
BenchLab: An Open Testbed for Realistic Benchmarking
of Web Applications

Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, Prashant Shenoy
University of Massachusetts Amherst

{cecchet,veena,twood,shenoy}@cs.umass.edu

Abstract

Web applications have evolved from serving static content to dynamically generating Web pages. Web 2.0 applica-
tions include JavaScript and AJAX technologies that manage increasingly complex interactions between the client
and the Web server. Traditional benchmarks rely on browser emulators that mimic the basic network functionality of
real Web browsers but cannot emulate the more complex interactions. Moreover, experiments are typically conduct-
ed on LANs, which fail to capture real latencies perceived by users geographically distributed on the Internet. To
address these issues, we propose BenchLab, an open testbed that uses real Web browsers to measure the perfor-
mance of Web applications. We show why using real browsers is important for benchmarking modern Web applica-
tions such as Wikibooks and demonstrate geographically distributed load injection for modern Web applications.

1. Introduction
Over the past two decades, Web applications have
evolved from serving primarily static content to com-
plex Web 2.0 systems that support rich JavaScript and
AJAX interactions on the client side and employ so-
phisticated architectures involving multiple tiers, geo-
graphic replication and geo-caching on the server end.
From the server backend perspective, a number of Web
application frameworks have emerged in recent years,
such as Ruby on Rails, Python Django and PHP Cake,
that seek to simplify application development. From a
client perspective, Web applications now support rich
client interactivity as well as customizations based on
browser and device (e.g., laptop versus tablet versus
smartphone). The emergence of cloud computing has
only hastened these trends---today’s cloud platforms
(e.g., Platform-as-a-Service clouds such as Google Ap-
pEngine) support easy prototyping and deployment,
along with advanced features such as autoscaling.
To fully exploit these trends, Web researchers and de-
velopers need access to modern tools and benchmarks
to design, experiment, and enhance modern Web sys-
tems and applications. Over the years, a number of
Web application benchmarks have been proposed for
use by the community. For instance, the research com-
munity has relied on open-source benchmarks such as
TPC-W [16] and RUBiS [13] for a number of years;
however these benchmarks are outdated and do not
fully capture the complexities of today’s Web 2.0 ap-
plications and their workloads. To address this limita-
tion, a number of new benchmarks have been proposed,
such as TPC-E, SPECWeb2009 or SPECjEnter-
prise2010. However, the lack of open-source or freely
available implementations of these benchmarks has
meant that their use has been limited to commercial

vendors. CloudStone [15] is a recently proposed open-
source cloud/Web benchmark that addresses some of
the above issues; it employs a modern Web 2.0 applica-
tion architecture with load injectors relying on a Mar-
kov model to model user workloads. Cloudstone, how-
ever, does not capture or emulate client-side JavaScript
or AJAX interactions, an important aspect of today’s
Web 2.0 applications and an aspect that has implica-
tions on the server-side load.
In this paper, we present BenchLab, an open testbed for
realistic Web benchmarking that addresses the above
drawbacks. BenchLab’s server component employs
modern Web 2.0 applications that represent different
domains; currently supported server backends include
Wikibooks (a component of Wikipedia) and Cloud-
Stone’s Olio social calendaring application, with sup-
port for additional server applications planned in the
near future. BenchLab exploits modern virtualization
technology to package its server backends as virtual
appliances, thereby simplifying the deployment and
configuration of these server applications in laboratory
clusters and on public cloud servers. BenchLab sup-
ports Web performance benchmarking “at scale” by
leveraging modern public clouds---by using a number
of cloud-based client instances, possibly in different
geographic regions, to perform scalable load injection.
Cloud-based load injection is cost-effective, since it
does not require a large hardware infrastructure and
also captures Internet round-trip times. In the design of
BenchLab, we make the following contributions:
 We provide empirical results on the need to capture

the behavior of real Web browsers during Web load
injection. Our results show that traditional trace re-
play methods are no longer able to faithfully emu-
late modern workloads and exercise client and serv-

er-side functionality of modern Web applications.
Based on this insight, we design BenchLab to use
real Web browsers, in conjunction with automated
tools, to inject Web requests to the server applica-
tion. As noted above, we show that our load injec-
tion process can be scaled by leveraging inexpensive
client instances on public cloud platforms.

 Similar to CloudStone’s Rain [2], BenchLab pro-
vides a separation between the workload model-
ing/generation and the workload injection during
benchmark execution. Like Rain, BenchLab sup-
ports the injection of real Web traces as well as syn-
thetic ones generated from modeling Web user be-
havior. Unlike Rain, however, BenchLab uses real
browsers to inject the requests in these traces to
faithfully capture the behavior of real Web users.

 BenchLab is designed as an open platform for real-
istic benchmarking of modern Web applications us-
ing real Web browsers. It employs a modular archi-
tecture that is designed to support different backend
server applications. We have made the source code
for BenchLab available, while also providing virtual
appliance versions of our server application and cli-
ent tools for easy, quick deployment.

The rest of this document is structured as follows. Sec-
tion 2 explains why realistic benchmarking is an im-
portant and challenging problem. Section 3 introduces
BenchLab, our approach to realistic benchmarking
based on real Web browsers. Section 4 describes our
current implementation that is experimentally evaluated
in section 5. We discuss related work in section 6 be-
fore concluding in section 7.

2. Why Realistic Benchmarking Matters
A realistic Web benchmark should capture, in some
reasonable way, the behavior of modern Web applica-
tions as well as the behavior of end-users interacting
with these applications. While benchmarks such as
TPC-W or RUBiS were able to capture the realistic
behavior of Web applications from the 1990s, the fast
paced technological evolution towards Web 2.0 has
quickly made these benchmarks obsolete. A modern
Web benchmark should have realism along three key
dimensions: (i) a realistic server-side application, (ii) a
realistic Web workload generator that faithfully emu-
lates user behavior, and (iii) a realistic workload injec-
tor that emulates the actual “browser experience.” In
this section, we describe the key issues that must be
addressed in each of these three components when con-
structing a Web benchmark.

