
GuardRails: A Data-Centric Web Application Security Framework

Jonathan Burket Patrick Mutchler Michael Weaver Muzzammil Zaveri David Evans
http://guardrails.cs.virginia.edu

University of Virginia

Abstract

Modern web application frameworks have made it easy
to create powerful web applications. Developing a se-
cure web application, however, still requires a developer
to posses a deep understanding of security vulnerabili-
ties and attacks. Even for experienced developers it is
tedious, if not impossible, to find and eliminate all vul-
nerabilities. This paper presents GuardRails, a source-to-
source tool for Ruby on Rails that helps developers build
secure web applications. GuardRails works by attach-
ing security policies defined using annotations to the data
model itself. GuardRails produces a version of the input
application that automatically enforces the specified poli-
cies. GuardRails helps developers prevent a myriad of
security problems including cross-site scripting attacks
and access control violations while providing a large de-
gree of flexibility to support a range of policies and de-
velopment styles.

1 Introduction

Web application frameworks have streamlined develop-
ment of web applications in ways that relieve program-
mers from managing many details like how data is stored
in the database and how output pages are generated. Web
application frameworks do not, however, provide enough
assistance to enable developers to produce secure web
applications without a great deal of tedious effort. The
goal of this work is to demonstrate that incorporating
data-centric policies and automatic enforcement into a
web application framework can greatly aid developers in
producing secure web applications.

When developing web applications, developers typi-
cally have an idea of what security policies they want
to enforce. Ranging from which users should have ac-
cess to which data to how certain pieces of user input
should be sanitized, these policies are rarely documented
in any formal way. Code for enforcing security poli-

cies is scattered throughout the application, making ac-
cess checks at a variety of locations or sanitizing strings
where they might be potentially harmful. This decentral-
ized approach to security makes it difficult, if not impos-
sible, to be certain that all access points and data flow
paths are correctly mediated. Further, security policies
are rarely completely known from the start; rather they
evolve along with the development of the application or
in response to new threats. Changing an existing policy
can be very difficult, as changes must be made across the
entire application.

To alleviate these problems, we developed Guard-
Rails, a source-to-source tool for Ruby on Rails appli-
cations that centralizes the implementation of security
policies. GuardRails works by attaching security policies
directly to data, and automatically enforcing these poli-
cies throughout the application. Developers define their
policies using annotations added to their data model.
GuardRails automatically generates the code necessary
to enforce the specified policies. The policy decisions
are centralized and documented as part of the data model
where they are most relevant, and developers do not need
to worry about missing security checks or inconsistent
enforcement.

Like most web application frameworks, Ruby on Rails
provides an object interface to data stored in database ta-
bles. This enables GuardRails to attach policies to ob-
jects and make those policies persist as data moves be-
tween the application and database. The abstract data
model provided by Ruby on Rails is one key advantage
over systems like DBTaint [4, 18], which have no knowl-
edge of what the relevant data actually represents within
the context of the application. While our implementation
of GuardRails is specific to Ruby on Rails, we expect
most of our approach could also be applied to similar
frameworks for other languages.

Contributions. Our major contribution is a new ap-
proach for managing web application security focused on
attaching policies directly to the data objects they con-

trol. We present a tool that demonstrates the effective-
ness of this approach using a source-to-source transfor-
mation for Ruby on Rails applications. Although our ap-
proach applies to many security vulnerabilities, we focus
on two of the most common and problematic security is-
sues for web applications:

- To address access control violations, we provide an
annotation language for specifying access control
policies as part of a data model and develop mecha-
nisms to automatically enforce those policies in the
resulting application (Section 3).

- To address injection attacks, we implement a con-
text-sensitive, fine-grained taint-tracking system
and develop a method for automatically applying
context and data-specific transformers. The trans-
formers ensure the resulting strings satisfy the se-
curity requirements of the use context (Section 4).

To evaluate our approach, we use GuardRails on a set
of Ruby on Rails applications and show that it mitigates
several known access control and injection bugs with
minimal effort (Section 5).

2 Overview

GuardRails takes as input a Ruby on Rails application
with annotations added to define security policies on
data. It produces as output a new Ruby on Rails appli-
cation that behaves similarly to the input application, but
includes code for enforcing the specified security poli-
cies throughout the application.

Design Goals. The primary design goal of GuardRails is
to allow developers to specify and automatically enforce
data policies in a way that minimizes opportunity for de-
veloper error. Hence, our design focuses on allowing
developers to write simple, readable annotations and be
certain that the intended policies are enforced throughout
the application. We assume the developer is a benevo-
lent partner in this goal—since the annotations are pro-
vided by the developer we cannot provide any hope of
defending against malicious developers. Our focus is on
external threats stemming from malicious users sending
inputs to the application designed to exploit implementa-
tion flaws. This perspective drives our design decisions.

Another overarching design goal is ensuring that no
functionality is broken by the GuardRails transforma-
tions and that there is no need to modify an applica-
tion to use GuardRails. This allows developers to add
GuardRails annotations to an application slowly or se-
lectively use parts of GuardRails’ functionality.

Ruby on Rails. We chose to target Ruby on Rails be-
cause it is a popular platform for novice developers.

Rails abstracts many details of a web application includ-
ing database interactions but does not provide robust se-
curity support. There is a need for a tool that abstracts
data policy enforcement. Rails uses the ActiveRecord de-
sign pattern, which abstracts database columns into ordi-
nary object instances. This makes it very easy to attach
policies to data objects. In addition, all field access is
through getter and setter methods that can be overridden,
which provides a convenient way to impose policies.

Source-to-source. Implementing GuardRails as a
source-to-source tool rather than using Ruby’s metapro-
gramming features offers several advantages. Some
features of GuardRails, like annotation target infer-
ence, could not be implemented using metaprogram-
ming. Location-aware annotations are important be-
cause they encourage developers to write policy annota-
tions next to object definitions, which further establishes
the connection between data and policies. A source-to-
source tool also reduces the runtime overhead incurred.
Instead of editing many methods and classes during each
execution the changes are made once at compile time.
Finally, a source-to-source approach can be more effec-
tively applied to frameworks other than Ruby on Rails.
We do use some of Ruby’s metaprogramming features
as an implementation convenience but we believe that
all key aspects of GuardRails could implemented for any
modern web framework.

