conference

proceedings




© 2010 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-931971-76-8



USENIX Association

Proceedings of the
2010 USENIX Conference on
Web Application Development

June 23-24, 2010
Boston, MA, USA



Conference Organizers

Program Chair
John Ousterhout, Stanford University

Program Committee

Dan Boneh, Stanford University

Mike Cafarella, University of Michigan
Stephen Chong, Harvard University
Thorsten von Eicken, RightScale
Armando Fox, University of California, Berkeley
Jeff Hammerbacher, Cloudera

Jon Howell, Microsoft Research
Wilson Hsieh, Google

Christopher Olston, Yahoo! Research
Marvin Theimer, Amazon

Helen Wang, Microsoft Research

The USENIX Association Staff

External Reviewers

Khaled Elmeleegy
Avi Shinnar



2010 USENIX Conference on Web Application Development
June 23-24, 2010

Boston, MA, USA
Message from the Program Chair ... ... .. . v
Wednesday, June 23
10:30—Noon
Separating Web Applications from User Data Storage with BSTORE . ........ ... .. ... .. .. . ... .. .. ... .... 1
Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich, MIT CSAIL
AjaxTracker: Active Measurement System for High-Fidelity Characterization of AJAX Applications .......... 15

Myungjin Lee and Ramana Rao Kompella, Purdue University; Sumeet Singh, Cisco Systems

JSMeter: Comparing the Behavior of JavaScript Benchmarks with Real Web Applications. .................. 27
Paruj Ratanaworabhan, Kasetsart University; Benjamin Livshits and Benjamin G. Zorn, Microsoft Research
1:30-3:00

JSZap: Compressing JavaScript Code . . ... ..ottt e 39
Martin Burtscher, University of Texas at Austin, Benjamin Livshits and Benjamin G. Zorn, Microsoft Research;
Gaurav Sinha, IIT Kanpur

Leveraging Cognitive Factors in Securing WWW with CAPTCHA . ..... ... .. .. .. . .. 51
Amalia Rusu and Rebecca Docimo, Fairfield University; Adrian Rusu, Rowan University

GuLFSTREAM: Staged Static Analysis for Streaming JavaScript Applications . .. .......... ... ... ... oo, . 61
Salvatore Guarnieri, University of Washington,; Benjamin Livshits, Microsoft Research

Thursday, June 24

10:30—Noon

Managing State for Ajax-Driven Web Components . ... ............ .ttt 73
John Ousterhout and Eric Stratmann, Stanford University

SVC: Selector-based View Composition for Web Frameworks. . ........ .. .. ... . ... 87
William P. Zeller and Edward W. Felten, Princeton University

Silo: Exploiting JavaScript and DOM Storage for Faster Page Loads. .. ........ ... .. .. ... ... .. .. ... 99
James Mickens, Microsoft Research

1:30-3:00

Pixaxe: A Declarative, Client-Focused Web Application Framework. . ........... ... ... ... .. ... ....... 111
Rob King, TippingPoint DVLabs

Featherweight Firefox: Formalizing the Core of a Web Browser ........... ... ... .. .. .. 123
Aaron Bohannon and Benjamin C. Pierce, University of Pennsylvania

DBTaint: Cross-Application Information Flow Tracking via Databases. . ............. .. ... .. ... .. ..... 135
Benjamin Davis and Hao Chen, University of California, Davis

3:30-4:30

xJS: Practical XSS Prevention for Web Application Development. . .......... ... .. .. ... ... ... ....... 147

Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras, and Evangelos P. Markatos,
Institute of Computer Science, Foundation for Research and Technology—Hellas, Thomas Karagiannis,
Microsoft Research, Cambridge

SeerSuite: Developing a Scalable and Reliable Application Framework for Building Digital Libraries by

Crawling the Web . . . ... e e e e 159
Pradeep B. Teregowda, Pennsylvania State University,; Isaac G. Councill, Google; Juan Pablo Fernandez R.,
Madian Kasbha, Shuyi Zheng, and C. Lee Giles, Pennsylvania State University






Message from the Program Chair

Welcome to the 2010 USENIX Conference on Web Application Development! WebApps is a new conference this
year, and we hope it will grow into a major annual event for discussing the latest ideas related to the development
and deployment of Web applications. Web applications are revolutionizing software; over the next 10 years they are
likely to change every aspect of the software development food chain, from languages and storage systems up to
frameworks and management systems. However, until now there have been few opportunities for interaction and
synergy across the diverse technologies related to Web applications. The goal of this conference is to bring together
experts who span the entire ecosystem of Web applications.

The program committee accepted 14 excellent papers out of 26 submissions. The papers were reviewed in two
rounds. In the first round each paper was read by four members of the program committee; most of the papers ad-
vanced to a second round, where they received another two reviews. The program committee met in person at Stan-
ford University on March 9, 2010, to make the final selections for the conference; since most papers had been read
by half of the program committee, the discussions were quite lively. Each accepted paper was assigned a program
committee shepherd to guide the revision process for the paper.

I’d like to thank the many people who contributed time and effort to make this conference a success. First and
foremost, thanks to all of the authors. Preparing a manuscript is a major undertaking; without you there would be
no conference. Next I’d like to thank the program committee for their hard work in reviewing the submissions and
shepherding the accepted papers. Finally, the USENIX organization did its usual stellar job in organizing and sup-
porting the conference; thanks go to Ellie Young, Anne Dickison, Casey Henderson, Jane-Ellen Long, and the rest
of the USENIX staff.

I hope you enjoy the conference and that it will inspire you to develop exciting ideas to submit to future WebApps
conferences.

John Ousterhout, Stanford University






Separating Web Applications from User Data Storage with BSTORE

Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

This paper presents BSTORE, a framework that allows de-
velopers to separate their web application code from user
data storage. With BSTORE, storage providers implement
a standard file system API, and applications access user
data through that same API without having to worry about
where the data might be stored. A file system manager
allows the user and applications to combine multiple file
systems into a single namespace, and to control what data
each application can access. One key idea in BSTORE’s
design is the use of tags on files, which allows appli-
cations both to organize data in different ways, and to
delegate fine-grained access to other applications. We
have implemented a prototype of BSTORE in Javascript
that runs in unmodified Firefox and Chrome browsers.
We also implemented three file systems and ported three
different applications to BSTORE. Our prototype incurs
an acceptable performance overhead of less than 5% on a
10Mbps network connection, and porting existing client-
side applications to BSTORE required small amounts of
source code changes.

1 INTRODUCTION

Today’s web applications have application-centric data
storage: each application stores all of its data on servers
provided by that application’s developer. For example,
Google Spreadsheets [14] stores all of its documents on
Google’s servers, and Flickr [37] stores all of its photos
at flickr.com. Coupling applications with their storage
provides a number of benefits. First, users need not setup
or manage storage for each application, which makes it
easy to start using new apps. Second, each application’s
data is isolated from others, which prevents a malicious
application from accessing the data of other applications.
Finally, users can access their data from any computer,
and collaborate with others on the same document, such
as with Google Spreadsheets. Indeed, application-centric
data storage is a natural fit for applications that perform
server-side data processing, so that both client-side and
server-side code can easily access the same data.
Although the application-centric data model works well
in many cases, it also has a number of drawbacks. First,
users are locked into using a single application for ac-
cessing any given piece of data—it is difficult to access
the same data from multiple applications, or to migrate
data from one application to another. By contrast, in
the desktop environment, vi and grep have no prob-

lems accessing the same files. Second, application devel-
opers are forced to provide storage or server resources
even if they just want to publish code for a new appli-
cation, and even if users’ data is already stored in other
applications. By contrast, in the desktop environment,
http://gnu.org/grep might only distribute the code
for grep, and would not maintain servers to service users’
grep requests. The makes it difficult for application de-
velopers to build client-side web applications.

To address this problem, we present BSTORE, a sys-
tem that allows web application developers to decouple
data storage from application code. In BSTORE, data
can be stored in file systems, which provide a common
interface to store and retrieve user data. File systems can
be implemented by online services like Amazon S3 [4],
so that the data can be accessed from any browser, or by
local storage in the browser [12, 36], if stronger privacy
and performance are desired. Multiple file systems are
combined into a single namespace by the file system man-
ager, much like the way different file systems in Unix are
mounted into a single namespace. Finally, applications
access data in BSTORE through the file system manager,
without worrying about how or where the data is stored.

One challenge facing BSTORE is in providing security
in the face of potentially malicious applications or file
systems. While the application-centric model made it
impossible for one application to access another applica-
tion’s data by design, BSTORE must control how each
application accesses the user’s shared data. Moreover,
different users may place varying amounts of trust in file
systems: while one user may be happy to store all of their
data in Amazon S3, another user may want to encrypt any
financial data stored with Amazon, and yet another user
may want his grade spreadsheets to be stored only on the
university’s servers.

A second challenge lies in designing a single BSTORE
interface that can be used by all applications and file sys-
tems. To start with, BSTORE’s data storage interface must
be flexible enough to support a wide range of application
data access patterns. Equally important, however, is that
any management interfaces provided by BSTORE be ac-
cessible to all applications. For example, any application
should be able to specify its own access rights delegation
or to mount its own file systems. If our design were to
allow only the user to specify rights delegation, appli-
cations might be tempted to use their own file system
manager when they find the need to specify finer-grained

USENIX Association

WebApps 10: USENIX Conference on Web Application Development



access control policies or mount application-specific file
systems. This would fracture the user’s file namespace
and preclude data sharing between applications.

A final challenge for BSTORE is to support existing
web browsers without requiring users to install new plug-
ins or browser extensions. While a browser plug-in could
provide arbitrary new security models, we want to allow
users and application developers to start using BSTORE
incrementally, without requiring that all users switch to a
new browser or plug-in simultaneously.

BSTORE’s design addresses these challenges using
three main ideas. First, BSTORE presents a unified file
system namespace to applications. Applications can
mount a new file system by simply supplying the file
system’s URL. A file system can either implement its
own backend storage server or can use another BSTORE
file system for its storage. Second, BSTORE allows ap-
plications to associate free-form tags with any files, even
ones they might not have write access to. Using this single
underlying mechanism, BSTORE enables an application
to organize files as it chooses to, and to delegate access
rights to other applications. Finally, BSTORE uses URL
origins as principals, which are then used to partition the
tag namespace, and specify rights delegation for files with
different tags.

To illustrate how BSTORE would be used in practice,
we ported a number of Javascript applications to BSTORE,
including a photo editor, a vi clone, and a spreadsheet
application. All of the applications required minimal
amount of code changes to store and access data through
BSTORE. We also implemented several BSTORE file
systems, including an encrypting file system and a check-
pointing file system. Our prototype of BSTORE incurs
some in-browser processing overheads, but achieves over-
all performance comparable to using XMLHttpRequest
directly for a typical home network connection.

The rest of this paper is organized as follows. Section 2
provides motivation and use cases for BSTORE. Sec-
tion 3 details BSTORE’s design, and Section 4 discusses
our prototype implementation. Section 5 describes our
experience using BSTORE in porting existing Javascript
applications and in implementing file systems. Section 6
evaluates BSTORE’s performance overheads, and Sec-
tion 7 discusses some of BSTORE’s limitations. Related
work is discussed in Section 8 and finally Section 9 con-
cludes.

2 MOTIVATING EXAMPLES

BSTORE can benefit the users and developers of a wide
range of web applications, by giving users control over
their data, by making it easier for applications to share
data, and by removing the need for application developers
to provide their own storage servers. An existing web
application that has its own storage servers can also use

BSTORE to either export its data to other applications, or
to access additional data that the user might have stored
elsewhere. The rest of this section describes a few use
cases of BSTORE in more detail.

User wants control over data storage. In the current
web application model, application developers are in full
control of how user data is stored. Unfortunately, even
well-known companies like Google and Amazon have had
outages lasting several days [2, 23, 30], and smaller-scale
sites like the Ma.gnolia social bookmarking site have lost
user data altogether [21]. To make matters worse, the cur-
rent model does not allow users to prevent such problems
from re-occuring in the future. Some sites provide special-
ized backup interfaces, such as Google’s GData [13], but
using them requires a separate backup tool for each site,
and even then, the user would still be unable to access
their backed-up data through the application while the
application’s storage servers were down.

With BSTORE, users have a choice of storage providers,
so that they can store their data with a reliable provider
like Amazon or Google, even if they are using a small-
scale application like Ma.gnolia. If the user is concerned
that Amazon or Google might be unavailable, they can
set up a mirroring file system that keeps a copy of their
data on the local machine, or on another storage service,
so that even if one service goes down, the data would still
be available.

Finally, users might be concerned about how a financial
application like Mint.com stores their financial data on
its servers, and what would happen if those servers were
compromised. Using BSTORE, users can ensure that their
financial data is encrypted by mounting an encrypting file
system, so that all data is encrypted before being stored
on a server, be it Mint.com or some other storage provider.
In this model the user’s data would still be vulnerable if
the Mint.com application were itself malicious, but the
user would be protected from the storage servers being
compromised by an attacker.

User accesses photos from multiple applications.
There is a wide range of web applications that provide
photo editing [9], manipulation [26], sharing [15], view-
ing [32], and printing [31]. Unfortunately, because of
the application-centric storage model, users must usually
maintain separate copies of photos with each of these ap-
plications, manually propagate updates from one applica-
tion to another, and re-upload their entire photo collection
when they want to try out a new application. While some
cross-application communication support is available to-
day through OAuth [25], it requires both applications to
be aware of each other, thus greatly limiting the choice of
applications for the user.

With BSTORE, all photo applications can easily access
each other’s files in the user’s file system namespace. The

Text Editor
jsvi.com

Money Manager
finance.com

Applications Spreadsheet Photo Editor
officeapps.com photo.com
fsmgr.com
@Fs Manager does
ACL Check & Routing FS Manager
BROWSER ( ACLTable ) C MountTable )

. Root FS Photo Storage Local Storage Encrypt FS Checkpoint FS
File Systems "
reliablefs.com cheapfs.com localfs.com encrypt.com undo.com
{

Network

]

Use Root FS for underlying storage

3 3
Storage Storage
Backend Backend

Figure 1: Overview of the BSTORE architecture. Each component in the browser corresponds to a separate window whose web page is running
Javascript code. All requests to the BSTORE file system are mediated by the FS manager. Arrows (except in the get response flow) indicate possible

direction of requests in the system.

user can also specify fine-grained delegation rules, such
as granting Picasa access to lower-resolution photos for
publishing on the web, without granting access to full-
resolution originals. Web sharing applications such as
Picasa could still store separate copies of photos on their
servers (for example, for sharing on the web); this could
be done either through an application-specific interface,
as today, or by mounting that user’s Picasa file system in
BSTORE’s file system manager.

Small-scale developer builds a popular application.
In addition to common web applications like GMail and
Picasa, there are a large number of niche web applications
written by developers that might not have all of Google’s
resources to host every user’s data. For example, MIT’s
Haystack group has written a number of client-side web
applications that are popular with specific groups of users.
One such application is NB [22], which allows users to
write notes about PDF documents they are viewing. Cur-
rently, NB must store everyone’s annotations on MIT’s
servers, which is a poor design both from a scalability and
security perspective. BSTORE would allow individual
users to provide storage for their own annotations. Many
other small-scale web application developers are facing
similar problems in having to provision significant server-

side storage resources for hosting essentially client-side
web applications, and BSTORE could help them as well.

3 DESIGN

The BSTORE design is based on the following goals:

Independence between applications and storage
providers. In an ideal design, applications should be
able to use any storage providers that the user might have
access to, and the user should be able to manage their data
storage providers independent of the applications. In par-
ticular, this would enable a pure Javascript application to
store data without requiring that application’s developer
to provide server-side storage resources.

Egalitarian design. BSTORE should allow any appli-
cation to make full use of the BSTORE API, and avoid
reserving any special functionality for the user. One exam-
ple is access control mechanisms: we would like to allow
applications to be able to subdivide their privileges and
delegate rights to other applications. Another example is
mounting new file systems into the user’s namespace: any
application should be able to mount its own server-side re-
sources into BSTORE, or to encrypt its data by mounting
an encrypting file system.

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

3



No browser modifications. BSTORE should not re-
quire browser modifications and should work with exist-
ing browser protection mechanisms (same origin policy
or SOP).

3.1 Overview

Figure 1 illustrates BSTORE’s architecture. A user’s
BSTORE is managed by a trusted file system manager
(FS manager). It mediates all file system requests in the
system. Applications (shown at the top of the figure),
send their file system requests to the FS manager, which
routes them to the appropriate file system (shown at the
bottom of the figure). The FS manager also performs
access control during this request routing process.

The Javascript code for the FS manager, applications,
and file systems run in separate protection domains
(browser windows) and are isolated from each other by
the browser’s same origin policy. All communication
happens via postMessage, which is the browser’s cross-
domain communication mechanism.

The FS manager allows users and applications to mount
different file systems and stitch them together into a uni-
fied namespace. A BSTORE file system exports a flat
namespace of files, and does not have directories. Files
do not have a single user-defined name; instead each file
has a set of tags. An application can categorize a file as
it sees fit by setting the appropriate tags on that file. Ata
later time, it can search the file system and recall files that
match a specific tag expression. Using tags in this manner
for file system organization allows each application the
flexibility to organize the file system as it chooses.

File tags are also the basis for access control in
BSTORE. An application uses tags to delegate a subset of
its access rights to another application. The FS manager
keeps track of these delegations in the ACL table and
enforces access control on every file system request.

3.2 BSTORE API

Table 1 shows the API calls exported by the FS manager
to each application, and Table 2 shows the API calls
exported by each BSTORE file system to the FS manager.
The API calls in Table 1 are divided into two categories,
shown separated by a line in the table. The calls in the top
category are file system calls that correspond directly to
API calls in Table 2. The calls in the lower category are
FS manager-only calls related to access rights delegation
and creating mountpoints. Among the file system calls,
create and search operate on a file system handle (fs_h),
and the rest of the calls operate on a file handle (fi). The
get and set calls operate on entire objects; there are no
partial reads and writes. This design choice is consistent
with the behavior of majority of web applications, which
read and write entire objects, and with other web storage
APIs, such as Amazon S3 and HTMLYS local storage.

FS manager API call Return Rights
on success needed

create(fs_h, init_tags) th, ver write to creator tag
search(fs_h, tag_expr) fh_list read matching files
set(fh, data, [match_ver]) ver write on file
get(fh, [match_ver]) ver read on file
stat(th) ver, size read on file
delete(fh, [match_ver]) — write on file
settag(fh, tag) ver read on file
gettag(fh) ver, tag_list | read on file
rmtag(fh, tag) ver read on file

setacl(target_principal, tags, perms) — —
getacl([target_principal]) — —
rmacl(target_principal, tags, perms) | — —
encrypt(plaintext) ciphertext —

Table 1: API exported by the FS manager to each BSTORE application.
The rights column shows the rights needed by an application to perform
each API call.

FS API call Return on success
create(init_tags, acltagset) fh, ver
search(tag_expr, acltagset) fh_list

set(fh, data, acltagset, [match_ver]) ver

get(fh, acltagset, [match_ver]) ver

stat(th, acltagset) ver, size

delete(fh, acltagset, [match_ver]) —

settag(fh, tag, acltagset) ver

gettag(fh, acltagset) ver, tag_list
rmtag(fh, tag, acltagset) ver

Table 2: API exported by each BSTORE file system to the FS man-
ager. The FS manager fills in the acltagset based on the requesting
application’s access rights.

The rights column in Table 1 shows the access rights
needed by an application to perform each API call. When
an application makes a file system call, the FS manager
uses the access rights delegated to the application to fill
in the acltagset shown in API calls in Table 2. The file
system uses the acltagset to perform access control, as
will be described in more detail in Section 3.5.

Current browsers use the URL domain of a web appli-
cation’s origin as the principal while applying same origin
policy to enforce protection between browser windows.
Since one of our goals is to not modify browsers, we also
choose URL domains of an application’s or file server’s
origin as principals in BSTORE.

3.3 Tags

A tag is an arbitrary label that a principal can attach to a
file (e.g., low-res on a photo file). A file can have multiple
tags set by different principals. Tagging is the underlying
mechanism using which an application (or user) can both
organize the BSTORE namespace in ways meaningful to
it, as well as to delegate access rights to other applications.

Applications use settag to tag a file. An application
can tag other applications’ files as long as it can read
those files. This allows an application to categorize files
in BSTORE in a manner that best fits its purpose. For
example, a photo editor application can tag a photo file
with the date of the photo, location at which it was taken,
or the names of people in it. To avoid applications clob-
bering each others tags, each principal gets its own tag

namespace, and can only set tags within that namespace.
So, a low-res tag set by Flickr is actually flickr.com#low-
res, and is different from low-res tag set by Google Picasa
(which is picasa.com#low-res).

In BSTORE, tag-based search is the only mechanism
by which applications can lookup files and get handles on
them. search takes a file system handle and a tag query
expression and returns files in that file system whose list
of tags satisfy the tag query, and which are readable by the
requesting application. The tag query expression supports
simple wildcard matches. settag and search together
allow an application to organize the BSTORE namespace,
and recall data in ways meaningful to it.

Applications use gettag to retrieve a list of all tags for
a file, including those set by other applications. rmtag
allows an application to delete only the tags that were set
by the same principal as the application.

3.4 File systems

Every mounted BSTORE file system has a Javascript com-
ponent running in a browser window. This Javascript
component exports the BSTORE file system API to the FS
manager, and services requests from it. Some file systems
store their data on network storage or on local storage
(e.g., reliablefs.com and localfs.com in Figure 1). Others,
called layered file systems, store their data on existing
BSTORE file systems and layer additional functionality
on them (e.g. encrypt.com encrypting data and storing it
on reliablefs.com).

All file systems (except the root file system) are spec-
ified in mountpoint files. A mountpoint file for a file
system contains information to mount the file system, in
a well known format. This information includes the URL
for the file system Javascript code, file system configura-
tion parameters, and mountpoint tags. Just as it creates
other files, an application uses the create call to create a
mountpoint file with the right configuration information
in the right format. Other applications can use the mount-
point file to access the file system referenced by it, as long
as the access control policy allows it. Since mountpoint
information can contain sensitive data (such as creden-
tials and mountpoint tags), the application uses the FS
manager’s encrypt API call to encrypt the information
and stores the encrypted information in the mountpoint
file. The FS manager encrypts data using a key that is ini-
tialized when it is first set up, as described in Section 3.8.

To access a file system, an application passes a handle
to the file system’s mountpoint file to create and search
API calls. If the file system is not already mounted, the
FS manager uses this handle to read the mountpoint file,
decrypt the mountpoint information, and launch the file
system in a separate browser window using this informa-
tion. Once the file system is initialized, the FS manager

adds the file system to its mount table and routes requests
to it.

Storing the mountpoint information encrypted allows
an application to safely give other applications access to
a file system, without giving away credentials to the file
system. An application can also safely give other appli-
cations a copy of the mountpoint files it created, which
can be used for mounting without leaking any sensitive
information.

A user or application that created a mountpoint file may
want to tag all files in that file system with a particular tag
to enforce access control on all files in that file system.
It is cumbersome to tag each file individually with that
tag at mount time. Instead, BSTORE allows mounting file
systems with mountpoint tags that are logically applied
to every file on that file system.

3.5 Access control

A BSTORE principal obtains all its access rights through
delegation from other principals. As the base case, the
file system’s principal is assumed to have full access to
all files on that file system. A principal A can specify a
delegation rule to delegate a subset of its access rights to
another principal B. Delegation is transitive and principal
B can in turn delegate a subset of rights it obtained from
A to another principal C. Given all the delegation rules
in the system, BSTORE computes the access rights that
are transitively granted by any principal A to another
principal B, by computing the transitive closure of the
delegation rules. The access rights for an application with
principal A to a file on principal F’s file system are the
rights that are transitively delegated by F' to A.

Delegation rules use file tags to specify the files to
which they apply. Since tags are application-defined prop-
erties on files, this allows an application (say, Picasa) to
easily express intentions such as “Flickr can read all my
low resolution photos on any file system,” without having
to search through the entire file system for low resolution
photos and adding Flickr to each file’s access control list.

The delegation rules described above are decentralized,
and each file system can independently delegate access,
maintain delegation rules from other principals, and com-
pute transitive delegations itself. However, in practice,
it is convenient for users to specify their access control
policy in a single place. To achieve this, all delegation
rules are centralized in the FS manager. File systems
also follow a convention that, when mounted, they del-
egate all access to the FS manager. This allows the FS
manager to make access control decisions for that file
system (by using delegation from the FS manager’s prin-
cipal to specific applications). In case a file system does
not want to use the FS manager’s centralized ACL man-
ager (e.g. in the case of an application mounting its own

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

5



application-specific file system), it can choose not to fol-
low this convention.

The FS manager maintains an ACL table of all delega-
tion rules. A delegation rule is of the form (A, B, T, R),
and signifies that the rights R (read or read_write) are
delegated from principal A to principal B for every file
that is tagged with all the tags in tag set 7'. Going back
to the example above, Picasa’s intentions translate to a
delegation rule (picasa.com, flickr.com, picasa.com#low-
res, read). Any principal (application or file system) can
invoke setacl and rmacl API calls on the FS manager to
add and remove delegation rules. Both these calls take B,
T, and R as arguments. A principal can use the getacl
call to retrieve its delegations to a particular target prin-
cipal. It can obtain all its delegations to any principal by
omitting the target principal parameter to getacl.

The FS manager computes and maintains the transitive
closure of the delegation rules added by all the principals.
On a request from application A to file system F', the FS
manager looks up the transitive closure and includes all
the rights transitively delegated by F' to A in the request
before sending it to F' (these rights are indicated by ar-
gument acltagset in Table 2). The FS manager does not
fetch tags from F' and do the rights check itself to avoid
an extra round trip. The file system F' checks the rights
before performing the operation.

BSTORE’s access control rules allow one principal to
delegate access based on tags from another principal. In
our example, if the user’s low-resolution photos are al-
ready tagged kodak.com#low-res, Picasa can delegate
access to flickr.com based on that tag, instead of tagging
files on its own. However, this opens up the possibil-
ity of kodak.com colluding with flickr: if kodak tags all
files with this tag, flickr will be able to access any file
accessible to Picasa. The FS manager makes this trust
relation explicit by verifying, on each ACL check, that the
principals in a delegation rule’s tags are also allowed to
perform the operation in question. Thus, in our example,
Picasa’s delegation rule would not apply to files tagged
kodak.com#low-res that kodak.com was not able to access
itself.

3.6 File creation

An application (say app.com) creates a file using the cre-
ate call, by specifying a handle to the target file system
(say on fs.com). The application also specifies a list of ini-
tial tags to set on the new file. In addition, the FS manager
sets a special creator tag (fsmgr.com#app.com_creator)
on the file.

For create to succeed, app.com should have write ac-
cess to the tag set consisting of the mountpoint tags of
the file system fs.com and the creator tag. The creator
tag is also used to delegate all access rights on that file
to the creator application. This is done by the FS man-

ager adding a delegation rule (fsmgr.com, app.com, fs-
mgr.com#app.com_creator, read_write).

3.7 File versions

Since BSTORE is shared storage, multiple applications
could be concurrently accessing a file. To help applica-
tions detect concurrent modifications, the BSTORE API
provides compare-and-swap like functionality. All files
are versioned. Mutating file system calls take an optional
match_version argument and fail with a EMODIFIED error
if the current file version does not equal match_version.
A file’s version number is automatically incremented on
every set operation, and most API calls also return the
current file version. Versioning proves useful in other
scenarios as well: it can be used to keep track of change
history, as in the case of the checkpointing file system de-
scribed in Section 5.2.2, and to support transparent local
caching of network storage.

3.8 Bootstrapping

We now give a brief overview of how a user interacts with
BSTORE, including initial setup of the different compo-
nents and subsequent use.

FS manager. We imagine that users will be able to
choose from multiple implementations of FS manager
from different vendors, depending on whom they trust
and whose UI they prefer. Once a user chooses a FS
manager, she sets up her browser by browsing to the
FS manager and configuring it with the information to
mount the root file system. The FS manager stores this
mount information in the browser’s local storage and uses
it for subsequent sessions. It also mounts the root file
system, and sets up BSTORE by initializing its encryption
key and delegation rules table. The user needs to repeat
the browser setup step for every browser she uses. The
BSTORE setup only happens once. During normal use,
the FS manager also provides the user with a Ul to create
and manage delegation rules.

Applications. For each application, the user adds del-
egation rules to the FS manager to grant the application
access to specific files in BSTORE. The user initializes
the application with the FS manager URL, which it uses
to launch the FS manager if it is not already launched.
The application also stores the FS manager URL in its
network storage or local storage for subsequent sessions.

During normal use, when the user needs to choose a
file, applications present a file chooser interface to the
user. The file chooser allows her to search specific file
systems for files with specific tags, and to choose a file
from the results.

File systems. The user obtains an account for file sys-
tems that store data on the network. File systems provide
a friendly user interface using which the user can cre-
ate a mountpoint file containing the parameters for that
particular file system.

For example, when setting up the Photo Storage file
system from cheapfs.com (shown in Figure 1), the file
system UI prompts the user for her FS manager URL,
file system on which to create the mountpoint file, the
initial tag for the mountpoint file and mountpoint tags,
and creates an encrypted mountpoint file that includes the
user’s credentials to access the file system.

When the file system is launched during normal use, it
does not need any input from the user—the FS manager
sends it the mountpoint information stored in the mount-
point file as part of the file system initialization, which
includes the credentials required to access the file system.

3.9 Putting it all together

We now describe an example that illustrates how the dif-
ferent BSTORE components work together.

Say a user uses the Money Manager application shown
in Figure 1 to compute her taxes. Assume that the tax
files are tagged with finance.com#tax, where the principal
of Money Manager is finance.com, and that the tax files
are stored on reliablefs.com.

When the user launches Money Manager, it launches
the user’s FS manager in a separate browser window and
initializes communication with it. It then sends the FS
manager a search request to search for files with tag fi-
nance.com#tax on the reliablefs.com file system. The FS
manager mounts the file system (if necessary) by launch-
ing it in a separate browser window. Using its delegation
rules table, the FS manager computes the acltagset for
finance.com on reliablefs.com and forwards the request to
reliablefs.com file system with the acltagset. The file sys-
tem retrieves all files that are tagged with finance.com#tax
and returns only the handles of those files which are read-
able by finance.com, as specified by the acltagset. This
result is routed back to Money Manager by the FS man-
ager.

Money Manager uses these file handles to fetch the
file data by issuing get requests; these requests follow a
similar path as the search requests. Figure 1 illustrates
the request flow for a get request from Money Manager
to the reliablefs.com file system.

4 IMPLEMENTATION

We built a prototype of BSTORE, including the FS man-
ager and a storage file system, which together comprise
2199 lines of Javascript code, 712 lines of PHP, and 136
lines of HTML.

All BSTORE client-side components are written in
Javascript and work with the Firefox and Google Chrome
browsers. Each component runs in a separate browser win-
dow, and is loaded from a separate domain. Inter-domain
communication within the browser is via postMessage.
The origin domain of the caller is included by the browser

platform as part of the postMessage call, and is used as
the caller principal.

4.1 Storage file system

The Javascript component of the prototype storage file
system implements the BSTORE storage API. The net-
work storage component is written in PHP, and currently
runs on a Linux/Apache stack. Communication between
the file system Javascript and the PHP components is via
XMLHttpRequest POST. All information in the request
and response, except for file data, is JSON encoded. File
data in a set request is sent as a binary byte stream. File
data in the response of a get request is Base64 encoded,
since XMLHt tpRequest does not support byte streams in
the response. The response is also gzip encoded to offset
the increase in size due to Base64 encoding.

User authentication to the file system is via username
and password. The network storage uses a ext3 file sys-
tem for storage and BSTORE files are stored as files in
the file system. A file’s version number is stored as an
extended attribute of the ext3 file and file tags are stored
in a database. The tags database is indexed for efficient
search.

4.2 FS manager

To keep track of delegation rules, BSTORE represents
each principal with a file in the root file system, containing
the delegation rules from that principal to other principals.
To avoid file system access on every access check, the
FS manager caches these rules in memory. A cached
entry for a principal is invalidated if the delegation rules
were changed for that principal in that FS manager. To
account for other FS manager instances, the cache entries
also have an expiry time (currently 5 minutes) and are
refreshed in the background. A better approach would be
to have the FS manager be able to register for notifications
from the file system when the files storing the delegation
rules are modified. Due to this and other similar examples,
we are considering adding version change notifications to
BSTORE.

5 APPLICATIONS AND FILE SYSTEMS

To illustrate how BSTORE would be used in practice,
we implemented one Javascript application that uses
BSTORE, and ported three existing Javascript web appli-
cations to use BSTORE. We also implemented encryption
and checkpointing file systems, to demonstrate the use of
layered file systems. Table 3 summarizes the amount of
code involved in these applications and file systems, and
the rest of this section describes them in more detail.

5.1 Applications

The following applications work with our current
BSTORE prototype:

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development



Application/FS | Original LOC | Modified LOC

Shell 337 NA
Pixastic 4,245 81
jsvi 3,471 74
TrimSpreadsheet 1,293 66
EncryptFS 239 NA
CheckpointFS 595 NA

Table 3: Lines of Javascript code for BSTORE applications and file
systems.

Shell provides basic commands that the user can use to
interact with the storage system, including search, set, cat,
stat, and unlink. We implemented this application from
scratch.

Pixastic [28] is an online Javascript photo editor that
performs basic transformations, such as rotate, crop, and
sharpen, on a user’s images. The version on the author’s
website allows a user to upload an image from their com-
puter, perform transformations on it, and download it
back to their computer. We modified Pixastic to work
with BSTORE, so that a user can load, manipulate, and
save images to BSTORE.

Jjsvi [18] is a vi-clone written purely in Javascript. The
original version supports most vi commands and is a fully
functional editor, but does not allow a user to load or save
files (even to her local desktop). It only temporarily saves
the file contents to a HTML text area, but they are lost
once the web page is refreshed. Our modified jsvi works
with BSTORE, and loads and saves files like a typical vi
editor.

TrimSpreadsheet [34] is an open-source Javascript
spreadsheet engine, and lets a user work with spreadsheet
data in the browser. In the original application, the spread-
sheet data was stored as HTML markup, which meant
spreadsheets could be edited in a browser but the changes
did not persist across browser sessions. We modified
TrimSpreadsheet so that it can save and load spreadsheet
data from BSTORE.

Modifying Pixastic, jsvi, and TrimSpreadsheet to work
with BSTORE was straightforward and involved less than
a day’s worth of work to understand each application
and add code to interact with BSTORE. Table 3 gives
a tally of the lines of code for each application; for the
applications we modified, the table also gives the number
of lines changed to port the application to BSTORE. As
can be seen from the table, porting applications required
relatively few modifications to the application code.

5.2 Layered file systems

This section describes the motivation, design details, and
usage of the encryption and checkpointing file systems.
Each file system is a few hundred lines of code and in-
volved a few days of effort to implement (as opposed to a
couple of months of work to implement the base system).
Given this experience, we feel that layering additional

functionality on an existing BSTORE system is relatively
easy.

5.2.1 Encrypting file system

Consider the scenario described in Section 2, where a
user wants to encrypt her financial data before storing it.
The user does not trust the underlying storage provider
enough to store sensitive data in the clear, but trusts en-
cryption functionality provided by, say, encrypt.com.
In BSTORE, she can configure her applications to talk
to the underlying storage via encrypt.com’s encrypting
file system. We built a sample encrypting file system,
EncryptFsS, for this scenario, which works as described
below.

EncryptFS provides a setup Ul that the user can use to
create a mountpoint. The setup process is similar to that
of the Photo Storage file system, described in Section 3.8.
The resulting mountpoint file stores the encryption pass-
word and the backing file system that EncryptFS uses
to store its data. Once the mountpoint is created, the
user adds a delegation rule to the FS manager allowing
EncryptFS access to its backing file system. The user
then proceeds to configure her financial application to use
EncryptFS as discussed in Section 3.8.

We use the jsCrypto library from Stanford to perform
cryptographic operations in Javascript [33]. We use the
OCB mode of encryption with block size, key, IV, and
MAC being 16 bytes. On a set request, the object contents
are encrypted using the encryption key. The MAC and
IV are attached to the beginning of the encrypted content,
and the request is then written to the storage. On a get
request, the encrypted content is fetched from storage,
MAC and IV are extracted, the rest of the content is
decrypted, the MAC on relevant tags is verified and the
decrypted content returned.

Tags are critical in making access control decisions and
so an untrusted FS cannot be trusted to return the cor-
rect tags. To get around this problem, EncryptFS MACs
tags during settag and on a gettag will only return tags
that have a valid tag. EncryptFS is relatively simple and
does not prevent replay or rollback attacks. We can use
well known techniques, such as those in the SUNDR file
system [19], to get around such attacks.

5.2.2 Checkpointing file system

Imagine a user who wants to try a new application, say
a photo retouching software that runs through her photo
collection and enhances images that are below a certain
quality. She does not trust the reliability of the software
and does not know whether it would leave her photo
collection in a damaged state if she lets it run on it. The
simple checkpointing file system, CheckpointF'S, that we
describe here, helps with this situation by keeping an
undo log of all the changes that the application made to

WebApps ’10: USENIX Conference on Web Application Development

the storage system, and at the end of the application run,
giving the user an option either to commit the changes or
to revert them.

The set up for CheckpointFS is similar to that of En-
cryptES, except that the mountpoint configuration in this
case only consists of the backing file system where Check-
pointFS stores the data and its undo log.

CheckpointFS records undo information in its log for
every mutating operation. The undo information consists
of the operation performed, timestamp, and version infor-
mation for the file on which the operation was performed.
In addition, for settag and set, a copy of the file tags
and file contents respectively, is stored in the undo log.
CheckpointFS stores these undo log records in memory
and dumps them every minute to log files (numbered se-
quentially). These records could also be stored in browser
local storage instead of memory if crash safety is an issue.

CheckpointFS keeps logging requests until the user
indicates in its UI that she is done with her application
session. At this point, all in memory logs are dumped,
and CheckpointFS temporarily stops accepting further
requests. The user is then given the choice to either to
rollback to previous checkpoint or to commit the changes
thereby wiping out the old checkpoint and creating a new
one. If the user chooses to rollback, all the logs are read
and the version information is checked to make sure that
no other application performed an intervening mutating
operation on the backing file system that will be clobbered
by the rollback.

Though the current UI is simple and provides only
one checkpoint, the information CheckpointFS logs could
be used to provide more finer grained rollback capabil-
ities. For example, CheckpointFS could store multiple
checkpoints and allow the user to rollback to any previous
checkpoints, it could automatically take a checkpoint at
regular intervals, or it could provide a finer-grained undo
of a subset of files.

6 BSTORE PERFORMANCE

For BSTORE to be practical, it should have acceptable
overhead and its performance should be competitive with
alternate data access mechanisms for web applications.
Web applications today typically use XMLHttpRequest
(XHR) to asynchronously GET data from, and POST data
to web servers. We ran a set of experiments to measure the
performance of BSTORE under different configurations,
and compared it with XHR GET and XHR POST. We
also measured the overhead of BSTORE’s layering file
systems, and compared BSTORE’s performance on two
different browsers.

For all experiments, the BSTORE file system server was
an Intel Xeon with 2GB of RAM running Debian Squeeze,
with Apache 2.2 and PHP 5.3.2. The client machine was
an Intel Core 17 950 with 12GB of RAM running Ubuntu

Size | BSTORE-Get | XHR-Get | BSTORE-Set | XHR-Post

1 KB 17.6 ms 5.0 ms 18.9 ms 5.3 ms

5 KB 18.6 ms 6.0 ms 19.0 ms 5.9 ms
10 KB 19.7 ms 6.6 ms 19.4 ms 6.5 ms
100 KB 40.2 ms 18.8 ms 34.0 ms 15.7 ms
500 KB 117.5 ms 66.6 ms 102.3 ms 59.4 ms
1 MB 225.9 ms 141.2 ms 174.8 ms 116.8 ms

Table 4: Comparison of get and set operation performance on a BSTORE
file system to XHR-get and XHR-post.

9.10. The web browsers we used were Firefox 3.5.9
and Google Chrome beta for Linux. The local network
between the client and the server is 100Mbps ethernet.

