
Integrating Long Polling with an MVC Web Framework

Eric Stratmann, John Ousterhout, and Sameer Madan
Department of Computer Science

Stanford University
{estrat,ouster,sameer27}@cs.stanford.edu

Abstract

Long polling is a technique that simulates server push
using Ajax requests, allowing Web pages to be up-
dated quickly in response to server events. Unfortu-
nately, existing long poll approaches are difficult to
use, do not work well with server-side frameworks
based on the Model-View-Controller (MVC) pattern,
and are not scalable. Vault is an architecture for long
polling that integrates cleanly with MVC frameworks
and scales for clustered environments of hundreds of ap-
plication servers. Vault lets developers focus on writing
application-specific code without worrying about the de-
tails of how long polling is implemented. We have im-
plemented Vault in two different Web frameworks.

1 Introduction

In its earliest days the Web supported only static con-
tent, but over the years it has evolved to support a variety
of dynamic effects that allow Web pages to interact with
users and update themselves incrementally on the fly. In
the past most of these updates have been user-driven:
they occurred in response to user interactions such as
mouse clicks and keystrokes. However, in recent years
more and more applications requireserver push, where
Web pages update without any user involvement in re-
sponse to events occurring remotely on a Web server or
even other browsers. Server push is particularly impor-
tant for collaboration applications where users want to be
notified immediately when other users perform actions
such as typing messages or modifying a shared docu-
ment. Server push is also useful for a variety of moni-
toring applications.

The most common way to implement server push to-
day is with a mechanism calledlong polling. Unfortu-
nately, long polling is not easy to use. Existing imple-
mentations tend to be special-purpose and application-
specific. They do not integrate well with Model-View-

Controller (MVC) Web frameworks that are commonly
used to build Web applications, often requiring separate
servers just for long polling. Finally, it is challenging to
create a long polling system that scales to handle large
Web applications.

In this paper we describe an architecture for long
polling called Vault, along with its implementation.
Vault has three attractive properties:

• It integrates with MVC frameworks in a natural and
simple fashion using a new construct called afeed,
which is an extension of the model concept from
MVC.

• It generalizes to support a variety of long polling
applications (using different kinds of feeds), and to
support multiple uses of long polling within a single
Web page.

• It includes a scalable notification system that allows
Vault to be used even for very large applications and
that spares Web developers from having to worry
about issues of distributed notification. There are
two interesting architecture decisions in the design
of the notification system. The first is that Vault sep-
arates notification from data storage, which makes
it easy to create a scalable notifier and to incorpo-
rate a variety of data storage mechanisms into long
polling. The second is that extraneous notifications
are allowed in Vault, which helps simplify the im-
plementation of the system and crash recovery.

Overall, Vault improves on existing work by making it
easier to create Web applications that use long polling.

We have implemented Vault in two Web frameworks.
We first built Vault in Fiz [10], a research framework,
and then ported it to Django [3] to demonstrate the gen-
eral applicability of Vault in MVC frameworks. This pa-
per uses the Django implementation for examples, but
the concepts and techniques could be used in most other
MVC frameworks.

1

The remainder of this paper is organized as follows.
We present background information on long polling and
the problems it introduces in Section 2. Section 3 de-
scribes the major components of Vault and how they
work together to implement long polling. Section 4
presents a few examples of feeds. Section 5 addresses
the issue of long polling in a clustered environment with
potentially thousands of application servers. Section 6
analyzes the performance of the Vault notification mech-
anism. We discuss integrating Vault with Web frame-
works in Section 7. Section 8 describes the limitations
of Vault, and Section 9 compares Vault with other ap-
proaches to long polling. Finally, Section 10 concludes.

2 Background

2.1 Long polling

The goal of long polling is to allow a Web server to ini-
tiate updates to existing Web pages at any time. The up-
dates will reflect events occurring on the server, such as
the arrival of a chat message, a change to a shared docu-
ment, or a change in an instrument reading.

Unfortunately, the Web contains no mechanism for
servers to initiate communication with browsers. All
communication in the Web must be initiated by browsers:
for example, a browser issues an HTTP request for a new
Web page when the user clicks on a link, and Javascript
running within a Web page can issue a request for addi-
tional information to update that page using mechanisms
such as Ajax [8]. Web servers are generallystateless:
once a server finishes processing a browser request it
discards (almost) all information about that request. Al-
though a server may retain a small amount of information
about each active client (usingsessionobjects) the server
typically doesn’t retain the addresses of all its clients;
even if it did there is no way for it to initiate a connec-
tion with the browser. A Web server can only respond to
requests initiated by the browser.

Thus Web servers cannot update Web page content
without browser assistance. A simple approach used by
many early applications is polling: once a Web page is
loaded, it issues Ajax requests to the server at regular in-
tervals to check for updates. When an interesting event
happens on the server it cannot immediately notify the
browser; it must save information about the event until
the next poll, at which point the Web page gets updated.
Although polling can provide an appearance to the user
much like true server push, it requires a trade-off between
fidelity and efficiency. A short interval for polling pro-
vides high fidelity (events are reflected quickly on the
browser) but wastes server resources and bandwidth re-
sponding to poll requests. A long interval for polling
reduces overhead but may result in long delays before an

Controller

View

Model

Figure 1:The Model-View-Controller pattern for Web
applications. Each HTTP request is handled by a con-
troller, which fetches data for the request from models
and then invokes one or more views to render the Web
page.

event is reflected in the browser.
Long polling, also known as Comet [14] or reverse

Ajax, is a variation on the polling approach that improves
both fidelity and efficiency. The browser polls the server
as described above, but if no updates are available the
server does not complete the request. Instead it holds the
Ajax request open for a period of time (typically tens of
seconds). If an event occurs during this time then the
server completes the request immediately and returns in-
formation about the event. If no event occurs for a long
period of time the server eventually ends the request (or
the browser times out the request). When this happens
the browser immediately initiates a new long poll re-
quest. With long polling there is almost always an Ajax
request active on the server, so events can be reflected
rapidly to the browser. Since requests are held on the
server for long periods of time, the overhead for initiat-
ing and completing requests is minimized.