2.1. Realistic applications
The server-side component of the benchmark should
consist of a Web application that can emulate common

features of modern Web applications. These features
include:
Multi-tier architecture: Web applications commonly
use a multi-tier architecture comprising at least of a
database backend tier, where persistent state is stored,
and a front-end tier, where the application logic is im-
plemented. In modern applications, this multi-tier archi-
tecture is often implemented in the form of a Model-
View-Controller (MVC) architecture, reflecting a simi-
lar partitioning. A number of platforms are available to
implement such multi-tier applications. These include
traditional technologies such as JavaEE and PHP, as
well as a number of newer Web development frame-
works such as Ruby on Rails, Python Django and PHP
Cake. Although we are less concerned about the idio-
syncrasies of a particular platform in this work, we
must nevertheless pay attention to issues such as the
scaling behavior and server overheads imposed by a
particular platform.
Rich interactivity: Regardless of the actual platform
used to design them, modern Web applications make
extensive use of JavaScript, AJAX and Flash to enable
rich interactivity in the application. New HTML5 fea-
tures confirm this trend. In addition to supporting a rich
application interface, such applications may incorporate
functionality such as “auto complete suggestions”
where a list of completion choices is presented as a user
types text in a dialog or a search box; the list is contin-
uously updated as more text is typed by the user. Such
functions require multiple round trip interactions be-
tween the browser and the server and have an implica-
tion on the server overheads.
Scaling behavior: To scale to a larger number of users,
an application may incorporate techniques such as rep-
lication at each tier. Other common optimizations in-
clude use of caches such as memcached to accelerate
and scale the serving of Web content. When deployed
on platforms such as the cloud, it is even feasible to use
functions like auto-scaling that can automatically provi-
sion new servers when the load on existing ones crosses
a threshold.
Domain: Finally, the “vertical” domain of the applica-
tion has a key impact on the nature of the server-side
workload and application characteristics. For example,
“social” Web applications incorporate different features
and experience a different type of workload than say,
Web applications in the financial and retail domains.
Although it is not feasible for us to capture the idiosyn-
crasies of every domain, our open testbed is designed to
support any application backend in any domain. We
presently support two backends: Wikibooks [20] (a
component of Wikipedia [21]) and CloudStone’s Olio
[12] social calendaring application, with support for
additional server applications planned in the future.

2.2. Realistic load generation
Realistic load generation is an important part of a
benchmark. The generated workload should capture
real user behavior and user interactions with the appli-
cation. There are two techniques to generate the work-
load for a benchmark. In the first case, we can use real
workload data to seed or generate the workload for the
benchmark; in the simplest case, the real workload is
replayed during benchmark execution. The advantage
of this approach is that it is able to capture real user
behavior. However, real workload data may not always
be available. Further, the data may represent a particu-
lar set of benchmark parameters and it is not always
easy to change these parameters (e.g., number of con-
current users, fraction of read and write requests, etc) to
suit the benchmarking needs. Consequently many
benchmarks rely on synthetic workload generators. The
generators model user behavior such as think times as
well as page popularities and other workload character-
istics. Cloudstone, for instance, uses a sophisticated
Markov model to capture user behavior [15]. The ad-
vantage of synthetic workload generation is that it al-
lows fine-grain control over the parameters that charac-
terize the workload [8].
BenchLab does not include a custom Web workload
generation component. Rather it is designed to work
with any existing workload generator. This is done by
decoupling the workload generation step from the
workload injection. In many benchmarks, workload
generation and injection are tightly coupled—a request
is injected as soon as it is generated. BenchLab assumes
that workload generation is done separately and the
output is stored as a trace file. This trace data is then
fed to the injection process for replay to the server ap-
plication. This decoupling, which is also used by Rain
[2], allows the flexibility of using real traces for work-
load injection (as we do for our Wikibooks backend) as
well as the use of any sophisticated synthetic workload
generator.

2.3. Realistic load injection
Traditionally Web workload injection has been per-
formed using trace replay tools such as httperf that use
one or a small number of machines to inject requests at
a high rate to the application. The tools can also com-
pute client-side statistics such as response time and
latency of HTTP requests. This type of workload injec-
tion is convenient since it allows emulating hundreds of
virtual users (sometimes even more) from a single ma-
chine, but it has limited use for many applications that
adjust behavior based on a client’s IP address. In some
scenarios, such as testing real applications prior to pro-
duction deployment, this can be problematic since
many requests originating from the same IP address can
trigger the DDoS detection mechanisms if any. More

importantly, this approach does not realistically test IP-
based localization services or IP-based load balancing.
An important limitation of trace replay-based tech-
niques is that they fall short of reproducing real Web
browser interactions as they do not execute JavaScript
or perform AJAX interactions. As a result, they may
even fail to generate requests that would be generated
by a real browser. Even the typing speed in a text field
can have an impact on the server load since each key-
stroke can generate a request to the server like with
Google Instant. Such interactions are hard to capture
using trace replay tools.
Modern applications also include browser-specific cus-
tomizations; they may send out custom style sheets and
custom JavaScript depending on the browser type. The
same application may also send a vastly different ver-
sion of a page to a mobile or a tablet browser than a
traditional desktop-class browser.1 Moreover, each
browser has different optimizations to fetch the content
of Web pages in parallel and to render them quickly.
Thus, the browser mix can impact the load seen by the
server applications, even for a fixed number of users.
Finally, the replay tools typically report the response
time of individual requests, rather than page load times
seen by a browser—typically a Web page can include
tens of components, including style sheets, images, ads
and others components, and the response time for a
page should include the time to load and render all of
these components from a browser standpoint.
To capture these subtleties, we argue for the use of real
Web browsers to drive the load injection. This is
achieved by using automated tools that interact with a
browser UI like a real user would and to issue requests
from the browser, using the traces generated by the
workload generation process. Having a variety of real
Web browsers with various configurations and plugins
improves the accuracy of benchmarking the real user
experience of a Web application.

3. BenchLab
BenchLab is an open testbed for Web application
benchmarking. It can be used with any standard
benchmark application as well as real Web applications
(section 3.2). Applications can have multiple datasets
and workloads (section 3.3), and load injection is per-
formed by real Web browsers (section 3.4).

3.1. Overview
Figure 1 gives an overview of the BenchLab compo-
nents and how they interact to run an experiment. The

1 Typically web applications redirect users from mobile de-
vices to a separate mobile version of the application. However
some recent applications have embedded support for mobile
browsers within the main application.

