Another
advantage of SplitX is that it is particularly suited to non-
cache-coherent architectures [4, 5], where the caches shared
by a set of cores may be coherent, but there is no global co-
herency between disjoint sets of cores. With SplitX, cores
are partitioned in disjoint sets of hypervisor cores and sets of
per-guest cores. Each set of cores needs coherence between
the cores in the set, but does not need to be coherent with
any other set of cores.

2.1 Sharing Cores
SplitX is designed to dedicate whole cores to guests, which
could lead in some cases to wasted capacity. On systems
with many cores, where each guest requires multiple cores,
the potentially wasted capacity (number of wasted cores) is
insignificant compared to the overall number of cores. On

systems with a small number of cores where there are many
guests each of which only requires a fraction of a single core,
the wasted capacity can grow large. Therefore, SplitX can
also allow multiple guests to share a core. In this case, how-
ever, SplitX does not provide to the guests sharing the core
any advantages over current virtualization approaches.

3 Hardware Extensions for SplitX

SplitX, as previously described (§2), cannot be implemented
on current hardware, because it requires hardware function-
ality that is not available. In this section we propose several
additions to the processor, which are designed to facilitate
the implementation of SplitX (§4). We then describe an ap-
proximation to SplitX that is implementable on contempo-
rary hardware (§5).

3.1 Cheap Directed Inter-Core Signals
Notifications are an important communication mechanism
between the guest and the hypervisor cores. On modern
hardware, the primary way to notify another core of an event,
short of continuous polling, is via Inter-Processor Interrupts
(IPIs). Whereas IPIs are visible to and controlled by soft-
ware, we propose adding a similar mechanism that can be
handled either by software or entirely by the CPU.

On the send side, the hypervisor sends a signal, just like
with an IPI, to notify the guest about request completions.
Sending a signal from a guest to notify the hypervisor of a
new request, does not cause an exit, unlike an IPI. In addi-
tion, it might carry a few pieces of information, such as the
values of the guest registers.

On the receive side, the hypervisor executes a software
handler to handle the guest’s request, just like with an IPI.
Receiving a signal on the guest core will not cause the guest
core to execute a software handler (as an IPI would require),
but instead the core itself will handle the signal. This han-
dling works as follows. If the guest is stalled at a synchro-
nization point, it is resumed. If the guest is running, the next
synchronization point is canceled.

3.2 Manage Resources of Other Cores
Once the hypervisor core receives a request from a guest, it
needs to fulfill the request. If the request itself carries all
details needed to handle it, as in the case of an I/O operation,
the hypervisor can simply take the appropriate action and
continue. Alternately a request may require changing the
internal state of the core running the guest. An example of
this type of operation is guest access to a control register, a
model-specific register (MSR), the local APIC or to the TLB.
In this case, the hypervisor core needs to manage remotely
the resources and internal state of the core running the guest.
As a concrete example, the hypervisor needs to be able to
send an inter-core bus message to the guest core saying: Set
CR0 register to value X.

3

Category Exit reasons
Non-exits HLT, MWAIT, PAUSE
Sync. exits TASK SWITCH, INVD, INVLPG, CR-WRITE, DR-

ACCESS, EPT VIOLATION, INVEPT
Async. exits PIO, WBINVD, CPUID, RDTSC, RDPMC, CR-READ,

RDMSR, VM* except VMLAUNCH/VMRESUME

Table 2: Categories of exit reasons

4 Implementing Exits on SplitX

In Table 2 we classify exit reasons into several categories
and then explain how exits are handled in SplitX.

Non-exits In SplitX, cores are not shared by guests, so the
CPU executes these instructions directly.

Synchronous exits These instructions affect the processor
state in a way that requires them to be completed before the
next instruction can begin execution. For example, a mov to
cr0 may enable or disable paging. With SplitX, the CPU
will wait for the hypervisor to handle the instruction and
will resume guest execution only upon receiving an inter-
core signal from the hypervisor. The hypervisor can manage
remotely the guest core’s resources as described in Section 3.

