

Resource Provisioning of Web Applications in Heterogeneous Clouds

Jiang DejunVrije University & Tsinghua UniversityGuillaume PierreVrije UniversityChi-Hung ChiTsinghua University

2011-06-15

USENIX WebApps 2011

Background

- Web applications play an important role in our daily life.
- Web application performance is one primary concern of application providers.
 - Users leave a website if it responds slowly
 - Application providers define Service Level Objectives (e.g. average maximum response time)
 - Dynamic resource provisioning helps to guarantee Web application performance
 - Web application hosting moves to Cloud for elastic resource usage

Motivation

- Cloud resource is heterogeneous
 - Heterogeneous virtual machine types
 - Heterogeneous performance of same type

Motivation(cont.)

Response time (ms)

- Cloud resource is heterogeneous
 - Resource heterogeneity is a long-term observation
 - Resource heterogeneity is observed cross Clouds (e.g. EC2, Rackspace)

Motivation(cont.)

- Cloud resource is heterogeneous
 - Current resource provisioning in Clouds (e.g. EC2)

Problem statement

- How to provision Web applications in Clouds
 - If an instance with fast CPU, it may be better to use it as an application server
 - If an instance with fast IO, it may be better to use it as a database server
 - We do not know how to use the new instance but we need to make a decision
- Difficulties
 - Unpredictable performance of new instances
 - Different performance benefits on different tiers of a new instance

Intuitive solutions

- Ignore the heterogeneous resource feature
 - Apply current resource provisioning algorithm to make decision
- Profile new instances at each tier to make decision
 - Deploy new instance as application server is fast
 - Deploy new instance as database server costs.
 e.g. DB size: 1.6GB. Dump: 190s; Transfer: 64s; Import 1530s. Total 30 min
 - This approach is inefficient and time-consuming

Outline

- Background
- Motivation
- Problem statement
- Intuitive solutions
- Our proposal
- Experimental evaluation
- Conclusion

Our proposal

- Performance correlation
 - Performance profile of a given tier is related to its resource utilization
 - Performance profiles of two different tiers (with same type resource demand) can be highly correlated

Our proposal(cont.)

- Performance prediction
 - Step 1: Employ reference applications as the calibration base
 - Step 2: Correlate resource demands of reference applications and tier services on the calibration instance
 - Step 3: Profile new instances with reference applications
 - Step 4: Derive performance of tier services on new instance

Our proposal (cont.)

- Resource provisioning
 - Obtain performance profiles of new instances
 - Apply "what-if" analysis to predict the performance of the whole application if a new instance is added to a tier

- Experiment setup
 - Reference applications
 - a CPU-intensive application: CPU(ref)
 - an IO-intensive application: IO(ref)
 - Tested application: TPC-W (a benchmark modeling the online bookstore)
 - Weighted round-robin load balancer
 - All experiments run on Amazon EC2

Experimental evaluation

- Weighted round-robin load balancer
 - Dispatch requests among virtual instances
 - Support sticky sessions

• Exp1: importance of adaptive load balancing

Adaptive load balancing can adapt to heterogeneous capacities of instances and enable equal response times

USENIX WebApps 2011 14

Experimental evaluation

We have different adaptions in two groups of experiments when provisioning TPC-W on EC2 due to resource heterogeneity

USENIX WebApps 2011 15

• Exp3: comparison with other techniques

Our system achieves higher throughput using the same instances compared with other provisioning techniques

USENIX WebApps 2011 16

Conclusion

- Performance guarantees for Web applications are important
- Cloud is heterogeneous: current resource provisioning techniques are not suitable
- We propose to correlate resource demands of hosted applications with reference applications.
- One can derive the performance of Web application on new instances by just profiling new ones with reference applications.

Thank you!