3 Access Control Policies

Access control policies are security policies that dictate
whether or not a particular principal has the right to per-
form a given action on some object. For example, a photo
gallery application might have a policy to only allow a
photo to be deleted by the user who uploaded it. Poorly
implemented access control policies are a major security
threat to web applications. Unlike content spoofing and
cross-site request forgery, however, access control can-
not be handled generically since access control policies
are necessarily application-specific and data-dependent.

Traditionally, access control policies are implemented
in web applications by identifying each function (or
worse, each SQL query) that could violate a policy and
adding code around the function to check the policy.
This approach rarely produces secure web applications
since even meticulous developers are likely to miss some
needed checks. As applications evolve, it is easy to miss
access control checks needed in new functions. Further,
this approach leads to duplicated code and functional
code cluttered with policy logic. It is difficult to tell what
policies have been implemented just by looking at the
code, and to tell if the desired properties are enforced
throughout the application.

Policy Annotation
Only admins can delete User objects @delete, User, :admin, :to login
Only admins can delete the inferred object @delete, :admin, :to login
Users can only change their own password @edit, pswrd, self.id == user.id, :to login
Log creation of new User objects @create, User, log function; true, :nothing

Table 1: Access policies and corresponding annotations

To address this problem, we propose a major change in
the way access control policies are implemented in web
applications. Instead of applying data policies to func-
tions, developers define access control policies as part of
the data objects they protect. These data-centric poli-
cies are specified using annotations added to data model
declarations. The code needed to enforce the policies is
generated automatically throughout the application. By
putting policies close to data and automating enforce-
ment, we reduce the burden on the developer and limit
the opportunity for implementation error.

3.1 Annotations
To specify access control policies, developers add access
control annotations of the form:

@<policytype>, <target>, <mediator>, <handler>

to ActiveRecord class definitions.
The four parameters define: (1) which one of the five

data access operations the policy concerns (read, edit,
append, create, destroy); (2) the object this annotation
concerns (either instances of the annotated class or indi-
vidual variables within the class); (3) the mediator func-
tion that checks if the protected action is allowed; and
(4) the handler function that is invoked when an unau-
thorized action is attempted. If the target field is omit-
ted, GuardRails infers the annotation’s target from the
location of the annotation (see the second annotation in
Table 1).

Keywords are defined for mediators and handlers to
define common policies. For example, the :admin key-
word indicates a mediator policy that checks whether the
requesting user has administrator privileges (Section 3.2
explains how developers configure GuardRails to iden-
tify the current user object and determine if that user is an
administrator). In addition to making it easy to translate
policies from a design document into annotations, using
keywords makes it easy to define and recognize common
policies.

Some policies are application and data-specific. To de-
fine these more specific policies, developers use a Ruby
expression instead of a keyword. The expression is eval-
uated in the context of the object being accessed so it
can access that object (as self) as well as any global ap-

plication state. The expressions also have access to the
current user object, which is made visible to the entire
application at the beginning of each execution.

Some examples of data policies are shown in Figure 1.
Each annotation would be included as a comment in a
data model file above the class definition.

Privileged Functions. Our annotation system is flexi-
ble enough to support nearly all policies found in web
applications. Policies that depend on the execution path
to the protected action, however, cannot be specified be-
cause the policy functions do not have access to the call
stack. We argue that such policies should be avoided
whenever possible—they provide less clear restrictions
than policies tied solely to the data and global state (e.g.,
the logged in user) that can be defined using annotations.

One exception is the common “forgot my password”
feature that allows an unauthenticated user to reset their
password. To a stateless data policy, however, there is
no observable difference between a safe password mod-
ification using the “forgot my password” routine and an
unsafe password modification.

To handle cases like this, we allow developers to mark
functions as privileged against certain policies. To cre-
ate this password edit policy, the developer annotates the
password local variable in the User class with the gen-
eral policy that a users cannot change a password other
their own (see Table 1 for the actual annotation) and adds
an annotation to the declaration of the “forgot my pass-
word” function to indicate that it is privileged. Since we
are assuming developers are not malicious, this simple
solution seems preferable to the more complex alterna-
tive of providing access to the execution stack in data
policy annotations.

3.2 Policy Enforcement

GuardRails enforces access policies by transforming the
application. It creates policy mappings, objects that map
data access operations to mediator and handler functions,
for each class or variable. All objects in the generated
web application contain policy mappings. By default,
policy objects map all accesses to True.

To enforce policies correctly, policies must propagate
to local variables. For example, if an ActiveRecord ob-

ject has a serialized object as a local variable, then ed-
its to the local variable should be considered edits to the
ActiveRecord object for policy purposes. To address this
we compose the container object’s policy with the con-
tained object’s policy and assign this new policy to the
contained object. Most propagation can be done at com-
pile time but some must be done at runtime since we do
not know the complete shape of the data structures.

Once the policy objects have been built, GuardRails
modifies the data access methods (generally getters and
setters) for each class and adds code to call the appropri-
ate policy function. Because all data access in Ruby is
done through getter or setter methods, this is sufficient to
enforce data access policies. The code below illustrates
how this is done for an example variable:

alias old var= var=
def var=(val)

if eval policy(:edit) and
var.eval policy(:edit)

old var=(val)
end

end

Database Access. No database object should be ac-
cessed by the application without first checking its read
policy. However, it is not possible to determine in ad-
vance which objects will be returned by a given query.
This means that we cannot check the read policy before a
database access. Instead, GuardRails performs the check
after the object is retrieved but before it is accessible to
the application. Since we only want to modify the spe-
cific application, not the entire Ruby on Rails framework,
we cannot modify the database access functions directly.
Instead, we take advantage of the fact that all database
accesses are done through static methods defined in the
ActiveRecord class.