However, long polling still has inefficiencies and com-
plexities. It results in one open Ajax connection on the
server for every active client, which can result in large
numbers of open connections. Browsers typically limit
the number of outstanding HTTP connections from a
given page, which can complicate Web pages that wish
to use long polling for several different elements. But the
most challenging problem for long polling is that it does
not integrate well with modern Web frameworks; these
problems are introduced in the next section, and solving
them is the topic of the rest of the paper.

2.2 Model-View-Controller Frameworks

Most of today’s popular server-side Web frameworks
are based on the Model-View-Controller (MVC) pat-
tern [12] [13]. MVC divides Web applications into three
kinds of components (see Figure 1):models, which man-
age the application’s data;views, which render data into
HTML and other forms required by the browser; and
controllers, which provide glue between the other com-
ponents as well as miscellaneous functions such as en-
suring that users are logged in. When a request arrives at

2

the Web server, the framework dispatches it to a method
in a controller based on the URL. For example, a request
for the URL/students/display/47 might be dis-
patched to thedisplay method in theStudent con-
troller. The controller fetches appropriate data from one
or more models (e.g., data for the student whose id is 47),
then invokes a view to render an HTML Web page that
incorporates the data.

Unfortunately, MVC frameworks were not designed
with long polling in mind. As a result, it is difficult to
use long polling in Web applications today. Most frame-
works assume that requests finish quickly so they bind
a request tightly to a thread: the thread is occupied un-
til the request completes. Some frameworks have only a
single thread, which means there can be only one active
request at a time; this can result in deadlock, since an
active long poll request can prevent the server from han-
dling another request that would generate the event to
complete the long poll. If a framework is multi-threaded,
it can use one thread for each active long poll request
while processing other requests with additional threads.
However, the presence of large numbers of threads can
lead to performance problems. Fortunately, some frame-
works (such as Tomcat 7.0) have recently added mech-
anisms for detaching a request from its thread, so that
long poll requests can be put to sleep efficiently without
occupying threads.

Another problem with MVC frameworks is that they
were not designed for the flow of control that occurs in
long polling. In traditional Web applications requests are
relatively independent: some requests read information
and pass it to the browser while other requests use infor-
mation from the browser to update data, but there is no
direct interaction between requests. With long polling,
requests interact: one request may cause an event that is
of interest to one or more active long polls; the frame-
work must provide a mechanism for managing these
events and moving information between requests. Notifi-
cations become even more complicated in clustered Web
servers where an action on one Web server may impact
long poll requests on other servers in the cluster.

Because of these problems, applications that need long
polling typically use special-purpose solutions today. In
many cases long polling is handled by different Web
servers than the main application, with a special (non-
MVC) framework used for the long poll servers (see Sec-
tion 9.3). The internal mechanisms used for long polling
are often application-specific, so that each long polling
application must be built from scratch. For example,
some implementations of long polling tie the notification
mechanism to a particular data model such as message
channels, which requires the notification mechanism to
be reimplemented if a different data model is used.

Our goal for Vault was to create an architecture for

Controller

View

Feed

Dispatcher Notifier

Figure 2:The architecture of Vault. Vault is similar to
an MVC framework except models have been replaced
with feeds and two new components have been added
(the notifier and the dispatcher).

long polling that integrates naturally with existing MVC
frameworks, generalizes to support a variety of long
polling applications and encourage code reuse, and pro-
vides reusable solutions for many of the problems shared
across long polling applications such as managing the
long poll protocol and creating a scalable notification
system.

3 The Vault Architecture

Figure 2 shows the overall architecture of Vault. Vault
extends an MVC framework with three additional ele-
ments: feeds, a notifier, and a dispatcher. Afeedis sim-
ilar to a model in a traditional MVC framework except
that it provides extra capabilities for long polling. As
with traditional models, a feed is responsible for manag-
ing a particular kind of data, such as a table in a database,
a queue of messages, or an instrument reading. A tra-
ditional model answers the questionwhat is the current
state of the data?and also provides methods to modify
the model’s data, validate data using business logic, etc.
A feed provides these same facilities, but in addition it
contains methods to answer questions of the formhow
has the data changed since the last time I asked?. The
new methods make it easy to create long polling applica-
tions. One of our goals for Vault is to make it as simple
as possible to convert a model to a feed; we will illustrate
this in Section 3.3.

One of the key issues for a long polling system is noti-
fication: when there is a change in the state of data (e.g. a
value in a database is modified, or an instrument reading
changes) there may be pending long poll requests that
are interested in the change. Thenotifier is responsible
for keeping track of long poll requests and waking them
up when interesting events occur. Feeds tell the notifier
which events are relevant for each long poll request, and
they also tell the notifier when events have occurred; the
notifier is responsible for matching interests with events.