6.1 BSTORE file system performance

In our first experiment, we compare the performance of
BSTORE get and set with XHR GET and XHR POST on
a local network. The experiment consists of fetching and
writing image files of various sizes ranging from 1 KB to
1 MB. The server side for XHR GET and XHR POST is a
simple PHP script that sends back or accepts the required
binary data. The BSTORE get and set requests are to the
root file system, and mirror the request flow illustrated in
Figure 1, with delegation rules set to allow read and write
access to the required files for the application running the
experiment. Since this experiment is on a local network,
it highlights the overhead of BSTORE mechanisms, as
opposed to the network transfer cost. The web browser
used in this experiment is Firefox.

The results of the experiment are shown in Table 4. To
remove variability, we ran 24 runs of the experiment and
removed the runs with the two highest and two lowest
timings. The numbers shown in the table are the average
times of the remaining 20 runs. From the table, we see that
XHR operations are about three times faster than BSTORE
operations for small files. For a large file of 1 MB size,
BSTORE-Get is about 60% slower than XHR-Get and
BSTORE-Set is about 50% slower than XHR-Post. Most
of this overhead is due to processing within the browser.
For example, for BSTORE-Set on a 1 MB file, 19.9%
of the time is spent in encoding/decoding data in the
browser, 5.7% in communication within the browser using
postMessage, and 73.6% in communication between the
storage file system Javascript and backend server using
XHR POST.

BSTORE-Get is slower than BSTORE-Set due to gzip
overhead. Recall from Section 4 that the requests from
BSTORE storage file system Javascript to the backend are
in binary; the responses, however, are Base64 encoded
and gzipped, as XHR does not support byte streams in
the response. This means that BSTORE-Get involves
compression of data on the backend and decompression
in the browser, which is not present in BSTORE-Set. The
overhead for these operations dominates the total time as
the local network is fast.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development



Size | BSTORE-Get | XHR-Get | BSTORE-Set | XHR-Post

1 KB 117.7 ms 105.0 ms 117.6 ms 105.5 ms
5KB 217.5 ms 205.0 ms 268.4 ms 255.3 ms
10 KB 218.9 ms 205.5 ms 268.9 ms 255.3 ms
100 KB 894.0 ms 927.7 ms 981.0 ms 1059.7 ms
500 KB 42232 ms | 41729 ms 4451.5ms | 4409.4 ms
1 MB 86223 ms | 8500.9 ms 8978.7ms | 8916.6 ms

Table 5: BSTORE FS performance on a 1Mbps, 100ms latency network.

Size | BSTORE-Get | XHR-Get

BSTORE-Set | XHR-Post

1 KB 27.5 ms 15.2 ms 29.1 ms 15.6 ms
5KB 37.4 ms 16.6 ms 48.7 ms 36.1 ms
10 KB 38.5 ms 20.6 ms 49.5 ms 36.9 ms
100 KB 116.2 ms 94.8 ms 138.3 ms 119.8 ms
500 KB 451.4 ms 423.9 ms 498.9 ms 472.9 ms
1 MB 901.1 ms 863.2 ms 982.1 ms 935.1 ms

Table 6: BSTORE FS performance on a 10Mbps, 10ms latency network.

Though overhead of BSTORE requests seem high, they
represent performance on an unrealistically fast network.
On a more realistic network with lower bandwidth, the
network cost dwarfs BSTORE overhead as the next ex-
periment illustrates. Furthermore, these overheads are
primarily due to lack of support for binary data in XHR
responses and in postMessage, and can be significantly
reduced by adding this support. The responseBody at-
tribute of XHR, being considered by W3C for a future
version of the XHR specification, supports binary byte
streams, and is a step in this direction.

6.2 Wide-area network performance

In order to evaluate BSTORE overhead in real-world net-
works, we ran the same experiment as above on simulated
networks with realistic bandwidths and latencies. We
chose two network configurations: a 1Mbps network with
100ms round-trip latency, and a 10Mbps network with
10ms round-trip latency. The slow networks are emulated
using the Linux traffic control tool (tc).

The results are shown in Tables 5 and 6. We see from
the tables that the BSTORE overhead, as compared to
plain XHR, drops considerably. Overhead of BSTORE-
Get over XHR-Get for a 1 MB file drops from 60% in
local network to 4% on 10Mbps network, and 1.4% on
1Mbps network. Similarly, overhead of BSTORE-Set
over XHR-Post for a 1 MB file drops from 50% in local
network to 5% on 10Mbps network, and 0.7% on 1Mbps
network. It is clear from these results that the browser
overheads in BSTORE become insignificant compared to
network cost for realistic networks.

Another point illustrated in these tables is the effect of
gzip in slower networks. For a 1 MB file on slower net-
works, BSTORE-Get is faster than BSTORE-Set, whereas
the opposite held true on the local network. This is be-
cause gzip reduces the number of bytes transferred over
the network; on slow networks the resulting time saved
more than offsets the time taken to compress and decom-
press the data.

6.3 Performance of layered file systems

The previous experiments focused on the scenario of an
application accessing data on the BSTORE root file sys-
tem. BSTORE also supports layered file systems. In
this experiment, we measure the overhead of layered file
systems on the same workload as the previous experi-
ments. We use three layered file systems: a null layered
file system which passes data back and forth without any
modification, and EncryptFS and CheckpointFS described
in Section 5.2. The measurements are performed on the
local network.

Table 7 shows the results. From the table we see that
the overhead of a null layered file system is small—about
6% for BSTORE-Get and 7% for BSTORE-Set, for the
1 MB file. This overhead is due to the extra postMessage
calls and encoding/decoding as requests pass through the
layered file system and FS manager. We believe this
overhead is reasonable; also, on a slower network, this
overhead becomes a smaller fraction of the overall time,
further reducing its impact.

For EncryptFS, the bulk of the time is spent in cryp-
tographic operations. For a 1 MB file, decryption
takes 3095ms (85.1% of Get time) and encryption takes
2534ms (90.3% of Set time). We also observed that
a postMessage that follows a crypto operation takes
more than an order of magnitude longer than other
postMessage calls. We believe that this variability is
a characteristic of the Firefox Javascript engine. We con-
firmed our suspicion by testing postMessage times after
a CPU intensive tight loop, and observing that it does
indeed take an order of magnitude longer than normal.

For CheckpointFS, Get performance is close to that of
null layered file system, as it does not do anything on a
Get. The overhead in its Set operation is due to logging—
this involves an extra RPC to fetch the old file contents
and store them in the log. For this experiment, the old file
was always 1 KB in size.

6.4 Browser compatibility

Today people use many different browsers, and an im-
portant consideration for a good web application frame-
work is cross-browser support. We primarily imple-
mented BSTORE for Firefox, but were able to run it on
Google Chrome with a small modification. XHR POST
on Chrome does not support sending binary data, and
so we had to change our implementation to send data in
Base64 encoded form. We predict that porting BSTORE
to other browsers such as IE and Safari will require some
changes, mainly because of the difference in ways these
browsers handle events, postMessage, and some other
differences in Javascript engine.

To see how BSTORE performs on Chrome, we ran the
first experiment using Chrome. Table 8 shows the results
as compared to performance on Firefox. Chrome is slower

Size No Layering Null Layered FS EncryptFS CheckpointFS
Get Set Get Set Get Set Get Set

1 KB 17.6 ms 18.9 ms 19.2 ms 19.9 ms 24.9 ms 28.2 ms 19.2 ms 37.8 ms
5KB 18.6 ms 19.0 ms 20.3 ms 20.4 ms 45.0 ms 47.2 ms 20.4 ms 37.3 ms
10 KB 19.7 ms 19.4 ms 21.4 ms 21.1 ms 63.4 ms 65.2 ms 21.8 ms 38.8 ms
100 KB 40.2 ms 34.0 ms 43.0 ms 36.8 ms 300.5 ms 292.3 ms 45.0 ms 53.7 ms
500 KB 117.5 ms 102.3 ms 132.9 ms 110.0 ms 1494.5 ms 1359.8 ms 136.0 ms 123.2 ms
1 MB 225.9 ms 174.8 ms 238.5 ms 187.8 ms 3636.0 ms 2806.8 ms 247.4 ms 208.6 ms

Table 7: Performance of various layered file systems under BSTORE performing get and set operations.

Firefox Chrome
Get Set Get Set
1 KB 17.6 ms 18.9 ms 14.8 ms 15.6 ms
5KB 18.6 ms 19.0 ms 15.8 ms 16.1 ms

Size

10 KB 19.7 ms 19.4 ms 17.4 ms 18.6 ms
100 KB 40.2 ms 34.0 ms 47.6 ms 44.6 ms
500 KB 117.5 ms 102.3 ms 141.8 ms 143.4 ms

1 MB 225.9 ms 174.8 ms 258.4 ms 256.4 ms

Table 8: Performance of BSTORE on Firefox and Chrome.

than Firefox on larger files, and the difference is primarily
due to slower postMessage and slower XHR POST. For
example, for a 1 MB file get, postMessage was 30.2ms
in Chrome as compared to 7.2ms in Firefox, and XHR
POST was 226.1ms in Chrome as compared to 202.9ms
in Firefox. From these results, overall we can conclude
that BSTORE works reasonably well in Chrome.

7 DISCUSSION

In its current form, BSTORE does not support all appli-
cations. Collaborative web applications (such as email
and chat) need a server for reasons other than storage,
and BSTORE does not eliminate the need for such servers.
Social applications, such as Facebook, require sharing
data between users. BSTORE currently does not support
cross-user sharing; for one, the principals do not include
a notion of a user. We plan to explore extending BSTORE
to support cross-user sharing, perhaps by building on top
of OpenlD. In the meanwhile, social applications can still
use BSTORE to store individual users’ files, and imple-
ment cross-user sharing themselves.

The principal of an application in BSTORE is the URL
origin from where the application is loaded. This makes
it difficult to support serverless applications, where the
Javascript code for the application can be hosted any-
where, or even passed around by email. BSTORE could
be extended to add support for principals that are a hash
or a public key corresponding to application code.

‘We have chosen to support an object get and set API
in BSTORE, which works well for many applications, in-
cluding the ones we used in our evaluation. Likewise, our
tagging model fits well with the data model of existing
applications like GMail and Google Docs [14], and can
be also used to express traditional file-system-like hierar-
chies. However, some applications may require a richer
interface for querying their data, such as SQL, and tags
cannot express the full range of such queries. Storing an

entire SQL table as a file in BSTORE may be acceptable
for small data sets, but accessing large data sets efficiently
would require adding a database-like interface along the
lines of Sync Kit [5].

With BSTORE, users potentially have to worry about
providing storage, whereas in the current model all stor-
age is managed by the application provider. The sim-
plicity of today’s model could also be supported with
BSTORE, where each application mounts its own storage
in the user’s file system manager, with the added bene-
fit that applications can now easily share data with each
other. At the same time, the user could have the option
of procuring separate storage from a well-known online
storage provider, such as Amazon S3 or Google, which
would then store data for other applications the user runs,
and backup data from existing application stores.

Due to the level of indirection between tags and the
associated access rights, a user may inadvertently leak
rights by tagging a file incorrectly without realizing it. To
avoid this risk, the file tagging Ul in applications and FS
manager can resolve and display the new principals being
granted access due to the addition of the tag.

Currently, all BSTORE components run in separate
browser windows; this can present the user with too many
windows. This can be mitigated by running the FS man-
ager in a window and all the file systems as iframes within
the FS manager window. If extending the browser is feasi-
ble, a browser extension to support “background windows”
would provide a better user experience.

8 RELATED WORK

The idea of a unified file system namespace has been
explored in earlier systems like Unix and Plan 9 [27].
Moreover, various distributed file systems [1, 6, 16, 29]
provide a uniform storage platform, along with the se-
curity mechanisms needed for authentication and access
control. BSTORE addresses new challenges posed by web
applications, including the need for different storage mod-
els (using tags and tag search), the need for applications
to mount their own file systems, and the need for flexi-
ble delegation of access control, without requiring any
changes to client-side browsers.

Similar to tags in BSTORE, semantic file systems [11]
and the Presto document system [8] provide alternate file

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

11



system organization using file attributes, in addition to the
hierarchical file system namespace.

SUNDR [19] provides a network file system designed
to store data securely on untrusted servers, and ideas
from it would be directly applicable to designing a better
encrypting file system for BSTORE.

Google gears [12], HTMLS5 [36] local storage, and
Sync Kit [5] aim to improve web application performance
and enable offline use with client-side persistent storage.
However, these mechanisms still provide isolated storage
for each application, and do not address sharing of data
between applications.

There are also a number of browser plug-ins that pro-
vide alternative environments for deploying client-side
applications [3, 7, 20, 38]. While some of them provide
machine-local storage, none of them provide user-local
storage that is available from any machine that the user
might access. Accessing data stored in BSTORE from one
of these environments currently requires going through
Javascript; in the future, BSTORE could support native
bindings for other execution environments.

Some websites provide mechanisms, such as REST
APIs or OAuth, for users to access their data from ex-
ternal services. OAuth is an open protocol that allows
a user to share her web application data with another
web application from a different origin. However, unlike
BSTORE, both applications should know of each other
before hand, limiting the number of applications that can
use this. Also, OAuth requires involvement of the web
application servers and cannot support Javascript-only
applications with no backend. Google provides external
access to user data through APIs utilizing the Google Data
Protocol [13] in a similar manner. BSTORE simplifies
data sharing by avoiding the need for all applications to
know about each other ahead of time, and does not require
server involvement for data sharing.

Menagerie [10] allows sharing of a user’s personal data
between multiple web applications and provides stan-
dardized hierarchical naming and capability-based protec-
tion. However, like OAuth, it requires backend servers
to communicate with each other. Also, unlike BSTORE’s
tag-based mechanisms, Menagerie’s file systems don’t
support per-application file system organization and dele-
gation of access rights based on file properties.

Cloud computing and storage services such as Amazon
S3 [4], and Nirvanix [24] provide web application devel-
opers with the option of renting storage and on-demand
computing. However, developers still need to bear the
costs of renting the server capacity, and make data man-
agement decisions on behalf of users. BSTORE allows
users to control their own data, such as by encrypting,
mirroring, or backing it up.

Cross-origin resource sharing [35] provides a mecha-
nism for client-side cross-origin requests. This allows for

pure client-side apps to access data from other websites
which will in turn implement cross domain authentication
and access control. However, using this mechanism alone
does not provide a single namespace for all user data,
and does not provide an access control and delegation
mechanism such as that provided by BSTORE.

Hsu and Chen [17] describe the design of a secure
file storage service for Web 2.0 applications. While the
motivation for their work is similar to ours, there are a
number of limitations of their work that BSTORE’s design
addresses. First, their file system doesn’t support a unified
namespace and there are no mountpoints. It cannot sup-
port delegation, encryption, or checkpointing, and doesn’t
support versioning, which means that applications sharing
data can run into problems. Finally, BSTORE’s tags allow
applications to annotate each others’ files, and to dele-
gate specific access, without requiring write privileges,
something that is not possible in Hsu and Chen’s system.

9 CONCLUSION

This paper presented BSTORE, a framework for separat-
ing application code from data storage in client-side web
applications. BSTORE’s architecture consists of three
components: file systems, which export a storage API
for accessing user data, a file system manager, which im-
plements the user’s namespace from a collection of file
systems, and enforces access control, and applications,
which access user data through the file system manager.
A key idea in BSTORE is the use of tags on files. Tags
allow applications to organize their data in different ways.
An application also uses tags to designate the precise files
it wants to delegate rights for to other applications, even
if it cannot write or otherwise modify those files itself.
The BSTORE file system manager interface is egalitarian,
allowing any application to specify delegation rules or
mount new file systems, in hopes of avoiding the need for
applications to supply their own file system manager.

A prototype of BSTORE is implemented in pure
Javascript, which runs on both the Firefox and Chrome
browsers. We ported three existing applications to run
on BSTORE, which required minimal source code mod-
ifications, and wrote one new application. We also im-
plemented three file systems, including ones that trans-
parently provide encryption or checkpointing capability
using an existing file system for storage. Finally, our pro-
totype achieves reasonable performance when accessing
data over a typical home network connection.

ACKNOWLEDGMENTS

We thank our shepherd, John Ousterhout, as well as Jon
Howell, Adam Marcus, Neha Narula, and the anonymous
reviewers for providing feedback that helped improve this
paper. This work was supported by Quanta Computer and
by Google.

12

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

REFERENCES [18] jsvi — javascript  vi. http://gpl.

[1] A. M. Vahdat, P. C. Eastham, and T. E. Anderson. 1nt‘ernetconnect1on..\net/ vi/.

WebFS: A global cache coherent file system. Tech- [19] J.Li, M. Krohn, D. Ma21eres, and D. Shasha. Se§ure
nical report, UC Berkeley, 1996. untrusted data repository (SUNDR). In Proceedings

[2] S. Aaronson. Off the egrid. http:// of the 6th Symposium on Operating Systems Design
scottaaronson.com/blog/?p=428 and Implementation, pages 91-106, San Francisco,

[3] Adobe. Adobe Flash. http://www.adobe.com/ CA’ December. 2004' . .
flashplatform. [20] Microsoft. Silverlight. http://silverlight.

[4] Amazon. Amazon simple storage service. http: net/. . . .
//aws. amazon. com/s3/. [21] R. Miller. Ma.gnolia data is

[5] E. Benson, A. Marcus, D. Karger, and S. Madden. gone for good. .http:/ /v
Sync Kit: A persistent client-side database caching datacenterknc.)wledge : c_om/ archives/2§09/
toolkit for data intensive websites. In Proceedings 02/19/magnolia-data- 1s—gone—for—good/..
of the World Wide Web Conference, 2010. [22] MIT Haystack Group. NB 2.0. http://nb.csail.

[6] B. Callaghan. WebNFS Client Specification. RFC mit. edl.l/ )

2054 (Informational), 1996. [23] A. Modine. Web startups crumble under amazon

[7] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. s3 outage. http://www.theregister.co.uk/
Leveraging legacy code to deploy desktop applica- 2908/ 6,)2/ 15/ ar.nazon_s3._outage_feb_2®®8/ )
tions on the web. In Proceedings of the 8th Sympo- [24] Nirvanix. http://www.nirvanix.com/.
sium on Operating Systems Design and Implemen- [25] Oauth. thp ://oauth.net. .
tation, San Diego, CA, December 2008. [26] Photofunia. http://www.photofunia.com.

[8] P. Dourish, W. K. Edwards, A. LaMarca, and M. Sal- [27] R. Pi'ke, D. Presotto, K. Thompson, H. Tri(fkey, and
isbury. Using properties for uniform interaction in P. Winterbottom. The use of name sp aces n pla.ln 9.
the presto document system. In Proceedings of the ACM SIGOPS Operating System Review, 27(2):72~
ACM Symposium on User Interface Software and 76’ 19,93' o ) .

Technology (USIT). ACM, 1999 [28] Pixastic — online javascript photo editor. http://

[9] FotoFlexer. Fotoflexer: The world’s most advanced WwW.plxastic. com. .
online image editor. http://www.fotoflexer. [29] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh,
com and B. Lyon. Design and implementation of the sun

[10] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Grib- network filesystem. In Proceedings of the Summer
ble, and H. M. Levy. The organization and sharing 1986 USENIX Conference, .1985' .
of web-service objects with menagerie. In Proceed- [30] S. Shankland and T. Krazit. Widespread google
ings of the World Wide Web Conference (WWW), outages rattle users. http://news.cnet.com/
2008 widespread-google-outages-rattle-users/.
[11] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W,  [31] Shutterfly. http://www.shutterfly.com.
toole. Semantic file systems. In /3thACM Sympo- [32] Slideroll. Slideroll online slideshows. http://www.
sium on Operating Systems Principles, pages 16-25. slideroll.com. .
ACM. 1991. [33] E. Stark, M. Hamburg, and D. Boneh. Symmetric
[12] Google. Gears: Improving your browser. http: cryptography in javascript. In Proceedings of the
//gears.google. com/ Annual Computer Security Applications Conference,
[13] Google data protocol. http://code.google. 20,09'
com/apis/gdata/. [34] TrimSpreadsheet. http://code.google.com/p/
[14] Google docs. http://docs.google. com/. trimpath/wiki/TrinSpreadsheet.
[15] Google. Picasa web albums. http://picasaweb. [35] _W3C' Cross-origin resource sharing: ~ Ed-
google.com itor draft. http://dev.w3.0org/2006/waf/
[16] J. H. Howar, M. L. Kazar, S. G. Menees, D. A. access—control/,.De?ember 2009.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and [36] W3C. HTML 5 editor’s draft. http://dev.w3.
M. J. West. Scale and performance in a distributed org/ htm'15/ spec/ ,.Janual.ry 2010.
file system. ACM Transactions on Computer Sys- [37] Yahoo. flickr. http://£lickr.com.
tems, 6(1):51-81, 1988. [38] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth,
[17] F. Hsu and H. Chen. Secure file system services for T. O.rman.dy, S. Okasaka, N. Narula, and N. Fullagar.
web 2.0 applications. In Proceedings of the ACM Native client: A sandbox for portable, untrusted x86
Cloud Computing Security Workshop, Chicago, IL, native code. In Proceedings of the IEEE Symposium
November 2009. on Security and Privacy, Oakland, CA, May 2009.
USENIX Association WebApps *10: USENIX Conference on Web Application Development 13



AjaxTracker: Active Measurement System for High-Fidelity
Characterization of AJAX Applications

Myungjin Lee, Ramana Rao Kompella, Sumeet Singh!
Purdue University, TCisco Systems

Abstract

Cloud-based Web applications powered by new tech-
nologies such as Asynchronous Javascript and XML
(Ajax) place a significant burden on network operators
and enterprises to effectively manage traffic. Despite in-
crease of their popularity, we have little understanding
of characteristics of these cloud applications. Part of the
problem is that there exists no systematic way to gener-
ate their workloads, observe their network behavior to-
day and keep track of the changing trends of these appli-
cations. This paper focuses on addressing these issues by
developing a tool, called AJAXTRACKER, that automat-
ically mimics a human interaction with a cloud applica-
tion and collects associated network traces. These traces
can further be post-processed to understand various char-
acteristics of these applications and those characteristics
can be fed into a classifier to identify new traffic for a par-
ticular application in a passive trace. The tool also can be
used by service providers to automatically generate rele-
vant workloads to monitor and test specific applications.

1 Introduction

The promise of cloud computing is fueling the migra-
tion of several traditional enterprise desktop applications
such as email and office applications (e.g., spreadsheets,
presentations, and word processors) to the cloud. The
key technology that is powering this transition of the
browser into a full-fledged cloud computing platform is
Asynchronous Javascript and XML (Ajax) [11]. Ajax al-
lows application developers to provide users with very
similar look-and-feel as their desktop counterparts, mak-
ing the transition to the cloud significantly easier.

The modern cloud applications based on Ajax behave
differently from the traditional Web applications that in-
volve users clicking on a particular URL to pull objects
from the Web server. Ajax-based cloud applications,
however, may involve each mouse movement leading
to a transaction between the client and the server. Fur-
ther, these transactions may potentially involve an ex-
change of one or many messages asynchronously and
sometimes, even autonomously without user involve-
ment (e.g., auto-save feature in email).

While there are a large number of studies that charac-
terize (e.g., [7]) and model (e.g., [6]) classical Web traf-
fic, we have very limited understanding of the network-
level behavior of these Ajax-based applications. A com-
prehensive study of these applications is critical due to
two reasons. First, enterprises are increasingly relying

on cloud applications with Ajax as a core technology. As
these services can potentially affect the employee pro-
ductivity, it becomes crucial for operators (both enter-
prise as well as ISP) to constantly monitor the perfor-
mance of these applications. Second, network operators
need to project how application popularity changes may
potentially affect network traffic growth, perform ‘what-
if” analyses, monitor for new threats and security vulner-
abilities that may affect their network.

A standard approach (e.g., [21]) for characterizing
these applications is to collect a trace in the middle of the
network and observe the network characteristics of these
applications in the wild. Due to the reliance on passive
network traces, however, this approach has two main lim-
itations. The first limitation is that there is no easy way to
isolate the network-traffic produced by individual opera-
tions (such as Zoom-in operation in Maps application, or
drag-and-drop on Mail application), which may be im-
portant to understand which actions are most expensive
or how network traffic may change if relative usage of
different operations change in future. Second, there is no
easy way to understand how network conditions affect
the characteristics of these applications. This is since, at
the middle of the network, the router only observes ag-
gregate traffic comprising of clients from heterogeneous
network environments. For some uses, aggregate view
may actually be sufficient, but for certain management
tasks such as, say, conducting what-if analyses, this ag-
gregate view is not sufficient.

To address these challenges, in this paper, we propose
an active measurement system for high-fidelity char-
acterization of modern cloud applications, particularly
those that are based on Ajax. Our approach comprises
of two key ideas: First, we observe that running an ap-
plication on an end-host with no other application can
allow capturing all the packets associated with that ap-
plication session with zero false positives or false neg-
atives. Second, by controlling the network conditions
and what operations we inject in isolation, we can get
a deeper understanding of these applications in addition
to predicting their impact on the network.

Our system called AJAXTRACKER, works by mod-
eling high-level interaction operations (e.g., drag-and-
drop) on a particular Ajax-based cloud application and
by injecting these operations through a browser to gener-
ate (and subsequently capture) relevant network activity
between the client and the server. In addition, it incorpo-
rates mechanisms to generate representative client appli-

USENIX Association

WebApps 10: USENIX Conference on Web Application Development

15



cation sessions by specifying either an explicit or model-
driven sequence of atomic operations. The model that
governs the sequence of operations may, for instance,
control the distribution of time between two atomic oper-
ations. It also utilizes a traffic shaper to control network
latencies and bandwidth to study the effects of end-host
network conditions on the application performance. We
have designed and implemented a prototype of this tool
that is available for download'.

Thus, our paper makes the following contributions: 1)
Our first contribution in this paper is the design of AJAX-
TRACKER that provides a mechanism to automatically
interact with Ajax-powered cloud services. We discuss
the details of the tool in Section 3. 2) We present a char-
acterization study of popular Ajax-based applications un-
der different bandwidth conditions and different round-
trip times. Section 4.2 discusses these results in more
detail. 3) Our final contribution is a characterization of
network activity generated by popular applications on a
per-operation basis. To the best of our knowledge, our
study is the first to consider the network activity of indi-
vidual atomic operations in Ajax applications. We dis-
cuss these details in Section 4.3.

While the primary purpose of the tool is to charac-
terize Ajax-based cloud applications, we believe that
AJAXTRACKER will prove useful in many other scenar-
ios. For instance, it could provide interference-free ac-
cess to the ground-truth required to train classifiers in
several statistical traffic classification systems [18, 15,
20]. Its fine-grained analysis capabilities will allow net-
work operators to model, predict traffic characteristics
and growth, conduct ‘what-if* analyses and so on.

2 Background and motivation

Today, many cloud application providers are increasingly
focusing on enriching the user interface to make these
services resemble desktop look-and-feel as much as pos-
sible. Perhaps, the most prominent ones among these
are Mail, Documents, and Maps? applications, which are
now offered by companies such as Google, Microsoft
and Yahoo among others.

In the traditional Web, the navigation model of a Web
session is quite straightforward: A user first clicks on a
URL, then, after the page is rendered, he thinks for some
time and requests another object. This process continues
until the user is done. On the other hand, the navigation
model of modern Ajax web sessions is quite different:
A user can click on a URL, drag-and-drop on the screen,
zoom in or zoom out (if it is a maps application) using the
mouse scroll button among several other such features.
In addition, the Javascript engine on the client side can

Uhttp://www.cs.purdue.edu/synlab/ajaxtracker

2While Maps application is not strictly an enterprise cloud applica-
tion, it exports a rich set of Ajax features making it an interesting Ajax
application to characterize.

‘Web Browser
Aot
/ /
[ ! 4 1. Search Form
I ,’ /I 2. Search Button
1 N / P 3. Menu Buttons
| | / , 4. Map Rendering Area
\ \ i /
\ \ 1 ’
N \ I /
AN O]
el AR AjaxTracker
Scenario Event Generator
File
Event o =
L Trace 2 >
o9 x =
f’l). 3]
2l | £
Analyzer % k<] — -
= 2 Web Servers

Figure 1: Structure of AJAXTRACKER.

request objects asynchronously and autonomously with-
out the user ever requesting one. For example, when us-
ing Ajax-based email services, the browser automatically
tries to save data when a user is composing email.

Given their importance in the years to come, as in-
creasingly more applications migrate to the cloud, it is
important to characterize these applications and under-
stand their impact on the network. Due to the fore-
mentioned shortcomings of passive approaches, we take
an active measurement approach for characterizing these
applications in this paper. The basic idea of our approach
is to perform application measurement and characteriza-
tion at the end-host. By ensuring that there exists only
one application session at any given time, we can collect
packet traces that are unique for that particular session,
even if the session itself consists of connections to sev-
eral servers or multiple connections to the same server.
We, however, need a way to generate user application
sessions in an automated fashion that can help repeatedly
and automatically generate these sessions under different
network conditions.

Unfortunately, there exist few tools that can interact
with applications in an automated manner. Web crawlers
lack the sophistication required on the client-side to gen-
erate Ajax-behavior. Traditional crawlers have no built-
in mechanisms to interact with the interactive controls
(like drag-and-drop), which require mouse or keyboard
input, and are fairly common in these new applications.
In the next section, we describe the design of AJAX-
TRACKER to overcome these limitations.

3 Design of AJAXTRACKER

The main components of AJAXTRACKER include an
event generator, a Web browser, a packet sniffer, and a
traffic shaper as shown in Figure 1. The event genera-
tor forms the bulk of the tool. It produces a sequence

of mouse and/or keyboard events that simulate a human
navigating a cloud-based Web site based on a configured
scenario file written in XML. These events are then input
to an off-the-shelf Web browser (e.g., Mozilla Firefox)
that then executes them in the order it receives individual
operations. Note that ATAXTRACKER itself is agnostic
to the choice of the Web browser and can work with any
browser. Given the goal is to collect representative traces
of a client session, AJAXTRACKER employs a packet
sniffer (e.g., tcpdump [2]) that captures the packets on
the client machine. These packets can then be examined
to obtain specific characteristics of the simulated client
session.

In addition to the basic components described above,
AJAXTRACKER also makes use of a traffic shaper that
can be configured to simulate specific bandwidth and de-
lay conditions under which the corresponding cloud ap-
plication sessions are simulated. This feature enables the
tool to obtain many client sessions, each possibly under
different network conditions to simulate the real-world
settings where each user is exposed to different set of
network conditions. Finally, the tool has the ability to
perform causality analysis between operations (obtained
from the browser’s event log) on a cloud Web site and the
corresponding network activity captured from the packet
sniffer’s trace.

AJAXTRACKER works by first configuring the traffic
shaper with delay and bandwidth parameters. Next, it
runs tcpdump, then launches the Web browser with the
corresponding ur! that is indicative of the cloud applica-
tion that we wish to simulate. The event generator is then
executed until all specified events have been processed.
We describe individual components in detail next.

3.1 Scenario file

A scenario file is intended to model a sequence of user
operations that need to be executed to emulate a user ses-
sion. For example, a user session could consist of enter-
ing a location, say New York, in the search tool bar in the
Maps application and clicking on the submit button. The
next action, once the page is rendered, could be to zoom
in at a particular location within the map page. After
a certain duration, the session could consist of dragging
the screen to move to a different location. The scenario
file is intended to allow specifying these sequence of op-
erations. In addition to static scenarios, the scenario file
will enable the tool to explore random navigation scenar-
ios that for example, execute events in a random order or
navigate to random locations within the browser. Ran-
dom scenarios help the tool users to explore a richer set
of navigational patterns that are too tedious to specify
using the static mechanisms one-by-one.

The scenario file is composed of mainly three
categories—events, objects and actions. There are

[ Model [ PDF [ Attributes

static - PERIOD
uniform 1/d PERIOD
exponential pe M EXP_MU

b
weibull E(E)b —1le—(z/a) W_A, WB

a a
pareto akax_(o‘ +1) P.A,PXK

Table 1: Inter-operation time distribution models.

three broad categories of events:  pre-processing
events (specified with the tag PRE_EVENTS), main
events (MAIN_EVENTS tag), and post-processing events
(POST_EVENTS tag). Events in pre- and post-processing
category are sequentially executed exactly once—before
and after the main events are simulated. Main events
can be specified to be executed in either static or ran-
dom order using the values ‘static’ and ‘random’ within
the TYPE attribute in MAIN_EVENTS tag.

Each event (within the EVENT tag) enumerates a list
of objects, with each object described by an identifier,
action and a pause period (PAUSE_TYPE attribute) that
specifies the amount of time the event generator should
wait after executing the specified action on the object.
The time specification can be either a constant or could
be drawn from a distribution (such as Pareto or exponen-
tial). The pause period specification helps model human
think time in a sequence of operations. Table 1 shows the
five different distributions for pause between operations
that are currently supported by our tool. In the EVENT
element, if LOG attribute is specified, AJAXTRACKER
records event logs into a file that can be later used for
correlating with packet logs for causality analysis.

Objects are specified within the broader OBJECTS tag
and individually enclosed within the OBJECT tag. Ac-
tions are associated with individual objects. Each ob-
ject defines its position or area and possible actions. De-
pending on the type of the object, specific tags such as
TEXT or READ_FILE are specified that are appropriate
for those objects. For example, to fill submission form
from a set of predefined texts, the input that needs to be
supplied is specified using the READ_FILE object to in-
dicate a file which contains a set of predefined texts. An
input text from the file is fetched on a line-by-line ba-
sis by the object. The value encapsulated by ACTIONS
tag defines supported actions (a list of support actions is
depicted in Table 2) and the position where the action
needs to be performed. If position values (e.g., X, S_X)
in ACTION tag are not defined, the values of POSTTION
or AREA tags are used.

Example. A small snippet of a sample scenario file
for Google Maps is shown in Figure 2. Note that this ex-
ample is not meant to exhaustively capture all the capa-
bilities of the tool. The scenario forces ATAXTRACKER

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

17



| Action | Meaning
left_click click with left mouse button
right_click click with right mouse button
select pushing Ctrl+A
delete pushing Backspace
copy pushing Ctrl+C
cut pushing Ctrl+X
paste pushing Ctrl+V
drag move object holding mouse left button
wheel_up scroll up an object
wheel_down scroll down an object

Table 2: Supported actions.

to work as follows: Events are executed in the order of
‘navigate_map’ and ‘close_window’. If there exist events
in PRE_EVENTS, these events are executed first. Then,
the tool statically executes ‘navigate_map’ event twice
(as specified in the EXEC_.COUNT attribute). If there
are more than one event listed, the tool will sequentially
execute each event twice. For each instance of ‘navi-
gate_map’ event, operations specified between lines 13
to 22 of the scenario file are executed. We only al-
low the tool to execute the operations serially because
we defined an event as a series of operations to accom-
plish a task. Thus, in this event, a query string retrieved
from list.site file in line 31 is put into ‘search_form’ ob-
ject, and the tool takes inter-operation time of 1 second.
Then, ‘search_button’ object is clicked and the tool lets
another 1 second elapsed. After that, the tool generates
‘drag mouse’ window event which is followed by inter-
operation time probabilistically selected by Pareto dis-
tribution. In addition, the tool records a log in the file
“drag map” specified as part of the OBJ_REF descrip-
tion. For the tool to identify the coordinate of object or
actions to be taken, the tool searches objects which are
defined from lines 24 to 42 by using object ID whenever
it executes an object.

Note that the scenario file can describe events at both
semantic level or in the form of coordinates; our system
allows both types of input. The choice of one over the
other depends on the particular event that needs to be de-
scribed. Drag-and-drop actions on maps applications, for
instance, are better represented using coordinates, while
actions that involve submitting forms (e.g., save file) are
better represented at the semantic level.

A scenario is presented in a hierarchical fashion. One
can first list events to generate and flexibly compose
events with one or more objects and actions against the
objects. Multiple actions can be defined within an ob-
ject which can be reused in several events. While the
specification allows users to build various scenarios cov-

1: <SCENARIO>

2: <NAME> Google Maps </NAME>

3:

4: <PRE_EVENTS>

5: </PRE_EVENTS>

6: <MAIN_EVENTS TYPE="static" EXEC_COUNT="2">
7: <EVT_REF IDREF="navigate_map" />

8: </MAIN_EVENTS>

9: <POST_EVENTS>

10: <EVT_REF IDREF="close_window" />

11: </POST_EVENTS>

12:

13: <EVENT ID="navigate_map">

14: <OBJ_REF IDREF="search_form" ACTION="paste"
15: PAUSE_TYPE="static" PERIOD="1" />

16: <OBJ_REF IDREF="search_button" ACTION="click"
17: PAUSE_TYPE="static" PERIOD="1" />

18: <OBJ_REF IDREF="map_area" ACTION="drag"
19: LOG="drag map"

20: PAUSE_TYPE="pareto"

21: PARETO_K="1" PARETO_A="1.5" />

22: </EVENT>

23:

24: <OBJECTS>

25: <OBJECT ID="search_form">

26: <POSITION X="359" y="225" />

27: <ACTIONS>

28: <ACTION ID="paste">paste</ACTION>

29: <ACTION ID="click">left_click</ACTION>
30: </ACTIONS>

31: <READ_FILE>/ajax/env/list.site</READ_FILE>
32: </OBJECT>

33:

34: <OBJECT ID="map_area">

35: <AREA LEFT="500" TOP="333"

36: RIGHT="1241" BOTTOM="941" />

37: <ACTIONS>

38: <ACTION ID="drag" S_X="600" S_¥="400"
39: E_X="900" E_Y="900" COUNT="1">drag</ACTION>
40: </ACTIONS>

41: </OBJECT>
42: </OBJECTS>
43: </SCENARIO>

Figure 2: Example scenario file for Google maps.

ering many user interactions, it is hard to cover all user
actions due to complexity of user actions and coordinate-
based specification of an object. Note that although the
specification appears complicated, we have found in our
experience that coding the scenario file does not take
too long. In our experience with 14 scenario files, the
longest was 454 lines that took us less than an hour to
specify. Once the scenario file is specified, the tool itself
performs completely automatically and can work repeat-
edly and continuously. Thus, the cost of specifying the
scenario file is amortized over the duration over which
the scenario is monitored. As part of our future work,
we are working on automating the generation of the sce-
nario file by recording and replaying user/client activities
passively using a browser plugin.

3.2 Event generator

Given a scenario file, the event generator first parses it
and builds data structures for elements listed in the sce-
nario file. Then, the event generator registers a callback
function called run_scenario() for a timer. The callback
function plays a core role in generating mouse and key-
board events. Every time the function is called, it checks
if the whole events in the scenario file were executed. If
there is any event left, the function generates mouse or
keyboard events accordingly. As discussed before, the

WebApps ’10: USENIX Conference on Web Application Development

event generator supports two basic navigation modes—
static and random. In the static navigation mode, AJAX-
TRACKER generates the sequence of events exactly in the
order specified in the scenario file. In the random mode,
it provides different levels of randomness. First, the
event generator can randomly select the order of events
in main event class by assigning TYPE attribute as ‘ran-
dom’ which implies uniform distribution. Second, in an
event, it can adjust inter-operation time with four differ-
ent probabilistic distributions if PAUSE_TYPE is defined
as one of values (except ‘static’) listed in Table 1. Other
distributions can optionally be added. Third, action can
be executed randomly. For instance, if TYPE attribute in
ACTION element is set ‘random’, the tool ignores posi-
tion values (e.g., X, S_X), and executes the action by uni-
formly selecting position or direction (in case of drag)
within values of AREA element and the number of click-
ing objects within the value of COUNT attribute.

In case of action name called ‘paste’, the tool can ran-
domly select one from text list which it manages and
pastes it in the input form of a Web site. Moreover, by
simply changing the number of main events and reorga-
nizing the execution procedure of an event, we can let
the event generator work completely differently. Thus,
through this way of providing randomness, the event
generator strives to generate random but guided naviga-
tion scenarios to simulate a larger set of client sessions.

We implemented the event generator as a command-
line program with 3500+ lines developed using C++,
GTKH+, the X library and Xerces-C++ parser [4].