To enforce access policies on database methods, we
replace all static references to ActiveRecord classes with
proxy objects. These objects intercept function calls and
pass them to the intended ActiveRecord class. If the re-
sult is an ActiveRecord object or list of ActiveRecord
objects, the proxy object checks that the result is read-
able before returning it to the original caller. This al-
lows GuardRails to enforce access policies for all of the
database methods without needing to modify the Ruby
on Rails framework.

List Violations. An interesting situation arises when a
program attempts to access a list of protected objects,
some of which it is not permitted to access. GuardRails
supports three ways of resolving this situation: treating
it as a single violation for the list object; treating each
object that violates the policy as a violation individually;
or not handling any violations but silently removing the
inaccessible objects from the list. Often, the same choice

should be used in all cases of a certain access type so we
let developers specify which option to use for each access
type. The default choice is to silently remove inaccessi-
ble objects from lists, following our goal of providing as
little disruption as possible to application functionality.

Configuration. To enable GuardRails to support a wide
range of applications, it uses a configuration file to spec-
ify application-specific details. For example, in order to
give the policy functions access to the current user ob-
ject, the configuration file must specify how to retrieve
this object (typically just a function or reference name).
Some built-in policy functions also require extra infor-
mation such as the :admin function, which needs to know
how to determine if the requesting user is an administra-
tor. The developer provides this information by adding
a Ruby function to the configuration file that checks if a
user object is an administrator.

3.3 Examples
We illustrate the value of data policy annotations with a
few examples from our evaluation applications (see Ta-
ble 3 for descriptions of the applications).

Read Protected Objects. The Redmine application con-
tained a security flaw where unauthorized users were
able to see private project issues. In response to a request
for the list of issues for a selected project, the application
returns the issues for the desired project and all of its sub-
projects with no regard to the subproject’s access control
list. For example, if a public project included a private
subproject, all users could see the subproject’s issue list
by viewing the parent project’s issue list.

Adding the single annotation below to the Issue model
fixed this bug by guaranteeing that users cannot see pri-
vate Issue objects:

@read, user.memberships.include? self.project,
:to login

class Issue
...

Note that because of the default policy to silently remove
inaccessible items from a list, this policy automatically
provides the desired functionality without any code mod-
ifications.

Edit Protected Attributes. The Spree application con-
tained a security flaw where users could alter the price of
a line item in their order by modifying a POST request to
include an assignment to the price attribute instead of an
assignment to the quantity attribute. This bug appeared
because Spree unsafely used the mass assignment func-
tion update attributes. Adding a single GuardRails anno-
tation to the Line Item model prevents the price attribute
from being changed:

@edit, price, false, :nothing

To maintain the behavior of the application, the functions
that safely modify the price attribute can be marked as
privileged against this policy.

4 Context-Sensitive Sanitization

In general, an injection attack works by exploiting a dis-
connect between how a developer intends for input data
to be used and the way it is actually used in the appli-
cation. Substantial effort has been devoted to devising
ways to prevent or mitigate these attacks, primarily by
ensuring that no malicious string is allowed to be used in
a context where it can cause harm. Despite this, injec-
tion attacks remain one of the greatest threats to modern
web applications. The Open Wep Application Security
Project (OWASP) Top Ten for 2010 lists injection attacks
(in general) and cross-site scripting attacks (a form of in-
jection attack) as the top two application security risks
for 2010 [16].

Like access control checking, data sanitization is typi-
cally scattered throughout the application and can easily
be performed in unsafe ways. To prevent a wide range
of injection attacks, including SQL injection and cross-
site-scripting, GuardRails uses an extensible system of
fine-grained taint tracking with context-specific sanitiza-
tion. Next, we describe how GuardRails maintains fine-
grained taint information on data, both as it is used in the
program and stored in the database. Section 4.2 describes
how context-sensitive transformers protect applications
from misusing tainted data.

4.1 Fine-Grained Taint Tracking

Taint tracking is a common and powerful approach to
dealing with injection vulnerabilities that has frequently
been applied to both web applications [2, 10, 11, 13, 15,
23, 25, 29] and other applications [1, 7, 9, 12, 17, 20, 22,
28]. A taint-tracking system marks data from untrusted
sources as tainted and keeps track of how tainted infor-
mation propagates to other objects. Taint tracking may
be done dynamically or statically; we only use dynamic
taint tracking. In the simplest model, a single taint bit is
associated with each object, and every object that is influ-
enced by a tainted object becomes tainted. Object-level
dynamic taint-tracking is already implemented in Ruby.

The weakness of this approach, however, is that it is
too simplistic to handle the complexity of how strings
are manipulated by an application. When tainted strings
are concatenated with untainted strings, for example, an
object-level tainting system must mark the entire result
as tainted. This leads to over-tainting, where all of the
strings that interact with a tainted string become tainted

and the normal functionality of the application is lost
even when there is no malicious data [17]. One way to
deal with this is to keep track of tainting at a finer gran-
ularity. Character-level taint systems, including PHPre-
vent [13], Chin and Wagner’s Java tainting system [2],
and RESIN [29], track distinct taint states for individ-
ual characters in a string. This solves the concatenation
problem by allowing the tainted and untainted characters
to coexist in the final resulting string according to their
sources, but requires more overhead to keep track of the
taint status of every character independently.

GuardRails provides character-level taint-tracking, but
instead of recording taint bits for every character indi-
vidually, groups sequences of adjacent characters into
chunks with the same taint status. In practice, most
strings in web applications exhibit taint locality where
tainted characters tend to be found adjacent to each other.
This allows GuardRails to minimize the amount of space
needed to store taint information, while still maintaining
the flexibility to track taint at the character level.

In our current implementation, tainting is only done
on strings, meaning that if data in a string is converted
into another format (other than a character or a string),
the taint information will be lost.1 We believe this deci-
sion to be well-justified, as only tracking strings is suffi-
cient assuming a benevolent developer. A malicious de-
veloper could easily lose taint information by extracting
each character of a string, converting it to its ASCII value
(an integer), and then converting the resulting integers
back into their ASCII characters and the original string,
but such operations are not likely to be present in a non-
malicious application.