3

logs.py

1 def show(request):
2 logs = Logs.get_new_instances()
3 return render_to_response("show.html", {"logs": logs})
4

5 def get_latest_logs(request):
6 logs = Logs.get_new_instances()
7 if logs.count() == 0:
8 return
9 return append_to_element("logs-div", "log-entries.htm l", {"logs": logs})

show.html

1 ...
2 <% add_long_poll "logs/get_latest_logs" %>
3 <div id="logs-div">
4 <% include "log-entries.html" %>
5 </div>
6 ...

log-entries.html

1 <% for log in logs %>
2 <p><%= log.type %>: <%= log.message %></p>
3 <% endfor %>

Figure 3:A simple application that uses Django and Vault to display a list of log entries.logs.py is a controller; the
show method displays the overall page andget latest logs updates the page with new log entries during long-poll
requests.show.html is a template that renders the main page, andlog-entries.html is the template for rendering
a list of log entries.

Vault notifications do not contain any data, they simply
say that a change has occurred; it is up to feeds to verify
exactly what data changed. The Vault notifier is scalable,
in that it can support Web applications spanning many
application servers: if a feed on one server announces
an event to its local notifier, the notifier will propagate
information about the event to all other servers that are
interested in it. The notifier API is discussed in Section
3.2 and a scalable implementation is described in Section
5.

The third component of Vault is the long poll dis-
patcher. The dispatcher provides glue between Javascript
running on Web pages, controllers, and the notifier.
Among other things, it receives long poll requests and
invokes controller methods at the right time(s) to com-
plete those requests. Its behavior will be explained in
Section 3.4.

Of these three components, feeds are the primary com-
ponent visible to Web application developers. The dis-
patcher is almost completely invisible to developers, and
the notifier is visible only to developers who create new
feeds.

3.1 A Simple Example

This section illustrates how the Vault mechanism is used
by a Web application developer (using Django as the
framework), assuming that an appropriate feed already

exists. Writing an application with Vault is similar to
writing an application using MVC. Developers write
controller methods that fetch data and use it to render
a view. Although they must indicate to Vault that they
would like to use long polling to update a page, most of
the details of the long poll mechanism are handled invis-
ibly by Vault.

The example page (see Figure 3) displays a list of log
entries and uses long polling to update the page whenever
a new log entry is added to a database. New log entries
appear to be added to the page instantaneously. A user
who opens the page will initially see a list of existing log
entries, and new ones will show up when they are cre-
ated. Log entries are assumed to be generated elsewhere.

The page (URL/logs/show) is generated by the
show method.show has the same structure as normal
MVC controller methods: it retrieves data from a model
and then invokes a view to render a Web page using that
data.

The page differs from traditional MVC pages in
two ways. First,show invokes a new feed method
called get new instances to retrieve its data;
get new instances returns all of the current rows
in the table and also makes arrangements for future noti-
fications. Second, to arrange for automatic page updates,
the view callsadd long poll . This causes Vault to
enable long polling for the page, and it indicates that

4

all() => [Record]
filter(condition) => [Record]
save() => void
get_new_instances(request) => [Record]

Figure 4: A few of the methods provided by
DatabaseFeed . get new instances is the only
method that would not be found in a regular model.
[Record] indicates that the method returns an array
of database records. Therequest object represents
the state of the HTTP request currently being processed.

the methodlogs/get new logs should be invoked
to update the page.

Vault arranges for the page to issue long-poll requests,
and it invokesget latest logs during the requests.
The purpose of this method is to update the page if new
log entries have been created.get latest logs is
similar to a method in an MVC framework for handling
an Ajax request: it fetches data from a model, invokes
a view to render that data, and returns it to the browser
(append to element is a helper method that gener-
ates Javascript to append HTML rendered from a tem-
plate to an element). However, it must ensure that it gen-
erates no output if there are no new log entries. This sig-
nals to Vault that the request is not complete yet. Vault
then waits and invokes this method again when it thinks
there may be new log entries.

The DatabaseFeed (see Figure 4) is used to de-
termine if any new log entries have been created. Its
get new instances method returns any new log en-
tries that have been created since the last time the method
was invoked for the current page, or an empty array if
there are none. The first time it is invoked, it returns all
existing log entries, as in theshow method. All feeds
have methods analogous toget new instances :
these methods either return the latest data, if it has
changed recently, or an indication that the data has not
changed. Aside from this method,DatabaseFeed
also has ordinary model methods such asall and
filter , which return subsets of the data, andsave ,
which writes new data to the database.

Vault automatically handles many of the details of
long polling so that application developers do not have
to deal with them. For example, the dispatcher automati-
cally includes Javascript in the page to issue long-poll re-
quests, the feed and notifier work together to determine
when to invoke methods such asget latest logs ,
and the feed keeps track of which log entries have al-
ready been seen by the current page. These mechanisms
will be described in upcoming sections.

create_interest(request, interest) => boolean
remove_interest(request, interest) => void
notify(interest) => void

Figure 5:The methods provided by the Vault notifier.

3.2 The Notifier

One of the most important elements of a long polling
system is its notification mechanism, which allows long
poll requests to find out when interesting events have
occurred (such as a new row being added to a table).
Most libraries for long polling combine notification with
data storage, for example by building the long polling
mechanism around a message-passing system. In con-
trast, Vault separates these two functions, with data stor-
age managed by feeds and notification implemented by
a separate notifier. This separation has several advan-
tages. First, it allows a single notifier implementation
to be shared by many feeds, which simplifies the devel-
opment of new feeds. Second, it allows existing data
storage mechanisms, such as relational databases, to be
used in a long polling framework. Third, it allows the
construction of a scalable notifier (described in Section
5) without having to build a scalable storage system as
well.