3.3 Traffic shaper

Often, it is important to study the characteristics of these
applications under different network conditions. Given
that the tool works on an isolated end-host, the range of
network conditions it can support is quite dependent on
the capacity of the bottleneck link at the end host. For
example, if the tool is being used by an application ser-
vice provider (ASP), typically, the ASP is going to use it
in a local area network (close to the Web server) where
the network conditions are not as constrained as clients
connected via DSL or Cable Modem or Dial-up or some
such ways to access the Web service. The traffic shaper,
in such cases, provides a way to study the application
performance by artificially constraining the bandwidth as
well as increasing the round-trip times of the network.
The traffic shaper mainly implements bandwidth throt-
tling and delay increases, and does not factor in packet
drop rates. Packet losses are not directly considered in
our tool at the moment since available bottleneck band-
width, to some extent, forces packets to be lost as soon
as the bottleneck capacity is reached. We can, however,
augment the tool with arbitrary loss fairly easily. We
used an open-source software router called Click [16] in

Time Event #click S_ X S_.Y E_X E.Y
1224694605.059651  click search button 1 620 220 620 220
1224694975.651213  zoom out 2 940 832 940 832
1224695045.303020 drag map 1 1128 537 1021 470
1224695062.083703  zoom in 10 824 554 824 554
1224695175.203356  drag map 1 858 693 867 411

Figure 3: Example event log snapshot generated.

our tool for implementing the traffic shaping function-
ality. We ran Click as a kernel module in our system.
Note that any software that provides the required traffic
shaping functionality would work equally well.

3.4 Packet capture

To characterize the network-level performance of an ap-
plication session, it is important to capture the packet-
level traces that correspond to the session. One can po-
tentially instrument the browser to obtain higher-level
characteristics, such as URLs accessed and so on. How-
ever, our goal is to characterize network activity; thus,
we employ off-the-shelf packet sniffer such as tcpdump
to capture packet traces during the entire session. Since
AJAXTRACKER aims to characterize mainly cloud Web
applications, it filters out non-TCP non-Web traffic (i.e.,
packets that do have port 80 in either the source or des-
tination port fields). AJAXTRACKER considers all cap-
tured 5-tuple flows of <src, dst, src_port, dst_port, pro-
tocol> to form the entire network-activity corresponding
to a given session. We do not need to perform TCP flow-
reassembly as we are mainly interested in the packet-
level dynamics of these sessions.

Advertisement data, however, which are parts of a
Web site but are not Ajax-based cloud application re-
lated, can also be included in the trace file. If we do
not wish to analyze the non-Ajax content, depending on
the application, we apply a simple keyword filter which
is similar to ones used by Schneider et al. [21] to iso-
late Ajax-based flows alone. We find related flows whose
HTTP request message contains keywords of interest and
retrieve bidirectional flow data.

3.5 Causality analysis

Our tool generates traces as well as logs about which op-
erations were performed with their timing information
as shown in Figure 3. While information in the first two
columns is mainly used for causality correlation, other
five columns provide auxiliary information. The third
column denotes the number of mouse clicks. The fourth
and fifth columns denote the screen coordinates where an
event begins to occur and the last two columns represent
the screen coordinates where it ends. We do not at the
moment use this auxiliary information however, and fo-
cus mainly on the first two columns. Based on these two
pieces of information, i.e., timestamp and event name,

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

19



we can reconstruct the causality relationship between op-
erations in the Web browser and the corresponding net-
work activity by correlating the network activity using
the timestamp.

Using this causality, we can isolate the network ef-
fects of individual operations, such as finding what Web
servers are contacted for a given operation, the number of
connections that are open or the number of requests gen-
erated by each operation. Such causality analysis helps
when anomalies are found in different applications as
one can isolate the effects of individual operations that
are responsible for the anomalies. In addition, the causal-
ity analysis helps predict how the application traffic is
going to look like, when we change the popularity distri-
butions of different operations in a given sequence. For
example, if users use the zoom features much more than
drag-and-drops, we can study the underlying character-
istics of such situations.

Note that while this timing-based causality works well
for simple applications we considered in this paper such
as Gmail and maps, it may not work easily for all events
and applications. For instance, if we investigate ‘auto-
save’ event of Google Docs, we need to know when the
event is triggered while a user composes, which may not
be simple to know unless the browser is instrumented ap-
propriately. Modifying the browser, however, introduces
an additional degree of complexity that we tried to avoid
in our system design.

3.6 Limitations

As with perhaps any other tool, AJAXTRACKER also has
some limitations. First, since it works depending on the
layout of user interface, significant changes to the user
interface by the application provider may cause the tool
to not operate as intended. Though this limitation may
seem serious, observations made by the tool over a pe-
riod of weeks shows considerable consistency in the re-
sults of the static navigation mode, barring a few user in-
terface changes that were easy to modify in the scenario
file. Second, in our current setup, we specify the mouse
clicks in the form of coordinates, which assumes that we
have access to the screen resolution. If the setup needs to
run a separate platform, the scenario files need to be read-
justed. One way to address this issue is to specify them
relative to the screen size; we did not implement this fea-
ture yet and is part of our future work. Third, because
the operation of our tool depends on a specified scenario
file, the generated workloads cannot cover all possible
user space. Instead, we try to configure scenario files
with functions which are most likely to be used by users
in each explored application. Currently, while we pro-
gram these scenarios ourselves, we are also investigating
representative client session models and deploying them
into our tool. Note that these models are orthogonal to

our tool design itself. Third, given the nature of the traf-
fic shaper, we cannot emulate all types of network condi-
tions; we can either reduce the bandwidth or increase the
RTT in comparison with the actual network conditions at
the location where the tool is deployed.

4 Evaluation

In this section, we present our measurement results ob-
tained using the tool on real Ajax applications. We
categorize our results into three main parts. First, we
demonstrate that our tool produces representative traces
by comparing our results with a passive campus trace.
Second, we perform macroscopic characterization of full
application sessions generated using our tool. We also
show how Ajax application traffic characteristics change
with different network conditions. Third, we show the
characterization of individual operations such as ‘click’
and ‘drag-drop’ in two canonical Ajax applications—
Google Maps and Mail—with the help of the causality
analysis component of our tool.

4.1 Comparison with a real trace

The representativeness of our tool is completely depen-
dent on the expressiveness of our tool and the scenario
files specified. In order to demonstrate that the scenar-
ios we have specified in our tool are representative, we
show comparisons with a real passive trace. For the pur-
poses of this experiment, we have obtained a real trace
of Google Maps traffic from a campus switch of Purdue
university. There are approximately 300 machines con-
nected to the switch and users are mainly campus stu-
dents. The Google Maps trace we collected represents
24 hours worth of client activity over which we observed
about 182 unique clients totaling about 13,200 connec-
tions. While our campus trace is not representative of
all settings, our trace is representative of network infras-
tructure environment that corresponds to typical enter-
prise networks, and hence, the use of Google Maps in
this environment is arguably similar to that of any other
organization’s use of Google Maps.

Figure 4 shows the comparison results in terms of
inter-request time (IRT), response and request message
length (QML). IRT is an important metric because it can
show or measure how proactive the application is. If
IRTs are much smaller than RTT (if we measure RTT), it
implies that the application is more proactive and relies
on parallel connections for fast retrieval of traffic. For
IRT, we calculated intervals between request messages
sent to the same server through multiple flows, instead
of calculating intervals between every request messages
regardless of the destination. We believe that this is a
reasonable approach to calculate IRT because ignoring
the destination may lead to a much higher request fre-
quency for Ajax application’s traffic, but it is misleading

WebApps ’10: USENIX Conference on Web Application Development

1

09 | 09 | 0.9
08 | 08 | 08
0.7t 07 07
06 | 06| 06
05| 05 05
04| 04| 0.4
03 03 0.3 [

0.2 Y AjaxTracker 0.2 0.2 i /AjaxTracker —
0.1} K Tracker w/o bw limit - 01 AjaxTracker 01 AjaxTricker (10 days) - |
0 Campus ------ o Campus -~ 0 [z 4 Campus ------

10° 10 102 102 107" 10° 10' 10% 10° 102 0® 10* 0° 108 0 200 400 600 800 1000 1200 1400

Inter-Request Time (Second)

(a) CDF of inter-request time

Res:)onse Message Lengtrl (Byte)
(b) CDF of response message length  (c) CDF of request message length

Request Message Length (Byte)

Figure 4: Comparison between AJAXTRACKER’s trace and Campus trace of Google Maps.

as some of the traffic will be destined to multiple desti-
nations (typically within the same cluster).

First, we plot the comparison between AJAX-
TRACKER (the curve that says AJAXTRACKER without
bandwidth limit) and campus trace in terms of their IRT
distributions in Figure 4(a). When we compare the two,
we can observe clearly that they are not similar. This
is because, IRT distributions are easily affected by the
available network bandwidth. Since the clients in the
trace may potentially have a different throughput con-
straints from the machine we use AJAXTRACKER from,
we need some calibration to match the trace. We first
analyzed the average instantaneous throughput of Maps
with a bin of size 1 second for every host in the trace.
We excluded the case where there is no traffic in con-
sidering instantaneous throughput. The average instan-
taneous throughput was about 580Kbps. Specifically, in
cumulative distribution, 82% of instantaneous through-
put were less than 1Mbps, 16% were between 1-5Mbps,
and 2% were between 5-20Mbps.

Based on the above observation, we ran our tool with
different network bandwidth constraints to adjust avail-
able network bandwidth artificially. To simulate the
distribution of instantaneous throughput, we differenti-
ated the proportion of each trace generated by AJAX-
TRACKER under different network bandwidth conditions
based on the distribution we have observed in the campus
trace. Specifically, traces generated by our tool has fixed
data rate configured by Click: 500Kbps, 1Mbps, SMbps,
and 10 Mbps. On the other hand, campus trace has con-
tinuous distribution from around 500Kbps to 20Mbps.
We envision that there are only a few different quan-
tized access bandwidths for different clients within a net-
work. By empirically finding these numbers, one can run
the tool and mix different traces with different weights.
Thus, we empirically gave 10% weight to a trace by
500Kbps constraint, 72% weight to a trace by 1Mbps
constraint, 16% weight to a trace by 5 Mbps, and 2%
weight to a trace by 10Mbps constraint, and conducted
weighted IRT simulation.

We found that IRT distribution generated by AJAX-
TRACKER is quite close to the IRT distribution of the
campus trace as shown in Figure 4(a). There are still a
few minor discrepancies; at around 0.6-2 seconds, there
is 10% discrepancy between two curves. IRTs larger than
one second are typically because of human think time, as
has been described by Schneider et al. in [21]. Thus, we
believe this area of discrepancy that represents human
think time exists because of the discrepancies between
our scenario models that model the inter-operation dura-
tion and real user’s behavior. If needed, therefore, we can
carefully tune the scenarios to easily match the campus
trace. Such tuning may or may not be necessary depend-
ing on the particular use of the tool; the more important
aspect is that the tool allows such calibration.

The distribution of response messages (shown in Fig-
ure 4(b)) are quite similar between AJAXTRACKER and
the campus trace for the most part. The big differ-
ence ranging from about 300 to 1,000 bytes is related
to whether basic components (i.e., icons, thumbnail im-
ages, etc.) that constitute Maps application are already
cached or not. Because we ran AJAXTRACKER ensuring
that the browser has no cached data, the fraction of that
area in AJAXTRACKER’s distribution is larger than that
of campus.

While we have not conducted extensive experiments
to study the impact of cached data in this paper, we note
that storage size generally for cached data is limited and
stale data is typically removed from cache storage. Thus,
in general, the fact that Web browser caches data does not
mean that it cached data for a particular application of in-
terest. In addition, Ajax applications often consist of two
portions: Application source (e.g., javascript code) that
is static and needs to be downloaded only once when a
user accesses the application for the first time and, ap-
plication data that is typically more dynamic and diverse
than application source. Thus, caching typically impacts
only the application source download and not so much
the data portion of the session.

Finally, in Figure 4(c), we can observe that QML dis-

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

21



CDF

Number of requests per flow

Figure 5: CDF of number of requests per flow. £ is the
scale parameter. The shape parameter « is fixed at 1.5.

tribution is significantly different from what is observed
using AJAXTRACKER and the campus trace. This dis-
crepancy is because QML can vary quite a bit because
of the variation of cookie length. We collected 10 days
of traces to find if there are changes in the length of re-
quest messages, and their QMLs showed diversity due
to different cookie length. When we joined together
those traces, we found that the distribution comes close
to the curve of campus in Figure 4(c). There are also
browser differences in campus trace can cause different
size of requests for the same objects. When we adjust
for these differences, the trends of the distribution by
AJAXTRACKER and campus will be similar. The big-
ger takeaway from these experiments is that the results
obtained using our tool can be made to be easily consis-
tent with those observed in real life. These experiments
also suggest an interesting side-application of our tool in
reverse engineering the traffic shaping policy at the mon-
itoring network. For the rest of the experiments, we do
not put any restriction on the bandwidth, since there is
nothing particularly fundamental about any given aggre-
gate bandwidth and can vary depending on the situation.

4.2 Characterization of full sessions

In this section, we characterize overall application ses-
sions. We first describe some flow-level characteristics
of Ajax applications. Next, we discuss our results by
simulating different network conditions at the end-host.
Number of requests per flow. Since persistent connec-
tions are supported by modern Web browsers, the num-
ber of requests per flow depends on the inter-operation
duration. If there is no network activity, the flows are
usually terminated. To understand this dependency, we
varied the inter-operation duration as a Pareto distribu-
tion, which has been used before to model human think
time for traditional Web traffic [6]. Given that we do not
yet have representative parameters for Ajax applications,
we chose to experiment with those reported in [6] for
regular Web traffic and some new ones. For both Google
Maps and Mail, we chose the Pareto scale parameter & to

be 1, 2 and 4 and fixed the shape parameter «v as 1.5 (as
suggested in [6]).

Regardless of values of k&, we can observe clear differ-
ence between Maps and Mail in Figure 5. While Mail has
at most 31 requests per flow at £ = 1, Maps generates
67 requests per flow at k£ = 4. In the head of distribu-
tion, while about 50% of all Mail’s flows have only one
request, only 10% of Maps’ flows have one request. In-
terestingly, the top 93% exhibit similar trends for Mail,
after which the £ = 1 curve exhibits higher number of
requests per flow. This phenomenon is expected since,
smaller values of k imply better re-use of connections,
which in turn leads to larger number of requests per flow.

In Maps, on the other hand, the number of requests
per flow exhibits big difference depending on values of .
The reason for the difference could be because of the lack
of a mechanism in Maps similar to asynchronous updates
in Mail. While Maps prefetches map tile images, the
connections are closed faster than Mail’s connections.

Our analysis on number of requests per flow uses flow-

level granularity while Schneider et al. report session-
level results in [21]. Despite this difference, our results
roughly match their observations, in that Maps generates
more requests than Mail.
Effects of different network conditions. To understand
how these applications behave under different network
conditions, we let AJAXTRACKER run on emulated net-
work environments using its traffic shaping functionality.
We conducted two experiments on Maps and Mail: The
first is a bandwidth test where the traffic shaper throttles
link capacity. The second is a delay test where it injects
additional delays in the link to artificially increase the
RTT. In our configuration, the set of bandwidths we have
chosen include {56Kbps, 128Kbps, 256Kbps, 512Kbps,
IMbps, 5Mbps, 10Mbps, 50Mbps, 100Mbps}. For de-
lay, we chose values from 10ms to 320ms in multiples of
2 (i.e., 10ms, 20ms, 40ms, etc.).

While our framework allows adding delay to both out-
bound as well as inbound packets, we added the simula-
tion delay only to the inbound packets. This is because,
it is the RTT that typically dictates the connection char-
acteristics and hence it suffices to adding it in either of
the directions. The inter-operation times were statically
configured in the scenario files.

Figure 6 shows how IRT is affected according to the
change of bandwidth and delay, respectively. We used
the causality between operation and network activity
from log information and traces in order to remove large
IRTs which come from the the interval between the time
when last request message of previous operation was
seen and the time when the first request message of cur-
rent operation is seen because these large IRTs affected
by inter-operation time (which is decided by a user) re-
strain our understanding about applications’ behavior.

22

WebApps ’10: USENIX Conference on Web Application Development

o_‘
O—L

‘ ‘ Google Mail —+— ‘ Google Mail ——
Google Maps - Google Mapg ===
=) =)
g g M
3 10° o S 10°
o Y &2
= = %
Y o
: : g
5 X
g10" B &107 X
g Fanvy . g O yemmmmnnneee X
< oy <
2 -2
10 10
10 102 10°  10*  10°  10° 10’ 0?
Bandwidth (Kbps) Delay (ms) Inter-request time (second)

(a) Bandwidth with no added delay

(b) Delay with 50 Mbps

(c) Simulated IRT

Figure 6: Average IRT variation for different network parameters.

From Figure 6(a), we can observe that, as network
bandwidth increases, the average IRT of Maps decreases
fast, but the extent to which Mail’s IRT distribution de-
creases is small. The graph shows that Maps fetches con-
tents more aggressively than Mail does. On the contrary,
Figure 6(b) shows that IRTs of both applications are rel-
atively less affected by the increase of delay. The figure
indicates that IRT feature is more sensitive to bandwidth
rather than delay. Because Ajax applications can ac-
tively fetch data before the data are actually required by
users, network delay may have little sensitivity. On the
other hand, network bandwidth directly impacts the per-
formance of Ajax applications since it takes more time
to pre-fetch the content. We believe that our tool helps
answer whether a given Web site is more sensitive to ei-
ther bandwidth or latency by allowing different settings
for the Web site.

[ [ TOMbps | TMbps [ 56 Kbps

NETI 100% 0% 0%
NET2 70% 20% 10%
NET3 20% 50% 30%
NET4 10% 20% 70%
NETS 0% 0% 100%

Table 3: Configuration for weighted IRT simulation.

Since these results indicate a direct dependency of IRT
on the network conditions, we consider how IRT distri-
butions change when different clients with different net-
work conditions are mixed together, as a router in the
middle of the network would probably observe. Thus,
we conduct a simple simulation by mixing together dif-
ferent proportion of clients with different network condi-
tions (particularly 10Mbps, 1Mbps and 56Kbps clients)
in Figure 6(a). The parameters for the simulation are
summarized in Table 3. Figure 6(c) shows these different
IRT distributions for these different combinations.

We believe our mechanism provides interesting pro-
jections into how the IRT distribution varies according to
the traffic mixes. For example, as we move from NET1
which consists of users with extremely high bandwidth

(100% users have 10 Mbps) to the NETS (100% users
have 56Kbps), we see the progressive shift in the curves
to the right, indicating a stark increase in the IRT distri-
butions.

We also investigate how the number of requests per
flow is affected by changes of bandwidth and network
delay constraints. (Due to space constraints, we omit
showing the graphs.) We observed that as more band-
width becomes available, both Maps and Mail services
increase the number of requests per flow. As we in-
crease the delay, we found that Mail application showed
a slight dip in the number of requests (4 reqs/flow at
10ms down to about 2 reqs/flow at 160ms) while Maps
shows variations of 9-15 reqs/flow at 10-80ms but de-
creases 7 reqs/flow from 160ms because the number of
flows itself increases (about 200 flows to 80ms and about
340-400 flows from 160ms).

4.3 Characterizing individual operations

We begin our discussion with explaining methodology
for characterizing individual operations. In Table 4, we
show the candidate operations within Google Maps and
mail applications we selected for our analysis. These op-
erations are by no means exhaustive; we hand-selected
only basic operations that seem to represent the main ob-
jective of the application. We can easily instrument the
tool for characterizing other operations as well. For this
analysis, we collected about 250 MB of data representing
about 10,000 flows across the two candidate applications
for the operations included within Table 4. Each opera-
tion has been repeated several times for statistical signif-
icance, with exact counts for each operation outlined in
Table 4. The counts are different for different operations
because we wrote different scenario files, each of which
represent different sequences of operations and extracted
out the individual operations from the sessions.

We configured the scenario files for each application
with a 60 second interval between two adjacent opera-
tions (120 seconds for ‘idle state’ of Mail) to eliminate
any interference between them. We then matched the

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

23



App. Operation Meaning Count
drag map dragging a mouse on the map area 140
zoom in zooming in map area by moving wheel button on a mouse 69
Google Maps - :
zoom out zooming out map area by moving wheel button on a mouse 62
click search button | clicking the search button for finding a location 102
delete mail clicking mail deletion button after selecting a mail 52
attach file inputting a file path, and then waiting to be uploaded 37
Google Mail idle state letting Google Mail idle without operations for 120 seconds 56
click inbox clicking inbox and listing mails 125
read mail reading a mail by clicking mail 70
send mail clicking send button to send a mail 96

Table 4: Candidate set of operations selected within Google Maps and Mail applications for characterization. These
are some of the most commonly used operations within these applications.

mouse event timing recorded in the logs with the trace
files to extract out the relevant network activity. To deter-
mine the causal relationship, we collected all flows gen-
erated within 5 seconds of the mouse events and analyze
their network-level behavior. In the means of correlat-
ing operation and traffic, the time value is selected em-
pirically. While in different applications we may have
to use the time value different from one used in this pa-
per or require different approaches, we find that the ap-
proach works fine for the given two applications in our
setting. Thus, only flows that are a direct result of the
event are considered for the analysis; some asynchronous
flows reflective of the polling mechanisms, such as those
employed in Mail, are considered separately through an
‘idle state’. To ensure minimal interference with active
user activity, the ‘idle state’ is not mixed with any other
user action.

We had to make a few other minor adjustments. The
first involves the ‘file attach’ operation in Mail. File at-
tachments in Mail are handled by specifying a file direc-
tory path information in the form, which then attaches
and uploads the file automatically after a fixed 10 sec-
onds because there is no explicit upload button; thus, we
configured the tool to collect all network activity within
11 seconds (which ensures that any flows that occur as a
result of this activity are started within 11 seconds). The
other adjustment we required was for the ‘idle state’ of
Mail, which unlike Maps, continuously exchanges infor-
mation with the server even in the absence of any par-
ticular mouse event. To accommodate this, we chose 60
seconds as the window interval to include flows gener-
ated during ‘idle state’ to obtain a finite snapshot of the
polling mechanisms in use. Note that once we identify
the flows belonging to a specific operation, we analyzed
every packets until the flows are closed. The time thresh-
olds are only to identify which flows to keep track of.

To obtain flow-concurrency, we counted the number

of concurrent flows per distinct host (i.e., on a per-IP ad-
dress basis) and the number of distinct hosts contacted
within a window of « seconds of each other. In our anal-
ysis, we set o to 0.1 seconds, which is an adjustable pa-
rameter in our analyzer. This ensures that flows that are
generated automatically as a result of a particular action
are obtained and not necessarily those that are related to
human actions.

We considered two types of network-level metrics:
flow- and message-oriented. Along flow-based metrics,
we mainly considered concurrency in terms of number
of simultaneous flows generated. For message-oriented
metrics, we selected number of request messages per
flow. We have analyzed a few more, such as flow inter-
arrival time, inter-request time, bytes transferred, request
and response message length, and so on, but in the inter-
est of space, we do not show them in this paper. We can
potentially also consider packet-level metrics, such as
packet size distribution and their timing, but we chose to
model mainly Ajax application’s characteristics; packet
size distributions are dependent on how the TCP layer
segments individual packets, and thus is less intrinsic to
the Ajax application itself.

Connection Distribution. We analyze connection distri-
bution along three dimensions —total number of connec-
tions, number of connections per server, and the num-
ber of servers contacted per operation. However, due
to space limitation, we only provide a graph about to-
tal number of connections in this paper, but briefly ex-
plain the other two results. From Figures 7(a) and 7(b),
we observe that Maps opens the most number of total
connections (up to 15) as well as the most number of
connections per server (up to 8). This phenomenon is
because Maps requires the fastest responsiveness as ev-
ery user activity leads to a large number of requests for
fairly large map image tiles. While the Mail application
also requires fast responsiveness, the responses are usu-

WebApps ’10: USENIX Conference on Web Application Development

" click search button s
drag map ——=3
08 f zoom in ZZZ4 |
{room out
0.6 h ]
[T [
a
o 4
0.4 + / —
02 7 H Hh | | | |
e I n H A | . I
1234567 89101112131415
Number of connections
(a) Google Maps
1 = o
attach file
@ click inbox
0.8 - we delete mail EZzz=
- idle state
read mail rzzz
0.6 - send mail
[T
a
o
0.4 +
0.2
0 (= ﬂ 4]

1 2 3 4 5
Number of connections

(b) Google Mail

Figure 7: Total connection distributions.

ally small, and thus fewer connections are sufficient to
fetch the required information.

Among operations within Maps, ‘click search button’
starts the most number of connections with up to 8 con-
nections per server and up to 5 different servers. This is
because clicking on the search button typically leads to
the whole refresh of a page thus involving most amount
of response data. Other operations on Maps involve more
connections (around 4-9) as well, but typically to a much
lesser number of servers (around 1 or 2). We believe
this might be because operations such as ‘drag and drop’
typically fetch a few tiles that are adjacent to the current
location on the displayed map, thus resulting in smaller
amount of data compared to the total refresh when the
search button is clicked.

For Mail, we observe that most connections are found
in the case of ‘read mail’ operation. To identify the rea-
son, we inspected the HTTP headers and observed that
along with the mail content, several advertisements were
fetched from different servers causing more number of
connections. The ‘idle state’ operation came next in
terms of the number of connections and servers involved.
This is because we use a window interval of 60 seconds,
which in turn results in a lot of client requests generated
to synchronize with the server for any further updates.

One concern is that the characteristics of Gmail ses-
sions may be dependent on the inbox content. Our ap-
proach cannot effectively model the application if there

CDF

click search button ——
drag map - ]
zoom In —=A-e-e ]
zoom out ---e

0 5 10 15 20 25 30
Number of requests per flow

(a) Google Maps

CDF

delete mail ——

idle state - ]

read mail --a--- |

) ) ) __send majl ---e

1 2 3 4 5 6 7 8 9
Number of requests per flow

(b) Google Mail

Figure 8: Number of requests per flow.

is a lot of variation based on different inboxes, unless ap-
propriate state is created in the form of different logins
and different numbers of emails at the server side. In our
future work, we will study how sensitive the character-
istics of these applications are to the size of the inbox
contents or the amount of content at the server side.
Number of request messages per flow. The middle
graphs of Figures 8(a) and 8(b) show the CDF of the
number of request messages per flow. In the case of
Maps, most operations tend to have multiple requests in a
flow. Specifically, zooming in and out results in changes
of the map scale, and, as a result, the client needs to fetch
whole new tile images repeatedly. On the other hand, in
the case of ‘drag map’ operation, the probability of re-
peated fetching is lower. The ‘click search button’ op-
eration also requires to fetch several tile images, but it
achieves its goal through multiple connections to servers
(shown later in Figure 7(a)). Unlike Maps, most opera-
tions in Mail have less than 9 requests in a flow.

5 Related Work

Given the recent emergence of Cloud-based applications
into the mainstream Web, there has been limited research
work in characterization of these applications. A recent
paper by Schneider et al. [21] made one of the first at-
tempts to characterize these application protocols by ex-
amining the contents of HTTP headers over ISP traces.
In this work, they study the distributions of several fea-

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

25



tures such as bytes transferred, inter-request times, etc.,
associated with popular cloud-based application traffic.
Our work is significantly different from (and in many re-
spects complimentary to) theirs, as we focus on generat-
ing user interactions with a Web service in a controlled
fashion to generate and obtain our traces.

Web traffic has been extensively studied in the past.
While some studies focus on the user-level behavior
in terms of the number of request and response mes-
sages and application-specific properties such as refer-
ence counts and page complexity (e.g., [5, 9]), network-
level characteristics were examined in others such as
[12, 6, 7]. Several traffic generators based on statistical
models have also contributed to understanding the im-
pact of Web traffic (see [3] for a list of these) on the net-
work. These models and tools, however, do not factor
the exact cloud application traffic characteristics.

There also exist a lot of tools developed for the classi-
cal Web. Web automation tools such as Chickenfoot [8],
CARENA [19], and SWAT [1] enable one to navigate
a Web site automatically and repeatedly. However, these
tools are mainly tailored for static navigation of Websites
using automatic filling of forms and lack the functional-
ity to interact with cloud applications.

Traditionally, characterizing and modeling network-
level behavior of Web applications is largely trace-
driven. For example, prior measurement efforts [21, 7,
10, 14] used Gigabytes to Terabytes of traces collected
from core routers. On the other hand, we use end-host
based active profiling to study the network-level behavior
of individual operations within application.

The idea of end-host based active profiling is not new
by itself. There have been several contexts where the
idea has been applied. For example, Cunha et al. char-
acterized Web traffic by collecting measurements from a
modified Web browser [13]. In [17], Krishnamurthy e?
al. use Firefox add-on features to demonstrate how to
collect statistics about page downloads. Our tool, shares
some similarity, but is more tuned towards cloud applica-
tions and is designed to be browser agnostic as opposed
to the other approaches.

6 Conclusion

As the popularity of cloud Web services increases, it
becomes critical to study and understand their network-
level behavior. A lot of tools designed for classical Web
characterization are difficult to adapt to cloud applica-
tions due to the rich interface used by them. While
trace-based approaches are standard for characterization,
they do not allow characterizing individual operations
within an application or provide any understanding on
how these applications behave under different network
conditions. We described the design and implementa-
tion details of AJAXTRACKER that is designed to ad-

dress these limitations. It successfully captures realis-
tic network-level flow measurements by imitating the set
of mouse/keyboard events specified in the scenario file.
The traffic shaper functionality allows it to simulate arbi-
trary network conditions.As part of ongoing work, based
on our tool’s capability, we hope to classify and detect
cloud applications in the middle of the network. This is
particularly useful given that cloud applications cannot
easily be detected using port number approaches alone.

Acknowledgments

The authors are indebted to the anonymous reviewers and
Marvin Theimer, our shepherd, for comments on previ-
ous versions of this manuscript. We also thank the IT
staff at Purdue, Addam Schroll, William Harshbarger,
Greg Hedrick for their immense help in obtaining the
network traces. This work was supported in part by NSF
Award CNS 0831647 and a grant from Cisco Systems.

References

[1] Simple Web Automation Tool. http://swat.sourceforge.net/.

[2] tcpdump. http://www.tcpdump.org/.

[3] Traffic Generators for Internet Traffic.
http://www.icir.org/models/trafficgenerators.html.

[4] Xerces C++ Parser. http://xerces.apache.org/xerces-c/.

[5] M. Arlitt and C. Williamson. Internet Web Servers: Workload
Characterizations and Implications. IEEE/ACM Transactions on
Networking, 5(5), Oct. 1997.

[6] P. Barford and M. E. Crovella. Generating representative Web
workloads for network and server performance evaluation. In
Proceedings of Performance '98/SIGMETRICS 98, 1998.

[7] N.Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt.
A comparative analysis of web and peer-to-peer traffic. In WWW,
2008.

[8] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller. Au-
tomation and customization of rendered web pages. In Proc.
UIST ’05. ACM Press, pages 163-172, 2005.

[9] F. Campos, K. Jeffay, and F. Smith. Tracking the evolution of
web traffic: 1995 - 2003. In MASCOTS, 2003.

[10] J. Cao, W. S. Clevel, Y. Gao, K. Jeffay, F. D. Smith, and M. Wei-
gle. Stochastic models for generating synthetic http source traffic.
In INFOCOM, pages 1546-1557, Mar. 2004.

[11] D. Crane, E. Pascarello, and D. James. Ajax in Action. Manning,
2006.

[12] M. Crovella and A. Bestavros. Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Transactions
on Networking, 5(6):835-846, Dec. 1997.

[13] C.R. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of
WWW Client-based Traces. Technical Report BUCS-TR-1995-
010, Boston University, 1995.

[14] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube Traffic Char-
acterization: A View From the Edge. In ACM IMC, 2007.

[15] T.Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multi-
level traffic classification in the dark. In ACM SIGCOMM, 2005.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click Modular Router. ACM Transactions on Computer Sys-
tems, 18(3):263-297, Aug. 2000.

[17] B. Krishnamurthy and C. E. Wills. Generating a privacy footprint
on the internet. In ACM IMC, 2006.

[18] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected Means of Protocol Inference. In ACM IMC, 2006.

[19] I J. Nino, B. de la Ossa, J. A. Gil, J. Sahuquillo, and A. Pont.
Carena: a tool to capture and replay web navigation sessions. In
E2EMON ’05: Proceedings of the End-to-End Monitoring Tech-
niques and Services on 2005 Workshop, pages 127-141, 2005.

[20] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-
of-Service Mapping for QoS: A Statistical Signature-based Ap-
proach to IP Traffic Classification. In ACM IMC, 2004.

[21] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann. The New
Web: Characterizing AJAX Traffic. In International Conference
on Passive and Active Network Measurement, 2008.

WebApps ’10: USENIX Conference on Web Application Development

JSMeter: Comparing the Behavior of JavaScript Benchmarks
with Real Web Applications

Paruj Ratanaworabhan
Kasetsart University
paruj.r@ku.ac.th

Abstract

JavaScript is widely used in web-based applications
and is increasingly popular with developers. So-called
browser wars in recent years have focused on JavaScript
performance, specifically claiming comparative results
based on benchmark suites such as SunSpider and V8. In
this paper we evaluate the behavior of JavaScript web ap-
plications from commercial web sites and compare this
behavior with the benchmarks.

We measure two specific areas of JavaScript runtime
behavior: 1) functions and code and 2) events and han-
dlers. We find that the benchmarks are not representative
of many real web sites and that conclusions reached from
measuring the benchmarks may be misleading. Specific
common behaviors of real web sites that are underem-
phasized in the benchmarks include event-driven exe-
cution, instruction mix similarity, cold-code dominance,
and the prevalence of short functions. We hope our re-
sults will convince the JavaScript community to develop
and adopt benchmarks that are more representative of
real web applications.

1 Introduction

JavaScript is a widely used programming language that
is enabling a new generation of computer applications.
Used by large fraction of all web sites, including Google,
Facebook, and Yahoo, JavaScript allows web applica-
tions to be more dynamic, interesting, and responsive.
Because JavaScript is so widely used to enable Web 2.0,
the performance of JavaScript is now a concern of ven-
dors of every major browser, including Mozilla Fire-
fox, Google Chrome, and Microsoft Internet Explorer.
The competition between major vendors, also known as
the ‘browser wars” [24], has inspired aggressive new
JavaScript implementations based on Just-In-Time (JIT)
compilation strategies [8].

Because browser market share is extremely impor-
tant to companies competing in the web services mar-

Benjamin Livshits and Benjamin G. Zorn

Microsoft Research
{livshits,zorn}@microsoft.com

ketplace, an objective comparison of the performance of
different browsers is valuable to both consumers and ser-
vice providers. JavaScript benchmarks, including Sun-
Spider [23] and V8 [10], are widely used to evaluate
JavaScript performance (for example, see [13]). These
benchmark results are used to market and promote brow-
ers, and the benchmarks influence the design of Java-
Script runtime implementations. Performance of Java-
Script on the SunSpider and V8 benchmarks has im-
proved dramatically in recent years.

This paper examines the following question: How rep-
resentative are the SunSpider and V8 benchmarks suites
when compared with the behavior of real JavaScript-
based web applications? More importantly, we examine
how benchmark behavior that differs quite significantly
from real web applications might mislead JavaScript run-
time developers.

By instrumenting the Internet Explorer 8 JavaScript
runtime, we measure the JavaScript behavior of 11 im-
portant web applications and pages, including Gmail,
Facebook, Amazon, and Yahoo. For each application, we
conduct a typical user interaction scenario that uses the
web application for a productive purpose such as read-
ing email, ordering a book, or finding travel directions.
We measure a variety of different program characteris-
tics, ranging from the mix of operations executed to the
frequency and types of events generated and handled.

Our results show that real web applications behave
very differently from the benchmarks and that there are
definite ways in which the benchmark behavior might
mislead a designer. Because of the space limitations, this
paper presents a relatively brief summary of our findings.
The interested reader is referred to a companion techni-
cal report [17] for a more comprehensive set of results.

The contributions of this paper include:

e We are among the first to publish a detailed char-
acterization of JavaScript execution behavior in real
web applications, the SunSpider, and the V8 bench-

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

27



marks. In this paper we focus on functions and code
as well as events and handlers. Our technical re-
port [17] considers heap-allocated objects and data.

We conclude that the benchmarks are not represen-
tative of real applications in many ways. Focusing
on benchmark performance may result in overspe-
cialization for benchmark behavior that does not oc-
cur in practice, and in missing optimization oppor-
tunities that are present in the real applications but
not present in the benchmarks.

We find that real web applications have code that
is one to two orders of magnitude larger than most
of the benchmarks and that managing code (both
allocating and translating) is an important activity
in a real JavaScript engine. Our case study in Sec-
tion 4.7 demonstrates this point.

e We find that while the benchmarks are compute-
intensive and batch-oriented, real web applications
are event-driven, handling thousands of events. To
be responsive, most event handlers execute only
tens to hundreds of bytecodes. As a result, functions
are typically short-lived, and long-running loops are
uncommon.

e While existing JavaScript benchmarks make mini-
mal use of event handlers, we find that they are ex-
tensively used in real web applications. The impor-
tance of responsiveness in web application design is
not captured adequately by any of the benchmarks
available today.

2 Background

JavaScript is a garbage-collected, memory-safe program-
ming language with a number of interesting proper-
ties [6]. Unlike class-based object-oriented languages
like C# and Java, JavaScript is a prototype-based lan-
guage, influenced heavily in its design by Self [22]. Java-
Script became widely used because it is standardized,
available in every browser implementation, and tightly
coupled with the browser’s Document Object Model [2].

Importance of JavaScript. JavaScript’s popularity
has grown with the success of the web. Scripts in
web pages have become increasingly complex as AJAX
(Asynchronous JavaScript and XML) programming has
transformed static web pages into responsive applica-
tions [11]. Web sites such as Amazon, Gmail, and Face-
book contain and execute significant amounts of Java-
Script code, as we document in this paper. Web appli-
cations (or apps) are applications that are hosted entirely
in a browser and delivered through the web. Web apps
have the advantage that they require no additional instal-
lation, will run on any machine that has a browser, and

provide access to information stored in the cloud. So-
phisticated mobile phones, such as the iPhone, broaden
the base of Internet users, further increasing the impor-
tance and reach of web apps.

In recent years, the complexity of web content has
spurred browser developers to increase browser perfor-
mance in a number of dimensions, including improv-
ing JavaScript performance. Many of the techniques for
improving traditional object-oriented languages such as
Java and C# can and have been applied to JavaScript [8,
9]. JIT compilation has also been effectively applied, in-
creasing measured benchmark performance of JavaScript
dramatically.

Value of benchmarks. Because browser performance
can significantly affect a user’s experience using a web
application, there is commercial pressure for browser
vendors to demonstrate that they have improved perfor-
mance. As a result, JavaScript benchmark results are
widely used in marketing and in evaluating new browser
implementations. The two most widely used JavaScript
benchmark suites are SunSpider, a collection of small
benchmarks available from WebKit.org [23], and the
V8 benchmarks, a collection of seven slightly larger
benchmarks published by Google [10]. The benchmarks
in both of these suites are relatively small programs;
for example, the V8 benchmarks range from approxi-
mately 600 to 5,000 lines of code.

Ilustrative example. Before we discuss how we collect
JavaScript behavior data from real sites and benchmarks,
we illustrate how this data is useful. Figure 1 shows live
heap graphs for visits to the google and bing web sites'.
These graphs show the number of live bytes of different
types of data in the JavaScript heap as a function of time
(measured by bytes of data allocated). In the figures, we
show only the four most important data types: functions,
strings, arrays, and objects. When the JavaScript heap
is discarded, for example because the user navigates to
a new page, the live bytes drops to zero, as we see in
google.

These two search web sites shown offer very similar
functionality, and we performed the same sequence of
operations on them during our visit: we searched for
“New York” in both cases and then proceeded to page
through the results, first web page results and then the
relevant news items.

We see from our measurements of the JavaScript heap,
however, that the implementations of the two applica-
tions are very different, with google being implemented
as a series of visits to different pages, and bing imple-
mented as a single page visit. The benefit of the bing ap-

I'Similar graphs for all the real web sites and benchmarks can be
found in our tech report [17].

28

WebApps ’10: USENIX Conference on Web Application Development

5
x10

function
—=— string
10} —= array
—=— object

Size of live heap (bytes)

Logical time in allocated bytes

(a) Live heap for google.