Our system only marks string objects with taint in-
formation, limiting our ability to track implicit flows.
GuardRails does not prevent the use of tainted strings
in choosing what code path to traverse, such as when
the contents of a string play a role in a conditional state-
ment. While it is conceivable that an attacker might ma-
nipulate input to direct the code in a specific way, we
do not believe this risk to be a large one. On the other
hand, tracking implicit flows and preventing the use of
tainted strings in code decisions can easily break the ex-
isting functionality of many applications. Following our
design goals and aim to assist benevolent developers in
producing more secure applications, it seems justified to
ignore the risks of implicit flows.

4.2 Sanitization

The main distinguishing feature of our taint system is the
ability to perform arbitrarily complex transformations on

1In Ruby, characters are simply strings of length one, so taint in-
formation is not lost when characters are extracted from strings and
manipulated directly.

tainted strings. Rather than stopping with an error when
tainted data may be misused, GuardRails provides de-
velopers with a way to apply context-sensitive routines
to transform tainted data into safe data based on the use
context. Each chunk in a taint-tracked string includes a
reference to a Transformer object that applies the appro-
priate context-specific transformation to the string when
it is used. We define a use context as any distinct sit-
uation when a string is used such that malicious input
could affect the result. Examples of use contexts include
SQL queries, HTML output, and HTML output inside a
link tag, but programmers can define arbitrarily expres-
sive and precise use contexts. The transformer method
takes in a use context and a string and applies the appro-
priate context-specfic transformation routine to the input.

If a chunk is untainted, its Transformer object is the
identity transformer, which maps every string to itself in
every context. Each tainted chunk has a Transformer ob-
ject that may alter the output representation of the string
depending on the context. Taint status gives information
about the current state of a string, whereas the Trans-
former objects control how the string will be transformed
when it is used.

Our goal is to sanitize tainted strings enough to pre-
vent them from being dangerous but avoid having to
block them altogether or throw an error message. Af-
ter all, it is not uncommon for a benign string to con-
tain text that should not be allowed, and simply sanitiz-
ing this string resolves the problem without needing to
raise any alarms. As with access policies, GuardRails
seeks to minimize locations where developers can make
mistakes by attaching the sanitization rules directly to
the data itself. In this case, chunks of strings contain
their own policies as to how they must be sanitized be-
fore being used in different contexts, contexts that are
automatically established by GuardRails, as discussed in
later sections. Default tainting policies prevent standard
SQL injection and cross-site scripting attacks, but the
transformation system is powerful enough for program-
mers to define custom routines and contexts to provide
richer policies. Weinberger’s study of XSS sanitization
in different web application frameworks reveals the im-
portance of context-sensitive sanitization with a rich set
of contexts and the risks of subtle sanitization bugs when
sanitization is not done carefully [26].

Example. Figure 1 shows a simple default Transformer
used by GuardRails. If a chunk containing this Trans-
former is used in a SQL command, the sanitizer associ-
ated with the SQL context will be applied to the string
to produce the output chunk. The SQLSanitize function
(defined by GuardRails) returns a version of the chunk
that is safe to use in a SQL statement, removing any text
that could change the meaning of a SQL command. Sim-
ilarly, if the chunk is used within a Ruby eval statement,

then it will be sanitized with the Invisible filter, which
always returns an empty string. In HTML, the applied
sanitization function differs based on the use context of
the string within the HTML. Several HTML contexts are
predefined, but new contexts can be defined using an
XPath expression. The default policy specifies that if a
tainted string appears between <script> tags, then the
string will be removed via the Invisible filter. Elsewhere,
the NoHTMLAllowed function will only strip HTML tags
from the string. The sanitization routines used in the fig-
ure (NoHTMLAllowed, BoldTagsAllowed, etc.) are pro-
vided by GuardRails, but the sanitization function can
be any function that takes a string as input and returns a
string as output. Similarly, the context types for HTML
(LinkTag, DivTag, etc.) are predefined by GuardRails, but
developers can define their own and specify new contexts
using XPath expressions (as shown in the script exam-
ple).

{ :HTML =>
{ ”//script” => Invisible,
:default => NoHTMLAllowed },

:SQL => SQLSanitize,
:Ruby eval => Invisible }

Figure 1: Default Transformer

The Transformer approach supports rich contexts with
context-specific policies. Contexts can be arbitrarily
nested, so we could, for example, apply a different policy
to chunks used in an tag that is inside a <div>
tag with a particular attribute compared to chunks used
inside other tags.

4.2.1 Specifying Sanitization Policies

In many cases, developers want policies that differ from
the default policy. Following the format of the data poli-
cies, this is done using annotations of the form:

@taint, <field>, <transformer>

As with the data policies, the field component may
either be used to specify which field should be marked
with this taint status or may be left blank and placed di-
rectly above the declaration of a field in the model. The
Transformer specifies the context hierarchy that maps the
context to a sanitization routine within a Transformer ob-
ject.

One example where such policies are useful is Red-
mine, a popular application for project management and
bug tracking. Its Project object has name and descrip-
tion fields. A reasonable policy requires the name field
to contain only letters and numbers, while the description
field can contain bold, italics, and underline tags. Red-
mine uses the RedCloth plugin to allow for HTML-like

tags in the Project description, but GuardRails makes this
both simpler and more systematic allowing developers to
use annotations to specify which rules to apply to spe-
cific fields. We could specify this using the following
annotation:

@taint, {:HTML => {:default => BIU Allowed}}

This annotation establishes that whenever the string from
the description field is used in HTML, it should, by de-
fault, be sanitized using the BIU Allowed function, which
removes all HTML except bold, italics, and underline
tags. This :default setting replaces the one specified in
the default Transformer, but preserves all other context
rules, meaning the string will still be removed when used
in <script> tags, as detailed in Figure 1. If the use
context is not already present in the default Transformer,
then it will be added at the top as the highest priority rule
when a match occurs.