The Vault notifier provides a general-purpose mech-
anism for keeping track of which long poll requests
are interested in which events and notifying the dis-
patcher when those events occur (see Figure 5). Each
event is described by a string called aninterest. The
create interest method associates an interest with
a particular HttpRequest (which represents the state of
an HTTP request being processed by the server, usually
a long poll request); theremove interest method
breaks the association, if one exists. Thenotify
method will call the dispatcher to wake up all requests
that have expressed interest in a particular event. As will
be seen in Section 3.3, feeds are responsible for calling
create interest andnotify . Interest names are
chosen by feeds; they do not need to be unique, but the
system will operate more efficiently if they are.

For Web applications that exist entirely on a single
server machine the notifier implementation is quite sim-
ple, consisting of little more than a hash table to store
all of the active interests. However, its implementation
becomes more interesting for large Web sites where the
sender and receiver of a notification may be on different
server machines. Section 5 describes how a scalable dis-
tributed notifier can be implemented with the same API
described by Figure 5.

Extraneous notifications are acceptable in Vault; they
affect only the performance of the system, not its cor-
rectness. Extraneous notifications can happen in sev-

5

1 class DatabaseFeed:
2 def get_new_instances(self, request):
3 interest = "DB-" + self.model.name
4 possibly_ready = Notifier.create_interest(interest, re quest)
5 if not possibly_ready:
6 return []
7

8 old_largest_key = PageProperties.get(request, interest)
9 if old_largest_key == None:

10 old_largest_key = 0
11 current_largest_key = self.get_largest_primary_key()
12

13 PageProperties.set(request, interest, current_largest _key)
14

15 if current_largest_key > old_largest_key:
16 latest = self.filter(primary_key__greater_than=old_la rgest_key)
17 return latest
18 else:
19 return []
20

21 def on_db_save(table_name, instance, is_new_instance):
22 if is_new_instance:
23 Notifier.notify("DB-" + table_name)

Figure 6: A partial implementation ofDatabaseFeed , showing the code necessary to implement the
get new instances method.get new instances records the largest primary key seen for each distinct Web page
and uses that information in future calls to determine whether new rows have been added to the table since the page was
last updated. For brevity, code for the other feed methods isnot shown and a few minor liberties have been taken with the
Django API, such as the arguments toon db save .

eral ways. First, it is possible for different feeds to
choose the same string for their interests. As a result,
an event in either feed will end up notifying both in-
terests. In addition, extraneous notifications can hap-
pen when recovering from crashes in the cluster noti-
fier (see Section 5). If an extraneous notification hap-
pens in the example of Section 3.1 it will cause the
controller methodget latest logs to be invoked
again, even though no new rows have been created. The
get new instances method will return an empty ar-
ray in, soget latest logs will generate no output
and the dispatcher will delay for another notification.

Vault interests are similar to condition variables as
used in monitor-style synchronization [9]: a notifica-
tion means “the event you were waiting forprobablyoc-
curred, but you should check to be certain”. Vault inter-
ests can be thought of as a scalable and distributed im-
plementation of condition variables, where each interest
string corresponds to a distinct condition variable.

3.3 Implementing Feeds

A feed is a superset of a traditional MVC model, with
two additional features. First, it must maintain enough
state so that it can tell exactly which data has changed
(if any) since the last time it was invoked. Second,
it must work with the Notifier to make sure that long
poll requests are reawakened when relevant events oc-

cur (such as the addition of a row to a database) . The
paragraphs below discuss these issues in detail, using the
get new instances method of DatabaseFeed
for illustration (see Figure 6).

In order to detect data changes, feeds must maintain
state about the data they have already seen. For exam-
ple, get new instances does this by keeping track
of the largest primary key that has been seen so far
(old largest key). In each call, it compares the
largest key seen so far with the largest primary key in
the database (lines 8-11). If the latter is larger, the feed
returns all the new rows; otherwise it returns an empty
array. The type of state will very from feed to feed, but a
few possibilities are a primary key of a table, the contents
of a row, or a timestamp.

Because a user many have several pages open, state
such as the largest key seen must be page specific. For
example, a user might have the same URL opened in two
different browser tabs; they must each update when new
rows are created. Vault accomplishes this through the
use ofpage properties, which are key-value pairs stored
on the server but associated with a particular Web page.
Page properties can be thought of as session data at the
page level instead of the user or browser level. If a
page property is set during one request associated with
a particular page (such as whenget new instances
is invoked by theshow method of Figure 3 during the
initial page rendering), it will be visible and modifiable

6

in any future requests associated with the same page
(such as whenget new instances is invoked by
get latest logs during a subsequent long poll re-
quest). TheDatabaseFeed uses page properties to
store the largest primary key seen by the current page.
For details on how page properties are implemented,
see [11]. The Fiz implementation of Vault uses an exist-
ing page property mechanism provided by Fiz; Django
does not include page properties, so we implemented
page properties as part of Vault.