BenchLab WebApp is the central piece that controls
experiments. It is a Java Web application that can be
deployed in any Java Web container such as Apache
Tomcat. The BenchLab WebApp provides a Web inter-
face to interact with experimenters that want to manage
experiments and automated Web browsers that are exe-
cuting experiments.

Figure 1. BenchLab experiment flow overview.

Web traces can be recorded from a live system or gen-
erated statically (see section 3.3). Trace files are up-
loaded by the experimenter through a Web form and
stored in the BenchLab database. Virtual machines of
the Web Application under test can also be archived so
that traces, experiments and results can be matched
with the correct software used. However BenchLab
does not deploy, configure or monitor any server-side
software. There are a number of deployment frame-
works available that users can use depending on their
preferences (Gush, WADF, JEE, .Net deployment ser-
vice, etc) Server side monitoring is also the choice of
the experimenter (Ganglia and fenxi are popular choic-
es). It is the responsibility of the user to deploy the
application to be tested. Note that anyone can deploy a
BenchLab WebApp and therefore build his or her own
benchmark repository.
An experiment defines what trace should be played and
how. The user defines how many Web browsers and
eventually which browsers (vendor, platform, version
…) should replay the sessions. If the trace is not to be
replayed on the server it was recorded, it is possible to
remap the server name recorded in the URLs contained
in the trace to point to another server that will be the
target of the experiment.
The experiment can start as soon as enough browsers
have registered to participate in the experiment or be

scheduled to start at a specific time. The BenchLab
WebApp does not deploy the application nor the client
Web browsers, rather it waits for browsers to connect
and its scheduler assigns them to experiments.
The BenchLab client runtime (BCR) is a small program
that starts and controls a real Web browser on the client
machine. The BCR can be started as part of the booting
process of the operating system or started manually on-
demand. The BCR connects the browser to a BenchLab
WebApp (step 1 in Figure 1). When the browser con-
nects to the WebApp, it provides details about the exact
browser version and platform runtime it currently exe-
cutes on as well as its IP address. If an experiment
needs this browser, the WebApp redirects the browser
to a download page where it automatically gets the
trace for the session it needs to play (step 2 in Figure 1).
The BCR stores the trace on the local disk and makes
the Web browser regularly poll the WebApp to get the
experiment start time. There is no communication or
clock synchronization between clients, they just get a
start time as a countdown in seconds from the Bench-
Lab WebApp that informs them ‘experiment starts in x
seconds’. The activity of Web browsers is recorded by
the WebApp and stored in the database for monitoring
purposes.
When the start time has been reached, the BCR plays
the trace through the Web browser monitoring each
interaction (step 3 in Figure 1). If Web forms have to be
filled, the BCR uses the URL parameters stored in the
trace to set the different fields, checkboxes, list selec-
tions, files to upload, etc. Text fields are replayed with
a controllable rate that emulates human typing speed.
The latency and details about the page are recorded
(number of div sections, number of images, size of the
page and title of the page) locally on the client machine.
The results are uploaded to the BenchLab WebApp at
the end of the experiment (step 4 in Figure 1).
Clients replay the trace based on the timestamps con-
tained in the trace. If the client happens to be late com-
pared to the original timestamp, it will try to catch up
by playing requests as fast as it can. A global timeout
can be set to limit the length of the experiment and an
optional heartbeat can also be set. The heartbeat can be
used for browsers to report their status to the BenchLab
WebApp, or it can be used by the WebApp to notify
browsers to abort an experiment.

3.2. Application backends
Our experience in developing and supporting the RU-
BiS benchmark for more than 10 years, has shown that
users always struggle to setup the application and the
different tools. This is a recurrent problem with bench-
marks where more time is spent in installation and con-
figuration rather than experimentation and measure-
ment. To address this issue, we started to release RU-
BiSVA, a Virtual Appliance of RUBiS [13], i.e., a

virtual machine with the software stack already config-
ured and ready to use. The deployment can be automat-
ed on any platform that supports virtualization.
Virtualization is the de-facto technology for Web host-
ing and Web application deployment in the cloud.
Therefore, we have prepared virtual appliances of
standard benchmarks such as RUBiS, TPC-W [16] and
CloudStone [15] for BenchLab. This allows reproduc-
ing experiments using the exact same execution envi-
ronment and software configuration and will make it
easier for researchers to distribute, reproduce and com-
pare results.
As BenchLab aims at providing realistic applications
and benchmarks, we have also made virtual appliances
of Wikibooks [20]. Wikibooks provides a Web applica-
tion with a similar structure to Wikipedia [21], but a
more easily managed state size (GBs instead of TBs).
More details about our Wikibooks application backend
are provided in section 4.4.2.

3.3. Workload definitions
Most benchmarks generate the workload dynamically
from a set of parameters defined by the experimenter
such as number of users, mix of interactions, and arrival
rate. Statistically, the use of the same parameters should
lead to similar results between runs. In practice the ran-
domness used to emulate users can lead to different
requests to the Web application that require very differ-
ent resources depending on the complexity of the opera-
tions or the size of the dataset that needs to be accessed.
Consequently, the variance in the performance ob-
served between experiments using the same parameters
can be large. Therefore, it is necessary to decouple the
request generation from the request execution so that
the exact same set of requests can be replayed at will.
This can be done with little effort by instrumenting ex-
isting load generators and logging the requests that are
made to the server. The resulting trace file can then be
replayed by a generic tool like httperf or a more realis-
tic injector like a real Web browser.
The traces used in BenchLab are based on the standard
HTTP archive (HAR) format [9]. This format captures
requests with their sub-requests, post parameters, cook-
ies, headers, caching information and timestamps. Pa-
rameters include text to type in text fields, files to up-
load, boxes to check or buttons to click, etc. In the case
of real applications, these traces can also be generated
from an HTTP server access log to reproduce real
workloads. As Web browsers automatically generate
sub-requests to download the content of a page (cascad-
ing style sheets (.css), JavaScript code (.js), image files,
etc), only main requests from the trace file are replayed.
Defining and generating workloads are beyond the
scope of BenchLab. BenchLab focuses on the execution
and replay of existing traces. Traces are stored in a da-
tabase to be easily manipulated and distributed to injec-

tors. Traces cannot be scaled up, they are either re-
played completely or partially (a subset of the sessions
in the trace). This means that if a trace contains 100
user sessions, it can be replayed by at most 100 clients.
If a trace needs to be scaled, the user must use her
workload generator to generate a scaled trace.