It may be the case, however, that the developer does
not want to append to the default Transformer, but over-
write it instead. Adding an exclamation point to the end
of a category name specifies that the default rules for this
category should not be included automatically, as in the
following example:

@taint, {:HTML! => {:default => AlphaNumeric}}

This annotation specifies that in any HTML context the
name field will be sanitized using AlphaNumeric, which
removes all characters that are not letters or numbers. As
the :HTML! keyword was used none of the other HTML
context rules will be carried over from the default Trans-
former. Because the other top-level contexts (such as
:SQL and :Ruby eval) were not mentioned in the anno-
tation, they will still be included form the default Trans-
former.

4.2.2 Determining the Use Context

GuardRails inserts additional code throughout the appli-
cation that applies the appropriate transformers. While
our system allows for any number of different use con-
texts, we focus primarily on dealing with SQL com-
mands and HTML output. We identified all the loca-
tions in Rails where SQL commands are executed and
HTML is formed into an output page and added calls to
the Transformer objects associated with the relevant in-
put strings, passing in the use context.

Many SQL injection vulnerabilities are already elim-
inated by the original Ruby on Rails framework. By
design, Ruby on Rails tries to avoid the use of SQL
queries altogether. Using prepared queries when SQL
is necessary also helps prevent attacks. Nonetheless, it
is still possible to construct a SQL statement that is open
to attack. In these scenarios, GuardRails intercepts the

SQL commands and sanitizes the tainted chunks using
the string’s Transformer object.

A more common danger is posed by cross-site script-
ing vulnerabilities. To ensure that no outgoing HTML
contains a potential attack, GuardRails intercepts the fi-
nal generated HTML before it is sent by the server.
The output page is collected into a single string, where
each chunk in that string preserves its taint information.
GuardRails processes the output page, calling the appro-
priate transformer for each string chunk. We use Noko-
giri [14] to parse the HTML and determine the context
in which the chunk is being used in the page. This con-
text information is then passed to the Transformer, which
applies the appropriate sanitization routine. The detailed
parse tree produced by Nokogiri is what allows for the
arbitrarily specific HTML contexts. Note that it is im-
portant that the transformations are applied to the HTML
chunks in order, as the result of a chunk being trans-
formed earlier in the page may affect the use context of
a chunk later in the document. After all of the tainted
chunks have been sanitized, the resulting output page is
sent to the user. As the entire HTML page must be con-
structed, then analyzed in its entirety before being sent
to the user, this approach may have unacceptable conse-
quences to the latency of processing a request, but could
be avoided by more aggressively transmitting partial out-
puts once they are known to be safe. This is discussed
further in Section 5.

4.3 Implementation
GuardRails defines taint propagation rules to keep track
of the transformers attached to strings as they move
throughout the application. Whenever user input enters
the system either through URL parameters, form data,
or uploaded files, the content is immediately marked as
tainted by assigning it the default Transformer. If the ap-
plication receives user input in a non-conventional way
(e.g. by directly obtaining content from another site), the
developer can manually mark these locations to indicate
that the data obtained is tainted.

We modify the Ruby String class to contain an ad-
ditional field used to store taint information about the
string. Note that this change is made dynamically by
GuardRails within the context of Ruby on Rails and does
not involve any modification to the Ruby implementa-
tion. A string can contain any number of chunks, so we
use an array of pairs, one for each chunk, where the first
element represents the last character index of that chunk
and the second element is a reference to the correspond-
ing Transformer. For example, the string

Joe

generated by concatenating three strings (where under-
lining represents untainted data and boldface represents

tainted data), would be represented using the chunks:

[[18, <Transformer::Identity>],
[21, <Transformer::Default>],
[25, <Transformer::Identity>]]

To maintain taint information as string objects are ma-
nipulated, we override many of the methods in the String
class, along with some from other related classes such as
RegExp and MatchData. Our goal when deciding how to
propagate taint information in these string functions was
to be as conservative as possible to minimize the possi-
bility of any exploits. Generally, the string resulting from
a string function will be marked as at least as danger-
ous as the original string. Functions like concatenation
preserve the taint status of each input string in the final
result, just as one would expect. Other functions like
copying and taking substrings also yield the appropriate
taint statuses that reflect the taint of the original string. In
some cases, discussed in Section 4.3.2, the conservative
approach is too restrictive.

4.3.1 Persistent Storage

Web applications often take input from a user, store it in
a database, and retrieve and use that information to re-
spond to later requests. This can expose applications to
persistent cross-site scripting attacks, which rely on ma-
licious strings being stored in the database and later used
in HTML responses. Therefore, we need a way to store
taint information persistently, as the database is outside
of the scope of our Ruby string modifications.

To solve this problem, we use a method similar to
that used by RESIN [29] and DBTaint [4]. For every
string that is stored in the database, we add an additional
column that contains that string’s taint information. We
then modify the accessors for that string so that when
the string is saved to the database, it is broken into its
raw content and taint information, and when it is read
from the database, both the content and the taint are re-
combined back into the original string. We also modify
several other functions that interact with the database to
ensure that the taint information is always connected to
the string. This solution makes more sense than serializ-
ing the entire object, as it does not disrupt any existing
lookup queries made by the application that search for
specific text in the database.

4.3.2 Problematic Functions

In our tests, we found that there are some cases where
being overly safe can result in overtainting in a way that
interferes with the behavior of the application. Our rules
are slightly more relaxed in these situations, but only
when necessary and the security risk is minimal. Next,

we discuss several of these cases and others where deter-
mining the appropriate tainting is more complex.

Pattern Substitution. Ruby provides the sub and gsub
procedures that provide regular expression substitution
in strings. With these functions, the contents of one
chunk affect different parts of the output string in com-
plex ways. If the input string is tainted and the replace-
ment is untainted, then the resulting taint status is am-
biguous, as the tainted string affects where the untainted
string is placed.

A maximally conservative approach might consider
the untainted replacement as tainted, as its location was
specifically dictated by the contents of the tainted string.
While our is generally to take a conservative approach to
tainting, we found in our test applications that this ap-
proach frequently leads to overtainting. Hence, we adopt
a more relaxed model where output characters are tainted
only when they directly result from a tainted chunk. Fig-
ure 2 illustrates some examples of how taint information
is manipulated in commands such as gsub.