5
x10

function
—— sfring
10— array
—— object

Size of live heap (bytes)

0 05 1 1.5 2 25 3 35 4 45
Logical fime in allocated bytes

(b) Live heap for bing.

Figure 1: Live heap contents as a function of time for two search applications.

proach is highlighted in this case by looking at the right
hand side of each subfigure. In the case of google, we
see that the contents of the JavaScript heap, including
all the functions, are discarded and recreated repeatedly
during our visit, whereas in the bing heap the functions
are allocated only once. The size of the google heap is
significantly smaller than the bing heap (approximately
an order of magnitude), so it could be argued that the
google approach is better. On the other hand, the bing
approach does not lead to the JavaScript heap being re-
peatedly recreated.

In conclusion, we note that this kind of dynamic heap
behavior is not captured by any of the V8 or SunSpider
benchmarks, even though it is common among real web
applications. Knowledge about such allocation behavior
can be useful when, for example, designing and optimiz-
ing the garbage collection systems.

3 Experimental Design

In this section, we describe the benchmarks and applica-
tions we used and provide an overview of our measure-
ments.

Figure 2 lists the 11 real web applications that
we used for our study’>. These sites were selected
because of their popularity according to Alexa.com,
and also because they represent a cross-section of di-
verse activities. Specifically, our applications repre-
sent search (google, bing), mapping (googlemap,
bingmap), email (hotmail, gmail), e-commerce
(amazon, ebay), news (cnn, economist), and social

2Throughout this discussion, we use the terms web application and
web site interchangeably. When we refer to the site, we specifically
mean the JavaScript executed when you visit the site.

networking (facebook). Part of our goal was to under-
stand both the differences between the real sites and the
benchmarks as well as the differences among different
classes of real web applications. For the remainder of
this paper, we will refer to the different web sites using
the names from Figure 2.

The workload for each site mimics the behavior of a
user on a short, but complete and representative, visit
to the site. This approach is dictated partly by expedi-
ence — it would be logistically complicated to measure
long-term use of each web application — and partly be-
cause we believe that many applications are actually used
in this way. For example, search and mapping applica-
tions are often used for targeted interactions.

3.1 Web Applications and Benchmarks

In measuring the JavaScript benchmarks, we chose to
use the entire V8 benchmark suite, which comprises 7
programs, and selected programs from the SunSpider
suite, which consists of 26 different programs. In or-
der to reduce the amount of data collected and displayed,
for SunSpider we chose the longest running benchmark
in each of the 9 different benchmark categories — 3d:
raytrace, access: nbody, bitops: nseive — bits, con-
trolflow: recursive, crypto: aes, date: xparb, math:
cordic, regexp: dna, and string: tagcloud.

3.2 Instrumenting Internet Explorer

Our approach to data collection is illustrated in Figure 3.
The platform we chose for instrumentation is Internet
Explorer (IE), version 8, running on a 32-bit Windows
Vista operating system. While our results are in some
ways specific to IE, the methods described here can be

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 29



Site URL

amazon amazon.com

Actions performed

Search for the book ‘“Quantita-
tive Computer Architecture,” add to
shopping cart, sign in, and sign out

bing bing.com Type in the search query “New
York” and look at resulting images

and news

bingmap maps.bing.com Search for directions from Austin
to Houston, search for a location in
Seattle, zoom-in, and use the bird’s-
eye view feature

cnn cnn.com Read the front-page news and three

other news articles

ebay ebay.com Search for a notebook computer,

sign in, bid, and sign out

economist economist.com Read the front-page news, read three
other articles, view comments

facebook facebook.com Log in, visit a friend’s page, browser

through photos and comments

gmail mail.google.com Sign in, check inbox, delete a mail
item, sign out

google google.com Type in the search query “New
York” and look at resulting images

and news

googlemap | maps.google.com | Search for directions from Austin
to Houston, search for a location in
Seattle, zoom-in, and use the street
view feature

hotmail hotmail.com Sign in, check inbox, delete a mail

item, sign out

Figure 2: Real web sites visited and actions taken.

applied to other browsers as well.

Our measurement approach works as follows: we have
instrumented the C++ code that implements the IE 8
JavaScript runtime. For IE, the code that is responsi-
ble for executing JavaScript programs is not bundled in
the main IE executable. Instead, it resides in a dynamic
linked library, jscript.dll. After performing the in-
strumentation, we recompiled the engine source code to
create a custom jscript.dll. (see Step 1 in Figure 3).

Next, we set up IE to use the instrumented
jscript.dll. We then visit the web sites and run the
benchmark programs described in the previous section
with our special version of IE. A set of binary trace
files is created in the process of visiting the web site or
running a benchmark. These traces typically comprise
megabytes of data, often up to 800 megabytes in the case
of instruction traces. Finally, we use offline analyzers
to process these custom trace files to obtain the results
presented here.

3.3 Behavior Measurements

In studying the behavior of JavaScript programs, we fo-
cused on three broad areas: functions and code, ob-
jects and data (omitted here), and events and handlers.
In each of these dimensions, we consider both static
measurements (e.g., number of unique functions) and
dynamic measurements (e.g., total number of function
calls). We measure mostly the logical behavior of

77285

<0 ‘ Source-level
4 instrumentation

\ie\jscript\*.cpp custom jscript.dll

2

—

website visits

custom trace files

Offline lI ”IIl o

measurement results

custom trace files

Figure 3: Instrumentation framework for measuring JavaScript
execution using Internet Explorer.

JavaScript programs, avoiding characteristics that are
browser-dependent. Thus, our measurements are largely
machine-independent. However, we also look at spe-
cific characteristics of the IE’s JavaScript engine (e.g.,
we count IE 8 bytecodes as a measure of execution) that
pertain to interpreter-based engines. We leave measure-
ments for characteristics relevant to JIT-based engines
such as those found in Firefox and Chrome for future
work.

3.3.1 Functions and Code

The JavaScript engine in IE 8 interprets JavaScript
source after compiling it to an intermediate representa-
tion called bytecode. The interpreter has a loop that reads
each bytecode instruction and implements its effect in a
virtual machine. Because no actual machine instructions
are generated in IE 8, we cannot measure the execution
of JavaScript in terms of machine instructions. The byte-
code instruction set implemented by the IE 8§ interpreter
is a well-optimized, traditional stack-oriented bytecode.

We count each bytecode execution as an “instruction”
and use the term bytecode and instruction interchange-
ably throughout our evaluation. In our measurements, we
look at the code behavior at two levels, the function and
the bytecode level. Therefore, we instrument the engine
at the points when it creates functions as well as in its
main interpreter loop. Prior work measuring architecture
characteristics of interpreters also measures behavior in
terms of bytecode execution [19].

3.3.2 Events and Handlers

JavaScript has a single-threaded event-based program-
ming model, with each event being processed by a non-
preemptive handler. In other words, JavaScript code runs
in response to specific user-initiated events such as a

Behavior

Real applications

Benchmarks

Implications

CODE AND FUNCTIONS

Code size

100s of kilobytes to a few
megabytes

100s of bytes to 10s of kilo-
bytes

Efficient in-memory function and bytecode repre-
sentation

Number of functions

1000s of functions

10s to 100s of functions

Minimize per-function fixed costs

Number of hot func-
tions

10s to 100s of functions

10 functions or less

Size hot function cache appropriately

Instruction mix

Similar to each other

Different across benchmarks
and from real applications

Optimize for real application instruction mix

Cold code

Majority of code

Minority of code

Download, parse, and JIT code lazily

Function duration

Mostly short

Mostly short, some very long
running

Loop optimizations less effective

EVENTS AND EVENT HANDLERS

Handler invocations 1000s of invocations

Less than 10 invocations

Optimize for frequent handler calls

Handler duration 10s to 100s of bytecodes Very long

Make common short handler case fast

MEMORY ALLOCATION AND OBJECT LIFETIMES

Allocation rate Significant, sustained

Only significant in a few

GC performance not a factor in benchmark results

between page loads

Data types unctions and strings domi aries, JS objects dominate in Optimize allocation of functions, strings
nate some
Object lifetimes ]?epends on type, some long- Very long or very short Approache‘s like generational collection hard to
lived evaluate with benchmarks
Web 1.0 has significant reuse Optimize code, heap for reuse case—cache func-
Heap reuse No heap reuse

tions, DOM, possibly heap contents

Figure 4: A summary of lessons learned from JSMeter.

mouse click, becomes idle, and waits for another event to
process. Therefore, to completely understand behaviors
of JavaScript that are relevant to its predominant usage,
we must consider the event-driven programming model
of JavaScript. Generally speaking, the faster handlers
complete, the more responsive an application appears.

However, event handling is an aspect of program be-
havior that is largely unexplored in related work measur-
ing C++ and Java execution (e.g., see [5] for a thorough
analysis of Java execution). Most related work consid-
ers the behavior of benchmarks, such as SPECjvm98 [4]
and SPECcpu2000 [1], that have no interactive compo-
nent. For JavaScript, however, such batch processing is
mostly irrelevant.

For our measurements, we insert instrumentation
hooks before and after event handling routines to mea-
sure characteristics such as the number of events handled
and the dynamic size of each event handler invocation as
measured by the number of executed bytecode instruc-
tions.

4 Evaluation

We begin this section with an overview of our results.
We then consider the behavior of the JavaScript func-
tions and code, including the size of functions, opcodes
executed, etc. Next, we investigate the use of events
and event handlers in the applications. We conclude
the section with a case study showing that introducing

cold code, i.e., code that is never executed, into exist-
ing benchmarks has a substantial effect on performance
results.

4.1 Overview

Before drilling down into our results, we summarize the
main conclusions of our comparison in Figure 4. The
first column of the table indicates the specific behavior
we measured, and the next two columns compare and
contrast results for the real web applications and bench-
marks. The last column summarizes the implications of
the observed differences, specifically providing insights
for future JavaScript engine designers. Due to space con-
straints, a detailed comparison of all aspects of behavior
is beyond the scope of this paper, and we refer the reader
to our tech report for those details [17].

4.2 Functions and Code Behavior

We begin our discussion by looking at a summary of
the functions and behavior of the real applications and
benchmarks. Figure 5 summarizes our static and dy-
namic measurements of JavaScript functions.

The real web sites. In Figure 5a, we see that the
real web applications comprise many functions, rang-
ing from a low of around 1,000 in google to a high
of 10,000 in gmail. The total amount of JavaScript

30

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development 31




0.1 feeeiiite i _accessnbody .

0.05

hotmail deitablue
' %Cﬂ-richards

e
o
o

component 2

&

3d-raytrace
‘economig

e
o
T

D2

; contr;olﬂow
I I

I i i 1 1
02 -0.15 01 -0.05 0 0.05 0.1 0.15 02
component 1

Figure 6: Opcode frequency distribution comparison.

source code associated with these web sites is signif-
icant, ranging from 200 kilobytes to more than two
megabytes of source. Most of the JavaScript source code
in these applications has been “minified”, that is, had
the whitespace removed and local variable names min-
imized using available tools such as JScrunch [7] or JS-
min [3]. This source code is translated to the smaller
bytecode representation, which from the figure we see is
roughly 60% the size of the source.

In the last column, which captures the percentage of
static unique functions executed, we see that as many
as 50-70% are not executed during our use of the ap-
plications, suggesting that much of the code delivered
applies to specific functionality that we did not exer-
cise when we visited the sites. Code-splitting approaches
such as Doloto [15] exploit this fact to reduce the wasted
effort of downloading and compiling cold code.

The number of bytecodes executed during our visits
ranged from around 400,000 to over 20 million. The
most compute-intensive applications were facebook,
gmail, and economist. As we show below, the large
number of executed bytecodes in economist is an
anomaly caused by a hot function with a tight loop. This
anomaly is also clearly visible from the opcodes/call col-
umn. We see that economist averages over 180 byte-
codes per call, while most of the other sites average be-
tween 25 and 65 bytecodes per call. This low num-
ber suggests that a majority of JavaScript function exe-
cutions in these programs do not execute long-running
loops. Our discussion of event handler behavior in Sec-
tion 4.6 expands on this observation.

Because it is an outlier, the economist application de-
serves further comment. We looked at the hottest func-
tion in the application and found a single function which
accounts for over 50% of the total bytecodes executed
in our visit to the web site. This function loops over

the elements of the DOM looking for elements with a
specific node type and placing those elements into an
array. Given that the DOM can be quite large, us-
ing an interpreted loop to gather specific kinds of ele-
ments can be quite expensive to compute. An alternative,
more efficient implementation might use DOM APIs like
getElementById to find the specific elements of inter-
est directly.

On a final note, in column five of Figure 5 we show the
number of instances of separate matching < script >
tags that appeared in the web pages that implemented the
applications. We see that in the real applications, there
are many such instances, ranging to over 200 in ebay.
This high number indicates that JavaScript code is com-
ing from a number of sources in the applications, includ-
ing different modules and/or feature teams from within
the same site, and also coming from third party sites, for
advertising, analytics, etc.

The benchmarks. In Figure 5, we also see the summary
of the V8 and SunSpider benchmarks. We see imme-
diately that the benchmarks are much smaller, in terms
of both source code and compiled bytecode, than the
real applications. Furthermore, the largest of the bench-
marks, string — tagcloud, is large not because of the
amount of code, but because it contains a large number
of string constants. Of the benchmarks, earley has the
most real code and is an outlier, with 400 functions com-
pared to the average of the rest, which is well below 100
functions. These functions compile down to very com-
pact bytecode, often more than 10 times smaller than the
real applications. Looking at the fraction of these func-
tions that are executed when the benchmarks are run, we
see that in many cases the percentage is high, ranging
from 55-100%. The benchmark earley is again an out-
lier, with only 27% of the code actually executed in the
course of running the benchmark.

The opcodes per call measure also shows significant
differences with the real applications. Some of the
SunSpider benchmarks, in particular, have long-running
loops, resulting in high average bytecodes executed per
call. Other benchmarks, such as controlflow, have ar-
tificially low counts of opcodes per call. Finally, none
of the benchmarks has a significant number of distinct
contexts in which JavaScript code is introduced (global
scope), emphasizing the homogeneous nature of the code
in each benchmark.

4.3 Opcode Distribution

We examined the distribution of opcodes that each of the
real applications and benchmarks executed. To do this,
we counted how many times each of the 160 different
opcodes was executed in each program and normalized

Static Dynamic
Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.
amazon 1,833 692,173 312,056 210 808 158,953 9,941,596 62.54 44.08%
bing 2,605 1,115,623 657,118 50 876 23,759 1,226,116 51.61 33.63%
bingmap 4,258 1,776,336 1,053,174 93 1,826 274,446 12,560,049 45.77 42.88%
cnn 1,246 551,257 252,214 124 526 99,731 5,030,647 50.44 42.22%
ebay 2,799 1,103,079 595,424 210 1,337 189,805 7,530,843 39.68 47.77%
economist 2,025 899,345 423,087 184 1,040 116,562 21,488,257 184.35 51.36%
facebook 3,553 1,884,554 645,559 130 1,296 210,315 20,855,870 99.16 36.48%
gmail 10,193 2,396,062 2,018,450 129 3,660 420,839 9,763,506 23.20 35.91%
google 987 235,996 178,186 42 341 10,166 427,848 42.09 34.55%
googlemap 5,747 2,024,655 1,218,119 144 2,749 1,121,777 29,336,582 26.15 47.83%
hotmail 3,747 1,233,520 725,690 146 1,174 15,474 585,605 37.84 31.33%

(a) Real web application summary.

Static Dynamic
Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.
richards 67 22,738 7,617 3 59 81,009 2,403,338 29.67 88.06%
deltablue 101 33,309 11,263 3 95 113,276 1,463,921 12.92 94.06%
crypto 163 55,339 31,304 3 91 103,451 90,395,272 873.80 55.83%
raytrace 90 37,278 15,014 3 72 214,983 5,745,822 26.73 80.00%
earley 416 203,933 65,693 3 112 813,683 25,285,901 31.08 26.92%
regexp 44 112,229 35,370 3 41 96 935,322 9742.94 93.18%
splay 47 17,167 5,874 3 45 678,417 25,597,696 37.73 95.74%

(b) V8 benchmark summary.

Static Dynamic
Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.
3d-raytrace 31 14,614 7,419 2 30 56,631 5,954,264 105.14 96.77%
access-nbody 14 4,437 2,363 2 14 4,563 8,177,321 1,792.09 100.00%
bitops-nsieve 939 564 2 5 5 13,737,420 2,747,484.00 83.33%
controlflow 790 564 2 6 245,492 3,423,090 13.94 100.00%
crypto-aes 22 17,332 6,215 2 17 10,071 5,961,096 591.91 77.27%
date-xparb 24 12,914 5,341 4 12 36,040 1,266,736 35.15 50.00%
math-cordic 8 2,942 862 2 6 75,016 12,650,198 168.63 75.00%
regexp-dna 3 108,181 630 2 3 3 594 198.00 100.00%
string-tagcloud 16 321,894 55,219 3 10 63,874 2,133,324 33.40 62.50%

(c) SunSpider benchmark summary.
Figure 5: Summary measurements of web applications and benchmarks.
32 WebApps ’10: USENIX Conference on Web Application Development USENIX Association

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 33



these values to fractions. We then compared the 160-
dimensional vector generated by each real application
and benchmark.

Our goal was to characterize the kinds of operations
that these programs perform and determine how repre-
sentative the benchmarks are of the opcode mix per-
formed by the real applications. We were also interested
in understanding how much variation exists between the
individual real applications themselves, given their di-
verse functionality.

To compare the resulting vectors, we used Princi-
pal Component Analysis (PCA) [12] to reduce the 160-
dimensional space to two principal dimensions. This di-
mension reduction is a way to avoid the curse of dimen-
sionality problem. We found that components after the
third are insignificant and chose to present only the two
principal components for readability. Figure 6 shows the
result of this analysis. In the figure, we see the three
different program collections (real, V8, and SunSpider).
The figure shows that the real sites cluster in the center
of the graph, showing relatively small variation among
themselves.

For example, ebay and bingmap, very different in
their functionality, cluster quite closely. In contrast, both
sets of benchmarks are more widely distributed, with
several obvious outliers. For SunSpider, controlflow
is clearly different from the other applications, while
in V8, regexp sits by itself. Surprisingly, few of the
benchmarks overlap the cluster of real applications, with
earley being the closest in overall opcode mix to the
real applications. While we expect some variation in
the behavior of a collection of smaller programs, what
is most surprising is that almost all the benchmarks have
behaviors that are significantly different than the real ap-
plications. Furthermore, it is also surprising that the real
web applications cluster as tightly as they do. This result
suggests that while the external functionality provided
may appear quite different from site to site, much of the
work being done in JavaScript on these sites is quite sim-
ilar.

4.4 Hot Function Distribution

We next consider the distribution of hot functions in the
applications, which tells us what code needs to be highly
optimized. Figure 7 shows the distribution of hot func-
tions in a subset of the real applications and the V8
benchmarks (full results, including the SunSpider bench-
marks are included in [17]). Each figure shows the cu-
mulative contribution of each function, sorted by hottest
functions first on the x-axis, to normalized total opcodes
executed on the y-axis. We truncate the x-axis (not con-
sidering all functions) to get a better view of the left end
of the curve. The figures show that all programs, both

(o]
o
o
[
>
Q
o
s —*— gmail
‘g —5— googlemap
2 0.5¢[ —*— hotmail q
w bingmap
—%— facebook
0.4 L = 4
0.3 ]
0.2 : : : s s s s
0 100 200 300 400 500 600 700

Number of functions

(a) Real web application hot function distribution.

—>—richards
—©— deltablue
—*— crypto
—H8&— raytrace
earley =
— ¥ regexp
—=— gplay

Execution coverage

. .
10 20 30 40 50
Number of functions

0.2
0

(b) V8 benchmarks hot function distribution.

Figure 7: Hot function distribution.

real applications and benchmarks, exhibit high code lo-
cality, with a small number of functions accounting for
a large majority of total execution. In the real applica-
tions, 80% of total execution is covered by 50 to 150
functions, while in the benchmarks, at most 10 functions
are required. facebook is an outlier among the real ap-
plications, with a small number of functions accounting
for almost all the execution time.

4.5 Implications of Code Measurements

We have considered static and dynamic measures of
JavaScript program execution, and discovered numerous
important differences between the behaviors of the real
applications and the benchmarks. Here we discuss how
these differences might lead designers astray when build-
ing JavaScript engines that optimize benchmark perfor-
mance.

34

WebApps ’10: USENIX Conference on Web Application Development

First, we note a significant difference in the code size
of the benchmarks and real applications. Real web ap-
plications have large code bases, containing thousands
of functions from hundreds of individual < script >
bodies. Much of this code is never or rarely executed,
meaning that efforts to compile, optimize, or tune this
code are unnecessary and can be expensive relative to
what the benchmarks would indicate. We also observe
that a substantial fraction of the downloaded code is not
executed in a typical interaction with a real application.
Attempts to avoid downloading this code, or minimizing
the resources that it consumes once it is downloaded, will
show much greater benefits in the real applications than
in the benchmarks.

Second, we observe that based on the distribution
of opcodes executed, benchmark programs represent a
much broader and skewed spectrum of behavior than the
real applications, which are quite closely clustered. Tun-
ing a JavaScript engine to run controlflow or regexp
may improve benchmark results, but tuning the engine to
run any one of the real applications is also likely to sig-
nificantly help the other real applications as well. Sur-
prisingly, few of the benchmarks approximate the in-
struction stream mix of the real applications, suggesting
that there are activities being performed in the real ap-
plications that are not well emulated by the benchmark
code.

Third, we observe that each individual function execu-
tion in the real applications is relatively short. Because
these applications are not compute-intensive, bench-
marks with high loop counts, such as bitops — nsieve,
distort the benefit that loop optimizations will provide
in real applications. Because the benchmarks are batch-
oriented to facilitate data collection, they fail to match a
fundamental characteristic of all real web applications —
the need for responsiveness. The very nature of an inter-
active application prevents developers from writing code
that executes for long periods of time without interrup-
tion.

Finally, we observe that a tiny fraction of the code ac-
counts for a large fraction of total execution in both the
benchmarks and the real applications. The size of the hot
code differs by one to two orders of magnitude between
the benchmarks and applications, but even in the real ap-
plications the hot code is still quite compact.

4.6 Event Behavior

In this section, we consider the event-handling behavior
of the JavaScript programs. We observe that handling
events is commonplace in the real applications and al-
most never occurs in the benchmarks. Thus the focus of
this section is on characterizing the handler behavior of
the real applications.

#of | unique executed instructions

events events handler total
richards 8 6 2,403,333 2,403,338
deltablue 8 6 1,463,916 1,463,921
crypto 11 6 | 86,854,336 | 86,854,341
raytrace 8 6 5,745,817 5,745,822
earley 11 6 | 25285896 | 25,285,901
regexp 8 6 935,317 935,322
splay 8 6 | 25,597,691 25,597,696

Figure 9: Event handler characteristics in the V8 benchmarks.

Before discussing the results, it is important to explain
how handlers affect JavaScript execution. In some cases,
handlers are attached to events that occur when a user
interacts with a web page. Handlers can be attached to
any element of the DOM, and interactions such as click-
ing on an element, moving the mouse over an element,
etc., can cause handlers to be invoked. Handlers also are
executed when a timer times out, when a page loads, or
when an asynchronous XMLHttpRequest is completed.
JavaScript code is also executed outside of a handler con-
text, such as when a < script > block is processed as
part of parsing the web page. Often code that initializes
the JavaScript for the page executes outside of a handler.

Because JavaScript has a non-preemptive execution
model, once a JavaScript handler is started, the rest of the
browser thread for that particular web page is stalled un-
til it completes. A handler that takes a significant amount
of time to execute will make the web application appear
sluggish and non-responsive.

Figures 8 and 9 present measures of the event han-
dling behavior in the real applications and the V8 bench-
marks>. In both tables, unique events are defined as fol-
lows. Events are nominally unique when they invoke the
same sequences of handler instructions with the same
inputs. Our measurements in the figures only approxi-
mate this definition. We associate each event with three
attributes: name, the set of handler functions invoked,
and the total number of instructions executed. If the two
events have the same three attributes, we say that they are
unique.

We see that the real applications typically handle
thousands of events while the benchmarks all handle
11 or fewer. In all the benchmarks, one onload event
(for loading and, subsequently, running the benchmark
program) is responsible for almost 100% of all JavaScript
execution. We will see shortly that this is in stark contrast
to the behavior seen in the real applications. Even though
real web sites typically process thousands of events, the
unique events column in the figure indicates that there are
only around one hundred unique events per application.
This means that a given event is likely to be repeated and

3SunSpider results are similar to V8 results, so we omit them here.

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 35



#of | unique executed instructions % of handler handler size % gg ég g ég § §§ § %

events events handler total instructions average median | maximum 182:;: 138:
amazon 6,424 224 | 7237073 | 9.941,59% 72.80% 1,127 8 | 1,041,744 80% - 80%
bing 4,370 103 598,350 1,226,116 48.80% 137 24 68,780 3 ég; ] 3 Zgi
bingmap 4,669 138 | 8274,169 | 12,560,049 65.88% 1772 314 281,887 £ oow 200K £ con " 200K
cnn 1,614 133 | 4939776 | 5,030,647 98.19% 3,061 11 | 4208,115 E 40% - 400K g 40% = 400K
ebay 2,729 136 | 7.463,521 7,530,843 99.11% 2,735 80 879,798 ig; ] 800K ;g; ] 800K
economist 2338 179 | 21,146,767 | 21,488,257 98.41% 9,045 30 270,616 10% ERLY 10% 1 =1M
facebook 5,440 143 | 17,527,035 | 20,855,870 84.04% 3,222 380 89,785 0% - u2Mm 0% - "2m
gmail 1,520 98 | 3.085482 | 9,763,506 31.60% 2,030 506 594,437 & %Q\o*’ &@
google 569 64 143,039 427,848 33.43% 251 43 10,025 RS & & & RS
googlemap 3,658 74 | 26,848,187 | 29,336,582 91.52% 7,340 2,137 | 1,074,568 §
hotmail 552 194 474,693 585,605 81.06% 860 26 202,105

(a) Impact of cold code in Chrome.

(b) Impact of cold code Internet Explorer 8.

Figure 8: Event handler characteristics in real applications.
Figure 11: Impact of cold code using a subset of the SunSpider benchmarks.

2500 T
—&— amazon

economist
— — — facebook o
1500 [ | —6— google H [
i googlemap - |
gmail - |
—*— hotmail -

1000

o
=]
=]

Size of handlers (# of executed instructions)

T = — &
0 0.2 0.4 0.6 0.8 1
Number of events (normalized)

Figure 10: Distribution of handler durations.

handled many times throughout the course of a user visit
to the site.

We see the diversity of the collection of handlers in
the results comparing the mean, median, and maximum
of handler durations for the real applications. Some han-
dlers run for a long time, such as in cnn, where a sin-
gle handler accounts for a significant fraction of the to-
tal JavaScript activity. Many handlers execute for a very
short time, however. The median handler duration in
amazon, for example, is only 8 bytecodes. amazon is
also unusual in that it has the highest number of events.
We hypothesize that such short-duration handlers proba-
bly are invoked, test a single value, and then return.

These results demonstrate that handlers are written so
that they almost always complete in a short time. For
example, in bing and google, both highly optimized for
delivering search results quickly, we see low average and
median handler times. It is also clear that google, bing,
and facebook have taken care to reduce the duration of
the longest handler, with the maximum of all three below
100,000 bytecodes.

Figure 10 illustrates the distribution of handler dura-

of bytecodes executed by each handler invocation. For
example, in the figure, approximate 40% of the handlers
in googlemap executed for 1000 bytecodes or less.
Figure 10 confirms that most handler invocations are
short. This figure provides additional context to under-
stand the distribution. For example, we can determine
the 95th percentile handler duration by drawing a verti-
cal line at 0.95 and seeing where each line crosses it. The
figure also illustrates that the durations in many of the ap-
plications reach plateaus, indicating that there are many
instances of handlers that execute for the same number of
instructions. For example, we see a significant number of
bingmap instances that take 1,500 bytcodes to complete.

4.7 Cold Code Case Study

Our results show that real web applications have much
more JavaScript code than the SunSpider and V8 bench-
marks and that most of that code is cold. We were curious
how much impact the presence of such cold code would
have on benchmark performance results. Based on our
understanding of the complexity and performance over-
head of code translation, especially in a JIT-compiler,
we hypothesized that simply increasing the amount of
cold code in existing benchmarks would have a signifi-
cant non-uniform impact on benchmark results. If this
hypothesis is true, then a simple way to make results
from current benchmarks more representative of actual
web applications would be to add cold code to each of
them.

To test this hypothesis, we selected six SunSpider
benchmarks that are small and have mostly hot code. To
each of these benchmarks, we added 200 kilobytes, 400
kilobytes, 800 kilobytes, 1 megabyte and 2 megabytes

the added code and recorded its performance on both the
Google Chrome and Internet Explorer browsers*.

Figure 11 presents the results of the experiment. It
shows the execution overhead observed in each browser
as a function of the size of the additional cold code added
in each benchmark. At a high level, we see immediately
that the addition of cold code affects the benchmark per-
formance on the two browsers differently. In the case
of Chrome (Figure 11a), adding two megabytes of cold
code can add up to 450% overhead to the benchmark per-
formance. In Internet Explorer (Figure 11b), cold code
has much less impact.

In IE, the addition of 200 to 400 kilobytes does not
impact its performance significantly. On average, we
observe the overhead due to cold code of 1.8% and
3.2%, respectively. With 1 megabyte of cold code, the
overhead is around 13%, still relatively small given the
large amount of code being processed. In Chrome, on
the other hand, even at 200 kilobytes, we observe quite
a significant overhead, 25% on average across the six
benchmarks. Even between the benchmarks on the same
browser, the addition of cold code has widely varying ef-
fects (consider the effect of 1 megabyte of cold code on
the different benchmarks in Chrome).

There are several reasons for these observed differ-
ences. First, because Chrome executes the benchmarks
faster than IE, the additional fixed time processing the
cold code will have a greater effect on Chrome’s over-
all runtime. Second, Chrome and IE process Java-
Script source differently, and large amounts of additional

#We use Chrome version 3.0.195.38 and Internet Explorer version
8.0.6001.18865. We collected measurements on a machine with a 1.2
GHz Intel Core Duo processor with 1.5 gigabytes of RAM, running
32-bit Windows Vista operating system.

; ‘
|

—5— bing : % tions for each of the applications. The x-axis depicts the of cold code from the jQuery library. The added code source, even if it is cold code, will have different ef-

2000} | o o i I instances of handler invocations, sorted by smallest first is never called in the benchmark but the JavaScript run-  fects on runtime. The important takeaway here is not that

—— ebay 0 and normalized to one. The y-axis depicts the number time still processes it. We executed each benchmark with one browser processes cold code any better than another,

but that results of benchmarks containing 1 megabyte of
cold code will look different than results without the cold
code. Furthermore, results with cold code are likely to be
more representative of browser performance on real web
sites.

5 Related Work

There are surprisingly few papers measuring specific as-
pects of JavaScript behavior, despite how widely used
it is in practice. A concurrently submitted paper by
Richards et al. measures static and dynamic aspects of
JavaScript programs, much as we do [18]. Like us, their
goals are to understand the behavior of JavaScript appli-
cations in practice, and specifically they investigate the
degree of dynamism present in these applications (such
as uses of eval). They also consider the behavior of Java-
Script benchmarks, although this is not a major focus of
the research. Unlike us, they do not consider the use of
events in applications, or consider the size and effect of
cold code.

One closely related paper focuses on the behavior of
interpreted languages. Romer et al. [19] consider the run-
time behavior of several interpreted languages, including
Tcl, Perl, and Java, and show that architectural charac-
teristics, such as cache locality, are a function of the in-
terpreter itself and not the program that it is interpreting.
While the goals are similar, our methods, and the lan-
guage we consider (JavaScript), are very different.

Dieckmann and Hoélzle consider the memory alloca-
tion behavior of the SPECJVM Java benchmarks [4]. A
number of papers have examined the memory reference
characteristics of Java programs [4, 14, 16, 20, 21] specif-
ically to understand how hardware tailored for Java ex-

36

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 37



ecution might improve performance. Our work differs
from this previous work in that we measure JavaScript
and not Java, we look at characteristics beyond memory
allocation, and we consider differences between bench-
marks and real applications.

Dufour et al. present a framework for categorizing the
runtime behavior of programs using precise and concise
metrics [5]. They classify behavior in terms of five gen-
eral categories of measurement and report measurements
of a number of Java applications and benchmarks, using
their results to classify the programs into more precise
categories. Our measurements correspond to some met-
rics mentioned by Dufour et al., but we consider some
dimensions of execution that they do not, such as event
handler metrics, and compare benchmark behavior with
real application behavior.

6 Conclusions

We have presented detailed measurements of the behav-
ior of JavaScript applications, including commercially
important web applications such as Gmail and Facebook,
as well as the SunSpider and V8 benchmark suites. We
measure two specific areas of JavaScript runtime behav-
ior: 1) functions and code and 2) events and handlers. We
find that the benchmarks are not representative of many
real web sites and that conclusions reached from measur-
ing the benchmarks may be misleading.

Our results show that JavaScript web applications are
large, complex, and highly interactive programs. While
the functionality they implement varies significantly, we
observe that the real applications have much in com-
mon with each other as well. In contrast, the JavaScript
benchmarks are small, and behave in ways that are sig-
nificantly different than the real applications. We have
documented numerous differences in behavior, and we
conclude from these measured differences that results
based on the benchmarks may mislead JavaScript engine
implementers.

Furthermore, we observe interesting behaviors in real
JavaScript applications that the benchmarks fail to ex-
hibit. Our measurements suggest a number of valuable
follow-up efforts. These include working on building
a more representative collection of benchmarks, modi-
fying JavaScript engines to more effectively implement
some of the real behaviors we observed, and building de-
veloper tools that expose the kind of measurement data
we report.

Acknowledgments

We thank Corneliu Barsan, Trishul Chilimbi, David
Detlefs, Leo Meyerovich, Karthik Pattabiraman, David

Simmons, Herman Venter, and Allen Wirfs-Brock for
their support and feedback during the course of this re-
search. We thank the anonymous reviewers for their
feedback, and specifically Wilson Hsieh, who made a
number of concrete and helpful suggestions.

References

[1] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral differences
between C and C++ programs. Journal of Programming Languages, 2:313—
351, 1995.

[2] W. W. W. Consortium. Document object model (DOM). http://wuw.
w3.org/DOM/.

[3]1 D. Crockford. JSMin: The JavaScript minifier. http://www.crockford.
com/javascript/jsmin.html.

[4] S. Dieckmann and U. Hoélzle. A study of the allocation behaviour of the
SPECjvm98 Java benchmarks. In Proceedings of European Conference on
Object Oriented Programming, pages 92—115, July 1999.

[5] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics
for Java. SIGPLAN Not., 38(11):149-168, 2003.

[6] ECMA International. ECMAScript language specification.
ECMA-262, Dec. 1999.

[7] C. Foster. JSCrunch: JavaScript cruncher. http://www.cfoster.net/
jscrunch/.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-
in-time type specialization for dynamic languages. In Proceedings of the
Conference on Programming Language Design and Implementation, pages
465-478, 2009.

[9] Google. V8 JavaScript engine. http://code.google.com/apis/v8/
design.html.

[10] Google. V8 benchmark suite - version 5. http://v8.googlecode.com/
svn/data/benchmarks/v5/run.html, 2009.

[11] A.T. Holdener, Ill. Ajax: The Definitive Guide. O’Reilly, 2008.

[12] 1. T.Jolliffe. Principal Component Analysis. Series in Statistics. Springer
Verlag, 2002.

[13] G. Keizer. Chrome buries Windows rivals in browser drag race.
http://www.computerworld.com/s/article/9138331/Chrome_
buries_Windows_rivals_in_browser_drag_race, 2009.

[14] J.-S.Kim and Y. Hsu. Memory system behavior of Java programs: method-
ology and analysis. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems, pages 264-274, 2000.

[15] B. Livshits and E. Kiciman. Doloto: code splitting for network-bound Web
2.0 applications. In Proceedings of the International Symposium on Foun-
dations of Software Engineering, pages 350-360, 2008.

[16] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubramaniam,
J. Rubio, and J. Sabarinathan. Java runtime systems: Characterization and
architectural implications. IEEE Trans. Computers, 50(2):131-146, 2001.

[17] P.Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn. JSMeter: Char-
acterizing real-world behavior of JavaScript programs. Technical Report
MSR-TR-2009-173, Microsoft Research, Dec. 2009.

[18] G.Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic
behavior of JavaScript programs. In Proceedings of the ACM SIGPLAN
2010 Conference on Programming Language Design and Implementation
(PLDI’10), pages 1-12, 2010.

[19] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L. Baer,
B. N. Bershad, and H. M. Levy. The structure and performance of inter-
preters. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 150—
159, Oct. 1996.

[20] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Characterizing the mem-
ory behavior of Java workloads: a structured view and opportunities for
optimizations. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems, pages 194-205, 2001.

[21] T. Systd. Understanding the behavior of Java programs. In Proceedings of
the Working Conference on Reverse Engineering, pages 214-223, 2000.

[22] D. Unger and R. B. Smith. Self: The power of simplicity. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 227-242, Dec. 1987.

[23] WebKit. Sunspider JavaScript benchmark, 2008. http://www2.webkit.
org/perf/sunspider-0.9/sunspider.html, 2008.

[24] Wikipedia. Browser wars. http://en.wikipedia.org/wiki/
Browser_wars, 2009.

Standard

38

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association



JSZap: Compressing JavaScript Code

Martin Burtscher
University of Texas at Austin
burtscher@ices.utexas.edu

Abstract

JavaScript is widely used in web-based applications, and
gigabytes of JavaScript code are transmitted over the In-
ternet every day. Current efforts to compress JavaScript
to reduce network delays and server bandwidth require-
ments rely on syntactic changes to the source code and
content encoding using gzip. This paper considers re-
ducing the JavaScript source to a compressed abstract
syntax tree (AST) and transmitting it in this format. An
AST-based representation has a number of benefits in-
cluding reducing parsing time on the client, fast checking
for well-formedness, and, as we show, compression.

With JSZAP, we transform the JavaScript source into
three streams: AST production rules, identifiers, and
literals, each of which is compressed independently.
While previous work has compressed Java programs us-
ing ASTs for network transmission, no prior work has
applied and evaluated these techniques for JavaScript
source code, despite the fact that it is by far the most
commonly transmitted program representation.

We show that in JavaScript the literals and identifiers
constitute the majority of the total file size and we de-
scribe techniques that compress each stream effectively.
On average, compared to gzip we reduce the production,
identifier, and literal streams by 30%, 12%, and 4%, re-
spectively. Overall, we reduce total file size by 10%
compared to gzip while, at the same time, benefiting the
client by moving some of the necessary processing to the
server.

1 Introduction

Over the last decade, JavaScript has become the lingua
franca of the web, meaning that increasingly large Java-
Script applications are being delivered to users over the
wire. The JavaScript code of large applications such as
Gmail, Office Web Apps, and Facebook amounts to sev-
eral megabytes of uncompressed and hundreds of kilo-

Benjamin Livshits and Benjamin G. Zorn
Microsoft Research
{livshits,zorn}@microsoft.com

Gaurav Sinha
IIT Kanpur
gsinha@iitk.ac.in

bytes of compressed data.

This paper argues that the current Internet infrastruc-
ture, which transmits and treats executable JavaScript as
files, is ill-suited for building the increasingly large and
complex web applications of the future. Instead of using
a flat, file-based format for JavaScript transmission, we
advocate the use of a hierarchical, abstract syntax tree-
based representation.

Prior research by Franz et al. [4, 22] has argued that
switching to an AST-based format has a number of valu-
able benefits, including the ability to quickly check that
the code is well-formed and has not been tampered with,
the ability to introduce better caching mechanisms in
the browser, etc. However, if not engineered properly,
an AST-based representation can be quite heavy-weight,
leading to a reduction in application responsiveness.

This paper presents JSZAP, a tool that generates and
compresses an AST-based representation of JavaScript
source code, and shows that JSZAP outperforms de facto
compression techniques such as gzip [13] by 10% on
average. The power of JSZAP comes from the fact
that JavaScript code conforms to a well-defined gram-
mar [15]. This allows us to represent the grammar pro-
ductions separately from the identifiers and the literals
found in the source code so that we can apply different
compression techniques to each component.