3.4. Web browser load injection
A central contribution of BenchLab is the ability to
replay traces through real Web browsers. Major com-
panies such as Google and Facebook already use new
open source technologies like Selenium [14] to perform
functional testing. These tools automate a browser to
follow a script of actions, and they are primarily used
for checking that a Web application’s interactions gen-
erate valid HTML pages. We claim that the same tech-
nology can also be used for performance benchmarking.
BenchLab client runtime can be used with any Web
browser supported by Selenium: Firefox, Internet Ex-
plorer, Chrome and Safari. Support for mobile phones
with Webkit-based Web browsers is also under devel-
opment. The functionality of BenchLab on the client
side is limited to downloading a trace, replaying it, re-
cording response times and uploading response times at
the end of the replay. This small runtime is deployable
even on devices with limited resources such as
smartphones. Unlike commercial offerings, BenchLab
clients can be deployed on public clouds or any other
computing resource (e.g., desktop, smartphone).
Unlike traditional load injectors that work at the net-
work level, replaying through a Web browser accurate-
ly performs all activities such as typing data in Web
forms, scrolling pages and clicking buttons. The typing
speed in forms can also be configured to model a real
user typing. This is particularly useful when inputs are
processed by JavaScript code that can be triggered on
each keystroke. Through the browser, BenchLab cap-
tures the real user perceived latency including network
transfer, page processing and rendering time.

4. Implementation
BenchLab is implemented using open source software
and is also released as open source software for use by
the community. The latest version of the software and
documentation can be found on our Web site [3].

4.1. Trace recorder
We have implemented a trace recorder for Apache httpd
that collects request information from a live system
using the standard httpd logging mechanisms
(mod_log_config and mod_log_post). We then process
these logs to generate traces in HAR format. We have
contributed a new Java library called HarLib to manage
HAR traces in files and databases.
Additionally we can record HTML pages generated
using mod_dumpio. This is useful to build tools that

will check the consistency of Web pages obtained dur-
ing replay against the originally captured HTML.

4.2. Browser based load injection
We use the Selenium/Webdriver [14] framework that
provides support for Firefox, Internet Explorer and
Chrome on almost all the platforms (Linux, Windows,
MacOS) where they are available. Safari support is ex-
perimental as well as Webkit based browsers for An-
droid and iPhone. The BenchLab client runtime (BCR)
is a simple Java program interfacing with Selenium. We
currently use Selenium 2.0b3 that includes Webdriver.
The BCR can start any Firefox, IE or Chrome browser
installed on the machine and connect it to a BenchLab
WebApp. On Linux machines that do not have an X
server environment readily available, we use X virtual
frame buffer (Xvfb) to render the browser in a virtual X
server. This is especially useful when running clients in
the cloud on machines without a display.
When a browser is assigned to an experiment, the BCR
downloads the trace it has to replay through the browser
and stores it in a local file. The information about the
experiment, trace and session being executed by the
browser is encoded by the BenchLab WebApp in cook-
ies stored in the Web browser.
The BCR parses the trace file for the URLs and encod-
ed parameters that are then set in the corresponding
forms (text fields, button clicks, file uploads, etc.).
When a URL is a simple “GET” request, the BCR waits
according to the timestamp before redirecting the
browser to the URL. When a form has to be filled be-
fore being submitted, the BCR starts filling the form as
soon as the page is ready and just waits before clicking
the submit button. As we emulate the user typing speed
it can take multiple minutes to fill some forms like edits
to a wiki page with Wikipedia.
The BCR relies on the browser’s performance profiling
tools to record detailed timings in HAR format. This
includes network level performance (DNS resolution,
send/wait/receive time…) and browser level rendering
time. The entire HTML page and media files can be
recorded for debugging purposes if the client machine
has enough storage space. An alternative compressed
CSV format is also available to record coarser grain
performance metrics on resource constrained devices.
We have built Xen Linux virtual machines with the
BCR and Firefox to use on private clouds. We also built
Amazon EC2 AMIs for both Windows and Linux with
Firefox, Chrome and Internet Explorer (Windows only
for IE). These AMIs are publicly available.

4.3. BenchLab WebApp
The BenchLab WebApp is a Java application imple-
mented with JSP and Servlets. It uses an embedded
Apache Derby database. Each trace and experiment is
stored in separate tables for better scalability. Virtual

machines of Web applications are not stored in the da-
tabase but we store a URL to the image file that can
point to the local file system or a public URL such as an
S3 URL if the images are stored in the Amazon Simple
Storage Service.
The user interface is intentionally minimalist for effi-
ciency and scalability allowing a large number of
browsers to connect. BenchLab makes a minimal use of
JavaScript and does not use AJAX to keep all commu-
nications with clients purely asynchronous. Similarly
no clock synchronization is needed nor required.
As the BenchLab WebApp is entirely self-contained, it
can easily be deployed on any Java Web application
server. We currently use Apache Tomcat 6 for all our
experiments. We have tested it successfully on Linux
and Windows platforms, but it should run on any plat-
form with a Java runtime.
The BenchLab WebApp acts as a repository of traces,
benchmark virtual machines and experiments with their
results. That data can be easily downloaded using any
Web browser or replicated to any other BenchLab
WebApp instance.

4.4. Application backends
We provide Xen virtual machines and Amazon AMIs of
the CloudStone benchmark and the Wikibooks applica-
tion on our Web site [3]. As BenchLab does not impose
any deployment or configuration framework, any appli-
cation packaged in a VM can be used as a benchmark
backend.