The second major responsibility for feeds is to com-
municate with the notifier. This involves two ac-
tions: notification and expressing interest. Notifica-
tion occurs whenever any operation that modifies data
is performed, such as creating a new row or modi-
fying an existing row. For example,on db save ,
which is invoked by Django after any row in the table
has been modified, callsNotifier.notify (line 23)
to wake up requests interested in additions to the ta-
ble. Expressing an interest occurs whenever any feed
method is invoked. get new instances invokes
Notifier.create interest to arrange for notifi-
cation if/when new rows are added to the table. The inter-
est must be created at the beginning of the method,before
checking to see whether there are any new instances: if
the interest were created afterward, there would be a race
condition where a new row could be added by a different
thread after the check but before the interest was created,
in which case the notification would be missed.

The DatabaseFeed uses interests of the form
“DB- ttt”, where ttt is the name of the table. This en-
sures that only requests interested in that table are noti-
fied when the new rows are added to the table.

Note that Notifier.remove interest is not
invoked in Figure 6. The feed intentionally allows the
interest to persist across long poll requests, so that notifi-
cations occurring between requests will be noticed. Old
interests are eventually garbage collected by the notifier.

Feeds can take advantage of an additional feature of
the notification mechanism in order to eliminate unnec-
essary work. In many cases the notifier has enough in-
formation to tell the feed that there is no chance that the
feed’s data has changed (e.g., if the interest has existed
since the last call to the feed and there has been no inter-
vening notification). In this casecreate interest
returns false andget new instances can return im-
mediately without even checking its data. This optimiza-
tion often prevents a costly operation, such as reading
from disk or querying a remote server. Furthermore,
most of the time when the feed is invoked there will have
been no change (for example, the first check for each
long poll request is likely to fail).

All feeds have methods with the same general struc-
ture asget new instances . In each case the method

must first create one or more interests, then check to see
if relevant information has changed. The exact checks
may vary from feed to feed, but they will all record infor-
mation using page properties in order to detect when the
information on the page becomes out of date. For exam-
ple, a feed that implements messages with serial numbers
might store the serial number of the last message seen by
this page and compare it with the serial number of the
most recent message.

3.4 The Dispatcher

The Vault dispatcher hides the details of the long poll
protocol and supervises the execution of long poll re-
quests. The dispatcher is invisible to Web application de-
velopers except for itsadd long poll method, which
is invoked by views to include long polling in a Web page
(see Figure 3). Whenadd long poll is invoked the
dispatcher adds Javascript for long polling to the cur-
rent Web page. This Javascript will start up as soon as
the page has loaded and initiate an Ajax request for long
polling back to the server. When the long poll request
completes the Javascript will process its results and then
immediately initiate another long poll request. Only one
long poll request is outstanding at a time, no matter how
many long poll methods have been declared for the page.

Vault arranges for long poll requests to be handled by
the dispatcher when they arrive on the Web server. In the
Django implementation this is done by running Vault as
middleware that checks each request for a special long
poll URL, and if present sends the request to the dis-
patcher. The dispatcher finds all of the long poll meth-
ods for the current Web page (add long poll records
this information using the page property mechanism de-
scribed in Section 3.3) and invokes all of them in turn.
If output was generated by any of the long poll methods
then the dispatcher returns the output to the browser and
completes the request. If none of the methods generated
any output then the dispatcher puts the request to sleep
until it receives a notification for this request from the
notifier. Once a notification is received the dispatcher in-
vokes all of the long poll methods again; once again, it
either returns (if output has been generated) or puts the
request to sleep.

In normal use it is unlikely that the first invocation of
the long poll methods during a request will generate any
output, since only a short time has elapsed since the last
invocation of those methods. However, it is important to
invoke all of the methods, which in turn invoke feeds, in
order to ensure that interests have been created for all of
the relevant events.

7

create_channel(channel_name) => void
create_user(user_name) => void
get_new_messages(request, user_name) => [Message]
subscribe(user_name, channel_name) => void
post_message(channel_name, message) => void

Figure 7:The methods provided by our example Messaging feed .

4 Feed examples

In order to evaluate the architecture of Vault we have
implemented two feeds; these feeds illustrate the ap-
proaches that we think will be most common in actual
Web applications.

The first feed is the DatabaseFeed dis-
cussed earlier in 3. We implemented two
feed methods, get new instances and
get modified instance , and designed a third,
get attribute changes .

get new instances has been discussed earlier
in Section 3.1. Briefly,get new instances re-
turns new rows from a database. It uses interests of
the form DB-ttt, where ttt is the name of the table.
get new instances detects new rows by saving the
highest primary key seen in the past for any row in the
table and comparing this with the current highest key in
future calls (it assumes that primary keys are chosen in
ascending order).

get modified instance allows a Web page to
observe changes to a particular row; it returns the latest
value of the row, orNone if the row has not changed
since the last call for this row on the current Web page.
It uses interests of the formDB-ttt- rrr , wherettt is the
name of the table andrrr is the primary key of the row
under observation; all methods in the model that mod-
ify existing rows must notify the interest for that row.
The implementation ofget modified instance is
similar to that ofget new instances in Figure 6: it
records the last value of the row seen by the current Web
page and compares this against the current contents of
the row in future calls.

Although these two methods are simple to implement,
one can imagine more complicated methods that are not
as easy to implement in Vault. One example is a method
to monitor changes to a column (orattribute in model
terminology), calledget attribute changes . If
any values in the column have changed since the last in-
vocation for this table in the current Web page the pri-
mary keys for the affected rows are returned. It is dif-
ficult for the feed to tell whether a column has changed
recently unless it records a copy of the entire column,
which would be impractical for large tables. One solu-
tion is to create an auxiliary data structure to keep track
of changes. A new table can be added to the database

with each row representing one change to the given col-
umn: the auxiliary row contains the primary key of the
row in the main table that changed. This table will need
to be updated any time the model modifies a field in
the column under observation: once the auxiliary table
exists, an approach similar toget new instances
can be used to implementget attribute changes .
The method stores the largest primary key (of the auxil-
iary table) used by previous method calls and queries the
table for all rows with a larger primary key.