With JSZAP, we transform the JavaScript source into
three streams: AST production rules, identifiers, and lit-
erals, each of which is compressed independently. While
previous work has considered compressing Java pro-
grams for network transmission [4, 21, 22, 38], no prior
work has considered applying these techniques to Java-
Script. We show that in JavaScript the literals and iden-
tifiers constitute the majority of the total file size and de-
scribe techniques that compress each stream effectively.

1.1 Contributions

This paper makes the following contributions.

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 39



o It demonstrates the benefits of an AST-based Java-
Script program representation, which include the
ability to parse code in parallel [25], the potential
to remove blocking HTML parser operations, and
the opportunity for better caching, leading to more
responsive web applications.

e [t introduces JSZAP, the first grammar-based com-
pression algorithm for JavaScript. JSZAP repre-
sents productions, identifiers, and literals as inde-
pendent streams and uses customized compression
strategies for each of them.

o It evaluates JSZAP on nine JavaScript programs,
covering various program sizes and application do-
mains, and ranging in size between about 1,000
to 22,000 lines of code. We conclude that JSZAP
is able to compress JavaScript code 10% better than
gzip. JSZAP compression ratios appear to apply
across a wide range of JavaScript inputs.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2
provides background on JavaScript and AST-based pro-
gram representation. Section 3 gives an overview of AST
compression and Section 4 goes into the technical de-
tails of our JSZAP implementation. Section 5 presents
the evaluation methodology and our experimental re-
sults. Section 6 describes related work and Section 7
concludes.

2 Background

This section covers the fundamentals of how JavaScript-
based web applications are constructed and advocates an
AST representation as a transfer format for JavaScript.

2.1 Web Application Background

Over the last several years, we have witnessed the cre-
ation of a new generation of sophisticated distributed
Web 2.0 applications as diverse as Gmail, Bing Maps,
Redfin, MySpace, and Netflix. A key enabler for these
applications is their use of client-side code—usually
JavaScript executed within the web browser—to provide
a smooth and highly responsive user experience while
the rendered web page is dynamically updated in re-
sponse to user actions and client-server interactions. As
the sophistication and feature sets of these web appli-
cations grow, downloading their client-side code is in-
creasingly becoming a bottleneck in both initial startup
time and subsequent application reaction time. Given
the importance of performance and instant gratification
in the adoption of applications, a key challenge thus lies

in maintaining and improving application responsiveness
despite increased code size.

Indeed, for many of today’s popular Web 2.0 applica-
tions, client-side components already approach or exceed
one megabyte of (uncompressed) code. Clearly, having
the user wait until the entire code base has been trans-
ferred to the client before execution can commence does
not result in the most responsive user experience, espe-
cially on slower connections. For example, over a typi-
cal 802.11b wireless connection, the simple act of open-
ing an email in a Hotmail inbox can take 24 seconds on
the first visit. The second visit can still take 11 seconds—
even after much of the static resources and code have
been cached. Users on dial-up, cell phone, or other slow
networks see much worse latencies, of course, and large
applications become virtually unusable. Bing Maps, for
instance, takes over 3 minutes to download on a second
(cached) visit over a 56k modem. (According to a recent
Pew research poll, 23% of people who use the Internet at
home rely on dial-up connections [30].) In addition to in-
creased application responsiveness, reducing the amount
of code needed for applications to run has the benefit of
reducing the overall download size, which is important in
mobile and some international contexts, where network
connectivity is often paid per byte instead of a flat rate.

From the technical standpoint, a key distinguishing
characteristic of Web 2.0 applications is the fact that code
executes both on the client, within the web browser, and
on the server, whose capacity ranges from a standalone
machine to a full-fledged data center. Simply put, to-
day’s Web 2.0 applications are effectively sophisticated
distributed systems, with the client portion typically writ-
ten in JavaScript running within the browser. Client-side
execution leads to faster, more responsive client-side ex-
perience, which makes Web 2.0 sites shine compared to
their Web 1.0 counterparts.

In traditional web applications, execution occurs en-
tirely on the server so that every client-side update within
the browser triggers a round-trip message to the server,
followed by a refresh of the entire browser window. In
contrast, Web 2.0 applications make requests to fetch
only the data that are necessary and are able to repaint
individual portions of the screen. For instance, a map-
ping application such as Google Maps or Bing Maps may
only fetch map tiles around a particular point of interest
such as a street address or a landmark. Once additional
bandwidth becomes available, such an application may
use speculative data prefetch; it could push additional
map tiles for the surrounding regions of the map. This is
beneficial because, if the user chooses to move the map
around, surrounding tiles will already be available on the
client side in the browser cache.

However, there is an even more basic bottleneck asso-
ciated with today’s sophisticated Web 2.0 applications:

WebApps ’10: USENIX Conference on Web Application Development

they contain a great deal of code. For large applica-
tions such as Bing Maps, downloading as much as one
megabyte of JavaScript code on the first visit to the front
page is not uncommon [27]. This number is for the ini-
tial application download; often even more code may be
needed as the user continues to interact with the appli-
cation. The opportunity to optimize this large amount of
code motivates our interest in JSZAP.

2.2 Benefits of an AST-based Representation

Franz’s Slim Binaries project was the first to propose
transmitting mobile code in the form of an abstract syn-
tax tree [22]. In that project, Oberon source programs
were converted to ASTs and compressed with a variant
of LZW [40] compression. In later work, Franz also in-
vestigated the use of ASTs for compressing and trans-
mitting Java programs [4, 21, 38].

Since this original work, JavaScript has become the
de facto standard for transmission of mobile code on the
web. Surprisingly, however, no one has investigated ap-
plying Franz’s techniques to JavaScript programs. Below
we list the benefits of AST-based representation, both
those proposed earlier as well as unique opportunities
present only in the context of web browsers.

Well-formedness and security. By requiring that Java-
Script be transferred in the form of an AST, the browser
can easily and quickly enforce important code properties.
For instance, it can ensure that the code will parse or that
it belongs to a smaller, safer JavaScript subset such as
ADSafe [10]. Furthermore, simple code signing tech-
niques can be used to ensure that the code is not being
tampered with, which is common according to a recent
study [34].

Caching and incremental updates. It is typical for
large Internet sites to go through many small code revi-
sions. This kind of JavaScript code churn results in cache
misses, followed by code retransmission: the browser
queries the server to see if there are any changes to a
particular JavaScript file, and if so, requests a new ver-
sion of it. Instead of redelivering entire JavaScript files,
however, an AST-based approach provides a more natu-
ral way to allow fine-grained updates to individual func-
tions, modules, etc. While unparsed source text can also
be incrementally updated by specifying source ranges,
AST updates can be guaranteed to preserve well-formed
code with only local tree updates, while source-level up-
dates cannot. Source-level updates may require the en-
tire source to be parsed again once an update has been
received.

Unblocking the HTML parser. The HTML parser has
to parse and execute JavaScript code synchronously, be-
cause JavaScript execution can, for instance, inject ad-

ditional HTML markup into the existing page. This is
why many pages place JavaScript towards the end so
that it can run once the rest of the page has been ren-
dered. An AST-based representation can explicitly rep-
resent whether the code contains code execution or just
code declaration, as is the case for most JavaScript li-
braries. Based on this information, the browser should
be able to unblock the HTML parser, effectively remov-
ing a major bubble in the HTML parser pipeline.

Compression. This paper shows that an AST-based rep-
resentation can be used to achieve better compression for
JavaScript, reducing the amount of data that needs to be
transferred across the network and shortening the pro-
cessing time required by the browser to parse the code.

While some of the benefits mentioned can also be ob-
tained by extending the existing source-based transmis-
sion method, we argue the if changes are required, then
an AST-based approach is both more natural and more
efficient to use than adding ad hoc mechanisms onto the
existing techniques.

2.3 JavaScript Compression: State of the Art

Currently, the most commonly used approach to Java-
Script compression is to “minify” the source code by re-
moving superfluous whitespace. JSCrunch [20] and JS-
Min [11] are some of the more commonly used tools for
this task. Some of the more advanced minifiers attempt
to also rename variables to use shorter identifiers for tem-
poraries, etc. In general, such renaming is difficult to per-
form soundly, as the prevalence of dynamic constructs
like eval makes the safety of such renaming difficult to
guarantee. When considered in isolation, however, mini-
fication generally does not produce very high compres-
sion ratios.

After minification, the code is usually compressed
with gzip, an industry-standard compression utility that
works well on source code and can eliminate much of the
redundancy present in JavaScript programs. Needless to
say, gzip is not aware of the JavaScript program structure
and treats it as it would any other text file. On the client
machine, the browser proceeds to decompress the code,
parse it, and execute it.

To better understand the benefit of minification over
straight gzip compression of the original source, we did
the following experiment: for each of the benchmarks
listed in Table 1, we either obtained the original unmini-
fied source if it was available, or we created a pretty-
printed version of the source from the original minified
source. These files approximate what the original source
contained prior to minification (not including the com-
ments). We then compressed the pretty-printed source
and the minified source (created using the tool JSCrunch)

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

41



1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
6@ > & @Q} & 050 o

&
T2

Size Relative to Gzippd Unminified

&

Figure 1: Relative benefit of using minification before
gzip compression.

&0

with gzip and compared the resulting file sizes. The re-
sults of this experiment are presented in Figure 1. The
figure shows that the overall benefit that a program-
mer gets from using JSCruch prior to gzip is between
10 and 20%. Because minification is widely used in web
applications, we conclude that JavaScript file size reduc-
tions on the order of 10-20% would be of interest to many
web developers.

3 Compression Overview

This section gives an overview of the JSZAP approach,
with Section 4 focusing on the details.

3.1 JavaScript Compression

JavaScript code, like the source code of most other high-
level programming languages, is expressed as a sequence
of characters that has to follow a specific structure to
represent a valid program. This sequence can be bro-
ken down into tokens, which consist of keywords, prede-
fined symbols, whitespace, user-provided constants, and
user-provided names. Keywords include strings such as
while and if. Symbols are operators such as — and ++
as well as semicolons, parentheses, etc. Whitespace typi-
cally includes all non-printable characters but most com-
monly refers to one or more space (blank) or tab charac-
ters. User-provided constants include hardcoded string,
integer, and floating-point values. User-provided identi-
fiers are variable names, function names, and so on.

The order in which these tokens are allowed to appear
is defined by the syntax rules of the JavaScript gram-
mar [15]. For instance, one such rule is that the key-
word while must be followed by an opening parenthesis
that is optionally preceded by whitespace. These syntax
rules force legal programs to conform to a strict struc-
ture, which makes JavaScript code compressible. For ex-
ample, the whitespace and the opening parenthesis after
the keyword while are only there to make the code look
more appealing to the programmer. They can safely be

omitted in a compressed version of the source code be-
cause the uncompressed source code can easily be regen-
erated from the compressed form by inserting an open-
ing parenthesis after every occurrence of the word while
(outside of string constants).

Because the compressed code is not directly exe-
cutable but must first be decompressed, crunching tools
like JSCrunch [20] and JSMin [11] do not go this far.
They primarily focus on minimizing whitespace, short-
ening local variable names, and removing comments. As
in the while example above, whitespace is often op-
tional and can be removed. Comments can always be re-
moved. Local variables can be arbitrarily renamed with-
out changing the meaning of the program as long as they
remain unique and do not collide with a reserved word
or global name that needs to be visible. Crunching tools
exploit this fact and rename local variables to the shortest
possible variable names such as a, b, c, etc. The result-
ing code is compressed because it is void of comments
and unnecessary whitespace such as indentation and uses
short but meaningless variable names, making it hard to
read for humans.

If we are willing to forego direct execution, i.e., to
introduce a decompression step, we can achieve much
higher compression ratios than crunching tools are ca-
pable of achieving. For example, general-purpose com-
pressors such as gzip are often able to further compress
crunched JavaScript programs by a large amount. In
the case of gzip, recurring character sequences are com-
pressed by replacing later occurrences with a reference
to an earlier occurrence. These references, which spec-
ify the position and length of the earlier occurrence, and
the remaining symbols are then encoded using an adap-
tive Huffman scheme [19, 23] to minimize the number
of bits required to express them. This way, keywords and
longer recurring sequences such as while(a < b) can be
compressed down to just a few bits. As mentioned, gzip
compression of JavaScript and other files is so successful
that many web servers and browsers provide support for
it, i.e., files are transparently compressed by the server
and decompressed by the client. Nevertheless, gzip was
not designed for JavaScript. Rather, it was designed as
a general-purpose text compressor, making it possible to
compress JavaScript even better with a special-purpose
compressor like JSZAP that takes advantage of specific
properties such as the structure imposed by the grammar.

3.2 AST-based Compression

One way to expose the structure in JavaScript programs
is to use a parser, which breaks down the source code into
an abstract syntax tree (AST) whose nodes contain the
tokens mentioned above. The AST specifies the order in
which the grammar rules have to be applied to obtain the

WebApps ’10: USENIX Conference on Web Application Development

Server

<Java$criptH gzip }
Q&
O]

Identifiers H gzip

<JavaScript>—>{ ISZap

8]

Browser

gzip -d H Parser } AST >

nq‘g%é gzip -d H JSZap -d } > AST

&

Figure 2: Architecture of JSZAP (bottom) compared to the current practice (top).

program at hand. In compiler terminology, these rules
are called productions, the constants are called literals,
and the variable and function names are called identifiers.
Thus, the use of a parser in JSZAP makes it possible to
extract and separate the productions, identifiers, and lit-
erals that represent a JavaScript program. Figure 2 illus-
trates this process, including further compression with
gzip. The top portion of the figure shows the typical cur-
rent process; the bottom portion illustrates the JSZAP ap-
proach of breaking down the code into multiple streams
and compressing them separately.

Figure 3 provides an example of how a small piece
of JavaScript code is converted into these three data
streams. The productions are shown in linearized format.
The figure illustrates that the three categories exhibit very
different properties, making it unlikely that a single com-
pression algorithm will be able to compress all of them
well. Instead, JSZAP applies different compression tech-
niques to each category to maximize the compression ra-
tio. Each compressor is designed to maximally exploit
the characteristics of the corresponding category, as ex-
plained in the next section. Figure 4 shows that each cat-
egory represents a significant fraction of the total amount
of data, meaning that all three categories must be com-
pressed well to obtain good overall compression. The
figure shows results for our nine benchmarks, ordered in
increasing size, ranging from 17 kilobytes to 668 kilo-
bytes (see also Table 1). The fraction of each kind of
data is consistent across the programs, with a slight trend
towards larger files having a larger fraction of identifiers
and a smaller fraction of literals.

4 JSZap Design and Implementation

Because data sent over the Internet are typically com-
pressed with a general compression algorithm like gzip,
we not only want to determine how to best compress
ASTs but also how to do it in a way that complements
this preexisting compression stage well.

Such a two-stage compression scheme has interesting

vary =2;
function foo() { Production Stream: 1 46 7 38 25 138 ..

var x = "JSZap";
varz=3; :‘ Identifier Stream: y foo x z z y x
z=y+7;

} Literal Stream: 2 "JSZap" 3 7 "jszap"
x ="jszap";

Figure 3: A simple JavaScript example.

implications. For example, to optimize the overall com-
pression ratio, it is not generally best to compress the
data as much as possible in the first stage because doing
so obfuscates patterns and makes it difficult for the sec-
ond stage to be effective. In fact, the best approach may
be to expand the amount of data in the first stage to bet-
ter expose patterns and thereby making the second stage
as useful as possible [6]. We now describe how JSZAP
exploits the different properties of the productions, iden-
tifiers, and literals to compress them well in the presence
of a gzip-based second compression stage.

4.1 Compressing Productions

A JavaScript abstract syntax tree consists of non-
terminal and terminal nodes from a JavaScript gram-
mar. The JavaScript grammar we used for JSZAP is a
top-down LALR(k) grammar implemented using Visual
Parse++ [36]. The grammar has 236 rules, meaning that
each terminal and non-terminal in the grammar can be
encoded as a single byte. Because we are starting with
a tree, there are two approaches to compressing data in
this form: either convert the tree to a linear form (such as
doing a pre-order traversal) and compress the sequence,
or compress the tree directly. Our first approach was to
reduce the tree to a linear form, attempt optimizations on
the sequence, and then use gzip as a final compression
stage. We attempted to compress the linear sequence us-
ing production renaming, differential encoding, and by
removing chain productions.

Production renaming. Production renaming attempts to

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

43



M productions Oidentifiers N literals

Fraction of All Bytes (after gzip)

Figure 4: Breakdown of component types in our bench-
marks (after gzip).

change the assignments of productions to integers (e.g.,
the production Program => SourceElements might
be represented by the integer 225). We might choose
to rename this production to integer 1 instead, if it was
a common production in our streams. The idea behind
renaming is to maximize the frequency of small produc-
tion IDs. However, gzip is insensitive to absolute values
as it only exploits repeating patterns, which is why this
transformation does not help.

Differential encoding. Differential encoding works
based on the observation that only a few productions can
follow a given production. Hence, we renamed the pos-
sible following n productions to 0 through n — 1 for each
production. For example, if production x can only be
followed by the two productions with IDs 56 and 77, we
would rename production 56 to 0 and production 77 to 1.
Differential encoding can potentially help gzip because
it reduces the number of unique bytes and increases their
frequency, but it is unclear whether this results in longer
or more frequent repeating patterns that gzip can exploit.

Chain rule. Some productions always follow one spe-
cific production. For such chains of productions, it suf-
fices to record only the first production. While this ap-
proach substantially reduces the amount of data emitted,
it does not help gzip because it only makes the repeating
patterns shorter. Because gzip uses an adaptive Huffman
coder to encode the lengths of the patterns, not much if
anything is gained by this transformation. Moreover, dif-
ferential encoding and chain production removal are an-
tagonistic. By removing the chains, the number of sym-
bols that can follow a specific symbol often increases.

Overall, the techniques we investigated to compress
linearized production streams are not effective. Never-
theless, chain production removal is quite useful when
compressing the productions in tree form, as the follow-
ing subsection explains.

4.1.1 Compressing Productions in AST Format

We found that productions are more compressible in tree
format. We believe the reason for this to be the follow-
ing. Assume a production with two symbols on the right-
hand-side, e.g., an if statement with a then and an else
block. Such a production always corresponds to a node
and its two children in the AST, no matter what con-
text the production occurs in. In linearized form, e.g.,
in a pre-order traversal of the tree, the first child appears
right after the parent, but the second child appears at an
arbitrary distance from the parent where the distance de-
pends on the size of the subtree rooted in the first child
(the size of the then block in our example). This irreg-
ularity makes it difficult for any linear data model such
as gzip’s to anticipate the second symbol and therefore
to achieve good compression.

Compressing the productions in tree form eliminates
this problem. The children of a node can always be en-
coded in the context of the parent, making it easier to pre-
dict and compress the productions. The only additional
piece of information needed is the position of the child
since each child of a node has the same parent, grandpar-
ent, etc. In other words, we need to use the path from the
root to a node as context for compressing that node plus
information about which child it is. Without the position
information, all children of a node would have the same
context.

One powerful context-based data compression tech-
nique is prediction by partial match (PPM) [8]. PPM
works by recording, for each encountered context, what
symbol follows so that the next time the same context is
seen, a lookup can be performed to provide the likely
next symbols together with their probability of occur-
rence. The maximum allowed context length determines
the size of the lookup table. We experimentally found
a context length of one, i.e., just using the parent and
the empty context, to yield the best performance after
chain-production removal. Aside from maximizing the
compression ratio, using short contexts also reduces the
amount of memory needed for table space and makes de-
compression very fast, both of which are important when
running on a constrained client such a cell phone.

Since the algorithm may produce a different prediction
for the empty context (a single table) and the order-1 con-
text (one table per possible parent ID), we need to specify
what to do if this happens. We use a PPM scheme that
incorporates ideas from PPMA and PPMC [29], which
have been shown to work well in practice. JSZAP’s
scheme always picks the longest context that has oc-
curred at least once before, defaulting to the empty con-
text if necessary. Because our tree nodes can have up
to four children, JSZAP uses four distinct PPM tables,
one for each child position. For each context, the tables

WebApps ’10: USENIX Conference on Web Application Development

record how often each symbol follows. PPM then pre-
dicts the next symbol with a probability that is propor-
tional to its frequency and uses an arithmetic coder [35]
to compactly encode which symbol it actually is. This
approach is so powerful that further compression with
gzip is useless.

To ensure that each context can always make a predic-
tion, the first-order contexts include an escape symbol,
which is used to indicate that the current production has
not been seen before and that the empty context needs to
be queried. The frequency of the escape symbol is fixed
at 1 (like in the PPMA method), which we found to work
best. JSZAP primes the empty context with each possi-
ble production, which is to say that they are all initialized
with a frequency of one. This way, no escape symbol
is necessary. Unlike in conventional PPM implementa-
tions, where an order -1 context is used for this purpose,
we opted to use the empty (i.e., order 0) context because
it tends to encounter most productions relatively quickly
in any case.

To add aging, which gives more weight to recently
seen productions, JSZAP scales down all frequency
counts by a factor of two whenever one of the counts
reaches a predefined maximum (as is done in the PPMC
method). We found a maximum of 127 to work best.
JSZAP further employs update exclusion, that is, the
empty context is not updated if the first-order context was
able to predict the current production. Finally, and unlike
most other PPM implementations, JSZAP does not need
to encode an end-of-file symbol or record the length of
the file because decompression automatically terminates
when the complete tree has been recreated.

4.2 Compressing Identifiers

The identifiers are emitted in the order in which the
parser encounters them. We considered several transfor-
mations to reduce the size of this identifier stream. First,
the same identifiers are often used repeatedly. Second,
some identifiers occur more often than others. Third,
many identifier names are irrelevant.

Symbol tables. To exploit the fact that many identifiers
appear frequently, JSZAP records each unique identifier
in a symbol table and replaces the stream of identifiers
by indices into this table. Per se, this transformation does
not shrink the amount of data, but it enables the following
optimizations.

At any one time, only a few identifiers are usually in
scope. Hence, it is advantageous to split the symbol table
into a global scope table and several local scope tables.
Only one local scope table is active at a time, and func-
tion boundary information, which can be derived from
the productions, is used to determine when to switch lo-
cal scope tables. The benefit of this approach is that only

a small number of indices are needed to specify the iden-
tifiers. Moreover, this approach enables several impor-
tant additional optimizations. For instance, we can sort
the global table by frequency to make small offsets more
frequent.

Symbol table sorting. Because not all identifiers appear
equally often, it pays to sort the symbol table from most
to least frequently used identifier. As a result, the in-
dex stream contains mostly small values, which makes
it more compressible when using variable-length encod-
ings, which JSZAP does.

Local renaming. The actual names of local variables
are irrelevant because JSZAP does not need to repro-
duce the variable names at the receiving end. One can
rename local variables arbitrarily as long as uniqueness
is guaranteed and there are no clashes with keywords or
global identifiers. As mentioned, one can assign very
short names to local variables, such as a, b, ¢, etc.,
which is what many of the publicly available minifiers
and JavaScript-generating compilers do.

Renaming allows JSZAP to use a built-in table of com-
mon variable names to eliminate the need to store the
names explicitly. Consequently, most local scopes be-
come empty and the index stream alone suffices to spec-
ify which identifier is used. (Essentially, the index is the
variable name.) Note that JSZAP does not rename global
identifiers such as function names because external code
may call these functions by name.

Variable-length encoding. Ideally, we would like to
encode a symbol table index as a single byte. Unfor-
tunately, because we can only address 256 values with
a single byte, a table that includes all the global identi-
fiers used in a typical JavaScript program would be too
large. To overcome this drawback, we allow a variable-
length encoding of table index sizes (one and two bytes),
and encode the most common identifiers in a single byte.
We subdivide the 256-values addressable with a byte into
distinct categories: local built-in symbols (mentioned
above), common local symbols, common global sym-
bols, and an escape value. The escape value is used to
encode the remaining categories of symbols (uncommon
local symbols, uncommon global symbols, and symbols
found in the enclosing local symbol table) into two bytes.

4.3 Compressing Literals

The literals are also generated in the order in which the
parser encounters them. The stream of literals contains
three types of redundancy that we have tried to exploit.
First, the same literal may occur multiple times. Second,
there are different categories of literals such as strings,
integers, and floating-point values. Third, some cate-
gories include known pre- and postfixes such as quotes

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

45



around strings.

Symbol tables. We have attempted to take advantage
of multiple occurrences of the same literal by storing
all unique literals in a table and replacing the literal
stream with a stream of indices into this table. Unfortu-
nately, most literals occur only once. As a consequence,
the index stream adds more overhead than the table of
unique values saves, both with and without gzip com-
pression. Thus, this approach expands instead of shrinks
the amount of data.

Grouping literals by type. Exploiting the different cate-
gories of literals proved more fruitful, especially because
the category can be determined from the productions, so
no additional information needs to be recorded. JSZAP
separates the string and numeric literals, which makes
gzip more effective. For example, it is usually better to
compress all strings and then all integer constants as op-
posed to compressing an interleaving of strings and inte-
gers.

Prefixes and postfixes. Eliminating known pre- and
postfixes also aids the second compressor stage by not
burdening it with having to compress unnecessary infor-
mation and by transferring less data to it, which can make
it faster and more effective because a larger fraction of
the data fits into the search window [41]. The two opti-
mizations JSZAP performs in this regard are removing
the quotes around strings and using a single-character
separator to delineate the literals instead of a newline,
carriage-return pair. In practice, this optimization does
not help much because gzip is largely insensitive to the
length of repeating patterns.

5 Evaluation

In this section, we evaluate the performance of JSZAP
using a variety of JavaScript source code taken from
commercial web sites.

5.1 Experimental Setup

Table 1 provides a summary of information about the
benchmarks we have chosen to test JSZAP on. Each of
the nine benchmarks is a JavaScript file, with its size in-
dicated in the table both in terms of the number of bytes
and lines of code, after pretty-printing (columns 2 and 3).

Many of the inputs come from online sources, in-
cluding Bing, Bing Maps, Microsoft Live Messenger,
and Microsoft Office Live. Two of the smaller scripts
(gmonkey, getDOMHash) are hand-coded JavaScript ap-
plications used in browser plug-ins. The source files
vary in size from 17 kilobytes to 668 kilobytes—results
show that 100 kilobytes is not an uncommon size for

=1)

Overall Compression (gzip

Figure 5: JSZAP overall compression relative to gzip.
Note that the y-axis does not start at 0.

JavaScript source in a high-function web application like
Bing or Bing Maps [33].

We processed each input by running JSCrunch on the
source code before compressing with gzip and JSZAP
(although in most cases this crunching had no effect
because the code had already been crunched). We
did not perform automatic local variable renaming with
JSCrunch during our processing, because all but one of
these files (getDOMHash) was received in a form that had
been previous crunched with a tool such as JSCrunch
or JSMin, meaning that the local variables had largely
been renamed in the original source. Pretty-printing the
sources results in files that range from 900 to 22,000 lines
of code.

The size of the AST representation, composed of in-
dependent production, identifier, and literal streams, is
shown in columns 4 and 5. Note that the AST is in fact al-
ready smaller than the corresponding JavaScript sources,
by about 25% on average. This reduction results from
elimination of source syntax such as keywords, delim-
iters, etc. The last two columns show the size of the
gzipped representation and the gzip-to-source code ratio.
In most cases, gzip compresses the source by a factor of
three to five.

5.2 Total Compression

Figure 5 shows overall compression results of applying
JSZAP to our benchmarks. We show the compression
ratio of JSZAP compared to gzip. We see that in the ma-
jority of cases, the reduction in the overall size is 10%
or more. It should be noted that JSZAP’s AST-based
representation already includes several processing steps
such as parsing and semantic checking, thus reducing the
amount of processing the client will have to do. Despite
this fact, we are able to achieve compression ratios better

WebApps ’10: USENIX Conference on Web Application Development

Benchmark Source Source Uncompressed Uncompressed gzip gzip/source
name bytes lines AST (bytes) AST/src ratio bytes ratio
gmonkey 17,382 922 13,108 0.75 5,340 0.30
getDOMHash 25,467 1,136 17,462 0.68 6,908 0.27
bingl 77,891 3,758 65,301 0.83 23,454 0.30
bingmapl 80,066 3,473 56,045 0.69 19,537 0.24
livemsgl 93,982 5,307 70,628 0.75 22,257 0.23
bingmap?2 113,393 9,726 108,082 0.95 41,844 0.36
facebookl 141,469 5,886 94914 0.67 36,611 0.25
livemsg?2 156,282 7,139 104,101 0.66 32,058 0.20
officelivel 668,051 22,016 447,122 0.66 132,289 0.19
Average 0.7432 0.2657

Table 1: Summary of information about our benchmarks.

1)

0.95 mm = m =
0.9 mmmmmm e m e
0.85 = mmm =
08
0.75 -
07

0.65 -
06 -
0.55 +-
05 -

Production Compression (gzip

Figure 6: JSZAP production compression relative to
gzip. Note that the y-axis does not start at 0.

than gzip.

Figure 5 demonstrates that the benefits of JSZAP com-
pression are largely independent of the input size. There
is no clear correlation of compression ratios and whether
the source has been produced by a tool or framework.
This leads us to believe that similar compression ben-
efits can be obtained with JSZAP for a wide range of
JavaScript sources. The input with the greatest compres-
sion, facebookl, is also the input with the most effec-
tive compression of the productions relative to gzip (see
next section), suggesting that the PPM compression of
productions is a central part of an effective overall com-
pression strategy.

5.3 Productions

Figure 6 shows the benefits of using PPM to compress
the production stream. As we have discussed, the struc-
tured nature of the productions allows PPM compression
to be very effective, producing a significant advantage
over gzip. Just as before, we normalize the size produced
using PPM compression relative to compressing the pro-

=1)

Identifier Compression (NoST, gzip

W Global ST O Glob/Loc ST + VarEnc

Figure 7: JSZAP identifier compression relative to gzip.
Note that the y-axis does not start at 0.

ductions with gzip. We see that JSZAP compresses the
productions 20% to over 35% better than gzip, with an
average improvement of 30%. Again, JSZAP’s compres-
sion benefits appear to be independent of the benchmark
size.

We note that PPM compression can easily be changed
with a number of control parameters. The results re-
ported here are based on a context length of one and a
maximum symbol frequency of 127. Varying these as
well as other parameters slightly resulted in minor dif-
ferences in overall compression, with individual file sizes
changing by a few percent.

5.4 Identifiers

Figure 7 presents the results of applying JSZAP to com-
press the identifier stream. The figure shows results nor-
malized to using gzip to compress the identifier stream
without any symbol table being used. The figure includes
two different symbol table encodings: a single global
symbol table with a fixed-length 2-byte encoding (Global
ST) as well as using both global and local symbol tables
with variable-length encoding (Glob/Loc ST + VarEnc),

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

47



W global 1byte 7 global 2byte  [@ local builtin @ local 1byte B local 2byte O parent

Fraction of All Identifiers

A
N &

& S 3
& N

)

Figure 8: Breakdown of categories in variable-length
identifier encoding.

as described in Section 4.2. We observe that the 2-byte
encoding generally produces only small benefits and in
one case hurts overall compression. Using the variable
encoding results in a 12% improvement overall. Inter-
estingly, we see that our variable encoding provides no
benefit over the global symbol table in our largest appli-
cation, officelivel.

To further illustrate the effectiveness of our variable-
length encoding, Figure 8 shows a breakdown of differ-
ent encoding types for our benchmarks. From the fig-
ure, we see that our strategy to represent as many iden-
tifiers as possible with 1 byte succeeded, with the only
major category of 2-byte identifiers being globals. We
see that global 1- and 2-byte identifiers account for more
than half the total identifiers in most applications. Local
built-ins are also very common in the applications, espe-
cially for bingmap2, where they account for over 75%
of all identifiers. bingmap?2 is also one of the applica-
tions where we get the greatest benefit relative to gzip in
Figure 7. Figure 8 explains why officelivel does not
benefit from our variable-length encoding in the previ-
ous figure. Because of the framework that was used to
generate officelivel, we see that more than 80% of
all identifiers are globals, and there are no local built-ins
(a, b, c, etc.) We anticipate that if we tailored variable
renaming appropriately by preprocessing officelivel,
we could replace many of the local 1-byte identifiers with
built-ins. getDOMHash, which was written by hand and
did not have automatic variable renaming performed dur-
ing crunching, also has many 1-byte local variables.

To conclude, we see that we obtain a relatively mod-
est compression (12%) of the identifiers over gzip, but
because gzip is designed explicitly to compress charac-
ters strings, this result is not surprising. We do find tai-
loring identifier compression using source-level informa-
tion about local and global symbols to be beneficial.

1)

0.99

0.98 |-
0.97
0.96
0.95 +-
0.94 +-
0.93 +-

Literal Compression (gzip

0.92 +-

0.91

Figure 9: JSZAP literal compression relative to gzip.
Note that the y-axis does not start at 0.

5.5 Literals

Figure 9 shows the results of using JSZAP to process
the literals before compressing them with gzip. As with
the previous figures, we compare against compressing an
unoptimized literal stream with gzip. Because literals
are mostly single-use (except common ones such as 0,
1, etc.), using a literal table increases space usage over
gzip and is not shown. Our other optimizations, includ-
ing grouping literals by type and eliminating prefixes and
postfixes have modest benefits, averaging around 4-5%.

6 Related Work

This section discusses compression in general and the
specific work related to compressing JavaScript.

6.1 Mobile Code Compression

The work most closely related to JSZAP is the Slim Bi-
naries and TransPROse projects by Franz et al. [4, 22].
Slim Binaries is the first project to promote the use
of transmitting mobile code using abstract syntax trees
for benefits including compression, code generation,
and security. The original Slim Binaries project com-
pressed Oberon ASTs using a variation of LZW com-
pression [40] extended with abstract grammars. Later, in
the TransPROse project [4, 21, 38], Franz et al. describe a
new compression technique for ASTs based on abstract
grammars, arithmetic coding, and prediction by partial
match. They apply their technique to Java class files and
compare the results against Pugh’s highly-effective jar
file compressor [31], as well as general compressors like
gzip and bzip2. With PPM compression, they achieve
a compression ratio of approximately 15% over the un-
compressed source.

Our work is motivated by the goals of Franz’s ear-
lier work. We also share some of the techniques with
that work, including PPM compression of the production

WebApps ’10: USENIX Conference on Web Application Development

rules. Our work differs in that we adapt and optimize
these ideas to compressing JavaScript. We show that
for real JavaScript source code, we achieve significant
benefits over the current state-of-the-art. In addition, we
show that identifiers and literals constitute a significant
fraction of the data that requires compression, and de-
scribe JavaScript-specific techniques to compress these
streams.

In a one-page abstract, Evans describes the compres-
sion of Java and Pascal programs based on guided pars-
ing, which also uses the language grammar to make com-
pression more efficient [17]. In another one-page ab-
stract, Eck et al. propose Syntax-oriented Coding [14].
Guided parsing and SoC have many elements in com-
mon with Slim Binaries and TransPROse, but due to their
shortness, both papers lack detail.

Other approaches to compressing mobile code have
been proposed. Many of them focus on compressing
a program representation that is close to the target lan-
guage, specifically native machine code [16] or some
form of bytecode [18, 28]. Some proposals consider
dynamically compressing unused portions of code to
reduce the in-memory footprint of the executing pro-
gram [12]. The main difference between this work and
ours is our focus on using the augmented AST as the
medium of transfer between the server and client as well
as our focus on compressing the tree itself instead of a
linearized format, such as an instruction stream. While
bytecode-based approaches have advantages, they also
require agreement about what the best translation of the
source to bytecode would be. Our approach follows the
current JavaScript transfer model, and maintains the con-
tent of the source without assuming a translation to a
lower-level representation.

Pugh considers ways to compress Java class files. He
splits data into multiple streams using redundancies in
the class file information and finds a number of format
specific opportunities to achieve good compression [31].
Like our work, he examines opportunities to improve
second-stage gzip compression, although he does not
consider using the grammar to compress the program
text. Jazz [5] and Clazz [24] also improve the representa-
tion of the entire Java archive but do not consider source
compression.

6.2 Syntax-based Compression

The problem of compressing source code has been con-
sidered since the 1980s. The idea of using the program
parse as a program representation and the grammar as a
means of compressing the parse was proposed by Con-
tla [9]. He applied the approach to Pascal source code
and demonstrated compression on three small programs.
Katajainen et al. describe a source program compres-

sor for Pascal that encodes the parse tree and symbol
tables [26]. They show that their Prolog implementa-
tion of the compressor results in space gains of 50-60%.
Stone describes analytic encoding, which combines pars-
ing with compression [37]. Stone considers how the
parser used (LL versus LR) affects the resulting com-
pressibility and reports that LR parsers are more appro-
priate, which is what JSZAP uses.

Cameron describes source compression using the lan-
guage syntax as the data model [7]. He suggests us-
ing arithmetic coding to compress the production rules
and separating the local and global symbols to improve
the compression of symbols. In applying the technique
to Pascal programs, he shows a result that is approxi-
mately 15% of the size of the original source. Tarhio re-
ports the use of PPM compression on parse trees [39].
Applying the approach to four Pascal programs, he
shows that the the number of bits per production can be
reduced below more general purpose techniques such as
gzip and bzip2.

Rai and Shankar consider compressing program inter-
mediate code using tree compression [32]. They con-
sider using tree grammars to encode the intermediate
form (unlike work based on the source syntax) and show
that they outperform gzip and bzip2 on lcc-generated
intermediate files. They speculate that their technique
could be applied to compression of XML-structured doc-
uments.

6.3 XML / Semistructured Text Compression

Adiego et al. describe LZCS [1, 2], a Lempel-Ziv-based
algorithm to compress structured data such as XML files.
Their approach takes advantage of repeated substructures
by replacing them with a backward reference to an ear-
lier occurrence. JSZAP employs the same general ap-
proach; it also transforms the original data and uses a
second compression stage to maximize the overall com-
pression ratio.

The same authors further describe the Structural Con-
texts Model (SCM) [3], which exploits structural infor-
mation such as XML tags to combine data belonging to
the same structure. The combined data are more com-
pressible than the original data because combining brings
data with similar properties together. JSZAP adopts the
idea of separately compressing data with similar proper-
ties, i.e., identifiers, literals, and productions, to boost the
compression ratio.

7 Conclusions

This paper advocates an AST-based representation for
delivering JavaScript code over the Internet and presents

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

49



JSZAP, a tool that employs such an AST-based represen-
tation for compression. JSZAP compresses JavaScript
code 10% better than gzip, which is the current standard.
In the context of a high-traffic host serving gigabytes
of JavaScript to thousands of users, the savings demon-
strated by JSZAP may amount to hundreds of megabytes
less to be transmitted. It is our hope that our work will
inspire developers of next-generation browsers to reex-
amine their approach to representing, transmitting, and
executing JavaScript code.

References

[1] J. Adiego, G. Navarro, and P. de 1a Fuente. Lempel-Ziv compres-
sion of structured text. pages 112—121, March 2004.

[2] J. Adiego, G. Navarro, and P. de la Fuente. Lempel-Ziv compres-
sion of highly structured documents: Research articles. J. Am.
Soc. Inf. Sci. Technol., 58(4):461-478, 2007.

[3] J. Adiego, G. Navarro, and P. de la Fuente. Using structural con-
texts to compress semistructured text collections. Information
Processing & Management, 43(3):769-790, 2007. Special Issue
on Heterogeneous and Distributed IR.

[4] W. Amme, P. S. Housel, N. Dalton, J. V. Ronne, P. H. Frohlich,
C. H. Stork, V. Haldar, S. Zhenochin, and M. Franz. Project
TRANSPROSE: Reconciling mobile-code security with execu-
tion efficiency. 2001.

[5] Q. Bradley, R. N. Horspool, and J. Vitek. JAZZ: an efficient
compressed format for Java archive files. In S. A. MacKay and
J. H. Johnson, editors, Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative Research, page 7.
IBM, 1998.

[6] M. Burtscher, I. Ganusov, S. Jackson, J. Ke, P. Ratanaworab-
han, and N. Sam. The VPC trace-compression algorithms. /EEE
Transactions on Computers, 54(11):1329-1344, Nov. 2005.