4.4.1. CloudStone	
CloudStone [15] is a multi‐platform, multi-language
benchmark for Web 2.0 and Cloud Computing. It is
composed of a load injection framework called Faban,
and a social online calendar Web application called
Olio [12]. A workload driver is provided for Faban to
emulate users using a Markov model.
We have chosen the PHP version of Olio and packaged
it in a virtual machine that we will refer to as OlioVM.
OlioVM contains all the software dependencies to run
Olio including a MySQL database and the Java Webapp
implementing a geocoding service.
Faban is packaged in another VM with the load injec-
tion driver for Olio. We refer to this VM as FabanVM.
Faban relies on the Apache HttpClient v3 (HC3) library
[1] for the HTTP transport layer to interact with the
Web application. We have instrumented Faban to rec-
ord the requests sent to HC3 in order to obtain trace
files with all needed parameters for interactions that
require user input in POST methods. FabanVM is not
used for load injection in our experiments but only to
generate traces that can be replayed using our replay
tool. The replay tool is a simple Java program replaying
HTTP requests using the HC3 library.
As part of this work, we fixed a number of issues such
as the workload generator producing invalid inputs for

the Olio calendaring applications (e.g., invalid phone
numbers, zip codes, state name). We process trace files
to fix erroneous inputs and use these valid input traces
in all experiments except in section 5.3.3 where we
evaluate the impact of invalid inputs.

4.4.2. Wikibooks	
Wikibooks [20] is a wiki of the Wikimedia foundation
and provides free content textbooks and annotated texts.
It uses the same Wikimedia wiki software as Wikipedia
which is a PHP application storing its data in a MySQL
database. Our Wikibooks application backend includes
all Wikimedia extensions necessary to run the full Web
site including search engine and multimedia content.
The Wikibooks virtual appliance is composed of two
virtual machines. One virtual machine contains the
Wikimedia software and all its extensions and the other
VM runs the database. Database dumps of the Wiki-
books content are freely available from the Wikimedia
foundation in compressed XML format. We currently
use a dump from March 2010 that we restored into a
MySQL database. Real Wikibooks traces are available
from the Wikibench Web site [19].
Due to copyright issues, the multimedia content in
Wikibooks cannot be redistributed, and therefore, we
use a multimedia content generator that produces imag-
es with the same specifications as the original content
but with random pixels. Such multimedia content can
be either statically pre-generated or produced on-
demand at runtime.

4.5. Limitations
Our current implementation is limited by the current
functionality of the Selenium/Webdriver tools we are
using. Support for Firefox on all platforms and Internet
Explorer on Windows are overall stable though perfor-
mance may vary on different OS versions. The Chrome
driver does not support file upload yet but it provides
experimental access to Webkit browsers such as Safari
and Android based browsers.
Our prototype does not support input in popup windows
but we are able to discard JavaScript alert popups when
erroneous input is injected into forms.
The current BenchLab WebApp prototype does not
implement security features such as browser authentica-
tion, data encryption or result certification.

5. Experimental Results

5.1. Experimental setup and methodology
For all our experiments, the Web applications run on an
8-core AMD Opteron 2350 server, 4GB RAM with a
Linux 2.6.18-128.1.10.el5xen 64 bit kernel from a
standard CentOS distribution. We use the Xen v3.3.0
hypervisor. The server is physically located in the data
center of the UMass Amherst campus.

CloudStone is configured with 1 virtual CPU (vCPU)
and 512MB of memory for OlioVM. The Olio database
is initialized for 500 users. FabanVM is allocated 1
vCPU and 1024MB of memory and runs on a different
physical machine. Wikibooks VMs are both allocated 4
vCPUs and 2GB of RAM.
Experiments using Amazon EC2 resources use Linux
small instances with a CentOS distribution and the
BenchLab client runtime controlling Firefox 3.6.13.
The BenchLab Web application runs in Tomcat 6 on a
laptop located on the UMass Amherst campus.
We have written a Java replay tool similar to httperf
that can replay Faban traces through the Apache
HttpClient 3 library. We have validated the tool by re-
playing traces generated by Faban and comparing the
response time and server load with the ones obtained
originally by Faban.

5.2. Realistic application data sets
In this experiment we illustrate the importance of hav-
ing benchmark applications with realistic amounts of
application state. The CloudStone benchmark populates
the database and the filestore containing multimedia
content according to the number of users to emulate.
The state size grows proportionally to the number of
users. Table 1 shows the dataset state size from 3.2GB
for 25 users to 44GB for 500 users.

Table 1. CloudStone Web application server load
observed for various dataset sizes using a workload

trace of 25 users replayed with Apache HttpClient 3.

Dataset
size

State size
(in GB)

Database
rows

Avg CPU load
with 25 users

25 users 3.2 173745 8%
100 users 12 655344 10%
200 users 22 1151590 16%
400 users 38 1703262 41%
500 users 44 1891242 45%

We generated a load for 25 users using the Faban load
generator and recorded all the interactions with their
timestamps. We then replayed the trace using 25 emu-
lated browsers and observed the resource usage on the
CloudStone Web application (Olio) when different size
data sets were used in the backend. The results in Table
1 show the CPU load observed in the Web Application
VM. Note that in this experiment the trace is replayed
through the Apache HttpClient 3 library and not using a
real Web browser. The average CPU load on the server
is 8% with the 25 user dataset but it reaches 45% for the
exact same workload with a 500 user dataset. This is
mainly due to less effective caching and less efficient
database operations with larger tables.
Real applications like Wikipedia wikis have databases
of various sizes with the largest being the English Wik-
ipedia database which is now over 5.5TB. This experi-
ment shows that even for a modest workload accessing

the exact same working set of data, the impact on the
server load can vary greatly with the dataset size. It is
therefore important for realistic benchmarks to provide
realistic datasets.

5.3. Real browsers vs emulators
5.3.1. Complexity	of	Web	interactions	
Real Web applications have complex interactions with
the Web browser as shown in Table 2. While accessing
the home page of older benchmarks such as RUBiS or
TPC-W only generates 2 to 6 requests to fetch the page
content. Their real life counterpart, eBay.com and ama-
zon.com require 28 and 141 browser-server interac-
tions, respectively. A more modern benchmark applica-
tion such as CloudStone’s Olio requires 28 requests
which is still far from the 176 requests of the most pop-
ular social network Web site Facebook. When the user
enters http://en.wikibooks.org/ in his favorite Web
browser, 62 requests are generated on his behalf
by the Web browser to fetch the content of the Wiki-
books home page. Even if modern HTTP client libraries
such as Apache HttpComponents Client [1] provide a
good implementation of HTTP transport very similar to
the one used in Web browsers, other functionalities
such as caching, JavaScript execution, content type
detection, request reformatting or redirection may not
be accurately emulated.

Table 2. Browser generated requests per type when
browsing the home page of benchmarks and Web

sites.