Asynchronous exits Such instructions do not have an im-
mediate result visible to the following code, and may take
an unpredictable time to execute. Their result may be re-
quired at a later time, which we call a synchronization point.
Since the guest does not immediately depend on the result
of this instruction, it can continue running and execute the
next instructions while the hypervisor handles this one, up to
the synchronization point. Upon reaching a synchronization
point, if the hypervisor has not finished handling the instruc-
tion yet, the guest stalls. The main benefit, compared to syn-
chronous instructions, is that most of the time the guest is not
stalled waiting for the hypervisor, but instead continues ex-
ecuting code. For example, a PIO write instruction does not
have to be committed immediately, but rather it should only
be completed before the next PIO read from the same port.
With SplitX, the guest core can continue running the guest
after an asynchronous instruction up to the instruction’s syn-
chronization point.

Interrupt Injections In the current model, in order to in-
ject an interrupt into the guest, the hypervisor has to wait
until the guest exits, or force an exit with a preemption timer
or an IPI, then inject the interrupt, and resume the guest.
The guest sends an EOI to the local APIC, an operation that
causes another exit. With SplitX, whenever the hypervi-
sor wants to inject an interrupt, it just sends an IPI to the
core running the guest. Sending an EOI does not cause an
exit either, as described in Section 3, but is handled asyn-
chronously.

5 Approximation on Contemporary HW

In this section we propose methods to approximate SplitX on
current hardware, by approximating future hardware func-
tionality in software. We also present preliminary measure-
ments of costs incurred by the SplitX approximation.

Inter-Core Signals Inter-core signals are used in SplitX
for guest-hypervisor and hypervisor-guest notification about
new requests or responses in the inter-core communication
channel. We emulate them in software using polling or IPIs.
To send an IPI, the guest has to access the local APIC, which
will cause an exit. Therefore, for exit-less operation there
are several choices. First, the hypervisor can poll for guest
notifications instead of waiting for an IPI. In this case, the
guest does not need to access the APIC. Second, in case of a
trusted guest, the hypervisor can give the guest direct access
to the APIC, so that the guest can send IPIs without exiting.
The other direction, namely, hypervisor-guest notifications,
can also be implemented in two ways. First, again, if the
guest is trusted, it can send an EOI to the local APIC directly
without exiting, avoiding the need to notify the hypervisor on
EOI. Second, for untrusted guests, the hypervisor can send
an NMI to the guest via the hypervisor’s APIC, instead of
delivering an external interrupt . As an NMI is an exception
(as opposed to an interrupt), it does not require an EOI from
the guest, and therefore implies no exits. Also, being an
exception, it can be configured to arrive at the guest directly,
as opposed to resulting in an exit.

Manage Resources of Other Cores Remote managing of
the guest core’s resources is required to handle instructions
that modify local core state, such as mov cr0, rax. We
also require that the guest is trusted and that the hypervisor
configures the guest core to not cause exits on such instruc-
tions. We then approximate these instructions in the follow-
ing way. First, the guest sends its request to the hypervisor
and spin-waits for the result. The hypervisor decides which
action the guest should perform (e.g., what is the real value
of rax that should be written to cr0) and sends this infor-
mation back to the guest. The guest performs the original
operation with the new input value (e.g., rax) supplied by
the hypervisor. The round-trip to the hypervisor may seem
unnecessary when the guest can perform the operation with-
out exiting by itself, but it is essential because the hypervisor
may need to alter the operation before the guest executes it.

Approximating SplitX Performance To verify that the
SplitX approach is sound, we ran two experiments. In the
first, a core running the hypervisor sends NMIs to a core run-
ning the guest. The latency of servicing these NMIs is 550
cycles. Since NMIs replace the direct cost of exits (2,000 cy-
cles), we see an immediate improvement of more than 3.5x
in the direct cost.

4

Exit Type Sync/Async Num. Exits Cost/Exit Total Cost Direct Savings Indirect Savings Async Savings Inter-core Overhead
EXCEPTION NMI Sync. 4 43 172 8 4 0.0 1
EXTERNAL INTERRUPT Async. 8961 363 3253726 17922 8961 3253727 2240.25
PENDING INTERRUPT Async. 2567 4 10351 5134 2567 10352 641.75
CPUID Sync. 16 109 1748 32 16 0.0 4
CR ACCESS Sync. 3 152 456 6 3 0.0 0.75
IO INSTRUCTION Async. 10042 85 848646 20084 10042 848647 2510.5
APIC ACCESS Async. 691249 18 12469663 1382498 691249 12469663 172812.25
EPT VIOLATION Sync. 645 12 7782 1290 645 0.0 161.25

Table 3: SplitX savings and overheads per exit type for a netperf client (in 1K cycles)

In the second experiment we used the netperf [8] bench-
mark running in the traditional VM with a paravirtual driver
and default parameters. During this run, which took approx-
imately 7.1 · 1010 cycles, we recorded the cycles consumed
by the hypervisor handling each exit type and the number of
world switches.