The DatabaseFeed described above introduces
overhead to notify various interests when relevant
changes occur in the database; in some cases a sin-
gle modification to the database might require notifica-
tion of several different interests (e.g., modifying a row
would notify both that the row was modified and any col-
umn changes). However, as will be seen in Section 6,
notifying an interest is considerably faster than typical
database operations. Thus we think a variety of inter-
esting database feeds can be implemented with minimal
overhead.

Our second feed implements a publish-subscribe mes-
saging protocol (see Figure 7) somewhat like Bayeux [1]
(see Section 9.1). It contains a collection of chan-
nels on which text messages can be posted, and
each user can subscribe to channels that are of in-
terest to that user. The message feed provides a
method receive messages that is analogous to
get new instances in DatabaseFeed : it returns
all the messages that have arrived for a given user since
the last call to this method for the current Web page. The
feed uses a separate interest for each user with names of
the formmessage- uuu, whereuuuis an identifier for a
particular user.receive messages creates an inter-
est for the current user, andpost message notifies all
of the users that have subscribed to the channel on which
the message is posted. In order to tell whether there are
new messages for a user, the feed serializes all of the
messages for each user and records the serial number of
the most recent message that has been delivered to each
Web page.

We have created a simple application using the mes-
sage feed that provides Web pages for posting messages,
subscribing to channels, and observing incoming traffic
for a particular user.

We believe that many feed implementations are

8

insert row

notify "DB-table"

create interest "DB-table"

notify "DB-table"

Application

 server

Application

 server

Application

 server

Application

 server

Database

Notification

 server

}

Figure 8: Cluster architecture. Notifications must go
through notification servers where they are relayed to
servers with matching interests.

likely to be similar to the ones above where
they either (a) observe one or more individual
values (or rows) like get new instances and
get modified instance , (b) observe a sequence
of messages or changes likereceive messages and
get new instances , or (c) make more complex ob-
servations likeget attribute changes , in which
case they will create an auxiliary data structure in the
form of a sequence.

5 Cluster Support and Scalability

Large-scale Web applications must use clusters of appli-
cation servers to handle the required load; the cluster size
can vary from a few servers to thousands. Typically, any
application server is capable of handling any client re-
quest (though the networking infrastructure is often con-
figured to deliver requests for a particular browser to the
same server whenever possible); the data for the appli-
cation is kept in storage that is shared among all of the
servers, such as a database server.

Introducing long polling to a cluster environment com-
plicates the notification mechanism because events orig-
inating on one server may need to propagate to other ap-
plication servers. Many events will be of interest to only
a single server (or may have no interests at all), while
other events may be of interest to nearly every server.

One possible solution would be to broadcast all notifi-
cations to all application servers. This approach behaves
correctly but does not scale well since every application
server must process every notification: the notification
workload of each server will increase as the total number
of servers increases and the system will eventually reach
a point where the servers are spending all of their time
handling irrelevant notifications.

For Vault we implemented a more scalable solution

using a separatenotification server(see Figure 8). When
an interest is created on a particular application server,
that information gets forwarded to the notification server
so that it knows which application servers care about
which interests. When an interest is notified on a par-
ticular application server, the notification is forwarded to
the notification server, which in turn notifies any other
application servers that care about the interest. With this
approach only the application servers that care about a
particular interest are involved when that interest is no-
tified. The notification server is it similar to the local
notifier, but it works with interested servers, not inter-
ested requests. In particular, both have the same basic
API (create interest, remove interest, and notify).

For large Web applications it may not be possible for
a single notification server to handle all of the notifica-
tion traffic. In this case multiple notification servers can
be used, with each notification server handling a subset
of all the interests. Local notifiers can use a consistent
hash function [15] on each interest to determine which
notification server to send it to.

One of the advantages of the API we have chosen for
notification is that it distributes naturally as described
above. Furthermore, the decision to allow extraneous
notifications simplifies crash recovery and several other
management issues for notification servers.

Crash recovery is simple in Vault due to these proper-
ties. If a notification server crashes, a new notification
server can be started as its replacement. Each of the ap-
plication servers can deal with the crash by first recreat-
ing all of its local interests on the new server and then
notifying all of those interests locally (just in case a no-
tification occurred while the original server was down).
Most of the notifications will be extraneous but the feeds
will detect that nothing has actually changed. This be-
havior is correct but may be slow depending on the num-
ber of interests.

There is an additional crash recovery issue in Vault,
which occurs if a feed crashes after updating its data but
before notifying the notification server. In Figure 6, this
could happen if the server crashes on line 22. If an ap-
plication server crashes, there is no way to tell whether it
was about to send notifications. To avoid losing notifica-
tions, every existing interest must be notified whenever
any application server crashes. Another alternative is to
use a two-phase notification, but the associated overheard
makes the first alternative a more attractive option.

