Gmail: Past, Present, and

Future
Adam de Boor, Google

Google

The Plan

nere we came from
nere we're at

nat we've learned
nere we're going

===

(S0 8{5”

Where We Came From

Where We Came From - 2004

April 1, 2004
e Slick webmail app using AJAX
e Plain-text compose
e 9400 lines of JS, downloaded as a block, in a frame
e JS compiler:
o Condense code
o Catch references to unknown vars
o Verify function arity
o Interpolate constants
o Remove dead code
e No use of object classes
e HTML constructed as 'str' + var + 'str’
e Uses iframes for different views (switched)
e CSS in created STYLE elements CI

Where We Came From - 2005

April 1, 2005

e Added "web 1.0" HTML interface

e Rich formatting in compose

e Now 22,000 lines of JS (+ 10,000 lines of comments)
o Still one download

e 12 non-US languages
o JS compiler used to find and replace messages

e JS compiler now also inlines functions

GO gle

Where We Came From - 2006

e Chat launched in February
e 52,000 lines of JS (75,000 with comments)
o 4 modules - main broken into blocks
o Classes
o Start of Closure library
e 30 languages
e CSS still generated in JS
e Code base getting unwieldy
o Combinations exploding
o JS compiler looks for "frequently wrong" patterns

GO gle

Where We Came From - 2007

e Rewrite! (shipped in October)
o Make code base manageable (object classes!)
o Speed
¢ 90,000 lines of JS (187,000 with comments) in 31 modules
+ libraries
e New module system
o Dependency graph
o Mods
e Closure Templates
o Way easier than string concatenation
o Automatic escaping
e Macro processing of CSS, served from server

e Simple type checking in JS compiler + optimiz@ions 3 e
3V 8 1C

Where We Came From - 2008

e Innovation speed increased
o Gmail Labs
o Themes
o New feature launched / week
e JS Compiler: better type checking, type-based code
stripping, more optimizations
e 190k lines of JS (403k with comments)

GO0 gle

Where We Came From - 2009

e Out of beta

e Offline using Google Gears

e JS Compiler: data-flow analysis, more checks, move
functions/methods between modules

e 279k lines of JS (610k with comments)

e Released Closure library, compiler, and templates

e Released Open GSE

GO0 gle

Where We Are

e More than just mail:
o Google Buzz now in Gmail
o Video and voice chat
o SMS
o Extensible through Google Apps Marketplace
e 60+ active labs
e 443K lines of JS (978k with comments)
e Really complex application

GO0 gle

Macro-architecture

HTTP RPC
data
4 "\ path [)
¢ -
client — business logic storage server
L
- J push - / \ /
path

data path: code, styles, preferences, user data, ...

push path: chat, new mail, presence, contact updates, buzz
updates, ...

GO gle

Client

e Builds all Ul

e Loads code when needed

e Fetches and caches data

e Records actions for performance analysis
e Reports presence / idle

e Gadget container

e Drives multiple windows

GO0 gle

Server

e Routes / translates between client and 10+ backend servers
o Talk, contacts, search, spell-check, translate, antivirus,
SMTP in, SMTP out, authentication, ...
e Compiles and serves JS
e Compiles and serves themes as encoded stylesheet
e [ncoming mail processing
e Synchronization for offline support

GO0 gle

Client Details - Modules

e Modules based on entry points
o Particular services (e.g. mole manager, chat)
o Particular views (thread list, conversation, etc.)
e Non-entry-point code assigned to modules automatically
o Files say what classes they require and provide
o Classes needed multiple places => synthesized modules

m1

a.js

C.]Js

b)s

b.s

-

m

m2

a.s

C.]Js

b.js U 8{{

Client Detalls - Mods

e Mods enable tailored code w/o storage explosion
o Mod = named code segments enabled per-user
o Appended to module if enabled
o Tweaks base code
e \Whole app compiled / optimized, then fragmented
e Modules assembled from fragments based on enabled
mods

GO0 gle

Module/Mod Example

createwritelydoc

defaultreplytoall

What's Possible What's Served
conv
é h core
core
_ Y, superstar

superstar

GO gia‘:

Themes

e Mostly colors / images (can be radical)
e Macro processing of stylesheets
o Everything skinnable is a macro
o Last definition wins
e Start with basic color palette definitions
e Define attributes of all components in those terms
e Theme can tweak base palette or components
o Theme definition is last file in the compilation

GO0 gle

Services / Components

e Named services with defined interfaces
e Service objects registered in registry tree
o Root registry for entire app
o Child registry for each window
o Failed lookup in child is repeated in parent
e Service object can be late-loaded
o Callback when service defined, or error
e Components re-usable in alternate environments
e Replaceable for tests, alternate environments, alternate
look&feel

GO gle

Latency Tracking and Alerts

e All user actions timed, including server time
e Timing data uploaded to server and gathered
e Graphable along many axes
o Country, Browser, Operation, Release, ...
o Local, Server, Queue-delay, ...
o Median, Mean, 25th pctl, 90th ptcl, ...
e Automated system predicts timing and count along many
axes and alerts if the world is different

GO0 gle

Test Automation

e Unit tests with system akin to JSUnit
o Compiled and uncompiled
e Some tests in Selenium
e In-application Ul tests
o Simpler for developers to write
o Isolated in module and mod
o Still can't generate real mouse events
e Use automation suite to gauge latency impact of a change
or feature
e Multiple continuous builds test all aspects of client and
server

GO gle

What We've Learned

e [IType-checking is important and possible
e [nstrument everything

e Codify learnings in sanity tests & compiler warnings
o .manager-page .searchbar span{color:#000}
o .CSS IMG DIV:hover .CSS PLAY DIV {opacity: 1;}

e Testing is vital

GO 8'”

Where We're Going

e HTMLS
o Change to leverage CSS3 reduced DOM by 30% and
initial load time by 12%
o Attachment / image drag-in
o AppCache
o Database
e Moving the platform forward
o Dragging files out
o Magic IFRAME
o Installable apps with persistent background page

GO0 gle

Drag Out

e Leverage drag-and-drop from HTMLS
e Add new data transfer format: DownloadURL
o String of form mime-type:name:url
e On drop, browser downloads file and streams it to drop
target, marked as insecure

GO0 gle

Magic IFRAME

e Targeted at apps with multiple windows
e All code and data go into an IFRAME
e |f window hosting the IFRAME unloads, it gets adopted by
another of the windows
e In Gmail for example:
o Tearoff / pop-out compose creates bare window that is
filled by code in IFRAME in main window
o If you close the main window, the code looks for a tearoff
that can accept the IFRAME and moves it
o You finish your compose and can still send the email
e Old way: create new instance of Gmail tailored to the task.

GO gle

Apps with Background Window

e User installs web app => greater trust
e App opens background page that is always loaded
e App defines domain extent that puts pages in same process
e Page loaded from web can find background window
e In Gmail:
o Background page holds all code and data
o Background code fills in DOM of foreground page
o Background keeps data up-to-date
o Really fast startup

GO gle

Questions?

Google