First, we calculated the bare-metal baseline based on in-
formation we recorded when running in a VM. We did this
because the hardware exposed by the hypervisor differs from
the physical machine. We assumed that netperf running on
bare-metal will consume the same amount of cycles it con-
sumed when running in a VM, discounting the direct, in-
direct and synchronous costs. For every world switch, we
assumed 2,000 and 1,000 cycles for the direct and indirect
costs respectively. This is a conservative estimate, as evi-
dent from Table 1. This resulted in approximately 5.2 · 1010
cycles (35.73% slowdown).

We then estimated the total cycles the guest core would
consume to run netperf with SplitX, classifying exits accord-
ing to the categories described in Section 4. For synchronous
exits, we discount the direct and indirect costs only. This is
because using SplitX we removed the world switch but not
the wait for the hypervisor response. We assumed that the
time the guest core waits for the hypervisor response equals
the exit handling cost without the indirect cost, because the
hypervisor core cache would not be polluted by the guest.
For asynchronous exits, we also discount the synchronous
cost, because the guest core will continue running while the
hypervisor handles the exit asynchronously. For both syn-
chronous and asynchronous exits, we assumed an additional
250 cycle overhead per exit for inter-core communication
and data movement, under the assumption that for major-
ity of exits, relatively little data needs to be moved between
the guest and the host cores. The savings are approximately
1.9 · 1010 cycles.

Table 3 shows the classification for each exit type and the
cycles SplitX saves, including the inter-core communication
overhead. The extrapolated data suggests that in SplitX the
guest core would consume almost exactly the same cycles as
it would on bare-metal! The difference of 0.0036% is sta-
tistically insignificant. With the traditional model, the guest
core consumed 35.73% more cycles to run the same work-
load. In other words, SplitX can achieve its goal of zero
overhead.

6 Related Work

The Multikernel [4, 5] looks at a multicore system as a dis-
tributed system, where all cores communicate via message
passing, and builds an operating system to run on such ma-
chines. We propose a similar architecture, but instead of run-
ning a distributed system-aware operating system, we spe-
cialize some of the cores for unmodified guests and some for
the hypervisor.

Several papers are using ring buffer for communication
between VMs and the hypervisor running on dedicated
cores. Virtualization Polling Engine [11] focuses only on
a small subset rather than on all exits, and hypervisor-to-
guest notifications cause exits. The sidecore approach [7, 9]
is similar to ours in that it handles all exits. However, it
uses polling for communication and requires guest paravir-
tualization, while we employ efficient notifications in new
hardware extensions and run unmodified guests.

Other papers explore the idea of offloading the execution
of system calls to a different core. Nellans et al. [12] pro-
pose a hardware predictor for the number of instructions in
a system call and offload the system call if this number is
higher than a certain threshold. In FlexSC [20], a process
wishing to issue a system call communicates it via shared
memory to a kernel thread running on a different core. While
in FlexSC applications are specifically modified either at the
source code level or by providing an alternative implemen-
tation of a threading library, we aim at running unmodified
guests.

7 Conclusions

VM exits are a major cause of performance loss in modern
systems, especially for I/O intensive workloads. In this paper
we propose SplitX: a novel approach for eliminating exits
by splitting the guest and the hypervisor into different cores.
We propose hardware extensions to the x86 architecture that
will enable the implementation of SplitX, and describe how
an approximation of SplitX can be implemented on current
hardware. Using SplitX, I/O intensive workloads could run
with zero overhead.

Acknowledgments

We thank Nadav Amit, Nadav Har’El, Ben-Ami Yassour and
Orit Wasserman for insightful comments and joyful discus-

5

sions. We also thank the anonymous reviewers for their feed-
back. The research leading to the results presented in this
paper is partially supported by the European Community’s
Seventh Framework Programme ([FP7/2001-2013]) under
grant agreement number 248615 (IOLanes).