6 Benchmarks

We ran a series of experiments to measure the perfor-
mance and scalability of the Vault notification mecha-
nism. Our intent was to determine how many servers are
needed to handle a given load. We ran our experiments

9

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

 0 10 20 30 40 50 60 70 80 90 100
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
C

re
at

e-
re

m
ov

e
pa

irs
 p

er
 s

ec
on

d

La
te

nc
y

(u
s)

Number of clients

Throughput
Latency

Figure 9: Performance measurements of the notifica-
tion server for creating and removing interests. Each
load generator repeatedly messages the notification
server to create an interest and then remove the inter-
est. Throughput measures the number of create-remove
pairs handled by the notification server per second and
latency measures the time from the start of creating the
interest to the end of removing the interest.

on 40 identical servers. Each one has a Xeon X3470
(4x2.93 GHz cores), 24GB of 800MHz DDR3 SDRAM,
and an Intel e1000 NIC. For some benchmarks, the num-
ber of application servers is larger than the number of
machines, in which case some machines run multiple
processes (the impact on the measurements is negligible
because the notification server bottlenecks before any of
the application servers do).

Our first experiment was to determine the number of
create-interest and remove-interest operations each noti-
fication server can handle per second. Creates are per-
formed by an application server when a long poll creates
an interest locally and the application server has not yet
relayed the interest to the notification server. Removing
an interest occurs when the application server determines
that there are no longer any interested long polls. Creat-
ing and removing an interest may happen as frequently
as several times per page request so they should be fast.

The experiment measured the total number create-
remove pairs handled by the notification server per sec-
ond and the latency from the start of the create to the
end of the remove, as shown in Figure 9. Each load
generator ran a loop sending a create message and wait-
ing for the response and then sending a remove without
waiting for the response. Our results show a linear in-
crease in throughput as the number of load generators is
increased. The throughput maximum is around 160,000
create-remove pairs per second, but drops about 10% af-
ter the maximum is reached. Latency remains roughly
constant until the throughput limit is reached, at which
point the latency begins to grow linearly.

 0

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 0 5 10 15 20 25 30 35 40

M
ax

im
um

 n
ot

ifi
ca

tio
ns

 /
se

co
nd

Fan-out

Notifications sent
Notifications received

Figure 10:Performance of the notification server for
processing notifications. Fan-out indicates the num-
ber of application servers that must ultimately receive
each notification received by the notification server. The
chart shows the maximum rate at which the server can
receive notifications (measured by varying the number
of issuing clients) and the maximum rate at which it
sends them to individual application servers.

Our second experiment measured the cost for the no-
tification server to process events and relay them to in-
terested application servers. We measured the maximum
throughput for the notification server with different fan-
outs per notification, as seen in Figure 10. The figure
shows the total number of notifications received by the
notification server per second and the number of notifica-
tions it passes on to application servers. The notifications
received starts at just under 200,000 per second with one
interested server, then drops roughly linearly as the fan-
out increases. The total number of notifications sent rises
as fan-out increases, peaking at around 1,000,000 notifi-
cations per second with a fan-out of 15-20. As the num-
ber of servers continues to increase, the total number of
notifications sent drops to around 800,000 per second.

Figure 10 does not contain a data point for interests
with a fan-out of zero. For notifications where no server
is interested, the notification server can process about
2,000,000 per second. Notification servers may get many
notifications for which there are no interested servers so
it is important for them to be quick.

7 Framework integration

Although the principles of Vault are applicable to any
MVC framework, integrating Vault with a Web frame-
work requires some basic level of support from the
framework. We have identified two such requirements:
the ability to decouple requests from their threads, and
page properties.

Many existing frameworks do not currently allow re-

10

quests to be put to sleep. For example, Django does not
support this, so we modified the Django Web server to
implement request detaching. Our initial implementa-
tion in Fiz was easier because Fiz is based on Apache
Tomcat 7.0, which provides a mechanism todetacha
request from the thread that is executing it, so that the
thread can return without ending the request. The Vault
dispatcher saves information about the detached request
and then returns so its thread can process other requests
(one of which might generate a notification needed by
the detached request). When a notification occurs the
dispatcher retrieves the detached request and continues
processing it as described above.

If a framework does not allow requests to be detached
but does support multi-threading, then the dispatcher can
use synchronization mechanisms to put the long poll
thread to sleep and wake it up later when a notification
occurs. However, this means that each waiting long poll
request occupies a thread, which could result in hun-
dreds or thousands of sleeping threads for a busy Web
server. Unfortunately, many systems suffer performance
degradation when large numbers of threads are sleeping,
which could limit the viability of the approach.

If a framework only allows a single active request and
does not support request detaching, then the framework
cannot support long polling; applications will have to use
a traditional polling approach. However, Vault could still
be used in such a framework and most of Vault’s benefits
would still apply.

Secondly, a framework must provide page properties
or some equivalent mechanism to associate data with a
particular Web page and make that data available in fu-
ture requests emanating from the page. If a framework
does not support page properties, they can be built into
Vault on top of existing session facilities (a separate ob-
ject for each page can be created within the session, iden-
tified with a unique identifier that is recorded in the page
and returned in long poll requests).

8 Limitations

We are aware of two limitations in the Vault architec-
ture. The first limitation is that some styles of notifica-
tion do not map immediately onto interest strings, such
as get attribute changes in Section 4. We be-
lieve these situations can be handled with the creation
of auxiliary data structures as described in Section 4, but
the creation of these structures may affect the complexity
and efficiency of the application. There may be some ap-
plications where a better solution could be achieved with
a richer data model built into the notification mechanism.

The second limitation of Vault is that the crash recov-
ery mechanism can produce large numbers of extraneous
notifications, as described in Section 5. We have experi-

mented with alternatives that reduce the extraneous noti-
fications, but they result in extra work during normal op-
eration, which seems worse than the current overheads
during crash recovery.