[7] R.Cameron. Source encoding using syntactic information source
models. IEEE Transactions on Information Theory, 34(4):843—
850, Jul 1988.

[8] J. G. Cleary and I. H. Witten. Data compression using adaptive
coding and partial string matching. IEEE Transactions on Com-
munications, 32(4):396-402, 1984.

[9] J. F. Contla. Compact coding of syntactically correct source pro-
grams. Softw. Pract. Exper., 15(7):625-636, 1985.

[10] D. Crockford. ADsafe. adsafe.org.

[11] D. Crockford. JSMin: The JavaScript minifier. http://www.
crockford.com/Jjavascript/Jjsmin.html.

[12] S. Debray and W. Evans. Profile-guided code compression. In
Proc. Conf. on Programming Languages Design and Implemen-
tation, June 2002.

[13] L.P. Deutsch. GZIP file format specification version 4.3. Internet
RFC 1952, May 1996.

[14] P. Eck, X. Changsong, and R. Matzner. A new compression
scheme for syntactically structured messages (programs) and its
application to Java and the Internet. pages 542—, 1998.

[15] ECMA. ECMAScript language specification.

[16] J. Ernst, W. S. Evans, C. W. Fraser, S. Lucco, and T. A. Proebst-
ing. Code compression. In PLDI, pages 358-365, 1997.

[17] W. S. Evans. Compression via guided parsing. In Proceedings
of the Conference on Data Compression, page 544, Washington,
DC, USA, 1998. IEEE Computer Society.

[18] W.S.Evans and C. W. Fraser. Bytecode compression via profiled
grammar rewriting. In PLDI, pages 148-155, 2001.

[19] N. Faller. An adaptive system for data compression. In Record of
the 7th Asilomar Conference on Circuits, Systems, and Comput-
ers, pages 593-597, 1973.

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

C. Foster. JSCrunch: JavaScript cruncher. http://www.
cfoster.net/jscrunch/.

M. Franz, W. Amme, M. Beers, N. Dalton, P. H. Frohlich, V. Hal-
dar, A. Hartmann, P. S. Housel, F. Reig, J. Ronne, C. H. Stork,
and S. Zhenochin. Making mobile code both safe and efficient.
In Foundations of Intrusion Tolerant Systems, Dec. 2002.

M. Franz and T. Kistler. Slim binaries. Commun. ACM,
40(12):87-94, 1997.

R. Gallager. Variations on a theme by Huffman. /EEE Transac-
tions on Information Theory, 24(6):668-674, 1978.

R. N. Horspool and J. Corless. Tailored compression of Java class
files. Softw, Pract. Exper, 28(12):1253-1268, 1998.

C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodk.
Parallelizing the Web Browser. In Proceedings of the Workshop
on Hot Topics in Parallelism. USENIX, March 2009.

J. Katajainen, M. Penttonen, and J. Teuhola. Syntax-directed
compression of program files. Softw. Pract. Exper., 16(3):269—
276, 1986.

E. Kiciman and B. Livshits. AjaxScope: a Platform for Remotely
Monitoring the Client-Side Behavior of Web 2.0 Applications.
In Proceedings of Symposium on Operating Systems Principles,
Oct. 2007.

S. Lucco. Split-stream dictionary program compression. In Proc.
Conf. on Programming Languages Design and Implementation,
pages 27-34, 2000.

A. Moffat. Implementing the PPM data compression scheme.
IEEE Transactions on Communications, 38(11):1917-1921,
1990.

Pew Internet and American Project. Home broadband adop-
tion 2007. http://www.pewinternet.org/pdfs/PIP_
Broadband\%202007.pdf, 2007.

W. Pugh. Compressing Java class files. In PLDI, pages 247-258,
1999.

S. Rai and P. Shankar. Efficient statistical modeling for the
compression of tree structured intermediate code. Comput. J,
46(5):476-486, 2003.

P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn. JS-
Meter: Characterizing real-world behavior of JavaScript pro-
grams. Technical Report MSR-TR-2002-138, Microsoft Re-
search, Microsoft Corporation, 2009.

C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting
in-flight page changes with web tripwires. In Proceedings of the
5Sth USENIX Symposium on Networked Systems Design and Im-
plementation, pages 31-44, 2008.

J. J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Jour-
nal of Research and Development, 23(2):149-162, 1979.
Sandstone Technologies Inc. Parsing with Sandstone’s Visual
Parse++. http://visualparse.s3.amazonaws.com/
pvpp-fix.pdf, 2001.

R. G. Stone. On the choice of grammar and parser for the com-
pact analytical encoding of programs. The Computer Journal,
29(5):307-314, 1986.

C. H. Stork, V. Haldar, and M. Franz. Generic adaptive syntax-
directed compression for mobile code. Technical Report 00-42,
Department of Infomation and Computer Science, University of
California, Irvine, 2000.

J. Tarhio. On compression of parse trees. pages 205-211, Nov.
2001.

T. A. Welch. A technique for high-performance data compres-
sion. IEEE Computer, 17(6):8-19, 1984.

J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. [EEE Transactions on Information Theory,
23(3):337-343, 1977.

50

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

Leveraging Cognitive Factors in Securing WWW with CAPTCHA

Amalia Rusu and Rebecca Docimo
Fairfield University, Fairfield, CT, USA, arusu@fairfield.edu
Adrian Rusu
Rowan University, Glassboro, NJ, USA, rusu@rowan.edu

Abstract

Human Interactive Proofs systems using CAPTCHA help protect services on the World Wide Web (WWW) from
widespread abuse by verifying that a human, not an automated program, is making a request. To authenticate a user
as human, a test must be passable by virtually all humans, but not by computer programs. For a CAPTCHA to be
useful online, it must be easy to interpret by humans. In this paper, we present a new method to combine handwritten
CAPTCHAs with a random tree structure and random test questions to create a novel and more robust
implementation that leverages unique features of human cognition, including the superior ability over machines in
recognizing graphics and reading unconstrained handwriting text that has been transformed in precise ways. This
combined CAPTCHA protects against advances in recognition systems to ensure it remains viable in the future

without causing additional difficulties for humans.

We present motivation for our approach, algorithm development, and experimental results that support our
CAPTCHA in protecting web services while providing important insights into human cognitive factors at play during

human-computer interaction.

1. Introduction

Most users of the WWW today are familiar with
CAPTCHAs, which are presented to them as machine-
printed text or sound samples to be interpreted.
CAPTCHAs are typically used to prevent automated
programs from gaining access to various Web resources
for the purpose of spamming or other illegitimate use.
CAPTCHA is needed because of the sheer volume of
spam crossing the Internet and the agility and tenacity
of spammers [12].

Artificial Intelligence (AI) experts consider CAPTCHA
a win-win situation and point out that CAPTCHAs are
useful even when broken for the insights provided to
the field of Al [29, 30]. While breaking CAPTCHAs
can be useful for advancing the field of Al as well as
Image Processing, Pattern Recognition, etc., the current
usefulness of CAPTCHAS in protecting Web resources
from widespread illegitimate use by automated
programs must not be overlooked.

In this paper, we present the development of a new
CAPTCHA-based Human Interactive Proofs (HIP)

authentication system to protect services on the WWW.
In our system, users are authenticated as humans to
gain access to Web services by correctly interpreting a
tree structure with handwriting samples transformed
according to specific principles of cognitive
psychology, explained in greater detail in the next
sections (Figure 1). To correctly solve the challenge,
the tree structure and handwriting samples must be
segmented out and interpreted, a task that presents
much difficulty for machines, while being trivial for
humans. With this CAPTCHA, we further the work
begun on handwritten CAPTCHAs [22, 23, 24]. As
CAPTCHAs are currently a readily available, relatively
low cost and easy to administer solution to protect Web
resources, our goal is to provide a useful CAPTCHA to
overcome the security and usability difficulties present
in other CAPTCHAs [17, 21, 33, 34]. Such a
CAPTCHA can also offer extremely valuable insights
not only related to the parsing of handwriting. By using
a tree structure with handwritten images, both of which
must be parsed to pass the CAPTCHA test, we can also
offer important insights for the fields of Al, Image
Analysis, Graphics Recognition and others.

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 51



Bathle

Which word is connected to center by a line marked with a circle?\r

‘ 1Can't See the Tree! ‘ | Submit ;

Figure 1. A tree-based handwritten CAPTCHA.

Tree drawings and handwriting are used in our
CAPTCHA rather than the typical machine-printed
text, both for the important advances to be gained in
graphics and handwriting recognition fields if our
CAPTCHA is broken, as well as for the security
provided due to the extra challenges posed to machines.
Human skill at interpreting basic drawings and
handwriting, no matter the condition (i.e., rotated,
occluded, or deformed) [20], is gained from an early
age, while consistent machine recognition of graphics
in general, and handwriting in particular, continues to
be problematic mostly due to unconstrained writing
style and segmentation, especially in the absence of a
context [4, 7, 18, 26]. Moreover, when applying certain
transformations to the handwriting and rendering it on a
tree structure, the recognition drastically decreases.
While humans are able to make use of certain aspects
of perception and cognition to interpret transformed
samples, this remains a difficult open problem for
machines [9].

We begin by reviewing the concepts of both HIPs and
CAPTCHAs. We then discuss advances in handwriting
recognition and present human cognitive factors that
relate to handwriting interpretation. In this context we
introduce and discuss the Gestalt laws of perception
and Geon theory related to human perception and
reading skills to motivate the transformations we have
applied to the images. The technical approach and
methodology is then presented, as well as the findings
of user studies and machine testing of our CAPTCHA
to validate the usefulness of our system in protecting
Web services. We conclude with important insights

gained from our work and discuss possible future
enhancements.

1.1 Overview of HIPs and CAPTCHA

The purpose of HIPs is to distinguish one class of users
from another, most commonly humans from computer
programs (also referred to as ‘“machines”) [1].
CAPTCHA is the test used by HIPs to distinguish a
human user from a machine by presenting a challenge
that can only be passed by the human. CAPTCHAs
leverage Al factors and similarly to the tests of Alan
Turing [28], they determine whether a user is human or
machine. CAPTCHAs differ from Turing Tests,
however, by making the computer the judge and
administrator, though the computer itself should not be
able to pass the test. In a CAPTCHA, if the individual
completing the challenge presented passes correctly,
they gain access to the service they are requesting.
Otherwise, they are deemed to be an illegitimate
program and are not allowed access. For a CAPTCHA
to be useful, it must be easily passable by virtually all
human users but not by machines [30]. If a CAPTCHA
presents difficulty to machines, but also to humans, it
has failed in its function [6, 21].

Primitive use of a commercial text-based riddle dates
back to 1998 on the AltaVista search engine Web site
(at altavista.com). Approximately two years later
CAPTCHA was defined, along with the first
commercial implementation by Carnegie Mellon
University researchers. They set forth the basic
properties of CAPTCHA: it must be automated so it
can be administered by a computer program without
human intervention, it must be public in that the test
should not be unsolvable by machines simply because it
is novel or the method or code is hidden, and it must be
passable by virtually all humans but not by computer
programs [30]. Many text-based visual CAPTCHAs
have been created from Gimpy [10] to Baffletext [8] to
reCAPTCHA [19]. An example text-based visual
CAPTCHA is shown in Figure 2. Non-text visual
CAPTCHAs have also been created, including those
that leverage human cognitive abilities beyond word
recognition, such as ARTiFACIAL [21] where users
are asked to identify facial features.

Figure 2. Example of commercial CAPTCHA at msn.com.

52

WebApps ’10: USENIX Conference on Web Application Development

1.2 Motivation for a  Tree-based
Handwritten CAPTCHA

While many CAPTCHAs have been created, more
secure CAPTCHAs are needed to help secure the
WWW against widespread abuse by programs posing
as humans on the WWW. While a typical response to
foil machine recognition to maintain the usefulness of
CAPTCHAS is to make them harder for machines, care
must be taken to ensure that human ease of use does not
suffer. Accordingly, many current CAPTCHAs, both
text and image based suffer from usability issues [6,
34]. Intrinsic security flaws of various CAPTCHAs
have also been found and various text-based and
image-based CAPTCHAs have been broken [7, 11, 33].
For example, Mori and Malik from the University of
California at Berkeley demonstrate how they were able
to break the EZ-Gimpy CAPTCHA with a 92% rate of
success and Gimpy with a 33% rate of success [17].

It is the need for a more efficient CAPTCHA that is
both usable for humans while secure against machines,
along with the insights to be gained from persistent
problems in computer recognition of handwritten text
and graphics [5, 26] that motivates our approach. We
combine a randomly generated tree structure with
random test questions and mandatory interpretation of
handwritten words transformed according to the Gestalt
and Geon principles (Figure 1). This new challenge
meets the criteria of being a CAPTCHA in that large
quantities of human-like handwritten images can be
automatically created via a synthetic handwriting tool
[25] and then transformed and rendered on a tree
structure. Our stringent adherence to the Gestalt and
Geon principles related to human perception of objects,
including letters and words, to create our
transformations ensures that our new CAPTCHA is still
easily solvable by humans while presenting challenges
to computer programs. The tree-based CAPTCHA
featuring deformed handwritten images (Figure 1)
described in this paper addresses both security and
usability aspects to create a viable alternative
CAPTCHA to those in existence, while at the same
time having the potential to add insights into the
overlooked area of real time handwriting recognition
and interpretation of complex multi-layer image based
documents.

2. Technical Background

Challenge-response tests using visual recognition have
been the most widely used type of CAPTCHA
employed online to protect web services from abuse by
automated programs. The purpose of this study and the

approach developed is to expand the use of visual
CAPTCHAs by inserting additional complexity for
computers, while keeping the tests easy for humans to
pass (again, if success rates for machines decrease but
success rates for humans also decrease for a
CAPTCHA, it is not viable [6]). In this context we
discuss several factors that we have leveraged in our
system.

2.1 Gestalt Principles and Geon Theory
Factor

We have studied the Gestalt laws of perception and
Geon theory and have used guiding principles of each
to determine which very specific transformations can be
applied to our handwriting samples to both assist
human interpretation and present unique challenges to
machine recognition. According to Gestalt principles,
humans have a unique ability to make sense of pictures,
even those that are incomplete or are marred in some
way [15]. Humans are able to make sense of images
presented to them by relying on their senses, past
experience, which shapes how they view data currently,
and what they are expecting to see. Humans are able to
filter out irrelevant data such as noise or extra pieces in
an image in order to interpret it. Gestalt principles are
based on the fact that humans typically experience
things that are outside of the range of simple
perception. Humans tend to group information and
interpret the whole rather than looking at individual
pieces and then combining them. This is similar to the
theory of holistic word recognition where the word is
seen as an indivisible unit rather than as a series of
individual parts which can be interpreted separately and
then reassembled for recognition [16].

The Gestalt laws that aid human recognition of objects
with transformations applied include proximity,
similarity, symmetry, continuity, closure, familiarity
and figure-ground as follows:

e Proximity: how objects are grouped together by
distance from or location to each other.

e Similarity: how elements that are similar to each
other tend to be viewed as part of a singular group.

e Symmetry: how objects are grouped into figures
according to symmetry and meaning.

e Continuity: how objects are grouped according to
flow of lines or alignment.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 53



e  Closure: how elements are grouped together if they
tend to complete some pattern, allowing perception
of objects that are visually absent.

e Familiarity: how elements are more likely to be
interpreted as part of a group if they appear
familiar to the viewer.

e Figure-ground distinction: how a scene is broken
up into foreground (the object of interest) and
background (the rest of the scene) which is what
allows an object to be distinguished from its
surroundings.

Other human cognitive factors at play in recognition are
memory, internal metrics, familiarity of letters and
letter orientation [22, 23, 24].

Human perception relies, in the end, on all of the
Gestalt principles working together. In addition to
using the Gestalt laws of perception to determine which
transformations may be applied to CAPTCHAs to
capitalize on machine recognition weaknesses and
simultaneous human strengths, the Geon theory of
pattern recognition is also useful to determine which
core components must be present in a transformed
image so that it is still interpretable by humans. Two
key aspects of geons are edges and intersections. The
importance of these has been tested on images where
various parts were deleted [3]. Recognition for humans
is easy if an object’s geons can be recognized and
edges and intersections are a critical part in recognition.
We have made use of the Gestalt principles and Geon
theory in development of our CAPTCHA through
specific handwriting image transformations to ensure
human legibility while foiling machines. Similar
transformations can successfully be applied to the tree
structure as well as any shape or object in general.

2.2  Handwriting Recognition Factor

Recognition of unconstrained handwriting, especially
when it has certain transformations applied to it,
continues to be a challenge for automatic recognition
systems [26] while humans maintain a superior ability
due to the Gestalt laws of perception [15] and Geon
theory [2, 3]. Part of the problem for machines is that
natural variability in handwriting exists at a level that
does not exist in machine-printed text [26]. Our tests
show that natural handwriting variability, as well as
defects applied such as occlusions or fragmentations
(Figure 4b), can currently be overcome by humans due
to cognitive factors, but not by machines.
Segmentation, or the ability for a machine to determine

character and word boundaries, continues to be a
problem [7, 18, 26]. Handwriting presents more
segmentation issues for machines than machine-printed
text making handwriting arguably superior to machine-
printed text for use in a secure CAPTCHA.

While advances have been made in handwriting
recognition and applications have found their place in
certain contexts such as the US postal services [27], or
bank check reading, these contexts are usually well
known in the sense that a relatively small set of words
is being used in a familiar and narrow context. Existing
handwriting recognition approaches require a lexicon
(as a dictionary or pre-determined list of words and
expressions in a particular language used by a
particular application), for high recognition accuracy
[13, 14, 31, 32]. In our application to CAPTCHA, the
use of words is infinite with no specific context, thus
the required lexicon would have to be extremely large
with consequently extremely poor accuracy by
recognizers. Moreover, by applying very specific
transformations that exploit the weaknesses of state-of-
the-art recognition systems to our image samples on
purpose, we add extra difficulty for machine
recognition.

2.3 Graphics Recognition Factor

While advances have been made in the area of
document image analysis, various open problems of
interest remain. One key open issue is the lack of a
general purpose cross-domain recognition tool. Most
tools are very domain specific and require domain
context [5] or a case-based approach [35] to interpret a
particular graphic. For example, tools used to recognize
domain-specific graphics such as electrical diagrams
rely on primitives in the graphic that have intrinsic
meaning. In musical scores, for example, the musical
notes comprise a finite set of primitives that can be
extracted and interpreted because they have a meaning
apart from the whole graphic [5]. Once the primitives
are interpreted, the graphic as a whole can be
interpreted. We will discuss later how our tree drawing
does not rely on any particular domain context and thus
would be hard for machines to interpret. No parts of
our tree have any intrinsic meaning and are always
interpreted in the context of reading of deformed
handwritten images.

3. Generation of Tree-based
Handwritten CAPTCHA

The development of our CAPTCHA has focused on
using transformed handwriting samples due to the aid

provided by cognitive principles that humans can make
use of and the challenges presented to machines. We
have increased difficulty for machines as well as the
potential for insights in the area of graphics recognition
by arranging our handwritten images into a tree
structure. It should be noted that in our CAPTCHA the
interpretation of the tree structure will always be
combined with interpreting our handwritten images.
There are two main parts to the creation of our
combined CAPTCHA. First, images featuring synthetic
handwritten are generated using a handwriting
generator  [25].  Gestalt and  Geon-motivated
transformations are then applied to the images to take
advantage of human perception abilities and to create
more difficulty for machines. Second, there is the
random generation of a tree structure and tree elements
and arrangement of the deformed handwritten images in
the tree, making spatial recognition, which is a common
task for humans, also part of the challenge. The overall
architecture for our HIP system is shown in Figure 3.

Character Cognitive aspects: A Weaknesses of
templates -Gestalt laws of perception state-of-the-art
-Geon theory recognizers
¥ -Context and syntax
Handwriting -Reading comprehension
generator I
T 1
- Image
. Handwritien deformations
image sample
Y v ‘ CAPTCHA attacks
Handurtier |2
images - 9 P
Graph drawing | ]
. y—‘ CAPTCHA attacks |

Randomly > Treestructure | Drawing complexity

selected node

shapes l Human studies |

Y
Tree-based
Randomly. »| handwritten image
selected questions
HIP system

Figure 3. Overall architecture for tree-based handwritten
CAPTCHA.

3.1 Transformed Handwritten Images

A

For testing our approach we have used handwritten
word image samples. We have also developed a method
to generate virtually infinite quantities of synthetic
handwritten images based on real character templates
[25] and to transform them on the fly. We note that a
somewhat narrow set of words and their corresponding
handwritten images was used for testing in order to
provide machines with a lexicon to give them a fair
chance at solving. Synthetic handwritten images that
are generated and transformed on the fly for use in the
CAPTCHA application are shown in Figure 4, before

and after applying deformations that defeat state-of-the-
art handwriting recognizers.

g gous
WW

a) b)

Figure 4. Synthetically generated handwritten
images: a) original; b) transformed.

To create our CAPTCHA, the number, type and
severity of transformations are randomly chosen and
applied, with some basic rules applied to ensure the
images remain at once unreadable to machines and
understandable by humans related to both Gestalt
principles and Geon theory [2, 3, 15]. To the best of
our knowledge, tying particular Gestalt principles to
specific image transformations is novel and helps
ensure that we maintain legibility for humans while
foiling machine recognition.

Transformations that can be applied to handwritten
images include horizontal or vertical overlaps with the
principles guiding human interpretation proximity,
symmetry, familiarity, continuity and figure-ground;
occlusions such as by circles, rectangles or lines in the
same color as the background pixels (Figure 4b, top)
with the principles guiding human reconstruction
closure, proximity, continuity and familiarity;
occlusions by waves from left to right in the same color
as the background with the principles guiding human
reconstruction closure, proximity and continuity;
occlusions using the same color pixels as the
foreground with the principles guiding human
reconstruction familiarity and figure-ground; adding
extra strokes (Figure 4b, bottom) with the principles
guiding human reconstruction familiarity and figure-
ground; using empty letters, broken letters, rough
contours, fragmentations, etc. with the principles
guiding human reconstruction closure, proximity,
continuity and figure-ground; splitting the image into
parts and offsetting them from each other or splitting
the image into parts and spreading the parts out (mosaic
effect) with the principles guiding human
reconstruction closure, proximity, continuity and
symmetry; changing word orientation or stretching or
compressing with the principles guiding human
reconstruction memory, internal metrics, familiarity of

54

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 55



objects and orientation. The synthetic handwriting
generation [25], as well as the transformations applied,
ensures that infinitely many variations in samples can
be produced to prevent machine learning.

3.2 Creation of a Tree Structure with
Transformed Handwritten Images

Trees can be used for a wide range of tasks such as
manipulating hierarchical data, making data easy to
search, or as in our case, for presenting visual elements.
Trees are drawn from the top down. A node is an
element of the tree while a branch is a line that
connects elements. We have used a binary tree in our
CAPTCHA (Figure 1) to ensure the drawing does not
become too large or unnecessarily complex for human
readers. Each node in this tree has at most two
branches. Our use of tree structures to add complexity
to a handwritten CAPTCHA is motivated by several
factors. First, we leverage currently superior human
skills not only in reading carefully transformed
handwritten images but in interpreting them inside a
graphic with additional elements. Our CAPTCHA in all
cases requires the interpretation of handwriting and the
tree merely adds more complexity. Second, we take
into account the various open issues in graphics
recognition and in document analysis and recognition
generally. Our use of tree drawings is further
encouraged by early user studies, which indicate that
the trees do not present additional complexity to
humans beyond handwritten CAPTCHAs alone.

The tree generation algorithm for our CAPTCHA uses
randomness whenever possible to create a random tree
overlaid with transformed synthetic handwritten
images. The program begins with generating a random
number of nodes. Once the number of nodes has been
determined, the algorithm begins building a binary tree
data structure. In addition to the random makeup of the
tree, a randomly selected scaling and sizing algorithm
ensures that the visual representation of the tree never
looks the same. During the drawing phase, when each
node is created, a randomly chosen generated image of
handwritten text will be placed next to it. Also, for each
tree branch that is created, a randomly selected symbol
is placed in the middle of the branch. This could be
extended to use almost any shape, drawing, or another
type of symbols or pictures. As noted previously,
deformations may be applied not only to the
handwritten images but to the tree itself to further
discourage machine learning.

To complete the generation of our CAPTCHA, the
program selects a node, or set of nodes in the rendered
tree at random about which to ask the question. Once
the tree and proper placement of images has been
completed, a question will be selected at random from a
list of potential questions about the tree such as “Which
{word} is connected to {some other word} by a
{shape}? (Figure 1). In all cases the user must quickly
scan through and interpret all handwritten samples in
the tree to correctly answer the question. Alternatively,
the user may be asked to name two words that are
connected. For machines to break our CAPTCHA,
much more than one handwritten image would need to
be interpreted. In addition, to solve our CAPTCHA
machines would need to segment out the various
objects in our CAPTCHA, including tree elements,
shapes or other graphics, and handwritten images. Thus
with our CAPTCHA we exploit the open problem in
document image analysis of analyzing, segmenting and
recognizing the various elements in a digital document
or image [5]. To complete the generation of the test, the
handwritten images and their truth words (correct
answers) are passed to the verifier. Upon challenge
submittal, the user response is verified and the
application determines whether the user passes or fails.
If the user passes by interpreting all of the letters in the
handwritten image correctly, they would then be given
access to the Web resource in question, otherwise they
would be given another different challenge. Since the
difficulty level of recognition needed to answer the
question is greater and also has a higher level of
randomness, our tree-based handwritten CAPTCHA
poses more difficulty for machines, while still
remaining simple for human users based on their
cognitive abilities.

4. HIP System Evaluation

We have designed the tree-based handwritten HIP
system as a challenge-response protocol for Web
security. Experimental tests on word legibility have
been conducted with human subjects and state-of-the-
art handwriting recognizers. We have tested large sets
of images on machines. To make it a fair test for
machines, we have assisted the word recognizers with
lexicons that contain all the truth words of the test
images. For testing we used scanned handwritten image
samples of US city names which we had readily
available from postal applications, in order to provide
samples corresponding to a known, finite lexicon (size
40,000, roughly the number of US city names) to help
machine recognition, as well as synthetically generated
samples. In reality, in actual applications such as our
CAPTCHA having no context-specific dictionary, the

56

WebApps ’10: USENIX Conference on Web Application Development

number of entries in the lexicon will be much larger
which will affect recognition accuracy drastically, as
indicated by researchers [13, 32].

4.1 Machine Testing

The handwritten CAPTCHAs have been tested by
several state-of-the-art handwriting recognizers (Word
Model Recognizer (WMR), Character Model
Recognizer (CMR), and Accuscript (HMM)) [14, 31].
We have tested several sets of images using human-
written scanned samples, synthetically generated
samples, and tree-based handwritten images.
Transformations were applied to human-written and
scanned image samples based on the Gestalt principles
and Geon theory. Several sets, each of them with over
4,000 handwritten city name images, were used, one set
for each transformation. Parameter values for
transformations  were  randomly chosen  and
successively applied to the handwritten word images.
The individual transformations we were concerned with
were less vs. more fragmentation, empty letters,
displacement, mosaic effect, adding jaws, arcs, or extra
strokes, occlusion by circles, occlusion by waves (white
vs. black), vertical or horizontal overlap, and overlap of
different words. We note that with the exception of
occlusion by circle transformation, machine recognition
rates were low for Gestalt-based transformations, even
though the lexicon used to help machine accuracy was
of a relatively small size. We observed that for
occlusions by circle, machine recognition could be
affected if the transformation did not adequately affect
the foreground. We encountered overall accuracy of
5.74% for WMR, 1.21% for Accuscript and 3.8% for
CMR, with accuracies approaching 0% for individual
transformations such as letter fragmentations, overlaps,
and adding extra strokes, when recognizers were aided
by a relatively small lexicon of 4,000 words. On the
other hand, these presented the least difficulty for
human subjects, based on the Gestalt laws of closure
and continuity [23, 24].

We also tested 300 synthetic handwriting samples that
were generated corresponding to US city names, US
states and world-wide countries. Similar Gestalt and
Geon-motivated transformations were applied. For
these images we saw an accuracy rate of only 1.00% for
WMR, 0.7% for Accuscript, and 0.3% for CMR. This
extremely low machine recognition rate even with a
small word set and a provided small lexicon suggests
that synthetic handwritten images are an excellent
choice for generating infinitely many CAPTCHAs.

To the best of our knowledge, there is not yet any
commercial program which can fully interact with or
decipher our tree-based handwritten CAPTCHA. As we
have noted previously, our use of tree structures is
motivated by the fact that they can provide complexity
for machine recognition beyond interpretation of
handwritten images. In addition, we leverage open
problems in graphics recognition as well as in the wider
field of Document Analysis and Recognition. In our
tree structure, symbols have no intrinsic meaning
outside of our CAPTCHA. Thus, segmenting parts of
our drawing would not assist in solving the combined
CAPTCHA since the task of handwriting interpretation
would still remain difficult. Our drawing only makes
sense as a complete entity which requires the
interpretation of symbols with no inherent meaning on
top of interpreting handwritten transformed images
with their previously mentioned difficulties for
machines.

4.2  Usability Testing

Our usability testing focused on understanding the
viability of our CAPTCHA both from a user experience
perspective and based on how often users were able to
interpret our CAPTCHA. A key area of focus was on
determining whether our tree structure in combination
with handwritten images presented any additional
difficulty as compared to a handwriting only
CAPTCHA. User tests were conducted both for
handwritten images alone and for our tree-based
handwritten CAPTCHA.

To test handwritten images alone that were transformed
according to Gestalt and Geon principles, random sets
of 90 images were given to be recognized by 9
volunteers. The test consisted of 10 handwritten word
images for each of the 9 types of transformations. For
the purposes of testing, to ensure human results could
be fairly compared to machine results, images were
chosen at random from transformed US city name
images. The actual application will feature virtually
infinite-many different synthetically generated and
transformed word images with an unrestricted domain
to foil machine recognition. We note that most of the
human errors came from poor original images rather
than being related to the transformations applied.
Success rates for humans averaged 80%. As noted
earlier, we believe that through a careful process of
parameter selection and good quality starting samples,
which can best be guaranteed by using synthetic
samples, we can achieve a higher success rate for
human recognition for our images. We have also
compared human recognition on a set of human

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 57



handwritten US city name images to a set containing 79
synthetic US city name, state or country name images
automatically generated by our handwriting generator
program. Similar high human recognition of 80% or
better for both human-written and synthetic image sets
suggests that synthetic images pose no additional
problems to humans.

Our first round of user studies on our tree-based
handwritten CAPTCHA included 15 volunteer graduate
and undergraduate students. Approximately 30% of the
volunteers were non-native English speakers which
suggests that our CAPTCHA may be useful to a large
audience. Subsequent tests will be run with a larger set
of participants and tests featuring a larger set of words.
During our initial test, 190 challenges were completed
and a series of survey questions were administered on a
volunteer basis to all participants. Each participant was
asked to take 20 tree-based handwritten CAPTCHA
challenges. The tests were self-administered and were
taken at a testing Web site. Participants were given
only very basic information on the concept of
CAPTCHA and no prior knowledge of the field was
assumed. Users were asked to solve the CAPTCHA
presented (Figure 1) and to rate each CAPTCHA on a
scale of 1-5, with 1 being “least difficult” and 5 being
“most difficult”. At the end users were asked to provide
general comments about our CAPTCHA as well as
responses to specific questions about their Web usage
and exposure to CAPTCHAs.

Users were able to interpret the tree-based handwritten
CAPTCHA 80.6% of the time which was no less often
than the 80% for handwritten CAPTCHA trials. The
most common rating given for the tree-based
handwritten CAPTCHA trials was 2, although the
presence of trials rated as 4 or 5 made the average (2.8)
slightly higher. We have observed that generally the
samples given a higher rating were those with poor
image quality from scanned samples. We feel that the
average rating is acceptable given the current sample
set and will only be improved with a cleaner, all
synthetic set to be used in the next round of testing.
One interesting observation is that in many cases where
users rated an image as a 4 or 5, they were still able to
correctly guess the image. We believe that recognizing
additional elements in the tree allowed users to fill in
the blanks and interpret images that they may not have
otherwise been able to read. Several general comments
collected in the survey support this assumption. The
ability to guess words even when they were hard to
read once again highlights the importance of human
perception factors involved in reading, including those
of local context and Gestalt and Geon principles. The

same assistance provided to humans by the tree
structure provided more difficulty for machines due to
problems in graphics segmentation of complex multi-
layer images. Of the individual transformations, more
correct answers were for word images transformed
using overlaps, mosaic effect and extra strokes.

5. Conclusions and Future Work

This paper furthers the work on handwritten
CAPTCHA [22, 23, 24] and provides insights into the
fields of Al, Handwriting and Graphics Recognition. A
new approach is presented for a HIP system that
combines handwritten word images in a randomly
generated tree-based structure with randomly selected
test questions. Our approach leverages currently
superior human ability over machines in interpreting
graphics and reading unconstrained handwriting,
especially when various transformations such as
fragmentations or occlusions are applied. The Gestalt
laws of perception and Geon theory and the weaknesses
of handwriting recognizers were closely studied to
determine the most effective transformations to apply
to keep images legible for humans while making them
difficult to read by machines. We add the novel
element of a randomly drawn tree structure with
randomly drawn node elements in addition to
handwritten images to further leverage human cognitive
strengths over machines.

Experimental results show a high degree of human
success even with inconsistent quality scanned
handwriting samples, and user feedback has also been
largely positive indicating that our CAPTCHA is
human-friendly. At the same time, our tests using state
of the art recognizers prove that machine success rates
with the same tests are low to non-existent. Testing
both real human handwriting and synthetically
generated samples allowed us to compare the results at
machine and human level and conclude that synthetic
handwriting is at least as good as real handwriting for
CAPTCHA purposes. All these aspects indicate that
our CAPTCHA can successfully be used to protect
online services as a viable alternative solution for
Cyber security. Additionally, our CAPTCHA provides
fertile ground for work on important problems in other
areas such as Al, Image Analysis, Machine Learning,
Security, etc., and invite researchers to work on
breaking our CAPTCHA and further advance
knowledge in those fields.

We are considering several improvements to our
application based on user feedback. We will run
additional user tests using a larger set of non-domain

58

WebApps ’10: USENIX Conference on Web Application Development

specific words and synthetic samples generated and
transformed on the fly by our handwriting generator. A
wider range of participants will be considered and
metrics on human time to solve the challenges by
transformation type collected. More testing will be
conducted to understand the processing load that our
application might present during real-time use by many
concurrent users. We also plan to have researchers
create custom attacks to understand any potential
vulnerabilities of our approach or will release our
application to the public using some of our university
online services in order to further understand how
machines and a wider set of human users might interact
with it. Combining handwritten text images with images
of objects is another possible extension for our
CAPTCHA. Last but not least, an alternative
CAPTCHA for visually impaired users will be
considered as well.

6. References

[1] Baird, H. S. and Popat, K. Human Interactive
Proofs and Document Image Analysis. In Proc.
IAPR Workshop on Document Analysis Systems,
2002.

[2] Biederman, I. Recognition-by-components: A
theory of human image understanding.
Psychological Review, 94, 2, 115-147, 1987.

[3] Biederman, I. and Blickle, T. The perception of
objects with deleted contours. Unpublished
manuscript, 1985.

[4] Biederman, I. and Gerhardstein, P.C.Recognizing
Depth-Rotated Objects: Evidence and Conditions
for Three-Dimensional Viewpoint Invariance.
Journal of Experimental Psychology: Human
Perception and Performance, 19, 1162-1182, 1993.

[5] Chaudhuri, B. Digital Document Processing:
Major Directions and Recent Advances. Springer
London, 2007.

[6] Chellapilla, K, Larson, K, Simard, P and
Czerwinski, M. Designing Human Friendly Human
Interaction Proofs (HIPs). In Proc. CHI 2005,
ACM Press, 711-720, 2005.

[7] Chellapilla, K. and Simard, P. Using Machine
Learning to Break Visual Human Interaction
Proofs (HIPs). Advances in Neural Information
Processing Systems, 17, 2004.

[8] Chew, M. and Baird, H.S. BaffleText: A Human
Interactive Proof. In Proc. 10th IS&T/SPIE
Document Recognition and Retrieval Conference,
2003.

[9] Freyd, J.J. Dynamic Mental Representation.
Psychological Review, 94, American
Psychological Assoc, 427-438, 1987.

[10] Gimpy web site:
http://www.captcha.net/captchas/gimpy/

[11]Golle, P. Machine Learning Attacks Against the
Asirra CAPTCHA. Proc. CCS ‘08, ACM, New
York, 535-542, 2008.

[12]Goodman, J., Cormack, G.V., and Heckerman, D.
Spam and the Ongoing Battle for the Inbox.
Commun. ACM, 50:2, ACM, New York, 25-33,
2007.

[13]Govindaraju, V., Slavik, P. and Xue, H. Use of
Lexicon Density in Evaluating Word Recognizers.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24, 6, 789-800, 2002.

[14]Kim, G. and Govindaraju, V. A Lexicon Driven
Approach to Handwritten Word Recognition for
Real-Time Applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, 4,
366-379, 1997.

[15]Koffka, K. Principles of Gestalt Psychology. New
York: Harcourt, Brace and Company, New York,
1935.

[16]Madhvanath, S. and Govindaraju, V. The Role of
Holistic  Paradigms in Handwritten Word
Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23, 2, 149 —
164, 2001.

[17]Mori, G. and Malik, J. Recognizing objects in
adversarial clutter: breaking a visual CAPTCHA.
Proc. Computer Vision and Pattern Recognition, 1,
1-134-1-141, 2003.

[18]Plamondon, R. and Srihari, S.N. Online and Off-
Line Handwriting Recognition: A Comprehensive
Survey., IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22, 1, 63-84, 2000.

[19]reCAPTCHA  project — a CAPTCHA
implementation. http://www.recaptcha.net/

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 59



[20]Rice, S., Nagy, G., and Nartker, T. Optical
Character Recognition: An Illustrated Guide to the
Frontier, Kluwer, Dordrecht, 1999.

[21]JRui, Y. and Liu, Z. ARTiFACIAL: Automated
Reverse Turing Test Using Facial Features. Proc.
MM ‘03, ACM, New York, 295-298, 2003.

[22]Rusu, A. and Govindaraju, V. Handwritten
CAPTCHA: Using the difference in the abilities of
humans and machines in reading handwritten
words. In Proc. Ninth International Workshop on
Frontiers in Handwriting Recognition, 226-231,
2004.

[23]1Rusu, A. and Govindaraju, V. Visual CAPTCHA
with Handwritten Image Analysis. Human
Interactive Proofs: Second International
Workshop, HIP 2005, Bethlehem, PA, USA, May
19-20, 2005: Proceedings, Springer, 42-51, 2005.

[24]Rusu, A. and Govindaraju, V. A Human
Interactive Proof Algorithm Using Handwriting
Recognition. In Proc. Eighth International
Conference on  Document Analysis and
Recognition, 2, 29, 967-971, 2005.

[25]Rusu, A., Midic, U and Govindaraju, V. Synthetic
Handwriting Generator for Cyber Security. In
Proc. 13™ Conference of the International
Graphonomics Society, 2007.

[26]Senior, A.W. and Robinson, A.J. An Off-Line
Cursive Handwriting Recognition System. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20, 3, 309-321, 1998.

[27]Srihari, S.N. and Kuebert, E.J. Integration of
Hand-Written Address Interpretation Technology
into the United States Postal Service Remote
Computer Reader System. In Proc. Fourth

International Conference on Document Analysis
and Recognition, 2, 892-896, 1997.

[28] Turing, A. Computing machinery and intelligence.
Mind 59, 236, 433-460, 1950.

[29]von Ahn, L., Blum, M., Hopper, N. and Langford,
J. CAPTCHA: Using Hard AI Problems for
Security. LNCS, Springer Berlin / Heidelberg, Vol.
2656, 294-311, 2003.

[30]von Ahn, L., Blum, M., and Langford, J. Telling
humans and computers apart automatically.
Communications ACM 47, 2, 56-60, 2004.

[31]1Xue, H. and Govindaraju, V. A stochastic model
combining discrete symbols and continuous
attributes and its application to handwriting
recognition. International Workshop of Document
Analysis and Systems, 70-81, 2002.