Composing Transformers. Another set of special cases
are those functions that blend multiple tainted chunks
in a way where it is difficult or impossible to keep the
resulting taint statuses separate. One such function is
squeeze, which replaces identical consecutive charac-
ters in a string with a single copy of that character (see
Figure 2 for examples). If the repeated characters have
the same taint status then there is no issue: the resulting
single character should also have the same taint status.
If, however, each of the repeated characters has a differ-
ent taint status, the resulting character depends on both
inputs. Picking one of the two taint statuses could po-
tentially leave the application vulnerable, so we mix the
different taint statues by composing the transformers. A
Transformer object can simply be considered a function
that takes in a string and a context and returns a sani-
tized string for that context. This means that we can com-
bine Transformers simply by composing their respective
functions. When the composed Transformer is given a
string and context, it applies the first Transformer with
the given context, then applies the second Transformer
with the same context to the result of the first.

As the order in which the two Transformers are ap-
plied might affect the final result, we perform the trans-
formations in both possible orders and check that the re-
sults are the same. If they are not, then GuardRails acts
as conservatively as possible, either throwing an error or
emptying the contents of the string. In practice, this is-
sue is not particularly problematic as only a few uncom-
monly used string functions (squeeze, next, succ, upto,
and unpack) need to compose Transformers and the ma-
jority of Transformers produce the same result regardless

String Command Result
"foobar".gsub("o","0") "f00bar"

"medium".gsub(/(datu|mediu|agendu|bacteriu)m/,"\1a") "media"
"utopia".gsub(/(a|e|i|o|u)/) { |x| x.swapcase } "UtOpIA"

"football".squeeze "fotbal"
"battle".squeeze "batle"

Table 2: Example String Commands with Taint
Underlined and bold text in these examples indicate different taint statuses. The second gsub example is very similar to the matching
used by Ruby on Rails in the pluralize function, which converts words to their plural form. The second squeeze example demonstrates
how taint must be merged in cases where the value of a chunk comes from multiple sources.

of the order in which they are applied.

String Interpolation. One key advantage of taint track-
ing system employed by GuardRails is that modifies
string operations dynamically, with no need to directly
alter any Ruby libraries. String interpolation, a means
of evaluating Ruby code in the middle of a string, is
managed by native Ruby C code, however, and can-
not be changed dynamically. To resolve this problem,
the source-to-source transformation done by GuardRails
transforms all instances in the web application where in-
terpolation is used with syntactically equivalent concate-
nation. Additionally, because Ruby on Rails itself also
uses interpolation, GuardRails runs the same source-to-
source transformation on the Ruby on Rails code, replac-
ing all uses of interpolation with concatenation.

4.4 Examples

We illustrate how one taint-tracking system eliminates
vulnerabilities and simplifies application code by de-
scribing a few examples from our evaluation applica-
tions.

SQL Injection. Substruct, an e-commerce application,
handles most forms safely but one particular set of fields
was left vulnerable to SQL injection [21]. The issue lay
with the use of the function update all, which performs
direct database updates and can easily be used unsafely,
as in the following code written by the developers:

update all(”value = '#{value}'”, ”name = '#{name}'”)

This code directly includes the user-provided value string
in the SQL command. A malicious user could exploit
this to take control of the command and potentially take
control of the database.

GuardRails prevents this vulnerability from being ex-
ploited. Since update all is known to be a way of passing
strings directly into SQL commands, GuardRails mod-
ifies the function to transform the provided strings for
the SQL use context. As form data is marked auto-
matically with the default Transformer, the potentially

harmful strings will be sanitized to remove any danger-
ous text that might modify the SQL command. Note that
for this example, the vulnerability is eliminated by using
GuardRails even if no annotations are provided by the
developer.

Cross-Site Scripting. Onyx correctly sanitizes input that
is used to post comments on images, but does not per-
form the same checks on input to certain administrator
fields. This allows any administrator to inject code into
the application to attack application users or other site
administrators. In the case of the site description field,
simply putting in a double quote as part of the input
is enough to break the HTML structure of the resulting
pages. These are examples of simple persistent cross-site
scripting issues, where the offending string is first saved
in the database, then attacks users when later loaded from
the database and placed into HTML responses.

Applying GuardRails fixes these cross-site scripting
vulnerabilities. Recall that the default Transformer (Fig-
ure 1) removes all tags when an unsafe string is used in
an HTML context. Thus, when the attacker submits the
malicious string in the web form, it is immediately as-
signed the default Transformer. When that string is later
used in HTML, it is sanitized using the NoHTMLAllowed
filter. The taint information is preserved when strings
are saved and loaded from the database (Section 4.3.1),
so the vulnerability is not exploitable even though it in-
volves strings read from the database.

5 Evaluation

We conducted a preliminary evaluation of GuardRails by
testing it on a variety of Ruby on Rails applications. Ta-
ble 3 summarizes the test applications. These applica-
tions are diverse in terms of complexity and cover a range
of application types and design styles. We were able to
use GuardRails effectively on all the applications without
any modifications.

As detailed in Section 3.3, we have had success at pre-
venting known access control issues with simple policy
annotations. Our system of fine-grained taint tracking

Application Description Source Lines of Code
Onyx image gallery http://www.hulihanapplications.com/projects/onyx 680
Spree shopping cart http://spreecommerce.com/ 11561

Substruct shopping cart http://code.google.com/p/substruct/ 5556
Redmine project management http://www.redmine.org/ 30747

PaperTracks publication and citation tracker developed ourselves 1980

Table 3: Test Applications

also succeeded at blocking SQL injection and cross-site
scripting attacks, as explained in Section 4.4.

While performance was not a major design goal,
it is still a practical concern. To estimate the over-
head imposed by our system, we transformed the image
gallery application Onyx with various configurations of
GuardRails and measured the average throughput for 50
concurrent users. Table 4 summarizes the results.

As currently implemented, GuardRails does impose a
significant performance cost. But, we believe most of
this performance overhead is due to limitations of our
prototype system rather than intrinsic costs of our ap-
proach.