Benchmark HTML CSS JS Multimedia Total
RUBiS 1 0 0 1 2

eBay.com 1 3 3 31 28
TPC-W 1 0 0 5 6

amazon.com 6 13 33 91 141
CloudStone 1 2 4 21 28

facebook.com 6 13 22 135 176
wikibooks.org 1 19 23 35 78
wikipedia.org 1 5 10 20 36

To further understand how real browsers interact with
real applications, we investigate how Firefox fetches a
page of the Wikipedia Web site and compare it to an
HTTP replay. The workflow of operations and the cor-
responding timings are shown in Figure 2. The times
for each block of GET operations correspond to the
network time measured by our HTTP replay tool (on
the left) and Firefox (on the right). Times between
blocks correspond to processing time in Firefox.
First we observe that the complexity of the application
forces the browser to proceed in multiple phases. After
sending the requested URL to the Web application, the
browser receives an HTML page that it analyzes (step 1
on Figure 2) to find links to JavaScript code and addi-
tional content to render the page (.css, images…). Fire-

fox opens six connections and performs the content
download in parallel. It then starts to render the page
and execute the JavaScript onLoad operations (step 2).
This requires additional JavaScript files to be down-
loaded and another round of code execution (step 3).

Figure 2. Time breakdown of a Wikibooks page ac-

cess with Firefox 3.6.13 and HTTP replay.

Finally images are downloaded reusing the same six
connections and a final rendering round (step 4) triggers
the download of the 3 final images at the bottom of the
page. The total page loading time in Firefox is 4.09s
with 1.88s for networking and 2.21s for processing and
rendering. The single threaded HTTP replay tool is not

GET /wiki/page

Analyze page

generate
page

GET combined.min.css
GET jquery-ui.css
GET main-ltr.css
GET commonPrint.css
GET shared.css
GET flaggedrevs.css
GET Common.css
GET wikibits.js
GET jquery.min.js
GET ajax.js
GET mwsuggest.js
GET plugins...js
GET Print.css
GET Vector.css
GET raw&gen=css
GET ClickTracking.js
GET Vector...js
GET js&useskin
GET WikiTable.css
GET CommonsTicker.css
GET flaggedrevs.js
GET Infobox.css
GET Messagebox.css
GET Hoverbox.css
GET Autocount.css
GET toc.css
GET Multilingual.css
GET mediawiki_88x31.png

Rendering + JavaScript

GET ExtraTools.js
GET Navigation.js
GET NavigationTabs.js
GET Displaytitle.js
GET RandomBook.js
GET Edittools.js
GET EditToolbar.js
GET BookSearch.js
GET MediaWikiCommon.css

0.90s

0.06s

send
files

GET page-base.png
GET page-fade.png
GET border.png
GET 1.png
GET external-link.png
GET bullet-icon.png
GET user-icon.png
GET tab-break.png
GET tab-current.png

0.97s

Rendering 0.28s
GET arrow-down.png
GET portal-break.png
GET arrow-right.png

send
files

send
files

send
files

Rendering + JavaScript

0.67s

0.14s

0.70s

0.12s

0.25s

1.02s

1.19s

1.13s

0.27s

Replay

1

2

3

4

0.25s

3.86s + 2.21s total rendering time 1.88s

Total network time

able to match Firefox’s optimized communications and
does not emulate processing, thus generating different
access patterns on the server leading to a different re-
source usage.
Finally, Table 3 shows how typing text in a Web page
can result in additional requests to a Web application.
When the user enters text in the search field of Wiki-
books, a request is sent to the server on each keystroke
to provide the user with a list of suggestions. The typ-
ing speed and the network latency influence how many
requests are going to be made to the server.

Table 3. JavaScript generated requests when typing
the word ‘Web 2.0’ in Wikibooks’ search field.

GET /api.php?action=opensearch&search=W
GET /api.php?action=opensearch&search=Web
GET /api.php?action=opensearch&search=Web+
GET /api.php?action=opensearch&search=Web+2
GET /api.php?action=opensearch&search=Web+2.
GET /api.php?action=opensearch&search=Web+2.0

In Table 3’s example, the user starts by typing ‘W’
causing a request to the server. She then quickly types
the letter ‘e’ before the response has come back. When
she types the next letter ‘b’ a second request goes to the
server. Each following keystroke is followed by another
request. This shows that even replaying in a Web
browser needs to take in to consideration the speed at
which a user performs operations since this can have an
impact on how many requests are issued to the server
directly affecting its load.

5.3.2. Latencies	and	server	load	
In this experiment, we inject the same 25 user Cloud-
Stone workload from the Amazon EC2 East coast data
center to our server running at UMass Amherst. The
emulator runs the 25 users from one virtual machine
whereas 25 server instances each running one Firefox
Web browser inject the load for the realistic injection.
Figure 3 shows the latencies observed by the emulator
and by the Web browsers.

Figure 3. Browser vs Emulator measured latencies
for the same load of 25 users using CloudStone be-

tween EC2 East coast and UMass Amherst.

The emulator has to mimic all the requests that a real
Web browser would issue. Therefore a lot of small que-
ries to fetch style sheets (.css) or JavaScript (.js) have
small latencies. Some more complex pages are not
fetched as efficiently on multiple connections and result
in much higher latencies when the latencies of sub-
requests are added up.
The latencies observed by the Web browsers vary sig-
nificantly from the ones observed by the emulator be-
cause not only do they account for the data transfer time
on the network, but also because they include the page
rendering time that is part of the user perceived latency.
Another key observation is that the showEvent interac-
tion that displays information about an event in Olio’s
online calendar makes use of the Yahoo map API. As
the emulator does not execute any JavaScript, all inter-
actions with the real Yahoo Web site and its map API
are not accounted in the interaction time. When a real
browser is used, it contacts the Yahoo map Web site
and displays the map with the location of the event. The
page rendering time is then influenced not only by the
response time of the Olio Web application but also with
the interactions with Yahoo’s Web site.

Figure 4. Server side CPU and disk IO usage with

an emulator injecting a 25 user load from EC2 East
coast to CloudStone at UMass Amherst.

Figure 5. Server side CPU and disk io usage with 25

Firefox browsers from EC2 East coast to Cloud-
Stone at UMass Amherst.