References

[1] K. Adams and O. Agesen. A comparison of soft-
ware and hardware techniques for x86 virtualization.
In ACM Architectural Support for Programming Lan-
guages & Operating Systems (ASPLOS), pages 2–13,
2006.

[2] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster.
vIOMMU: efficient IOMMU emulation. In USENIX
Annual Technical Conference (ATC), 2011.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In ACM Symposium on
Operating Systems Principles (SOSP), pages 164–177,
2003.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architec-
ture for scalable multicore systems. In ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
29–44, 2009.

[5] A. Baumann, S. Peter, A. Schüpbach, A. Singhania,
T. Roscoe, P. Barham, and R. Isaacs. Your computer
is already a distributed system. Why isn’t your OS? In
USENIX Workshop on Hot Topics in Operating Systems
(HOTOS), page 12, 2009.

[6] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles project: Design and imple-
mentation of nested virtualization. In USENIX Sympo-
sium on Opearting Systems Design & Implementation
(OSDI), pages 423–436, 2010.

[7] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan,
V. Gupta, R. Nathuji, R. Niranjan, A. Ranadive, and
P. Saraiya. High-performance hypervisor architec-
tures: Virtualization in HPC systems. In Workshop on
System-level Virtualization for HPC (HPCVirt), 2007.

[8] R. Jones. The netperf benchmark. http://www.
netperf.org. (Accessed Apr, 2011).

[9] S. Kumar, H. Raj, K. Schwan, and I. Ganev. Re-
architecting VMMs for multicore systems: The
sidecore approach. In Workshop on Interaction be-
tween Opearting Systems & Computer Architecture
(WIOSCA), 2007.

[10] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmod-
ified device driver reuse and improved system depend-
ability via virtual machines. In USENIX Symposium on
Opearting Systems Design & Implementation (OSDI),
pages 17–30, 2004.

[11] J. Liu and B. Abali. Virtualization polling engine
(VPE): Using dedicated CPU cores to accelerate I/O
virtualization. In ACM Int’l Conference on Supercom-
puting (ICS), pages 225–234, 2009.

[12] D. Nellans, K. Sudan, R. Balasubramonian, and
E. Brunvand. Improving server performance on multi-
cores via selective off-loading of os functionality. In
Workshop on Interaction between Opearting Systems
& Computer Architecture (WIOSCA), 2010.

[13] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures. Com-
munications of the ACM (CACM), 17:412–421, 1974.

[14] H. Raj and K. Schwan. High performance and scalable
I/O virtualization via self-virtualized devices. In Int’l
Symposium on High Performance Distributed Com-
puter (HPDC), pages 179–188, 2007.

[15] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10Gbps using safe and transpar-
ent network interface virtualization. In ACM/USENIX
Int’l Conference on Virtual Execution Environments
(VEE), March 2009.

[16] J. S. Robin and C. E. Irvine. Analysis of the intel pen-
tium’s ability to support a secure virtual machine mon-
itor. In USENIX Security Symposium, page 10, 2000.

[17] R. Russell. virtio: towards a de-facto standard for vir-
tual I/O devices. ACM SIGOPS Operating Systems Re-
view (OSR), 42(5):95–103, Jul 2008.

[18] J. R. Santos, Y. Turner, j. G. Janakiraman, and I. Pratt.
Bridging the gap between software and hardware tech-
niques for I/O virtualization. In USENIX Annual Tech-
nical Conference (ATC), pages 29–42, June 2008.

[19] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
IsoStack: highly efficient network processing on dedi-
cated cores. In USENIX Annual Technical Conference
(ATC), page 5, 2010.

[20] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with asynchronous, exception-less system
calls. In USENIX Symposium on Opearting Systems
Design & Implementation (OSDI), 2010.

[21] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Vir-
tualizing I/O devices on Vmware workstation’s hosted
virtual machine monitor. In USENIX Annual Technical
Conference (ATC), pages 1–14, 2001.

6

[22] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent direct net-
work access for virtual machine monitors. In IEEE Int’l
Symposium on High Performance Computer Architec-
ture (HPCA), pages 306–317, 2007.

[23] B.-A. Yassour, M. Ben-Yehuda, and O. Wasser-
man. Direct device assignment for untrusted fully-
virtualized virtual machines. Technical Report H-0263,
IBM Research, 2008.

7