Performing the access control checking decreases
throughput by around 25 percent. Most of the perfor-
mance overhead comes from the code needed to assign
policies dynamically. This code is independent of the
number of policies, so the performance does not greatly
depend on the number of annotated policies. We could
reduce this overhead by using static analysis to determine
which policies can be assigned statically instead of dy-
namically.

Taint tracking incurs substantial overhead, reducing
throughput by more than 75 percent for some requests.
Our taint tracking implementation replaces the native
C string implementations provided by Ruby with inter-
preted Ruby implementations. Since the Ruby string
implementations are highly optimized, and interpreting
Ruby code is much slower than native C, it is not surpris-
ing that this incurs a substantial performance hit. Com-
plex functions like gsub, split, delete, and slice require
more code to ensure that taint status is handled correctly.
The split method, for example, took 0.14 seconds to run
400 times without the taint system applied in one test.
With the taint system applied, the same test took 0.15
seconds when operating on untainted strings but nearly 5
seconds to split tainted strings. In future work, we hope
both to optimize string methods both by rewriting them
in C and using more efficient algorithms, and we are op-
timistic that much of the performance overhead imposed
by GuardRails could be eliminated by doing this.

6 Related Work

Much research has been done towards the goal of im-
proving security of web applications and developing ac-
cess control policies. Here, we review the most closely
related work on data policy enforcement and taint track-
ing.

6.1 Data Policy Enforcement

Aspect-oriented programming is a design paradigm that
centralizes code that would normally be spread through-
out an application, often referred to as cross-cutting
concerns [8]. Data policy enforcement is such a con-
cern and several authors have suggested using aspect-
oriented programming to implement security policy en-
forcement [24, 27]. Like our project, this work seeks to
reduce implementation errors and improve readability by
centralizing information about security policies.

Automated data policy enforcement is becoming a
popular method for preventing security vulnerabilities.
Some projects let developers specify data policies, assign
the policies to object instances explicitly, and enforce the
policies using a runtime system [29, 19]. It is often dif-
ficult to define security policies in a clear and concise
format. Some projects attempt to remedy this by creat-
ing a policy description language [5] while others aim to
infer appropriate policies [3] without developer input.

The most similar previous work is RESIN, a tool that
enforces developer-specified policies on web applica-
tions [29]. GuardRails and RESIN differ in several fun-
damental ways. RESIN handles policies attached to in-
dividual object instances, so developers must manually
add the policies on each object instance they want to
protect. GuardRails instead associates policies with data
models (classes), so the appropriate policy is automat-
ically applied to all instances of the class. Addition-
ally, GuardRails automates much more of the work re-
quired to build a secure web application than RESIN
does. RESIN requires the developer to write an entire
class for each security policy while GuardRails only re-
quires a small annotation.

Transformation Status Homepage Login Interface Image Gallery
Original Application 8.9 9.6 9.2
Access Control Only 7.1 7.1 6.6

Taint Tracking w/o HTML Parsing 2.5 2.8 2.5
Full System 2.0 2.5 2.2

Table 4: Performance Measurements from Onyx
Each number indicates the number of transactions per second for the given request and configuration.

6.2 Taint Tracking

Taint tracking techniques have been used to find format
string vulnerabilities [20, 22, 28], prevent buffer over-
flows [22, 28], improve signature generation [12], and
even to track information flow at the operating system
level [7]. Several systems, like the GIFT framework [9],
are designed, like GuardRails, to be extensible to prevent
many types of injection attacks [1, 15]. As mentioned in
Section 4.1, some recent research has focused on solv-
ing the over/undertainting problem with character-by-
character taint tracking [2, 13, 29]. Many systems are
limited to using boolean taint states [22, 28] or make use
of the compiler, making them difficult to directly apply
to a dynamic, interpreted language like Ruby [1, 11].

Similar to our context-specific transformers, the
Context-Sensitive String Evaluation (CSSE) [15] system
treats tainted strings differently depending on the context
of their use. CSSE uses meta-data tags to allow for com-
plex taint statuses. CSSE, however, focuses on propagat-
ing information about where the content originated from,
with the context-specific code dealing with the tainted
strings at the location of their use based on this origin in-
formation. The Auto Escape mode in Google’s Template
System is another similar system that uses different san-
itization routines depending on the context of a string in
HTML [6]. Without taint-tracking, however, Auto Es-
cape cannot distinguish between safe and unsafe strings
without explicit specifications from the developer, so it is
necessary to explicitly identify templates that should use
auto escape mode.

Other systems do not modify the web application itself
or the underlying platform, but instead operate between
the application’s key entry and exit points. Sekar devel-
oped one such tool [18] that records the input received
by the application, and later uses taint inference in out-
put and database commands to find similar strings that
may have been derived from this input. The tool also
focuses on looking for changes in syntax of important
commands that might be indicative of an injection at-
tack. Another system, DBTaint [4] works outside of the
application, helping to preserve arbitrary taint informa-
tion given from an arbitrary application in the database.
Both of these tools have the advantage of being largely

platform-independent, and neither needs any application
modifications.

7 Conclusion

GuardRails seeks to reduce the effort required to build
a secure web application by enforcing security policies
defined with the data model, in particular, access con-
trol policies and context-sensitive string transformations.
The main novelty of GuardRails is the way policies are
tied directly to data models which fits developer under-
standing naturally, provides a large amount of expres-
siveness, and centralized policies in a way that mini-
mizes the likelihood of missing necessary access control
checks. Our early experience with GuardRails provides
cause for optimism that application developers can be re-
lieved of much of the tedious and error-prone work typ-
ically required to build a secure web application. Al-
though the performance overhead is prohibitive for large
scale commercial sites, many web applications can toler-
ate fairly poor performance. Further, although our cur-
rent prototype implementation incurs substantial over-
head, we believe many of techniques we advocate could
be implemented more efficiently if they are more fully in-
tegrated into the underlying framework implementation,
and that reducing developer effort and mitigating secu-
rity risk will become increasingly important in rapid web
application development.

Availability

GuardRails is available under an open source license
from http://guardrails.cs.virginia.edu/.