Figure 4 and Figure 5 show the average CPU usage
measured by vmstat every second on the Web applica-

tion server for the emulated and realistic browser injec-
tion, respectively. While the user CPU time oscillates a
lot in the emulated case it averages 63.2%. The user
CPU time is more steady and constantly higher with the
browser injected load at an average of 77.7%. Moreo-
ver, we notice peaks of disk IO during the experiment
(for example at time 500 seconds), indicating that the
IO subsystem of the server is more stressed when serv-
ing the browser generated requests.

5.3.3. Impact	of	JavaScript	on	Browser	Replay	
When a user fills a form, JavaScript code can check the
content of the form and validate all the fields before
being submitted to the application server. While the
server has to spend more resources to send all the Ja-
vaScript code to the client, it does not have to treat any
malformed requests with improper content that can be
caught by the JavaScript validation code running in the
Web browser.
In this experiment, we use the addPerson interaction of
CloudStone that registers a new user with her profile
information. The JavaScript code in that page generates
a query to the server when the user name is typed in to
check if that name is available or already taken. Other
fields such as telephone number are checked for format
and other fields are checked for missing information.
Entering a zip code generates a query to the Geocoder
service that returns the corresponding city and state
names that are automatically filled in the corresponding
fields of the form.

Figure 6. Server side CPU load (user, system, idle)

with emulated load injection of 25 virtual users exe-
cuting CloudStone’s addPerson interaction with

valid or bad inputs.

The original Olio workload driver generated malformed
data that does not pass JavaScript checks but are ac-
cepted by the Olio application that does not check data
sent from the client. We found this bug in the Olio ap-
plication that inserts improper data in the database. We
use two traces: one with the original malformed data
and another one with valid inputs where we fixed the
problems found in the original trace.
We emulate 25 clients from a server located in EC2
East coast’s data center and run both traces. Figure 6
shows the load observed on the OlioVM when using

emulated users. The CPU utilization is steady at around
70% for both traces. As the application does not check
data validity and the emulator does not execute JavaS-
cript, there is no change between good and bad inputs.
Figure 7 shows the CPU load observed on the server
when the valid input trace is injected through Firefox.
As forms are filled with data, additional queries are
issued by JavaScript as mentioned earlier. This causes
heavy weight write queries to be interlaced with lighter
read queries. These additional context switches between
the PHP scripts running the application and the Tomcat
container running the Geocoder service cause signifi-
cantly different resource usage in the Web application
virtual machine.

Figure 7. Server side CPU load (user, system, idle)
using Firefox (25 browsers running from EC2 East

coast) executing CloudStone’s addPerson interaction
with valid inputs.

Figure 8. Server side CPU load (user, system, idle)
using Firefox (25 browsers running from EC2 East

coast) executing CloudStone’s addPerson interaction
with erroneous inputs.

Figure 8 shows the load seen by the Web application
server when the trace with invalid inputs is injected
through Firefox. As the JavaScript code checks for er-
roneous inputs, the requests never reach the application
server. The only activity observed by the application is
to answer the login uniqueness checks.

5.4. LAN vs WAN
In these experiments, we evaluate the impact of WAN
based load injection vs traditional LAN based injection.

5.4.1. Local	vs	remote	users	
We observed the response time for a trace of 25 emu-
lated users injected with our replay tool from a machine
on the same LAN as the server and from a machine on
Amazon EC2 East coast data center. As expected, the
latencies are much higher on the WAN with 149ms
average vs 44ms on the LAN. However, we observe
that the latency standard deviation more than doubles
for the WAN compared to the LAN.
The CPU usage for the WAN injection has already been
presented in Figure 4 with an average CPU load of
54.8%. The CPU usage for the LAN experiment shows
a highly varying CPU load but at a much lower 38.3%
average. We attribute most of these differences to the
increased connection times that require more processing
to perform flow control on the connections, more con-
text switches between longer lived sessions and more
memory pressure to maintain more session states and
descriptors simultaneously open. The exact root causes
of these variations in server resource usage between
LAN and WAN needs to be investigated further but we
think that BenchLab is an ideal testbed for the research
community to conduct such experiments.

5.4.2. Geographically	dispersed	load	injection	
We investigate the use of multiple data centers in the
cloud to perform a geographically dispersed load injec-
tion. We re-use the same 25 user Cloudstone workload
and distribute Web browsers in different Amazon data
centers as follows: 7 US East coast (N. Virginia), 6 US
West coast (California), 6 Europe (Ireland) and 6 Asia
(Singapore). Such a setup (25 distributed instances) can
be deployed for as little as $0.59/hour using Linux mi-
cro instances or $0.84/hour using Windows instances.
More powerful small instances cost $2.30/hour for
Linux and $3.00/hour for Windows. Figure 9 shows the
latency reported by all Web browsers color coded per
region (y axis is log scale).

Table 4. Average latency and standard deviation
observed in different geographic regions

 US East US West Europe Asia
Avg latency 920ms 1573ms 1720ms 3425ms
Std deviation 526 776 906 1670

As our Web application server is located in the US East
coast, the lowest latencies are consistently measured by
browsers physically located in the East coast data cen-
ter. Average latency almost doubles for requests origi-
nating from the West coast or Europe. Finally, as ex-
pected, the Asian data center experiences the longest
latencies. It is interesting to notice that the latency
standard deviation also increases with the distance from
the Web application server as summarized in Table 4.
The server average CPU usage is 74.3% which is slight-
ly less than when all browsers were located in the East
coast (77.7%).

Figure 9. Browser (Firefox) perceived latency in ms
(y axis is log scale) on a Cloudstone workload with
users distributed as follows: 7 US East coast, 6 US
West coast, 6 Europe and 6 Asia. Server location is

UMass Amherst (US East coast, Massachusetts).

5.5. Summary
We have shown that real modern Web applications
have complex interactions with Web browsers and that
the state size of the application can greatly affect the
application performance. Traditional trace replay tools
cannot reproduce the rich interactions of browsers or
match their optimized communication with Web appli-
cation servers. Therefore the load observed on applica-
tion servers varies greatly when the same workload is
injected through an emulated browser or a real Web
browser. This is further accentuated when JavaScript
code generates additional queries or performs error
checking that prevents erroneous inputs to reach the
server.
Finally, we have shown the influence of LAN vs WAN
load injection using real Web browsers deployed in a
public cloud. Not only the latency and its standard de-
viation increase with the distance but the load on the
server significantly differs between a LAN and a WAN
experiment using the exact same workload.