[32] Xue, H. and Govindaraju, V. On the dependence of
handwritten word recognizers on lexicons. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24, 12, 1553-1564, 2002.

[33] Yan, J. and El Ahmad, A.S. A Low-cost Attack on
a Microsoft CAPTCHA. Proc. CCS ‘08, ACM,
New York, 543-554, 2008.

[34]Yan, J. and El Ahmad, A.S. Usability of
CAPTCHAs Or usability issues in CAPTCHA
design. Proc. SOUPS 2008, ACM, New York, 44-
52,2008.

[35]Yan, L. and Wenyin, L. Engineering Drawings
Recognition Using a Case-based Approach. Proc.
Seventh Int’l Conf. on Document Analysis and
Recognition, IEEE, Washington, D.C., 1-5, 2003.

GULFSTREAM: Staged Static Analysis for
Streaming JavaScript Applications

Salvatore Guarnieri
University of Washington

Abstract

The advent of Web 2.0 has led to the proliferation of
client-side code that is typically written in JavaScript.
Recently, there has been an upsurge of interest in static
analysis of client-side JavaScript for applications such as
bug finding and optimization. However, most approaches
in static analysis literature assume that the entire pro-
gram is available to analysis. This, however, is in di-
rect contradiction with the nature of Web 2.0 programs
that are essentially being streamed at the user’s browser.
Users can see data being streamed to pages in the form
of page updates, but the same thing can be done with
code, essentially delaying the downloading of code until
it is needed. In essence, the entire program is never com-
pletely available. Interacting with the application causes
more code to be sent to the browser.

This paper explores staged static analysis as a way
to analyze streaming JavaScript programs. We observe
while there is variance in terms of the code that gets sent
to the client, much of the code of a typical JavaScript
application can be determined statically. As a result, we
advocate the use of combined offline-online static analy-
sis as a way to accomplish fast, browser-based client-side
online analysis at the expense of a more thorough and
costly server-based offline analysis on the static code.
We find that in normal use, where updates to the code
are small, we can update static analysis results quickly
enough in the browser to be acceptable for everyday use.
We demonstrate the staged analysis approach to be ad-
vantageous especially in mobile devices, by experiment-
ing on popular applications such as Facebook.

1 Introduction

The advent of Web 2.0 has led to the proliferation of
client-side code that is typically written in JavaScript.
This code is often combined or mashed-up with other
code and content from different third-party servers, mak-

Benjamin Livshits
Microsoft Research

ing the application only fully available within the user’s
browser. Recently, there has been an upsurge of inter-
est in static analysis of client-side JavaScript. However,
most approaches in the static analysis literature assume
that the entire program is available for analysis. This,
however, is in direct contradiction with the nature of
Web 2.0 programs that are essentially being streamed to
the user’s browser. In essence, the JavaScript application
is never available in its entirety: as the user interacts with
the application, more code is sent to the browser.

A pattern that emerged in our experiments with static
analysis to enforce security properties [14], is that while
most of the application can be analyzed offline, some
parts of it will need to be analyzed on-demand, in the
browser. In one of our experiments, while 157 KB (71%)
of Facebook JavaScript code is downloaded right away,
an additional 62 KB of code is downloaded when visit-
ing event pages, etc. Similarly, Bing Maps downloads
most of the code right away; however, requesting traf-
fic requires additional code downloads. Moreover, often
the parts of the application that are downloaded later are
composed on the client by referencing a third-party li-
brary at a fixed CDN URL; common libraries are jQuery
and prototype.js. Since these libraries change rela-
tively frequently, analyzing this code ahead of time may
be inefficient or even impossible.

The dynamic nature of JavaScript, combined with the
incremental nature of code downloading in the browser
leads to some unique challenges. For instance, consider
the piece of HTML in Figure 1. Suppose we want to
statically determine what code may be called from the
onclick handler to ensure that none of the invoked func-
tions may block. If we only consider the first SCRIPT
block, we will conclude that the onclick handler may
only call function foo. Including the second SCRIPT
block adds function bar as a possible function that may
be called. Furthermore, if the browser proceeds to down-
load more code, either through more SCRIPT blocks or
XmlHttpRequests, more code might need to be consid-

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

61



<HIML>
<HEAD>
<SCRIPT>
function foo(){...}
var f = foo;
</SCRIPT>
<SCRIPT>
function bar(){...}
if (...) f = bar;
</SCRIPT>
</HEAD>

<BODY onclick="f();">
</BODY>
</HTML>

Figure 1: Example of adding JavaScript code over time.

red to find all possible targets of the onclick handler.
While it is somewhat of an artificial example, the code
1 Figure 1 demonstrates that JavaScript in the browser
ssentially has a streaming programming model: sites in-
ert JavaScript into the HTML sent to the user, and the
rowser is happy to execute any code that comes its way.
GULFSTREAM advocates performing staged static
nalysis within a Web browser. We explore the trade-off
etween offline static analysis performed on the server
nd fast, staged analysis performed in the browser. We
onclude that staged analysis is fast enough, especially
n small incremental updates, to be made part of the
verall browser infrastructure. While our focus is on
nalyzing large, modern AJAX applications that use
avaScript, we believe that a similar approach can be ap-
lied to other platforms such as Silverlight and Flash.

.1 Contributions
'his paper makes the following contributions:

e Staged analysis. With GULFSTREAM, we demon-
strate how to build a staged version of a points-to
analysis, which is a building block for implement-
ing static analysis for a wide range of applications,
including security and reliability checkers as well
as optimizations. Our analysis is staged: the server
first performs offline analysis on the statically avail-
able code, serializes the results, and sends them to
a client which performs analysis on code deltas and
updates the results from the offline analysis. To our
knowledge, GULFSTREAM is the first static analysis
to be staged across across multiple machines.

o Trade-offs. We use a wide range of JavaScript
inputs of various sizes to estimate the overhead
of staged computation. We propose strategies for
choosing between staging analysis and full analysis
for various network settings. We explore the trade-
off between computation and network data transfer

and suggest strategies for different use scenarios.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2
provides background on both client-side Web applica-
tions and static analysis. Section 3 provides an overview
of our approach. Section 4 gives a description of our im-
plementation. Section 5 discusses our experimental re-
sults. Finally, Sections 6 and 7 describe related work and
outline our conclusions.

2 Background

This section first provides a background on static anal-
ysis and its most common applications, and then talks
about code loading in Web applications.

2.1 Static Analysis

Static analysis has long been recognized as an impor-
tant building block for achieving reliability, security, and
performance. Static analysis may be used to find vi-
olations of important reliability properties; in the con-
text of JavaScript, tools such as JSLint [9] fulfill such a
role. Soundness in the context of static analysis gives us
a chance to provide guarantees on the analysis results,
which is especially important in the context of check-
ing security properties. In other words, lack of warnings
of a static analyzer implies that no security violations
are possible at runtime; several projects have explored
this avenue of research for client-side JavaScript [8,
14]. Finally, static analysis may be used for optimiza-
tion: statically-computed information can be used to op-
timize runtime execution. For instance, in the context of
JavaScript, static knowledge of runtime types [18] may
be used to improve the performance of runtime interpre-
tation or tracing [13] within the JavaScript runtime.

Several broad approaches exist in the space of static
analysis. While some recent static analysis in type in-
ference have been made for JavaScript [16], the focus of
this paper is on pointer analysis, long recognized as a
key building block for a variety of static analysis tasks.
Because function closures can be easily passed around in
JavaScript, pointer analysis is even necessary for some-
thing as ostensibly simple as call graph construction.

The goal of pointer analysis is to answer the question
“given a variable, what heap objects may it point to?”
While a great variety of techniques exist in the pointer
analysis space, resulting in widely divergent trade-offs
between scalability and precision, a popular choice is to
represent heap objects by their allocation site. For in-
stance, for the following program

1. var v = null;
2. for (...) {

3. var ol = new Object();
4. var 02 = new Object();
5. if (...)

6. v = ol;

7. else

8. v = 02;

9. }

variables o1 and o2 point to objects allocated on lines 3
and 4, respectively. Variable v may point to either ob-
ject, depending on the outcome of the if on line 5. Note
that all objects allocated on line 3 within the loop are
represented by the same allocation site, potentially lead-
ing to imprecision. However, imprecision is inevitable
in static analysis, as it needs to represent a potentially
unbounded number of runtime objects with a constant
number of static representations.

In this paper, we focus on the points-to analysis for-
mulation proposed by the Gatekeeper project [14]. Gate-
keeper implements a form of inclusion-based Andersen-
style context-insensitive pointer analysis [2], which
shows good scalability properties, potentially with a loss
of precision due to context insensitivity. However, for
many applications, such as computing the call graph for
the program, context sensitivity has not been shown to be
necessary [21].

Static analysis is generally used to answer questions
about what the program might do at runtime. For in-
stance, a typical query may ask if it is possible for the
program to call function alert, which might be desir-
able to avoid code leading to annoying popup windows.
Similarly, points-to information can be used to check
heap isolation properties such as “there is no way to ac-
cess the containing page without going through proper
APIs” in the context of Facebook’s FBJS [12]. Proper-
ties such as these can be formulated as statically resolved
heap reachability queries.

2.2 Code Loading in Web Applications

As we described above, Web 2.0 programs are inherently
streaming, which is to say that they are downloaded over
time. Below we describe a small study we performed of
two large-scale representative AJAX applications. Fig-
ure 2 summarizes the results of our experiments. We
start by visiting the main page of each application and
then attempt to use more application features, paying at-
tention to how much extra JavaScript code is downloaded
to the user’s browser. Code download is cumulative: we
take care not to change the browser location URL, which
would invalidate the current JavaScript context.

As Figure 2 demonstrates, much of the code is down-
loaded initially. However, as the application is used,
quite a bit of extra code, spanning multiple potentially

Page visited or Added JavaScript
action performed files KB

FACEBOOK FRONT PAGE

Home page 19 157
Friends 7 29
Inbox 1 20
Profile 1 13

FACEBOOK SETTINGS PAGE

Settings: Network 13 136
Settings: Notifications 1 1
Settings: Mobile 3 14
Settings: Language 1 1
Settings: Payments 0 0

OUTLOOK WEB ACCESS (OWA)

Inbox page 7 1,680
Expand an email thread 1 95
Respond to email 2 134
New meeting request 2 168

Figure 2: Incremental loading of Facebook and OWA JavaScript code.

independently changing files, is sent to the browser. In
the case of Facebook, the JavaScript code size grows by
about 30% (9 files) once we have used the application
for a while. OWA, in contrast, is a little more mono-
lithic, growing by about 23% (5 files) over the time of
our use session. Moreover, the code that is downloaded
on demand is highly workload-driven. Only some users
will need certain features, leading much of the code to be
used quite rarely. As such, analyzing the “initial” portion
of the application on the server and analyzing the rest of
the code on-the-fly is a good fit in this highly dynamic
environment.

3 Overview

In this paper, we consider two implementation strate-
gies for points-to analysis. The first one is based on in-
memory graph data structures that may optionally be se-
rialized to be transmitted from the server to the client.
The second one is Gatekeeper, a BDD-based implemen-
tation described by Guarnieri and Livshits in [14]. Some-
what surprisingly, for small code bases, we conclude that
there is relatively little difference between the two imple-
mentations, both in terms of running time as well as in
terms of the size of result representation they produce. In
some cases, for small incremental updates, a graph-based
representation is more efficient than the bddbddb-based
one. The declarative approach is more scalable, however,
as shown by our analysis of Facebook in Section 5.4.
Figure 3 summarizes the GULFSTREAM approach and
shows how it compares to the Gatekeeper strategy.

Staged analysis. As the user interacts with the Web site,
updates to the JavaScript are sent to the user’s browser

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

63



JavaScript Normalized Graph
sources representation representation

GULFSTREAM
Results

[ —
Resolve queries Hand-coded

. implementation

GATEKEEPER
Results

Resolve queries —»

BDD-based solver

\/\

Figure 3: GULFSTREAM architecture and a comparison with the Gatekeeper project.

that in turn update the Web site. If the updates to the
Web site’s JavaScript are small, it would make sense that
an staged analysis would perform better than a full pro-
gram analysis. We looked at range of update sizes to
identify when an staged analysis is faster than recom-
puting the full program analysis. Full program analysis
might be faster because there is book keeping and graph
transfer time in the staged analysis that is not present in
the full program analysis. Section 5 talks about advan-
tages of staged analysis in detail. In general, we find it
to be advantageous in most settings, especially on slower
mobile connections with slower mobile hardware.

Soundness. In this paper we do not explicitly focus on
the issue of analysis soundness. Soundness would be es-
pecially important for a tool designed to look for secu-
rity vulnerabilities, for instance, or applications of static
analysis to runtime optimizations. Generally, sound
static analysis of JavaScript only has been shown pos-
sible for subsets of the language. If the program under
analysis belongs to a particular language subset, such
as JavaScript,,,,, advocated by Guarnieri et al. [14], the
analysis results are sound. However, even if it does noft,
analysis results can still be used for bug finding, without
necessarily guaranteeing that all the bugs will be found.
In the remainder of the paper, we ignore the issues of
soundness and subsetting, as we consider them to be or-
thogonal to staged analysis challenges.

Client analyses as queries. In addition to the pointer
analysis, we also show how GULFSTREAM can be used
to resolve two typical queries that take advantage of
points-to analysis results. The first query looks for calls
to alert, which might be an undesirable annoyance to
the user and, as such, need to be prevented in third-party
code. The second looks for calls to setIntervall with
non-function parameters.

4 Techniques

The static analysis process in GULFSTREAM proceeds in
stages, as is typical for a declarative style of program

'Function setInterval is effectively a commonly overlooked
form of dynamic code loading similar to eval.

var A = new Object();
var B = new Object();
x = new Object();
x.foo = new Object();

y = new Object();
y.bar = x;

y.add = function(a, b) {}
y.add(A, B)

W N O WN -

(a) Input JavaScript program.

(b) Resulting graph.

Figure 4: Example of a program with a function call.

analysis. On a high level, the program is first represented
as a database of facts. Next, a solver is used to derive
new information about the program on the basis of initial
facts and inference rules.

In GULFSTREAM, the first analysis stage is normal-
izing the program representation. Based on this normal-
ized representation, we built two analyses. The first is the
declarative, bddbddb-based points-to analysis described
in Gatekeeper [14]. The second is a hand-coded imple-
mentation of points-to information using graphs as de-
scribed in the rest of this section.

The graph-based representation also produces graphs
that can efficiently compressed and transferred to the
browser from the server. To our surprise, we find that
at least for small programs, the graph-based representa-
tion performs at least as well as the bddbddb-based ap-
proach often advocated in the past; bddbddb-based anal-
ysis, however, performs faster on larger code bases, as
discussed in Section 5.4.

WebApps ’10: USENIX Conference on Web Application Development

Node type Description Node shape

Variable The basic node is a simple variable node. It represents variables from the program or manufactured during Oval
normalization. Line 1 in Figure 4 has two variable nodes, A and Object.

Heap These nodes represent memory locations and are sinks in the graph: they do not have any outgoing edges. Heap Rectangle
nodes are created when new memory is created like in line 1 in Figure 4 when a new Object is created.

Field These nodes represent fields of objects. They are similar to variable nodes, except they know their object parent Triangle

and they know the field name used to access them from their object parent. Conversely, variables that have fields
contain a list of the field nodes for which they are the parent. Field nodes are represented by a triangular node
connected to the object parent by a named edge. Line 4 shows the use of a field access. The name of the edge is

the name of the field.

Argument  The fourth type of node is a special node called an argument node. These nodes are created for functions and Pentagon
are used to link formals and actuals. The argument nodes contain edges to their respective argument variables
in the function body and when a function is called, the parameter being passed in gets an edge to the respective
argument node. In the graph, Argument nodes are represented by pentagons. Lines 7 and 8 from Figure 4 show
a function node being created and used. Return values are also represented by this type of node.

Figure 5: Description of nodes types in the graph.

4.1 Normalization

The first analysis stage is normalizing the program rep-
resentation and is borrowed from the Gatekeeper [14]
project. The original program statements are broken
down to their respective normalized versions, with tem-
poraries introduced as necessary. Here is a normalization
example that demonstrates variable introduction:

var x = new Date(); x = new Date();
var y = 17; y=1;
h.f = h.g; t =h.g; h.f = t;

Variable t has been introduced to hold the value of
field h.g. Since we are not concerned with primitive val-
ues such as 17, we see it represented as L.

4.2 Graph Representation

The points-to information is calculated from a graph rep-
resenting the program stored in memory. The graph is
generated from the normalized program. Assignments
turn into edges, field accesses turn into named edges,
constructor calls create new sinks that represent the heap,
and so on. The graph fully captures the points-to infor-
mation for the program. One important note is that this
graph is not transitively closed. If the program states that
A flows to B and B flows to C, the graph does not contain
an edge from A to C even though A flows to C. The graph
must be traversed to conclude that A points to C.

The full graph consists of several different types of
nodes, as summarized in Figure 5. We use the program
and corresponding graph in Figure 4 as an example for
our program representation. In lines 1-5, the program is
creating new objects which creates new heap nodes in
the graph. In lines 4, 6, and 7, the program is accessing
a field of an object which makes use of a field edge to
connect the base object’s node to the field’s field node.
The first use of a field creates this new edge and field
node. Line 7 creates a new function, which is similar
to creating a new object. It creates a new heap node,

but the function automatically contains argument nodes
for each of its arguments. These nodes act as a connec-
tion between actuals and formals. All actuals must flow
through these argument nodes to reach the formal nodes
inside the function body. Line 8 calls the function cre-
ated in line 7. This line creates assignment edges from
the actuals (A and B) to the argument nodes, which al-
ready have flow edges to the formal.

4.3 Serialized Graph Representation

The output of each stage of analysis is also the input to
the next stage of analysis, so the size and transfer time of
this data must be examined when looking at our staged
analysis. We compare the sizes of two simple file for-
mats that we implemented and a third that is the bddbddb
graph output, which is a a serialized BDD.

The first format from our analysis is based on the
graphviz DOT file format [11]. This format maintains
variable names for each node as well as annotated edges.
The second format from our analysis is efficient for di-
rected graphs and removes all non-graph related data like
names. This format is output in binary is as follows:

[nodeid] ; [field_id1], [field_id2],...;[arg_id1]l,...;
[forward_edge_node_id1], [forward_edge_node_id2],...;
[backward_edge_node_id1], [backward_edge_node_id2],...;
[nodeid] ...

where nodeid, field_idl1, etc. are uniquely chosen in-
teger identifiers given to nodes within the graph. Finally,
the third format is a serialized BDD-based representation
of bddbddb.

Overall, the sizes of the different formats of the
staged-results graph vary widely. The DOT format is the
largest, and this is to be expected since it is a simple text
file describing how to draw the graph. The binary for-
mat and bddbddb output are closer in size, with the bi-
nary format being marginally smaller. A more detailed
comparison of graph representation sizes is presented in
Section 5.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 65



pointsTo = 0 — O // points-to map
reversePointsTo = 0 — ( // reverse version of points-to map
inc_insert(G, e) // incrementally update points-to map

: invalid = 0

:ife.src € G then

invalidate(e.src, invalid)

. end if

: if e.dst € G then

invalidate(e.dst, invalid)

. end if

G = <GN U {esrc; edst}7GE U {5}>

. for all n € invalid do

10:  ans =compute-points-to(n, 0)

11: pointsTo[n] = pointsTo[n] U ans
12: for all h € ans do

13: reversePointsTo[h] = reversePointsTo[h] Un
14: end for

15: end for

OOV AW~

invalidate(n € G, invalid) // recursively invalidate following flow edges

. if n € invalid then

return

. end if

: invalid = invalid U{n}

. if n is FieldNode then

to Visit = compute-field-aliases(n.parent, n.fieldname)

. end if

: for all n” adjacent to n do

if n — n’ is an assignment edge then
toVisit = toVisit Un’

end if

. end for

3: forall n’ € toVisit do

14: invalidate(n”)

: end for

I g e e e

—
wn

Figure 6: Routines inc_insert and invalidate.

Since our main focus was not to develop a new effi-
cient graph storage format, we gzip all the graph out-
put formats to see how their sizes compared under an
industry-standard compression scheme. Since BDDs are
highly optimized to minimize space usage, one would
expect their zipped size to be similar to their unzipped
size. As expected, the DOT format receives huge gains
from being zipped, but it is still the largest file format.
The difference between the three formats is minimal
once they are all zipped. Since this data must be trans-
ferred from the server to the client to perform the staged
analysis, these figures indicate that the graph output for-
mat does not make much of a difference on the staged
analysis time on a fast link assuming gzip times do not
vary much from one format to another. We leave more
detailed measurements that take decompression time into
account for future work.

4.4 Points-to Analysis Implementation

Our system normalizes JavaScript into a representation
that we can easily output for analysis. This means it
is straightforward for us to try several different analysis
techniques. We have two outputs of our representation
at the moment, an output to Datalog facts that is used by
bddbddb and an output to a graph representing the pro-

compute-points-to(n, visited Nodes)

1: if n € visited Nodes then

2: return )

3: else

4 visitedNodes = visitedNodes U {n}

5: endif

6: toVisit =0

7 ans =10

8: if n is HeapNode then

9: return n

10: end if

11: if n is FieldNode then

12: toVisit = toVisit U
compute-field-aliases(n.parent, n. fieldname)

13: end if

14: for assignment-edge e leaving n do

15: toVisit = toVisit U {e.sink}

16: end for

17: for node n’ € to Visit do

18: ans = ans U compute-points-to(n’, visited Nodes)
19: end for

20: return ans

compute-field-aliases(parent, fieldname)
1: toVisit =0
2: if parent is FieldNode then
3: toVisit = toVisit U
compute-field-aliases(parent.parent, parent. fieldname)
: end if
: toVisit = to VisitU compute-aliases(parent)
: forn € toVisit do
if n has field fieldname then
ans = ans U {n.fieldname}
end if
: end for
. return ans

—ovXNous

(o]
9]
=]

pute-aliases(n, visitedNodes)
ans=n
. if n € visitedNodes then
return ()
else
visitedNodes = visitedNodes U {n}
end if
. for edge e leaving n do
ans = ans U compute-aliases(e.sink, visitedNodes)
: end for
. return ans

SPORPIDNB W=

Figure 7: Points-to computation algorithm.

gram which is used by our implementation of a points-to
analysis. The reader is referred to prior work for more
information about bddbddb-based analyses [6, 14, 25].

GULFSTREAM maintains a graph representation that
is updated as more of the program is processed. Figure 6
shows a pseudo-code version of the graph update algo-
rithm that we use. In addition to maintaining a graph G,
we also save two maps: pointsTo, mapping variables
to heap locations and its reverse version for fast lookup,
reversePointsT'o. Function inc.insert processes every
edge e inserted into the graph. If the edge is not adjacent
to any of the existing edges, we update G with edge e. If
it is, we add the set of nodes that are adjacent to the edge,
together with a list of all nodes from which they flow to a
worklist called inwvalid. Next, for all nodes in that work-
list, we proceed to recompute their points-to values.

The points-to values are recomputed using a flow
based algorithm. Figure 7 shows the pseudo-code ver-

sion of our points-to algorithm, including helper func-
tions. For standard nodes and edges, it works by recur-
sively following all reverse flow edges leaving a node
until it reaches a heap node. If a cycle is detected, that
recursion fork is killed as all nodes in that cycle will point
to the same thing and that is being discovered by the
other recursion forks. Since flows are created to argu-
ment nodes when functions are called, this flow analysis
will pass through function boundaries.

Field nodes and argument nodes require special atten-
tion. Since these nodes can be indirectly aliased by ac-
cessing them through their parent object, they might not
have direct flows to all their aliases. When a field node is
reached in our algorithm, all the aliases of this field node
are discovered, and all edges leaving them are added to
our flow exploration. This is done by recording the name
of the field for the current field node, finding all aliases
of the parent to the field node, and getting their copy
of a field node representing the field we are interested
in. In essence, we are popping up one level in our flow
graph, finding all aliases of this node, and descending
these aliases to reach an alias of our field node. This pro-
cess may be repeated recursively if the parent of a field
node is itself a field node. The exact same procedure
is done for argument nodes for the case when function
aliases are made.

Note that the full analysis is a special, albeit more in-
efficient, case of the staged analysis where the invalid
worklist is set to be all nodes in the graph G . Figure 7
shows pseudo-code for computing points-to values for a
particular graph node n.

4.5 Queries

The points-to information is essentially a mapping from
variable to heap locations. Users can take advantage
of this mapping to run queries against the program be-
ing loaded. In this paper, we explore two representative
queries and show how they can be expressed and resolv-
ing using points-to results.

Not calling alert. It might be undesirable to bring up
popup boxes, especially in library code designed to be
integrated into large Web sites. This is typically accom-
plished with function alert in JavaScript. This query
checks for the presence of alert calls.

Not calling setInterval with a dynamic function pa-
rameter. In JavaScript, setInterval is one of the dy-
namic code execution constructs that may be used to in-
voke arbitrary JavaScript code. This “cousin of eval”
may be used as follows:

setInterval(
new Function(
"document.location=http://evil.com’;"),
500) ;

In this case, the first parameter is dynamically con-
structed function that will be passed to the JavaScript
interpreter for execution. Alternatively, it may be a ref-
erence to a function statically defined in the code. In
order to prevent arbitrary code injection and simplify
analysis, it is desirable to limit the first parameter of
setInterval to be a statically defined function, not a
dynamically constructed function.

Figure 8 shows our formulation of the queries. The
detect-alert-calls query looks for any calls to
alert. It does this by first finding all the nodes
that point to alert, then examining them to see if
they are called (which is determined during normaliza-
tion). The detect-set-interval-calls is somewhat
more complicated. It cares if setInterval is called,
but only if the first parameter comes from the return
value of the Function constructor. So, all the source
nodes from edges entering the first argument’s node in
setInterval must be examined to see if it has an edge
to the return node of the Function constructor. In ad-
dition, all aliases of these nodes must also be examined
to see if they have a flow edge to the return node of the
Function constructor.

The results to these queries are updated when updates
are made to the points-to information. This ensures that
the results are kept current on the client machine. A
policy is a set of queries and expected results to those
queries. A simple policy would be to disallow any calls
to alert, so it would expect detect-alert-calls from
Figure 8 to return false. If detect-alert-calls ever
returns true, the analysis engine could either notify the
user or stop the offending page from executing.

4.6 Other Uses of Static Analysis

In addition to the two queries detailed above, there are
many other uses that could be very useful. One other
useful query would be to use the points-to results to iden-
tify when updates to pages modify important global vari-
ables. The points-to results can be traversed to identify
when any aliases to global variables, like Array or com-
mon global library names, are modified which could lead
to unexpected behavior.

Another use of the staged static analysis is helping
to improve performance through optimization. Tradi-
tionally Just-In-Time (JIT) compilers have been used
to improve the performance of dynamic languages like
JavaScript [5]. These JITs have the benefit of actu-
ally seeing code paths during execution and optimizing
them, but they must run on the client and thus have some
amount of performance impact. Any complex analy-
sis done by a JIT would negatively affect performance,
which is what the JIT is trying to improve in the first
place. Performing some amount of static analysis be-

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

67



detect-alert-calls()

1: nodes = reversePointsTo[alert |
2: foralln  nodes do

3: if n.isCalled() then

4: return true
5: end if
6: end for

7: return false

detect-set-interval-calls()
1: n =setInterval .argl
2: for all edge e entering n do

3 if e.src == Function .return then
4 return true

5 else

6: p=p find-all-aliases(e.src)
7 end if

8: end for

9: for all node n2 in p do

10:  for all edge e2 entering n2 do

11: if 2.src == Function .return then
12: return true

13: end if

14: end for

15: end for

find-all-aliases(node)
1: aliases = empty
. heapNodes = pointsTo[node]
: foralln  heapNodes do
aliases = aliases  reversePointsTo[n ]
: end for
. return aliases

Figure 8: Queries detect-alert-calls and detect-set-interval-calls.

fore running JavaScript through a JIT could empower the
JIT to better optimize code [18]. GULFSTREAM would
permit this without having to do an expensive analysis
while the JIT is running. GULFSTREAM is especially
well suited to this situation because the majority of the
staged analysis is done offline and only updates to the
code are analyzed on the client. Static analysis enables
many analyses that can be semantically driven rather than
syntactically driven and possibly fragile.

—— [ FEEER — —ERERER ERPREEER

@R fucanesl ot PR ot

PRERERRLIPR R

Figure 9: Trend lines for running times for full and staged analyses as
well as the bddbddb-based implementation

5 Experimental Evaluation

This section is organized as follows. We first discuss
analysis time and the space required to represent anal-
ysis results in Sections 5.1 and 5.2. Section 5.3 explores
the tradeoff between computing results on the client and
transferring them over the wire.

Measurements reported in this paper were performed
on a MacBook Pro 2.4 GHz Dual Core machine running
Windows 7. The JavaScript files we used during testing
were a mix of hand crafted test files, procedurally gener-
ated files, and files obtained from Google code search,
looking for JavaScript files. GULFSTREAM uses two
bootstrap JavaScript files. The first introduces the native
environment, where Object, Array, and other globals
are defined. The second introduces a set of browser-
provided globals such as document and window. To-
gether these files are approximately 30 KB in size.

5.1 Analysis Running Time

Figure 9 shows full, staged and the bddbddb-based anal-
yses on the same scale . For this experiment, we used our
bootstrap file for the base in the staged analysis. We ran
various sized JavaScript files through the full, staged, and
bddbddb-based analyses. The full and bddbddb-based
analyses processed the JavaScript file concatenated with
the bootstrap file. The staged analysis processed the
JavaScript file as an update to the already computed anal-
ysis on the bootstrap file.

We see that staged analysis is consistently faster than
full analysis. In the cases of smaller code updates, the
difference in running times can be as significant as a
couple of orders of magnitude. We also see that for
small updates, the staged analysis performs better than
the bddbddb-based analysis. This is encouraging: it
means that we can implement the staged analysis within
the browser without the need for heavyweight BDD ma-
chinery, without sacrificing performance in the process.
In the next section, we show that our space overhead is
also generally less than that of BDDs.

5.2 Space Considerations

Figure 10 shows the sizes of three representations for
points-to analysis results and how they compare to each
other. The representations are DOT, the text-based graph
format used by the Graphviz family of tools, bddbddb,
a compact, BDD-based representation, as well as BIN,
our graph representation described in Section 4.3. All
numbers presented in the figure are after applying the
industry-standard gzip compression.

We were not surprised to discover that the DOT ver-
sion is most verbose. To our surprise, our simple bi-

— —DEEEEEE CERERRE — O ErRE

-
-
-
-
-
PREER PR S
-
-
Ewm_uu _ 7
£ P
E‘.“ P 7
&
g -
= ppE o
-
-, /
ERIERRE /
|

EEERD EEEEEE ot ot it fucant] fucact]
RN R

Figure 10: Trend lines for pointer analysis graph size as a function of
the input JavaScript file size (gzip-ed).

nary format beats the compact bddbddb format in most
cases, making us believe that a lightweight staged anal-
ysis implementation is a good candidate for being inte-
grated within a Web browser.

5.3 Staged vs. Full Analysis Tradeoff

To fully explore the tradeoff between computing the full
analysis on the client and computing part of the analy-
sis on the server and transferring it over the wire to the
client, we consider 10 device configurations. These con-
figuration vary significantly in terms of the CPU speed as
well as network connectivity parameters. We believe that
these cover a wide range of devices available today, from
the most underpowered: mobile phones connected over a
slow EDGE network, to the fastest: desktops connected
over a T1 link.

A summary of information about the 10 device config-
urations is shown in Figure 11. We based our estimates
of CPU multipliers on a report comparing the perfor-
mance of SunSpider benchmarks on a variety of mobile,
laptop, and desktop devices [1]. While not necessarily
representative of Web 2.0 application performance [23],
we believe these benchmark numbers to be a reasonable
proxy for the computing capacity of a particular device.

We compare between two options: 1) performing full
analysis on the client and 2) transferring a partial result
over the wire and performing the staged analysis on the
client. The equation below summarizes this comparison.
On the left is the overall time for the full analysis and on
the right is the overall time for the staged analysis. B is
the bandwidth, L is the latency, b is the main page size,
is the incremental JavaScript update size, size is the size
of the points-to data needed to run the staged analysis,
and F' and [ are the full and staged analysis times re-
spectively. c is the CPU coefficient from Figure 11:

stze

¢ Flb+ )?L+—+c I()

Configuration CPU Link Latency Bandwidth
ID Name coef. ¢ type Linms B inkbps
1 Gl 67.0 EDGE 500 2.5
2 PalmPre 36.0 Slow 3G 500 3.75
3 iPhone 3G 36.0 Fast 3G 300 12.5
4 iPhone 3GS 3G 15.0 Slow 3G 500 3.75
5 iPhone 3GS WiFi 15.0 | Fast WiFi 10 75.0
6  MacBook Pro 3G 1 Slow 3G 500 3.75
7 MacBook Pro WiFi 1 Slow WiFi 100 12.5
8  Netbook 2.0 Fast 3G 300 12.5
9  Desktop WiFi 0.8 Slow WiFi 100 12.5
10  Desktop T1 0.8 T1 5 1,250.0

Figure 11: Device settings used for experiments across CPU speeds
and network parameters. Devices are roughly ordered in by comput-
ing and network capacity. Configurations 1-5 correspond to a mobile
setting; configurations 6—10 describe a desktop setting.

Figure 12 summarizes the results of this comparison over
our range of 10 configurations. The code analyzed at
the server is the bootstrap code from before. There-
fore, the points-to data sent to the client was always the
same while the size of the incremental code update var-

Incremental Configuration (from Figure 11)
3 4 5 6 8 9

et
(=]

size

88
619
1,138
1,644
2,186
2,767
3,293
3,846
4,406
5,008
5,559
6,087
6,668
7,249
7,830
8,333
8,861
9,389
9,917
10,445
10,973
11,501
12,029
12,557
14,816
16,485
17,103
17,909 || -
20,197 || -
25,566 || -
31465 |- - - - - |- - - - -
37689 || - - - - - |- - - -
38,986
57,254
71,074
124,136 || - - - - - |- - - - -
129,739 || - - - - - |- - - - -

.
.

T
.

T T Tk T T T i S e e S S e S S S e b
T Tk Tk T T T T T S e e S e S e e e L
T Tk T T T S S e S e e A T T T T o
R T T T T S T S e S e T T T i T
I Tk T T T S S i I T

.

.

A

.

e F T

+
+
+
+
+
.
.
.
.
+

+ o+
+ o+

+
+

+ +
+ +
.
'
+ +
.
+ +

Figure 12: Analysis tradeoff in different environments. “+” means that
staged incremental analysis is advantageous compared to full analysis
on the client.

68

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 69



Page Lines of code | Analysis time (seconds) Full/
Total Inc. | Inc. Full  bddbddb | bddbddb
home 965 339 591 599 4 148
friends | 1,274 309 | 1,297 | 1,866 6 324
inbox 1,291 17 800 | 1,840 6 313
profile | 1,308 17 851 | 4,180 6 716

Figure 13: Analysis times for an incrementally loading site (Face-
book.com). Each page sends an update to the JavaScript that adds to
the previous page’s JavaScript.

ied. A + in the table indicates that staged analysis is
faster. Overall, we see that for all configurations ex-
cept 6, 7, and 9, staged analysis is generally the right
strategy. “High-end” configurations 6, 7, and 9 have the
distinction of having a relatively fast CPU and a slow
network; clearly, in this case, computing analysis results
from scratch is better than waiting for them to arrive over
the wire. Unsurprisingly, the staged approach advocate
by GULFSTREAM excels on mobile devices and under-
powered laptops. Given the growing popularity of Web-
connected mobile devices, we believe that the staged
analysis approach advocated in this paper will become
increasingly important in the future.

5.4 Facebook Analysis Experiment

Thus far, we have shown how GULFSTREAM performs
when run on smaller JavaScript fragments, chosen to
simulate incremental code updates of varying sizes. To
see how GULFSTREAM handles a real incrementally
loading JavaScript program, we captured an interactive
session of Facebook usage. JavaScript code was incre-
mentally loaded as the user interacted with the page.
We fed each JavaScript update through GULFSTREAM to
simulate a user navigating Facebook with GULFSTREAM
updating analysis results, as more JavaScript is loaded
into the browser.

The navigation session we recorded and used com-
prises a particular interaction with the main Facebook
page. We were careful to use actions such as link clicks
that do not take the user away from the current page (that
would create a new, clean JavaScript engine context).
The recorded interaction is clicking several links in a row
that keeps the user at the same page. The user starts at the
homepage where a large amount of JavaScript is down-
loaded. Then the user clicks on their friends link, which
causes more JavaScript to be downloaded and the page to
be updated. The same happens when the user then clicks
on their inbox link, and their profile link. These four
pages: the homepage, friends, inbox, and profile make
up our Facebook staged analysis experiment.

In the experiment, each of the four pages was pro-
cessed by the staged analysis, the full analysis, and the
bddbddb analysis. For the staged analysis, the code from
the initial page was considered an incremental update

upon the bootstrap JavaScript that includes our native en-
vironment definition and our browser environment defi-
nition. Then in all subsequent pages, the code down-
loaded for that page was considered an incremental up-
date upon the already computed results from the previ-
ous page. For the full analysis and the bddbddb analysis,
each of the four pages was analyzed in isolation.

Figure 13 contains the sizes of the pages used in this
experiment. The lines of code reported is the line count
from the files as they are when downloaded. Note that in
many cases, code includes long eval statements that ex-
pand to many hundreds to thousands of lines of code. For
example, the incremental part of the first page expands to
over 15,000 lines of code and the incremental part of the
last page expands to over 1,400 lines of code.

The goal for the staged analysis is to perform updates
to the analysis faster than it takes to recompute the en-
tire analysis. This is highly desirable since the updates
in this case are small and rerunning a full analysis to an-
alyze just a few new lines of code is highly wasteful. Fig-
ure 13 confirms this intuition by comparing staged anal-
ysis against full analysis. Additionally Figure 14 shows
the time savings in seconds for each of the device and
network configurations from Figure 11. In every config-
uration the staged analysis fares better, leading to savings
on the order of 5 minutes or more.

However, the bddbddb full analysis outperforms the
staged analysis by several orders of magnitude, as shown
in the last column in Figure 13. This is because the
bddbddb analysis solver is highly optimized to scale well
and because of our choice of an efficient variable order
for BDD processing [25]. While this experiment shows
that our staged analysis is better than our full analysis,
it also shows that the highly optimized bddbddb-based
technique is significantly better for analyzing the code
quickly; this is in line with what has been previously ob-
served for Java and C, when comparing declarative vs.
hand-written implementations. It should also be noted
that the JavaScript for these pages is more complex than
in our hand-crafted and procedurally generated files used
for other experiments, which produces more complex
constraints and favors the more scalable bddbddb-based
approach. However, running a highly optimized Datalog
solver such as bddbddb within the browser might prove
cumbersome for other reasons such as the size and com-
plexity of the code added to the browser code base.

6 Related Work

In this section, we focus on static and runtime analysis
approaches for JavaScript.

WebApps ’10: USENIX Conference on Web Application Development

Configuration (from Figure 11)
Page 1 2 3 4 5 6 7 8 9 10
home 541 290 291 119 121 5 7 15 5 6
friends 38,083 20,460 20,469 8,516 8,530 554 564 1,133 450 454
inbox 69,685 37,439 37,451 15,589 15,606 1,022 1,035 2,075 827 832
profile 223,029 119,833 119,845 49,920 49,937 3,311 3,323 6,652 2,658 2,663

Figure 14: Time savings in ms from using staged analysis compared to full analysis on Facebook pages (device and network settings are from

Figure 11).

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it
difficult to reason about programs written in it. How-
ever, with certain expressiveness restrictions, desirable
security properties can be achieved. ADSafe and Face-
book both implement a form of static checking to en-
sure a form of safety in JavaScript code. ADSafe [10]
disallows dynamic content, such as eval, and performs
static checking to ensure the JavaScript in question is
safe. Facebook uses a JavaScript language variant called
FBIJS [12], that is like JavaScript in many ways, but
DOM access is restricted and all variable names are pre-
fixed with a unique identifier to prevent name clashes.