9 Related Work

9.1 CometD/Bayeux

CometD [2] is the most well known long polling sys-
tem. It is an implementation of Bayeux [1], a protocol
intended primarily for bidirectional interactions between
Web clients. Bayeux communication is done through
channels and is based on a publish/subscribe model.
Clients can post messages to a channel, and other clients
subscribed to the channel receive the messages.

CometD works well for publish/subscribe communi-
cation but does not generalize to other uses (for example,
there is no way to implement database notifications using
CometD). Since CometD is a stand-alone framework, it
does not work with existing MVC frameworks. By tying
the protocol to the message-based model used, CometD
limits the ability of developers to write applications using
other data models. In addition, the current implementa-
tion of CometD does not seem to have a mature cluster
implementation.

9.2 WebSockets

The WebSocket [7] API is a proposed addition to Web
browsers that allows for bi-directional communication
between the browser and the server. Although WebSock-
ets are often seen as a “solution” to long polling, they
do not fix any of the major issues associated with long
polling. Notification, scalability, and integration with
MVC will still be issues with WebSockets. WebSock-
ets only fix some minor inconveniences such as the need
to hold Ajax requests at the server and some of the as-
sociated complexity of long polling. If widely adopted
(which is likely when HTML5 becomes supported by
all browsers) WebSockets could become the new trans-
port mechanism for Vault, in which case Vault would not
have to worry about Ajax requests timing out or the need
to wait for an Ajax request to return from the browser to
send another update.

9.3 Event-based Web Frameworks

Due to the difficulty of using long polling in traditional
Web frameworks, event-based frameworks have become
popular for handling long polling. This is typically done
by running two Web frameworks side-by-side, one to
handle normal requests and an event-based one to han-
dle long polls, with the two communicating though some

11

backend channel. This approach is easier than trying to
include long polling in existing MVC frameworks but is
not as clean as keeping all application logic in one frame-
work.

Event-based Web frameworks differ from other frame-
works because they only run one thread at a time, elim-
inating the thread issues traditional MVC frameworks
have when implementing long polling. Since there is
only one thread, it is important that it does not block. If
an expensive operation is performed, such as disk or net-
work access, a callback is specified by the caller and the
server stops processing the current request and starts pro-
cessing a different request. When the operation finishes,
the server runs the callback, passing in values generated
by the operation. This style of programming makes it
easy to resume a request at a later time as is required
with Vault. Node.js [5] is an javascript event-based IO
library used to write server-side javascript applications.
Tornado [6] is a similar Web server for Python, based on
FriendFeed [4].

10 Conclusion

Long polling allows for new interactive Web applications
that respond quickly to external events. Existing imple-
mentations, however, have not been general or scalable,
and they require too much glue code for application de-
velopers. We have presented a modification of the MVC
pattern that allows developers to write their applications
in a familiar style without needing to know about the de-
tails of how long polling is implemented. Furthermore,
Vault makes it easy to develop a variety of feeds that can
be reused in many different applications. Internally, the
Vault implementation handles long polling in a scalable
way using a distributed notifier to minimize the amount
of work that is required per request.

We hope that the Vault architecture will be imple-
mented in a variety of mainstream frameworks in order
to encourage the development of interesting applications
based on long polling.

11 Acknowledgments

This research was supported by the National Science
Foundation under Grant No. 0963859. Thanks to Tomer
London, Bobby Johnson, and anonymous program com-
mittee members for reviewing various drafts of this pa-
per.

References

[1] Bayeux protocol. http://svn.cometd.com/trunk/
bayeux/bayeux.html .

[2] Cometd homepage.http://cometd.org/ .

[3] Django. http://www.djangoproject.com/ .

[4] Friendfeed homepage.http://friendfeed.com/ .

[5] Node.js homepage.http://nodejs.org/ .

[6] Tornado web server homepage.http://nodejs.org/ .

[7] Web socket api. http://dev.w3.org/html5/
websockets/ .

[8] GARRETT, J. J. Ajax: a new approach to web applica-
tions, February 2005.http://www.adaptivepath.com/
ideas/essays/archives/000385.php .

[9] L AMPSON, B. W., AND REDELL, D. D. Experience with pro-
cesses and monitors in mesa.Commun. ACM 23(February 1980),
105–117.

[10] OUSTERHOUT, J. Fiz: A Component Framework for Web
Applications. Stanford CSD Technical Report.http://www.
stanford.edu/ ˜ ouster/cgibin/papers/fiz.pdf ,
2009.

[11] OUSTERHOUT, J., AND STRATMANN , E. Managing state for
ajax-driven web components.USENIX Conference on Web Ap-
plication Development(June 2010), 73–85.

[12] REENSKAUG, T. Models-views-controllers. Xerox PARC
technical note http://heim.ifi.uio.no/ ˜ trygver/
mvc-1/1979-05-MVC.pdf , May 1979.

[13] REENSKAUG, T. Thing-model-view-editor. Xerox PARC
technical note http://heim.ifi.uio.no/ ˜ trygver/
mvc-2/1979-12-MVC.pdf , May 1979.

[14] RUSSEL, A. Comet: Low latency data for the browser,
March 2006. http://alex.dojotoolkit.org/2006/
03/comet-lowlatency-data-for-the-browser/ .

[15] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER,
D. R., KAASHOEK, M. F., DABEK , F., AND BALAKRISHNAN ,
H. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(February 2003), 17–
32.

12

