
Featherweight Firefox
Formalizing the Core of a Web Browser

Aaron Bohannon Benjamin Pierce

University of Pennsylvania

June 24, 2010

1 / 27



Pop Quiz!

2 / 27



Question 1

Assume d is a Document object.

var e = d.createElement("div");

Assume d and e remain unchanged.

Is it guaranteed that e.ownerDocument == d

is always true?

a) Yes

b) No

3 / 27



Question 1

Assume d is a Document object.

var e = d.createElement("div");

Assume d and e remain unchanged.

Is it guaranteed that e.ownerDocument == d

is always true?

a) Yes

b) No

3 / 27



Question 1

Assume d is a Document object.

var e = d.createElement("div");

Assume d and e remain unchanged.

Is it guaranteed that e.ownerDocument == d

is always true?

a) Yes

b) No
3 / 27



Question 1

Assume d is a Document object.

var e = d.createElement("div");

Assume d and e remain unchanged.

Is it guaranteed that e.ownerDocument == d

is always true?

a) Yes

b) No
3 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.

4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.

4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.

4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.

4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.

4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.
4 / 27



Question 2

Which of the following can a script do to cause

the browser to run (or re-run) some other script?

a) Remove a script node from a document

and insert it somewhere else.

b) Replace a child text node of a script node.

c) Assign a new value to an already-present src

attribute of a script node.

d) All of the above.

e) None of the above.
4 / 27



Question 3

A handler for a button click can always get a

reference to the window in which the user clicked.

a) True

b) False

5 / 27



Question 3

A handler for a button click can always get a

reference to the window in which the user clicked.

a) True

b) False

True. The handler can just use the expression

self (or window).

5 / 27



Question 3

A handler for a button click can always get a

reference to the window in which the user clicked.

a) True

b) False

No, false. self is statically scoped to refer to

the window where the code is defined.

5 / 27



Question 3

A handler for a button click can always get a

reference to the window in which the user clicked.

a) True

b) False

No, true. Button handlers can always check the

ownerDocument property of the button node.

5 / 27



Question 3

A handler for a button click can always get a

reference to the window in which the user clicked.

a) True

b) False

No, false. If a different handler runs first, it may

move the button node to a different window!

5 / 27



Web Script Semantics

Web script semantics are a bit peculiar.

I Web scripts manipulate interconnected

browser structures.

I Web scripts are event-driven (user input,

network responses, timer events, etc.).

I Web scripts have interesting language

constructs (first-class functions, dynamic

evaluation, self, etc.).

6 / 27



Web Script Semantics

Web script semantics are a bit peculiar.

I Web scripts manipulate interconnected

browser structures.

I Web scripts are event-driven (user input,

network responses, timer events, etc.).

I Web scripts have interesting language

constructs (first-class functions, dynamic

evaluation, self, etc.).

6 / 27



Web Script Semantics

Web script semantics are a bit peculiar.

I Web scripts manipulate interconnected

browser structures.

I Web scripts are event-driven (user input,

network responses, timer events, etc.).

I Web scripts have interesting language

constructs (first-class functions, dynamic

evaluation, self, etc.).

6 / 27



Web Script Semantics

Web script semantics are a bit peculiar.

I Web scripts manipulate interconnected

browser structures.

I Web scripts are event-driven (user input,

network responses, timer events, etc.).

I Web scripts have interesting language

constructs (first-class functions, dynamic

evaluation, self, etc.).

6 / 27



Why Formalize This Stuff?

I We want to perform a rigorous study of

browser information security policies.

I This demands a rigorous definition of

browser behavior.

7 / 27



Why Formalize This Stuff?

I We want to perform a rigorous study of

browser information security policies.

I This demands a rigorous definition of

browser behavior.

7 / 27



Simplifying Assumptions

I Abstract away from some lower-level details

(parsing, rendering, DNS).

I Make the semantics deterministic, modulo

the order of input events.

I Model the BOM operations semantics but

not the details of the JavaScript langauge.

I Omit all security mechanisms.

8 / 27



Simplifying Assumptions

I Abstract away from some lower-level details

(parsing, rendering, DNS).

I Make the semantics deterministic, modulo

the order of input events.

I Model the BOM operations semantics but

not the details of the JavaScript langauge.

I Omit all security mechanisms.

8 / 27



Simplifying Assumptions

I Abstract away from some lower-level details

(parsing, rendering, DNS).

I Make the semantics deterministic, modulo

the order of input events.

I Model the BOM operations semantics but

not the details of the JavaScript langauge.

I Omit all security mechanisms.

8 / 27



Simplifying Assumptions

I Abstract away from some lower-level details

(parsing, rendering, DNS).

I Make the semantics deterministic, modulo

the order of input events.

I Model the BOM operations semantics but

not the details of the JavaScript langauge.

I Omit all security mechanisms.

8 / 27



Formalization Overview

We’ve designed a formal web browser semantics

that . . .

I includes many key browser features.

I operates in a small-step style.

I is declarative (in the style of logical

inference rules).

I is written down in a strongly-typed

programming language (OCaml).

9 / 27



Formalization Overview

We’ve designed a formal web browser semantics

that . . .

I includes many key browser features.

I operates in a small-step style.

I is declarative (in the style of logical

inference rules).

I is written down in a strongly-typed

programming language (OCaml).

9 / 27



Formalization Overview

We’ve designed a formal web browser semantics

that . . .

I includes many key browser features.

I operates in a small-step style.

I is declarative (in the style of logical

inference rules).

I is written down in a strongly-typed

programming language (OCaml).

9 / 27



Formalization Overview

We’ve designed a formal web browser semantics

that . . .

I includes many key browser features.

I operates in a small-step style.

