
Gmail: Past, Present, and 
Future

Adam de Boor, Google



The Plan

Where we came from
Where we're at
What we've learned
Where we're going



Where We Came From



Where We Came From - 2004

April 1, 2004
Slick webmail app using AJAX
Plain-text compose
9400 lines of JS, downloaded as a block, in a frame
JS compiler:

Condense code
Catch references to unknown vars
Verify function arity
Interpolate constants
Remove dead code

No use of object classes
HTML constructed as 'str' + var + 'str'
Uses iframes for different views (switched)
CSS in created STYLE elements



Where We Came From - 2005

April 1, 2005
Added "web 1.0" HTML interface
Rich formatting in compose
Now 22,000 lines of JS (+ 10,000 lines of comments)

Still one download
12 non-US languages

JS compiler used to find and replace messages
JS compiler now also inlines functions



Where We Came From - 2006

Chat launched in February
52,000 lines of JS (75,000 with comments)

4 modules - main broken into blocks
Classes
Start of Closure library

30 languages
CSS still generated in JS
Code base getting unwieldy

Combinations exploding
JS compiler looks for "frequently wrong" patterns



Where We Came From - 2007

Rewrite! (shipped in October)
Make code base manageable (object classes!)
Speed

90,000 lines of JS (187,000 with comments) in 31 modules 
+ libraries
New module system

Dependency graph
Mods

Closure Templates
Way easier than string concatenation
Automatic escaping

Macro processing of CSS, served from server
Simple type checking in JS compiler + optimizations



Where We Came From - 2008

Innovation speed increased
Gmail Labs
Themes
New feature launched / week

JS Compiler: better type checking, type-based code 
stripping, more optimizations
190k lines of JS (403k with comments)



Where We Came From - 2009

Out of beta
Offline using Google Gears
JS Compiler: data-flow analysis, more checks, move 
functions/methods between modules
279k lines of JS (610k with comments)
Released Closure library, compiler, and templates
Released Open GSE



Where We Are

More than just mail:
Google Buzz now in Gmail
Video and voice chat
SMS
Extensible through Google Apps Marketplace

60+ active labs
443k lines of JS (978k with comments)
Really complex application



Macro-architecture

data path: code, styles, preferences, user data, ...
push path: chat, new mail, presence, contact updates, buzz 
updates, ...



Client

Builds all UI
Loads code when needed
Fetches and caches data
Records actions for performance analysis
Reports presence / idle
Gadget container
Drives multiple windows



Server

Routes / translates between client and 10+ backend servers
Talk, contacts, search, spell-check, translate, antivirus, 
SMTP in, SMTP out, authentication, ...

Compiles and serves JS
Compiles and serves themes as encoded stylesheet
Incoming mail processing
Synchronization for offline support



Client Details - Modules

Modules based on entry points
Particular services (e.g. mole manager, chat)
Particular views (thread list, conversation, etc.)

Non-entry-point code assigned to modules automatically
Files say what classes they require and provide
Classes needed multiple places => synthesized modules



Client Details - Mods

Mods enable tailored code w/o storage explosion
Mod = named code segments enabled per-user
Appended to module if enabled
Tweaks base code

Whole app compiled / optimized, then fragmented
Modules assembled from fragments based on enabled 
mods



Module/Mod Example



Themes

Mostly colors / images (can be radical)
Macro processing of stylesheets

Everything skinnable is a macro
Last definition wins

Start with basic color palette definitions
Define attributes of all components in those terms
Theme can tweak base palette or components

Theme definition is last file in the compilation



Services / Components

Named services with defined interfaces
Service objects registered in registry tree

Root registry for entire app
Child registry for each window
Failed lookup in child is repeated in parent

Service object can be late-loaded
Callback when service defined, or error

Components re-usable in alternate environments
Replaceable for tests, alternate environments, alternate 
look&feel



Latency Tracking and Alerts

All user actions timed, including server time
Timing data uploaded to server and gathered
Graphable along many axes

Country, Browser, Operation, Release, ...
Local, Server, Queue-delay, ...
Median, Mean, 25th pctl, 90th ptcl, ...

Automated system predicts timing and count along many 
axes and alerts if the world is different



Test Automation

Unit tests with system akin to JSUnit
Compiled and uncompiled

Some tests in Selenium
In-application UI tests

Simpler for developers to write
Isolated in module and mod
Still can't generate real mouse events

Use automation suite to gauge latency impact of a change 
or feature
Multiple continuous builds test all aspects of client and 
server



What We've Learned

�Type-checking is important and possible
Instrument everything
Codify learnings in sanity tests & compiler warnings

.manager-page .searchbar span{color:#000}

.CSS_IMG_DIV:hover .CSS_PLAY_DIV {opacity: 1;}
Testing is vital



Where We're Going

HTML5
Change to leverage CSS3 reduced DOM by 30% and 
initial load time by 12%
Attachment / image drag-in
AppCache
Database

Moving the platform forward
Dragging files out
Magic IFRAME
Installable apps with persistent background page



Drag Out

Leverage drag-and-drop from HTML5
Add new data transfer format: DownloadURL

String of form mime-type:name:url
On drop, browser downloads file and streams it to drop 
target, marked as insecure



Magic IFRAME

Targeted at apps with multiple windows
All code and data go into an IFRAME
If window hosting the IFRAME unloads, it gets adopted by 
another of the windows
In Gmail for example:

Tearoff / pop-out compose creates bare window that is 
filled by code in IFRAME in main window
If you close the main window, the code looks for a tearoff 
that can accept the IFRAME and moves it
You finish your compose and can still send the email

Old way: create new instance of Gmail tailored to the task.



Apps with Background Window

User installs web app => greater trust
App opens background page that is always loaded
App defines domain extent that puts pages in same process
Page loaded from web can find background window
In Gmail:

Background page holds all code and data
Background code fills in DOM of foreground page
Background keeps data up-to-date
Really fast startup



Questions?