Acknowledgements

This work was funded in part by grants from the National
Science Foundation and a MURI award from the Air
Force Office of Scientific Research. The authors thank
Armando Fox for his helpful comments and suggestions,
and thank Dawn Song, Prateek Saxena, and the attendees
at RubyNation for helpful discussions about this work.

References
[1] CHANG, W., STREIFF, B., AND LIN, C. Efficient and extensible

security enforcement using dynamic data flow analysis. In Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security (New York, NY, USA, 2008), CCS ’08, ACM,
pp. 39–50.

[2] CHIN, E., AND WAGNER, D. Efficient Character-level Taint
Tracking for Java. In 2009 ACM Workshop on Secure Web Ser-
vices (2009).

[3] DALTON, M., KOZYRAKIS, C., AND ZELDOVICH, N. Neme-
sis: preventing authentication & access control vulnerabilities
in web applications. In Proceedings of the 18th conference
on USENIX security symposium (Berkeley, CA, USA, 2009),
SSYM’09, USENIX Association, pp. 267–282.

[4] DAVIS, B., AND CHEN, H. DBTaint: Cross-application Informa-
tion Flow Tracking via Databases. In 2010 USENIX Conference
on Web Application Development (2010), WebApps’10.

[5] EFSTATHOPOULOS, P., AND KOHLER, E. Manageable fine-
grained information flow. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008
(New York, NY, USA, 2008), Eurosys ’08, ACM, pp. 301–313.

[6] GOOGLE. Auto escape. http://google-ctemplate.googlecode.
com/svn/trunk/doc/auto escape.html, 2010.

[7] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical taint-based protection using demand emula-
tion. In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (New York, NY, USA,
2006), EuroSys ’06, ACM, pp. 29–41.

[8] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-Oriented
Programming. In European Conference on Object-Oriented Pro-
gramming (1997).

[9] LAM, L. C., AND CHIUEH, T.-C. A general dynamic infor-
mation flow tracking framework for security applications. In
Proceedings of the 22nd Annual Computer Security Applications
Conference (Washington, DC, USA, 2006), IEEE Computer So-
ciety, pp. 463–472.

[10] LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabil-
ities in java applications with static analysis. In Proceedings of
the 14th conference on USENIX Security Symposium - Volume 14
(Berkeley, CA, USA, 2005), USENIX Association, pp. 18–18.

[11] NANDA, S., LAM, L.-C., AND CHIUEH, T.-C. Dynamic Multi-
process Information Flow Tracking for Web Application Secu-
rity. In 2007 ACM/IFIP/USENIX International Conference on
Middleware Companion (2007).

[12] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploitson
commodity software. In Proceedings of the 12th AnnualNetwork
and Distributed System Security Symposium (2005), NDSS05.

[13] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D.,
SHIRLEY, J., AND EVANS, D. Automatically Hardening Web
applications Using Precise Tainting. In Security and Privacy in
the Age of Ubiquitous Computing (2005).

[14] PATTERSON, A., DALESSIO, M., NUTTER, C., ARBEO, S.,
MAHONEY, P., AND HARADA, Y. Nokogiri: an HTML, XML,
SAX, and Reader Parser. http://nokogiri.org/, 2008.

[15] PIETRASZEK, T., AND BERGHE, C. Defending against injection
attacks through context-sensitive string evaluation. In Recent Ad-
vances in Intrusion Detection, A. Valdes and D. Zamboni, Eds.,
vol. 3858 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2006, pp. 124–145.

[16] PROJECT, O. W. A. S. OWASP Top 10 — The Ten Most Critical
Web Application Security Risks. http://www.owasp.org/index.
php/Top 10, 2010.

[17] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to
Ask). In IEEE Symposium on Security and Privacy (Oakland)
(2010).

[18] SEKAR, R. An Efficient Black-box Technique for Defeating Web
Application Attacks. In 16th Annual Network and Distributed
System Security Symposium (NDSS) (2009).

[19] SEO, J., AND LAM, M. S. InvisiType: Object-Oriented Security
Policies. In 17th Annual Network and Distributed System Secu-
rity Symposium (2010).

[20] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER,
D. Detecting format string vulnerabilities with type qualifiers. In
Proceedings of the 10th conference on USENIX Security Sym-
posium - Volume 10 (Berkeley, CA, USA, 2001), SSYM’01,
USENIX Association, pp. 16–16.

[21] SUBSTRUCT DEVELOPER. Preference.save settings is inse-
cure. http://code.google.com/p/substruct/issues/detail?id=
36, Mar. 2008.

[22] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure
program execution via dynamic information flow tracking. In
Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems (New
York, NY, USA, 2004), ASPLOS-XI, ACM, pp. 85–96.

[23] TRIPP, O., PISTOIA, M., FINK, S. J., SRIDHARAN, M., AND
WEISMAN, O. TAJ: Effective Taint Analysis of Web Applica-
tions. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2009), PLDI
’09, ACM, pp. 87–97.

[24] VIEGA, J., BLOCH, J. T., AND CH, P. Applying aspect-oriented
programming to security. Cutter IT Journal 14 (2001), 31–39.

[25] VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E.,
KRUEGEL, C., AND VIGNA, G. Cross-Site Scripting Prevention
with Dynamic Data Tainting and Static Analysis. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS ’07) (2007).

[26] WEINBERGER, J., SAXENA, P., AKHAWE, D., FINIFTER, M.,
SHIN, R., AND SONG, D. An empirical analysis of xss saniti-
zation in web application frameworks. Tech. Rep. UCB/EECS-
2011-11, EECS Department, University of California, Berkeley,
Feb 2011.

[27] WIN, B. D., VANHAUTE, B., AND DECKE, B. D. Developing
secure applications through aspect-oriented programming. Ad-
vances in Network and Distributed Systems Security (2001), 125–
138.

[28] XU, W., BHATKAR, S., AND SEKAR, R. Taint-Enhanced Pol-
icy Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks. In Proceedings of the 15th conference on USENIX
Security Symposium (USENIX-SS ’06) (2006).

[29] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving Application Security with Data Flow Assertions. In
ACM SIGOPS 22nd Symposium on Operating Systems Principles
(2009).