I is declarative (in the style of logical

inference rules).

I is written down in a strongly-typed

programming language (OCaml).

9 / 27



Included Features

I Multiple windows and pages

I Mutable document node trees

I Buttons and text boxes with handlers

I Network requests and responses with

cookies

I Scripts with first-class functions, eval, and

AJAX requests

10 / 27



Omitted Features

I Browsing history

I HTTP error codes and redirects

I “timeout” events in scripts

I javascript: URLs

I file: URLs

11 / 27



Related Work

12 / 27



Whole Browser Formalizations

I HTML5

I Yu, Chander, Islam, and Serikov: JavaScript

Instrumentation for Browser Security

(POPL 2007).

I Yoshihama, Tateishi, Tabuchi, and

Matsumoto: Information-Flow Based

Access Control for Web Browsers (IEICE

Transactions, May 2009).

13 / 27



Whole Browser Formalizations

I HTML5

I Yu, Chander, Islam, and Serikov: JavaScript

Instrumentation for Browser Security

(POPL 2007).

I Yoshihama, Tateishi, Tabuchi, and

Matsumoto: Information-Flow Based

Access Control for Web Browsers (IEICE

Transactions, May 2009).

13 / 27



Whole Browser Formalizations

I HTML5

I Yu, Chander, Islam, and Serikov: JavaScript

Instrumentation for Browser Security

(POPL 2007).

I Yoshihama, Tateishi, Tabuchi, and

Matsumoto: Information-Flow Based

Access Control for Web Browsers (IEICE

Transactions, May 2009).

13 / 27



Other Formalizations

I Maffeis, Mitchell, and Taly: An Operational

Semantics for JavaScript (ASPLAS 2008).

I Gardner, Smith, Wheelhouse, and Zarfaty:

Local Hoare Reasoning About DOM

(PODS 2008).

I Akhawe, Barth, Lam, Mitchell, and Song:

Towards a Formal Foundation of Web

Security (CSF 2010).

14 / 27



Formalization Details

15 / 27



Reactive Systems

Consumer
States

Producer
States

16 / 27



Reactive Systems

Consumer
States

Producer
States

i

16 / 27



Reactive Systems

Consumer
States

Producer
States

i

o

16 / 27



Reactive Systems

Consumer
States

Producer
States

i

o

o

16 / 27



Web Browser Consumer State

Window 
store

Page 
store

Node 
store

Activation 
record 
store

Cookie store
List of open 

network 
connections

17 / 27



Web Browser Producer State

Window 
store

Page 
store

Node 
store

Activation 
record 
store

Cookie store
List of open 

network 
connections

Task list

18 / 27



Window Store
Window 

store
Page 
store

Node 
store

Activation 
record 
store

Cookie store
List of open 

network 
connections

Task list

window:

name string (optional)

opener reference to a window (optional)

current page reference to a page

19 / 27



Page Store
Window 

store
Page 
store

Node 
store

Activation 
record 
store

Cookie store
List of open 

network 
connections

Task list

page:

address URL

root node reference to a node

environment reference to an activation record

script queue list of scripts or placeholders

20 / 27



Network Connection List
Window 

store
Page 
store

Node 
store

Activation 
record 
store

Cookie store
List of open 

network 
connections

Task list

network connection:

I connection for document request:

URL, reference to a window

I connection for script request:

URL, reference to a node

I connection for AJAX request:

URL, reference to a page, expression

21 / 27



Selected Inputs

From the user:

I load in new window(url)

I click button(win, n)

From the network:

I receive(d , n, resp)

22 / 27



Selected Outputs

To the user:

I win closed(win)

I page updated(win, doc)

To the network:

I send(d , req uri , cookies, msg)

23 / 27



What’s Next?

24 / 27



Using Our Browser Semantics

I Primarily, our formalization should be

viewed as a human-readable template.

I Others may be interested in slightly

different features.

I The semantics may need to be translated to

a different machine-consumable form.

25 / 27



Using Our Browser Semantics

I Primarily, our formalization should be

viewed as a human-readable template.

I Others may be interested in slightly

different features.

I The semantics may need to be translated to

a different machine-consumable form.

25 / 27



Using Our Browser Semantics

I Primarily, our formalization should be

viewed as a human-readable template.

I Others may be interested in slightly

different features.

I The semantics may need to be translated to

a different machine-consumable form.

25 / 27



Work in Progress

I Translate browser formaliztion into Coq.

I Define security policies for the browser in

terms of “reactive noninterference”

(Bohannon, et al., CCS 2009).

I Prove the soundness of some enforcement

mechanisms for these policies.

I Gain a better understanding of end-to-end

web browser security.

26 / 27



Work in Progress

I Translate browser formaliztion into Coq.

I Define security policies for the browser in

terms of “reactive noninterference”

(Bohannon, et al., CCS 2009).

I Prove the soundness of some enforcement

mechanisms for these policies.

I Gain a better understanding of end-to-end

web browser security.

26 / 27



Work in Progress

I Translate browser formaliztion into Coq.

I Define security policies for the browser in

terms of “reactive noninterference”

(Bohannon, et al., CCS 2009).

I Prove the soundness of some enforcement

mechanisms for these policies.

I Gain a better understanding of end-to-end

web browser security.

26 / 27



Work in Progress

I Translate browser formaliztion into Coq.

I Define security policies for the browser in

terms of “reactive noninterference”

(Bohannon, et al., CCS 2009).

I Prove the soundness of some enforcement

mechanisms for these policies.

I Gain a better understanding of end-to-end

web browser security.

26 / 27



Thank You

27 / 27


	Pop Quiz!
	Related Work
	Formalization Details
	What's Next?
	Thank You