6. Related Work
Benchmarks such as RUBiS [13] and TPC-W [16] have
now become obsolete. BenchLab uses CloudStone [15]
and Wikibooks [20] as realistic Web 2.0 application
backends. The Rain [2] workload generation toolkit
separates the workload generation from execution to be
able to leverage existing tools such as httperf. Bench-
Lab uses the same concept to be able to replay real
workload traces from real applications such as Wiki-
books or Wikipedia [17] in Web browsers.
Browser automation frameworks have been developed
primarily for functional testing. BenchLab uses real
Web browsers for Web application benchmarking.
Commercial technologies like HP TruClient [6] or
Keynote Web performance testing tools [7] offer load
injection from modified versions of Firefox or Internet
Explorer. BrowserMob [4] provides a similar service

using Firefox and Selenium. However, these proprietary
products can only be used in private clouds or dedicated
test environments. BenchLab is fully open and can be
deployed on any device that has a Web browser. By
deploying browsers on home desktops or cell phones,
BenchLab can be used to analyze last mile latencies.
Server-side monitors and log analysis tools have been
used previously to try to model the dependencies be-
tween file accesses and predict the full page load times
observed by clients [10][18]. BenchLab’s use of real
Web browsers allows it to accurately capture the behav-
ior of loading Web pages composed of multiple files,
and could be used by Web service providers to monitor
the performance of their applications. When deployed
on a large number of machines (home desktops, cell
phones, cloud data centers…), BenchLab can be used to
reproduce large scale flash crowds. When client brows-
ers are geographically dispersed, BenchLab can be used
to evaluate Content Delivery Network (CDN) perfor-
mance or failover mechanisms for highly available Web
applications.
BenchLab is designed to be easily deployed across wide
geographic areas by utilizing public clouds. The impact
of wide area latency on Web application performance
has been studied in a number of scenarios [5]; Bench-
Lab provides a standardized architecture to allow appli-
cation developers and researchers to measure how their
systems perform in real WAN environments. We be-
lieve that BenchLab can be used to measure the effec-
tiveness of WAN accelerators (CDNs or proxy caches)
as well as validate distributions modeling WAN load
patterns.

7. Conclusion
We have demonstrated the need to capture the behavior
of real Web browsers to benchmark real Web 2.0 appli-
cations. We have presented BenchLab, an open testbed
for realistic benchmarking of modern Web applications
using real Web browsers. BenchLab employs a modular
architecture that is designed to support different
backend server applications. Our evaluation has illus-
trated the need for 1) updated Web applications with
realistically sized datasets to use as benchmarks, 2) real
browser based load injection tools that authentically
reproduce user interactions and 3) wide area benchmark
client deployments to match the network behavior seen
by real applications. We believe that BenchLab meets
these needs, and we hope that it will help the research
community improve the realism and accuracy of Web
application benchmarking. We are making all the
BenchLab software (runtime, tools, Web applica-
tions…) available to the community under an open
source license on our Web site [3].

8. Acknowledgement
The authors would like to thank the anonymous reviewers and
our shepherd Geoffrey Voelker for their valuable feeback. We

would also like to thank Fabien Mottet and Vivien Quema
from INRIA Rhône-Alpes, Guillaume Pierre from Vrije Uni-
versity and Vimal Mathew from UMass, for their contribu-
tions to BenchLab. This research was supported in part by
grants from Amazon AWS, UMass President’s Science &
Technology fund, and NSF grants CNS-0916972, CNS-
083243, CNS-0720616 and CNS-0855128.

9. References
[1] Apache HttpComponents – http://hc.apache.org/
[2] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox and D.

Patterson – Rain: A Workload Generation Toolkit for
Cloud Computing Applications – Technical Report
UCB/EECS-2010-14, February 10, 2010.

[3] BenchLab - http://lass.cs.umass.edu/projects/benchlab/
[4] BrowserMob - http://browsermob.com/performance-

testing
[5] S. Chen, K.R. Joshi, M.A. Hiltunen, W.H. Sanders and

R.D. Schlichting – Link Gradients: Predicting the Im-
pact of Network Latency on Multitier Applications – IN-
FOCOM 2009, pp.2258-2266, 19-25 April 2009.

[6] HP - TruClient technology: Accelerating the path to
testing modern applications – Business white paper,
4AA3-0172ENW, November 2010.

[7] R. Hughes and K. Vodicka – Why Real Browsers Matter
– Keynote white paper, http://www.keynote.com/docs/
whitepapers/why_real_browers_matter.pdf.

[8] D. Krishnamurthy, J. A. Rolia and Shikharesh Majumdar
– A Synthetic Workload Generation Technique for Stress
Testing Session-Based Systems – IEEE Transaction on
Software Engineering. 32, 11 - November 2006.

[9] HTTP Archive specification (HAR) v1.2 -
http://www.softwareishard.com/blog/har-12-spec/.

[10] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A.G. Greenberg, and
Y. Wang - WebProphet: Automating Performance
Prediction for Web Services – NSDI, 2010, pp.143-158.

[11] E. M. Nahum, M.C. Rosu, S. Seshan and J. Almeida –
The effects of wide-area conditions on WWW server
performance – SIGMETRICS 2001.

[12] Olio – http://incubator.apache.org/olio/
[13] RUBiS Web site – http://rubis.ow2.org.
[14] Selenium - http://seleniumhq.org/
[15] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,

H. Wong, A. Klepchukov, S. Patil, A. Fox and D. Patter-
son – Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for Web 2.0 – Cloud
Computing and its Applications CCA-08, 2008.

[16] TPC-W Benchmark, ObjectWeb implementation,
http://jmob.objectWeb.org/tpcw.html

[17] G. Urdaneta, G. Pierre and M. van Steen – Wikipedia
Workload Analysis for Decentralized Hosting – Elsevier
Computer Networks, vol.53, July 2009.

[18] J. Wei, C.Z. Xu - Measuring Client-Perceived Pageview
Response Time of Internet Services – IEEE Transactions
on Parallel and Distributed Systems, 2010.

[19] WikiBench - http://www.wikibench.eu/
[20] Wikibooks – http://www.wikibooks.org
[21] Wikipedia – http://www.wikipedia.org