A project by Chugh et al. focuses on staged anal-
ysis of JavaScript and finding information flow viola-
tions in client-side code [8]. Chugh et al. focus on
information flow properties such as reading document
cookies and changing the locations. A valuable fea-
ture of that work is its support for dynamically loaded
and generated JavaScript in the context of what is gen-
erally thought of as whole-program analysis. Gate-
keeper project [14] proposes a points-to analysis based
on bddbddb together with a range of queries for security
and reliability. GULFSTREAM is in many way a succes-
sor of the Gatekeeper project; while the formalism and
analysis approaches are similar, GULFSTREAM’s focus
is on staged analysis.

Researchers have noticed that a more useful type sys-
tem in JavaScript could prevent errors or safety viola-
tions. Since JavaScript does not have a rich type system
to begin with, the work here is devising a correct type
system for JavaScript and then building on the proposed
type system. Soft typing [7] might be one of the more
logical first steps in a type system for JavaScript. Much
like dynamic rewriters insert code that must be executed
to ensure safety, soft typing must insert runtime checks
to ensure type safety.

Other work has been done to devise a static type
system that describes the JavaScript language [3, 4, 24].
These works focus on a subset of JavaScript and provide
sound type systems and semantics for their restricted
subsets of JavaScript. As far as we can tell, none of these
approaches have been applied to realistic bodies of code.
GULFSTREAM uses a pointer analysis to reason about
the JavaScript program in contrast to the type systems

and analyses of these works. We feel that the ability to
reason about pointers and the program call graph allows
us to express more interesting security policies than we
would be able otherwise.

This work presents staged analysis done on the client’s
machine to perform analysis on JavaScript that is loaded
as the user interacts with the page. A similar problem is
present in Java with dynamic code loading and reflection.
Hirzel et al. solved this problem with a offline-online al-
gorithm [15]. The analysis has two phases, an offline
phase that is done on statically known content, and an
online phase done when new code is introduced while
the program is running. They utilize their pointer anal-
ysis results in the JIT. We use a similar offline-online
analysis to compute information about statically known
code, then perform an online analysis when more code
is loaded. To our knowledge, GULFSTREAM is the first
project to perform staged static analysis on multiple tiers.

6.2 Rewriting and Instrumentation

A practical alternative to static language restrictions is
instrumentation. Caja [22] is one such attempt at lim-
iting capabilities of JavaScript programs and enforcing
this through the use of runtime checks. WebSandbox is
another project with similar goals that also attempts to
enforce reliability and resource restrictions in addition to
security properties [20].

Yu et al. [26] traverse the JavaScript document and
rewrite based on a security policy. Unlike Caja and
WebSandbox, they prove the correctness of their rewrit-
ing with operational semantics for a subset of JavaScript
called CoreScript. Instrumentation can be used for more
than just enforcing security policies. AjaxScope [17]
rewrites JavaScript to insert instrumentation that sends
runtime information, such as error reporting and memory
leak detection, back to the content provider. Static analy-
sis may often be used to reduce the amount of instrumen-
tation, both in the case of enforcement techniques such
as ConScript [19] and regular code execution.

7 Conclusions

Static analysis is a useful technique for applications rang-
ing from program optimization to bug finding. This pa-
per explores staged static analysis as a way to analyze

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

71



streaming JavaScript programs. In particular, we ad-
vocate the use of combined offline-online static analy-
sis as a way to accomplish fast, online analysis at the
expense of a more thorough and costly offline analysis
on the static code. The offline stage may be performed
on a server ahead of time, whereas the online analysis
would be integrated into the web browser. Through a
wide range of experiments on both synthetic and real-
life JavaScript code, we find that in normal use, where
updates to the code are small, we can update static anal-
ysis results within the browser quickly enough to be ac-
ceptable for everyday use. We demonstrate this form of
staged analysis approach to be advantageous in a wide
variety of settings, especially in the context of mobile
devices.

References

[1] Ajaxian. iPhone 3GS runs faster than claims, if you go by
SunSpider. http://bit.1ly/RHHg0, June 2009.

[2] L. O. Andersen. Program analysis and specialization for
the C programming language. Technical report, Univer-
sity of Copenhagen, 1994.

[3] C. Anderson and P. Giannini. = Type checking for
JavaScript. In In WOOD 04, volume WOOD
of ENTCS. Elsevier, 2004. http://'www.binarylord.com/
work/jsOwood.pdf, 2004.

[4] C. Anderson, P. Giannini, and S. Drossopoulou. To-
wards type inference for JavaScript. In Proceedings of the
European Conference on Object-Oriented Programming,
pages 429-452, July 2005.

[5] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. SPUR: A trace-
based JIT compiler for CIL. Technical Report MSR-TR-
2010-27, Microsoft Research, March 2010.

[6] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Uma-
nee. Points-to analysis using BDDs. In Proceedings of
the Conference on Programming Language Design and
Implementation, pages 103-114, 2003.

[7] R. Cartwright and M. Fagan. Soft typing. ACM SIGPLAN
Notices, 39(4):412-428, 2004.

[8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In Proceedings of the
Conference on Programming Language Design and Im-
plementation, June 2009.

[9] D. Crockford. The JavaScript code quality tool. http:

//www.jslint.com/, 2002.

D. Crockford. AdSafe: Making JavaScript safe for adver-

tising. http://www.adsafe.org, 2009.

J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and

G. Woodhull. Graphviz - open source graph drawing

tools. Graph Drawing, pages 483-484, 2001.

Facebook, Inc. FBJS. http://wiki.developers.

facebook.com/index.php/FBJS, 2007.

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Man-
delin, M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based
just-in-time type specialization for dynamic languages.
In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 465-478, 2009.

S. Guarnieri and B. Livshits.  Gatekeeper: Mostly
static enforcement of security and reliability policies for
JavaScript code. In Proceedings of the Usenix Security
Symposium, Aug. 2009.

M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind.
Fast online pointer analysis. ACM Trans. Program. Lang.
Syst., 29(2):11, 2007.

S. H. Jensen, A. Mgller, and P. Thiemann. Type analysis
for JavaScript. In Proceedings of the International Static
Analysis Symposium, volume 5673 of LNCS. Springer-
Verlag, August 2009.

E. Kiciman and B. Livshits. AjaxScope: a platform for
remotely monitoring the client-side behavior of Web 2.0
applications. In Proceedings of Symposium on Operating
Systems Principles, Oct. 2007.

F. Logozzo and H. Venter. RATA: Rapid atomic type anal-
ysis by abstract interpretation- application to JavaScript
optimization. In Proceedings of the International Confer-
ence on Compiler Construction, pages 6683, 2010.

L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for Javascript
in the browser. In IEEE Symposium on Security and Pri-
vacy, May 2010.

Microsoft Live Labs. Live Labs Websandbox.
//websandbox. org, 2008.

A. Milanova, A. Rountev, and B. G. Ryder. Precise call
graphs for C programs with function pointers. Automated
Software Engineering, 11(1):7-26, 2004.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
JavaScript. http://google-caja.googlecode.com/
files/caja-2007.pdf, 2007.

P. Ratanaworabhan, B. Livshits, and B. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with
real Web applications. In Proceedings of the USENIX
Conference on Web Application Development, June 2010.

http:

P. Thiemann. Towards a type system for analyzing
JavaScript programs. European Symposium On Program-
ming, 2005.

J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
Datalog and binary decision diagrams for program analy-
sis. In Proceedings of the Asian Symposium on Program-
ming Languages and Systems, Nov. 2005.

D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. In Proceedings of
Conference on Principles of Programming Languages,
Jan. 2007.

72

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association



Managing State for Ajax-Driven Web Components

John Ousterhout and Eric Stratmann
Department of Computer Science
Stanford University

{ouster,estrat}@cs.stanford.edu

Abstract

Ajax-driven Web applications require state to be maintained across a series of server requests related to a single Web
page. This conflicts with the stateless approach used in most Web servers and makes it difficult to create modular com-
ponents that use Ajax. We implemented and evaluated two approaches to managing component state: one, called remind-
ers, stores the state on the browser, and another, called page properties, stores the state on the server. Both of these ap-
proaches enable modular Ajax-driven components but they both introduce overhead for managing the state; in addition
the reminder approach creates security issues and the page property approach introduces storage reclamation problems.
Because of the subtlety and severity of the security issues with the reminder approach, we argue that it is better to store

Ajax state on the server.

1 Introduction

Ajax (shorthand for “Asynchronous Javascript And
XML”) is a mechanism that allows Javascript code run-
ning in a Web browser to communicate with a Web
server without replacing the page that is currently dis-
played [6]. Ajax first became available in 1999 when
Microsoft introduced the XMLHTTP object in Internet
Explorer version 5, and it is now supported by all Web
browsers. In recent years more and more Web applica-
tions have begun using Ajax because it permits incre-
mental and fine-grained updates to Web pages, result-
ing in a more interactive user experience. Notable ex-
amples of Ajax are Google Maps and the auto-
completion menus that appear in many search engines.

Unfortunately, Ajax requests conflict with the stateless
approach to application development that is normally
used in Web servers. In order to handle an Ajax re-
quest, the server often needs access to state information
that was available when the original page was rendered
but discarded upon completion of that request. Current
applications and frameworks use ad hoc approaches to
reconstruct the state during Ajax requests, resulting in
code that is neither modular nor scalable.

We set out to devise a systematic approach for manag-
ing Ajax state, hoping to enable simpler and more
modular code for Ajax-driven applications. We imple-
mented and evaluated two alternative mechanisms. The
first approach, which we call reminders, stores the state
information on the browser with the page and returns
the information to the server in subsequent Ajax re-
quests. The second approach, which we call page prop-
erties, stores the state information on the server as part
of the session. Both of these approaches allow the crea-
tion of reusable components that encapsulate their Ajax
interactions, so that Web pages can use the components

without being aware of or participating in the Ajax in-
teractions. Although each approach has disadvantages,
we believe that the page property mechanism is the
better of the two because it scales better and has fewer
security issues.

The rest of this paper is organized as follows. Section 2
introduces the Ajax mechanism and its benefits. Section
3 describes our modularity goal and presents an exam-
ple component that is used in the rest of the paper. Sec-
tion 4 describes the problems with managing Ajax
state, and how they impact the structure of applications.
Sections 5 and 6 introduce the reminder and page prop-
erty mechanisms, and Section 7 compares them. Sec-
tion 8 presents examples of Ajax-driven components
using these mechanisms, Section 9 describes related
work, and Section 10 concludes.

2 Ajax Background

Ajax allows a Web page to communicate with its origi-
nating Web server as shown in Figure 1. An Ajax-
driven page is initially rendered using the normal
mechanism where the browser issues an HTTP request

Browser Server

Initial page fetch

HTML

Ajax requests

‘HTML, JSON, Javascript, ...

Figure 1. After the initial rendering of a Web page, Ajax
requests can be issued to retrieve additional data from the
server, which can be used to make incremental modifica-
tions to the page displayed in the browser.

USENIX Association

WebApps 10: USENIX Conference on Web Application Development

73



to the server and the server responds with HTML for
the page contents. Once the page has been loaded,
Javascript event handlers running in that page can issue
Ajax requests. Each Ajax request generates another
HTTP request back to the server that rendered the origi-
nal page. The response to the Ajax request is passed to
another Javascript event handler, which can use the
information however it pleases.

Ajax responses can contain information in any format,
but in practice the response payload usually consists of
one of three things:

e An HTML snippet, which the Javascript event han-
dler assigns to the innerHTML property of a page
element in order to replace its contents.

e Structured data in a format such as JSON [4], which
the Javascript event handler uses to update the page
by manipulating the DOM.

e Javascript code, which is evaluated in the browser
(this form is general enough to emulate either of the
other forms, since the Javascript can include literals
containing HTML or any other kind of data).

The power of Ajax stems from the fact that the re-
sponse is passed to a Javascript event handler rather
than replacing the entire page. This allows Web pages
to be updated in an incremental and fine-grained fash-
ion using new information from the server, resulting in
a more interactive user experience. One popular exam-
ple is Google Maps, which allows a map to be dragged
with the mouse. As the map is dragged, Ajax requests
fetch additional images that extend the map's coverage,
creating the illusion of a map that extends infinitely in
all directions. Another example is an auto-completion
menu that appears underneath the text entry for a search
engine. As the user types a search term the auto-
completion menu updates itself using Ajax requests to
display popular completions of the search term the user

is typing.

Although the term “Ajax” typically refers to a specific
mechanism based on Javascript XMLHt tpRequest ob-
jects, there are several other ways to achieve the same
effect in modern browsers. One alternative is to create
a new <script> element in the document, which
causes Javascript to be fetched and executed. Another
approach is to post a form, using the target attribute
to direct the results to an invisible frame; the results can
contain Javascript code that updates the main page. In
this paper we will use the term “Ajax” broadly to refer
to any mechanism that allows an existing page to inter-
act with a server and update itself incrementally.

3 Encapsulation Goal

The basic Ajax mechanism is quite simple and flexible,
but it is difficult to incorporate cleanly into Web appli-
cation frameworks. Our work with Ajax occurred in the
context of Fiz [10], an experimental server-side Web
application framework under development at Stanford
University. The goal for Fiz is to raise the level of pro-
gramming for Web applications by encouraging a com-
ponent-based approach, where developers create appli-
cations by assembling pre-existing components. Each
component manages a portion of the Web page, such
as:
¢ A form field that displays a calendar from which a
user can select a particular date.
e A general-purpose table that can be sorted based on
the values one or more column(s).
e A catalog display tailored to the interests of the cur-
rent user.
¢ A shopping cart.
Ideally, a component-based approach should simplify
development by encouraging reusability and by hiding
inside the components many of the complexities that
developers must manage explicitly today, such as the
quirks of HTML, Ajax requests, and a variety of secu-
rity issues.

For a component framework to succeed it must have
several properties, one of the most important of which
is encapsulation: it must be possible to use a compo-
nent without understanding the details of its implemen-
tation, and it must be possible to modify a component
without modifying all of the applications that use the
component. For example, consider a large Web site
with complex pages, such as Amazon. Teams of devel-
opers manage different components that are used on
various Web pages, such as sponsored advertisements,
user-directed catalog listings, and search bars. Each
team should be able to modify and improve its own
components (e.g., by adding Ajax interactions) without
requiring changes in the pages that use those compo-
nents. Thus, one of our goals for Fiz is that a compo-
nent should be able to use Ajax requests in its imple-
mentation without those requests being visible outside
the component.

In this paper we will use the TreeSection component
from Fiz to illustrate the problems with Ajax compo-
nents and the potential solutions. TreeSection is a class
that provides a general-purpose mechanism for brows-
ing hierarchical data as shown in Figure 2(a). It dis-
plays hierarchically-organized data using icons and
indentation; users can click on icons to expand or hide
subtrees. In order to support the display of large struc-
tures, a TreeSection does not download the entire tree

74

WebApps ’10: USENIX Conference on Web Application Development

3 out

FFID) classes

FHI2) exploded

) src

1= .git

—+I) antscripts

create-app.xml (2689 bytes)
create-ext.uml (1457 bytes)
install-core.xml (1621 bytes)
install-extxml (4087 bytes)
upgrade-app.xml (2564 bytes)
B3 app

HHIE) appengine

—build.xml {15558 bytes)

BHICD ext

—Fiz.iml {3568 bytes)

—Fiz.ipr (20732 bytes)

—Fiz.iws (24638 bytes)

FFID) imageSource

—javadoc.css (492 bytes)

FHICD lib
HHIE) shellscripts
B sre
I test
HHIE) web
(a)
new TreeSection("FS.filesInDir",
"code/Fiz") ;
(b)

Figure 2. The Fiz TreeSection component displays hier-
archical information using nested indentation and allows
the structure to be browsed by clicking on + and - icons:
(a) the appearance of a TreeSection that displays the con-
tents of a directory; (b) Java code to construct the
TreeSection as part of a Web page.

to the browser. Instead, it initially displays only the top
level of the tree; Ajax requests are used to fill in the
contents of subtrees incrementally when they are ex-
panded.

The TreeSection class automatically handles a variety
of issues, such as the tree layout, Javascript event han-
dlers to allow interactive expansion and collapsing, and
the Ajax-based mechanism for filling in the tree struc-
ture on demand. It also provides options for customiz-
ing the display with different icons, node formats, and
graphical effects.

In order to maximize its range of use, the TreeSection
does not manage the data that it displays. Instead,
whenever it needs information about the contents of the
tree it invokes an external data source. The data source
is passed the name of a node and returns information
about the children of the node. When a TreeSection is
constructed it is provided with the name of the data
source method (FS.filesInDir in Figure 2(b)), along

with the name of the root node of the tree (code/Fiz
in Figure 2(b)). In the example of Figure 2 the data
source reads information from the file system, but dif-
ferent data sources can be used to browse different
structures. The TreeSection invokes the data source
once to display the top level of the tree during the gen-
eration of the original Web page, then again during
Ajax requests to expand nodes.

The challenge we will address in the rest of this paper
is how to manage the state of components such as
TreeSection in a way that is convenient for developers
and preserves the encapsulation property.

4 The Ajax State Problem

Using Ajax today tends to result in complex, non-
modular application structures. We will illustrate this
problem for servers based on the model-view-controller
(MVC) pattern [11,12]. MVC is becoming increasingly
popular because it provides a clean decomposition of
application functionality and is supported in almost all
Web development frameworks. Similar problems with
Ajax state arise for Web servers not based on MVC.

When an HTTP request arrives at a Web server based
on MVC it is dispatched by the application framework
to a particular method in a particular controller class,
based on the URL in the request, as shown in Figure
3(a). The controller method collects data for the page
from model classes and then invokes one or more view
classes to render the page's HTML. If the page subse-
quently makes an Ajax request, the request is dis-
patched to another method in the same controller. The
Ajax service method invokes model classes to collect
data and then view classes to format a response.

Unfortunately, with this approach the controller for a
page must be involved in every Ajax request emanating
from the page, which breaks the application's modular-
ity. If one of the views used in a page introduces new
Ajax requests, every controller using that view must be
modified to mediate those requests. As a result, it is not
possible to create reusable components that encapsulate
Ajax, and Ajax-driven applications tend to have com-
plex and brittle structures.

The first step in solving this problem is to bypass the
controller when handling an Ajax request and dispatch
directly to the class that implements the component, as
shown in Figure 3(b). Virtually all frameworks have
dispatchers that can be customized to implement this
behavior.

Dispatching directly to the component creates two addi-
tional issues. First, the controller is no longer present to
collect data for the component, so the component must

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development 75



Render Ajax
Page Request

'

Controller = Models

Views

(@)

Render Ajax
Page Request
I
Controller = Models

A

Y ’—]

Ajax Component

(b)

Figure 3. (a) The structure of a typical Web application today, where all HTTP requests for a page (including Ajax re-
quests) are mediated by the page's controller class; (b) A component-oriented implementation in which all aspects of the
Ajax-driven element, including both its original rendering and subsequent Ajax requests, are encapsulated in a reusable
component. In (b) Ajax requests are dispatched directly to the component, bypassing the controller, and the component

fetches its own data from model classes

invoke models itself to gather any data it needs. This is
not difficult for the component to do, but it goes against
the traditional structure for Web applications, where
views receive all of their data from controllers.

The second problem created by direct dispatching re-
lates to the state for the Ajax request. In order to handle
the Ajax request, the component needs access to con-
figuration information that was generated during the
original rendering of the page. In the TreeSection ex-
ample of Figure 2, the component needs the name of
the data source method in order to fetch the contents of
the node being expanded. This information was avail-
able at the time the component generated HTML for the
original page, but the stateless nature of most Web
servers causes data like this to be discarded at the end
of each HTTP request; thus Ajax requests begin proc-
essing with a clean slate.

One of the advantages of dispatching Ajax requests
through the controller is that it can regenerate state such
as the name of the data source method. This informa-
tion is known to the controller, whose code is page-
specific, but not to the component, which must support
many different pages with different data sources. If
Ajax requests are dispatched directly to the component
without passing through the controller, then there must
be some other mechanism to provide the required state
to the component.

Solutions to the state management problems fall into
two classes: those that store state on the browser and
those that store state on the server. We implemented
one solution from each class in Fiz and compared them.
The next section describes our browser-based ap-
proach, which we call reminders; the server-based ap-

proach, which we call page properties, is described in
the following section.

5 Reminders

Our first attempt at managing Ajax state was to store
the state in the browser so the server can remain state-
less. When an Ajax-driven component renders its por-
tion of the initial page it can specify information called
reminders that it will need later when processing Ajax
requests. This information is transmitted to the browser
along with the initial page and stored in the browser
using Javascript objects (see Figure 4). Later, when
Ajax requests are issued, relevant reminders are auto-
matically included with each Ajax request. The re-
minders are unpacked on the server and made available
to the Ajax handler. An Ajax handler can create addi-
tional reminders and/or modify existing reminders; this

Browser Server

Initial page fetch —w=]

~— HTML — [l X 5] —

— Ajax #1 — [ [E] —

— Ajax #2 - X[ —

tp: )

Reminders

Figure 4. Reminders are pieces of state that are generated
by the server, stored in the browser, and returned in later
Ajax requests. Additional reminders can be generated
while processing Ajax requests.

When rendering original page:

Type of reminder; used to identify

ﬁ reminder in Ajax handler

Reminder rl = new Reminder ("tree", "class", "TreeSection", Name-value pairs to
"edgeFamily", "treeSolid.gif", store in reminder
"dataSource", "FS.filesInDir");
1 —_ 1 n n n n n 1 n .
Rem:andeJ:f r2 = 'newlRemlnder ( Inode , name , 'code/Flz/app ) ; URL for Ajax
String js = Ajax.invoke("/fiz/TreeSection/ajaxExpand", request

rl, r2)

— Reminders to include

When processing Ajax request:

in Ajax request

Reminder sectionInfo = request.getReminder ("tree") ;
Reminder nodeInfo = request.getReminder ("node") ;

String name = nodeInfo.get ("name") ;

Figure 5. Examples of the APIs for creating and using reminders in the Fiz TreeSection.

information is returned to the browser along with the
Ajax response, and will be made available in future
Ajax requests. Reminders are similar to the View State
mechanism provided by Microsoft's ASP.NET frame-
work; see Section 9 for a comparison.

Figure 5 illustrates the APIs provided by Fiz for man-
aging reminders. Each Reminder object consists of a
type and a collection of name-value pairs. The type is
used later by Ajax request handlers to select individual
reminders among several that may be included with
each request. For example, the TreeSection creates one
reminder of type tree containing overall information
about the tree, such as its data source and information
needed to format HTML for the tree. It also creates one
reminder of type node for each expandable node in the
tree, which contains information about that particular
node. When the user clicks on a node to expand it, the
resulting Ajax request includes two reminders: the
overall tree reminder for the tree, plus the node re-
minder for the particular node that was clicked.

Fiz automatically serializes Reminder objects as
Javascript strings and transmits them to the browser.
Fiz also provides a helper method Ajax.invoke, for
use in generating Ajax requests. Ajax.invoke will
create a Javascript statement that invokes an Ajax re-
quest for a given URL and includes the data for one or
more reminders. The result of Ajax.invoke can be
incorporated into the page’s HTML; for example,
TreeSection calls Ajax.invoke once for each expand-
able node and uses the result as the value of an on-
click attribute for the HTML element displaying the +

When an Ajax request arrives at the Web server, Fiz
dispatches it directly to a method in the TreeSection
class. Fiz automatically deserializes any reminders at-
tached to the incoming request and makes them avail-
able to the request handler via the getReminder
method. In the TreeSection example the request han-
dler collects information about the node being ex-
panded (by calling the data source for the tree), gener-
ates HTML to represent the node's contents, and returns
the HTML to the browser, where it is added to the ex-
isting page. If the node's contents include expandable
sub-nodes, an additional node reminder is created for
each of those sub-nodes and included with the Ajax
response.

5.1 Evaluation of reminders

The reminder mechanism makes it possible to encapsu-
late Ajax interactions within components, and it does so
without storing any additional information on the
server. Ajax interactions are not affected by server
crashes and reboots, since their state is in the browser.

Reminders have two disadvantages. First, they intro-
duce additional overhead for transmitting reminder data
to the browser and returning it back to the server. In
order to minimize this overhead we chose a granular
approach with multiple reminders per page: each Ajax
request includes only the reminders needed for that
request. In our experience implementing Ajax compo-
nents we have not yet needed reminders with more than
a few dozen bytes of data, so the overhead has not been
a problem.

76 WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

lcon. The second disadvantage of reminders is that they in-
troduce security issues. The data stored in reminders
USENIX Association WebApps *10: USENIX Conference on Web Application Development 77



represents internal state of the Web server and thus may
need to be protected from hostile clients. For example,
the reminders for the TreeSection include the name of
the data source method and the name of the directory
represented by each node. If a client modifies remind-
ers it could potentially invoke any method in the server
and/or view the contents of any directory.

Fiz uses message authentication codes (MACs) to en-
sure the integrity of reminders. Each reminder includes
a SHA-256 MAC computed from the contents of the
reminder using a secret key. There is one secret key for
each session, which is stored in the session and used for
all reminders associated with that session. When the
reminder is returned in an Ajax request the MAC is
verified to ensure that the reminder has not been modi-
fied by the client.

MAC:s prevent clients from modifying reminders, but
they don't prevent clients from reading the contents of
reminders. This could expose the server to a variety of
attacks, depending on the content of reminders. For
example, if passwords or secret keys were stored in
reminders then hostile clients could extract them. It is
unlikely that an application would need to include such
information in reminders, but even information that is
not obviously sensitive (such as the name of the data
source method for the TreeSection) exposes the internal
structure of the server, which could enable attackers to
identify other security vulnerabilities. Unfortunately, it
is difficult to predict the consequences of exposing in-
ternal server information. In order to guarantee the pri-
vacy of reminders they must be encrypted before com-
puting the MAC. Fiz does not currently perform this
encryption.

The granular nature of reminders also compromises
security by enabling mix-and-match replay attacks. For
example, in the TreeSection each Ajax request includes
two separate reminders. The first reminder contains
overall information about the tree, such as the name of
the data source method. The second reminder contains
information about a particular node being expanded,
including the pathname for the node's directory. A hos-
tile client could synthesize AjaxRequests using the tree
reminder for one tree and the node reminder for an-
other; this might allow the client to access information
in ways that the server would not normally allow.

One solution to the replay problem is to combine all of
the reminders for each page into a single structure as is
done by View State in ASP.NET. This would prevent
mix-and-match attacks but would increase the mecha-
nism's overhead since all of the reminders for the page
would need to be included in every request. Another
approach is to limit each Ajax request to a single re-

minder. Each component would need to aggregate all
of the information it needs into one reminder; for ex-
ample, the TreeSection would duplicate the information
about the tree in each node reminder. This approach
would make it difficult to manage mutable state: if, for
example, some overall information about the tree were
modified during an Ajax request then every node re-
minder would need to be updated. Yet another ap-
proach is to use unique identifiers to link related re-
minders. For example, the tree reminder for each
TreeSection might contain a unique identifier, and the
server might require that each node reminder contains
the same unique identifier as its tree reminder. This
would prevent a node reminder from being used with a
different tree reminder, but it adds to the complexity of
the mechanism.

As we gained more experience with reminders we be-
came concerned that it would be difficult to use them in
a safe and efficient fashion, and that these problems
will increase as Ajax usage becomes more pervasive
and sophisticated. If the framework handles all of the
security issues automatically it will require a heavy-
weight approach such as aggregating all state into a
single reminder that is both encrypted and MAC-
protected. However, this would probably not provide
acceptable performance for complex pages with many
Ajax-driven components. On the other hand, if devel-
opers are given more granular control over the mecha-
nism they could probably achieve better performance,
but at a high risk for security vulnerabilities. Even
highly skilled developers are unlikely to recognize all
of the potential loopholes, particularly when working
under pressure to bring new features to market. For
example, when asked to create an alternative imple-
mentation of TreeSection in Ruby on Rails for com-
parison with Fiz, a Stanford undergraduate with experi-
ence developing Web applications did not recognize
that the node names need to be protected from tamper-
ing. The prevalence of SQL injection attacks [1] also
indicates how difficult it is for Web developers to rec-
ognize the security implications of their actions.

6 Page Properties

Because of the problems with the reminder mechanism
we decided to implement a different approach where
component state is kept in the server instead of the
browser. This eliminated the security and overhead
issues with reminders but introduced a different prob-
lem related to garbage collection.

The server-based approach is called page properties. A
page property consists of a name-value pair that is ac-
cessible throughout the lifetime of a particular Web

WebApps ’10: USENIX Conference on Web Application Development

Page
Browser Server State Page
Page Sessions Properties
Identifier Initial page fetch —m= —
m—— HTML .
; —~ e - - \

Ajax

/
i

Figure 6. Fiz stores page properties on the server as part of the session. Each Web page is assigned a unique identifier,

which is included in the page and returned to the server as part
properties for the page.

page. The name must be unique within the page and the
value may be any serializable Java object. Page proper-
ties may be created, examined, and updated at any time
using a simple API consisting of getPageProperty
and setPageProperty methods. For example, the
TreeSection creates a page property for each tree when
it renders the top level of the tree during initial page
display. The page property contains overall information
about the tree, such as the name of the data source
method, plus information about each node that has been
rendered in the tree.

When an Ajax request arrives to expand a TreeSection
node, it is dispatched directly to the TreeSection class
just as in the reminder approach. The Ajax request in-
cludes an identifier for a particular tree instance (in
case there are several trees in a single page) and an
identifier for the node that is being expanded. The Ajax
handler in TreeSection retrieves the page property for
the tree instance, looks up the node identifier in the
page property object, and uses that information to re-
trieve information about the children of the expanded
node; this information is used to generate HTML to
return to the browser, and also to augment the page
property object with information about children of the
expanded node.

The names of page properties are only unique within a
page, so Fiz associates a unique page identifier with
each distinct Web page and uses it to separate the page
properties for different pages. A page identifier is as-
signed during the initial rendering of each page and is
stored in the page using a Javascript variable (see Fig-
ure 6). Subsequent Ajax requests and form posts com-
ing from that page automatically include the page iden-
tifier as an argument. Operations on page properties
apply to the properties associated with the current page.

of each Ajax request; this allows the server to locate the

Fiz stores page properties using the session mechanism:
all of the properties for each page are collected into a
PageState object, and each session can contain multiple
PageState objects, indexed by their page identifiers (see
Figure 6). Storing page properties in the session en-
sures that they are preserved across the various requests
associated with a page, even though the individual re-
quests are implemented in a stateless fashion. Page
properties have the same level of durability as other
session information.

6.1 Evaluation of page properties

Page properties avoid the issues that concerned us with
reminders: the only information sent to the browser is
the page identifier, so page properties reduce the over-
head of transmitting data back and forth across the net-
work. Page properties also avoid the security issues
associated with reminders, since state information
never leaves the server. The use of sessions to store
page properties ensures isolation between different us-
ers and sessions.

However, page properties introduce new issues of their
own. First, in order for page properties to survive
server crashes they must be written to stable storage
after each request along with the rest of the session
data. If page properties contain large amounts of infor-
mation then they could still result in substantial over-
head (e.g. for a TreeSection displaying hundreds of
expandable nodes there could be several kilobytes of
page properties). However, the overhead for saving
page properties on the server is likely to be less than the
overhead for transmitting reminders back and forth
over the Internet to browsers.

Fiz currently stores page properties using the standard
session facilities provided by the underlying Java serv-
lets framework. However, it may ultimately be better

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

79



to implement a separate storage mechanism for page
properties that is optimized for their access patterns.
For example, many session implementations read and
write the entire session monolithically; however, a
given request will only use the page properties for its
particular page, so it may be inefficient to read and
write all of the properties for other pages at the same
time. In addition, the standard session mechanisms for
reflecting session data across a server pool may not be
ideal for page properties.

A second, and more significant, problem concerns the
garbage collection of page properties: when is it safe to
delete old page properties? Unfortunately the lifetime
of a Web page is not well-defined: the server is not
notified when the user switches to a different page;
even if it were notified, the user can return to an old
page at any time by clicking the “Back” browser but-
ton. There is no limit on how far back a user can return.
If the server deletes the page properties for a page and
the user then returns to that page, Ajax requests from
the page will not function correctly.

To be totally safe, page properties must be retained for
the lifetime of the session. However, this would bloat
the size of session data and result in high overheads for
reading and writing sessions (most frameworks read
and write all of the data for a session monolithically, so
all page properties for all pages will be read and written
during each request).

For the Fiz implementation of page properties we have
chosen to limit the number of pages in each session for
which properties are retained. If the number of PageS-
tate objects for a session exceeds the limit, the least
recently used PageState for that session is discarded. If

100 & -
E, —— 100th Percentile User
» L — - 90th Percentile User
E N\ - = 50th Percentile User
E
o
[=]
o
-
?
(]
o
]
o
c 1+ .
Q £ * -
~ C .
[ F - \
= L e — -
m [ s -
', | SR
0.1 f — f —
0 20 40 60 80 100

LRU list length (per-user)
(@)

a user invokes an Ajax operation on a page whose
properties have been deleted, Fiz will not find the
PageState object corresponding to the page identifier in
the request. Fiz then generates an Ajax response that
displays a warning message in the browser indicating
that the page state is stale and suggesting that the user
refresh the page. If the user refreshes the page a fresh
page identifier will be allocated and Ajax operations
will work once again; however, the act of refreshing the
page will reset the page display (in the case of the
TreeSection the tree will revert to its original display
showing only the top-level nodes). We call this situa-
tion a broken page. Broken pages will be annoying for
users so it is important that they not occur very fre-
quently (of course, users will not notice that a page is
broken unless they invoke an Ajax operation that re-
quires page properties).

The frequency of broken pages can be reduced by re-
taining more PageState objects for each session, but
this will increase the overhead for storing page proper-
ties.

In order to estimate the frequency of broken pages with
LRU replacement, we ran a trace-driven simulation
experiment. We wrote a Firefox add-on that records all
operations that change the current Web page being dis-
played and transmits that information to a central server
at regular intervals. The information logged includes
new pages, “back” and “forward” history operations,
redisplays, and tab switches. We used the add-on to
collect data from about thirty people (mostly Stanford
students and faculty) over a period of two months (ap-
proximately 200,000 page views in total). We then used
the data to drive two simulations of the page property

100 -
——100th Percentile User

— - 90th Percentile User
= = '50th Percentile User

0]

Broken pages/user/week

o
o

40 60 80 100
LRU List Length (per-tab)

(b)

Figure 7. A trace-driven simulation of LRU lists for page properties assuming a single LRU list for each user's interac-
tion with each server host (a) and separate LRU lists for each tab (b). The top curve in each figure shows the rate of
broken pages for the worst-case user for each LRU list size, and the bottom curve shows behavior for the median user.
1000 page views represents roughly one week's worth of activity for a typical user.

WebApps ’10: USENIX Conference on Web Application Development

mechanism.

In the first simulation (Figure 7 (a)) we assumed one
LRU list of page properties for each session (a particu-
lar user accessing a particular server host). The figure
shows the rate of broken pages as a function of LRU
list length, both for “typical” users and for more patho-
logical users. It assumes that every page uses Ajax and
requires page properties. For the trace data we col-
lected, an LRU limit of 50 pages per session results in
less than one broken page per thousand page views for
most users. The actual frequency of broken pages today
would be less than suggested by Figure 7, since many
pages do not use Ajax, but if Ajax usage increases in
the future, as we expect, then the frequency of broken
pages could approach that of Figure 7.

The primary reason for broken pages in the simulations
is switches between tabs. For example, if a user opens
an Ajax-driven page in one tab, then opens a second tab
on the same application and visits several Ajax-driven
pages, these pages may flush the page properties for the
first tab, since all tabs share the same session. If the
user switches back to the first tab its page will be bro-
ken.

Figure 7(b) shows the frequency of broken pages if a
separate LRU list is maintained for each tab in each
session; in this scenario LRU lists with 10 entries
would eliminate almost all broken pages. Per-tab LRU
lists will result in more pages cached than per-session
LRU lists of the same size, since there can be multiple
tabs in a session. In our trace data there were about 2
tabs per session on average; per-tab LRU lists used
roughly the same memory as per-session LRU lists 2.5-
3x as long. Overall, per-tab LRU lists would result in
fewer broken pages with less memory utilization than
per-user LRU lists, and they also improve the worst-
case behavior.

Unfortunately, today’s browsers do not provide any
identifying information for the window or tab responsi-
ble for a given HTTP request: all tabs and windows
participate indistinguishably in a single session. Such
information would be easy for a browser to provide in a
backwards-compatible fashion: it could consist of an
HTTP header that uniquely identifies the window or tab
for the request; ideally it would also include informa-
tion indicating when tabs have been closed. Win-
dow/tab information also has other uses: for example, it
would enable applications to implement sub-sessions
for each tab or window so that the interaction stream
for each tab/window can be handled independently
while still providing shared state among all of the tabs
and windows. Without this information, some existing
Web applications behave poorly when a single user has

multiple tabs open on the same application, because
interactions on the different tabs get confused.

In the absence of tab identifiers, and assuming that
Ajax becomes pervasive, so that virtually all Web
pages need Ajax state, we conclude that servers would
need to retain state for about 50 pages per session in
order to reduce the frequency of broken pages to an
acceptable level. In our current uses of page properties
the amount of state per Ajax component is typically
only a few tens of bytes (see Section 8), so storing state
for dozens of pages would not create a large burden for
servers.

It would also be useful to add priorities to the page
property mechanism; the state for higher priority pages
would be retained in preference to that for lower prior-
ity pages. It is particularly annoying for users to lose
partially entered form data, so a priority mechanism
could be used to preserve the state for pages containing
unsubmitted forms. Once the form has been submitted
successfully, the priority of its data could be reduced to
allow reclamation.

7 Comparisons

After implementing and using both page properties and
reminders, our conclusion is that the page property ap-
proach is the better of the two. Both mechanisms in-
troduce overhead to transmit or store state, but the
overheads for page properties are likely to be lower,
since the state can be stored locally on the server with-
out transmitting it over the Internet. The reminder ap-
proach has unique problems related to security, and the
page property approach has unique problems related to
garbage collection. However, we believe that the gar-
bage collection issues for page properties are manage-
able and that the subtle security loopholes that can oc-
cur in the reminder mechanism will cause more catas-
trophic problems.

Ideally, the state management mechanism should scale
up gracefully as Web applications make more intensive
use of Ajax interactions and develop more complex
state. We believe that page properties are likely to han-
dle such scaling better than reminders. Consider a Web
page with a collection of related Ajax-driven compo-
nents. It is possible that multiple Ajax requests might
be issued from different components simultaneously;
for example, one component might be refreshing itself
periodically based on a timer, while another component
issues an Ajax request because of a user interaction. If
the components are related then they may also share
state (reminders or page properties). With the reminder
approach each request will receive a separate copy of
the relevant reminders and there is no obvious way for

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

81



the concurrent requests to serialize updates to their re-
minders. With the page property approach the concur-
rent requests will access the same page properties, so
they can synchronize and serialize their updates to
those properties using standard mechanisms for ma-
nipulating concurrent data structures.

In both the reminder and page property mechanisms the
state must be serializable. For reminders the state must
be serialized so it can be transmitted to and from the
browser; for page properties the state must be serialized
to save it as part of the session.

8 Component Examples in Fiz

We have implemented three components in Fiz that
take advantage of the page property mechanism; they
illustrate the kinds of state that must be managed for
Ajax requests.

The first component is the TreeSection that has already
been described. The state for this component divides
into two parts. The first part consists of overall state
for the entire tree; it includes the name of the data
source method that supplies data about the contents of
the tree, the id attribute for the HTML element con-
taining the tree, and four other string values containing
parameters that determine how tree nodes are rendered
into HTML. The second part of the state for a TreeSec-
tion consists of information for each node that has been
displayed so far; it includes the id attribute for the
node's HTML element and an internal name for the
node, which is passed to the data source in order to
expand that node.

The second component is an auto-complete form ele-
ment. The component renders a normal <input
type="text"> form element in the page but attaches
event handlers to it. As the user types text into the ele-
ment, Ajax requests are issued back to the server with
the partial text in the form element. The server com-
putes the most likely completions based on the partial
text and returns them back to the browser where they
are displayed in a menu underneath the form element.
The auto-complete component handles relevant mouse
and keyboard events, issues Ajax requests, displays and
undisplays the menu of possible completions, and al-
lows the user to select completions from the menu.
However, the auto-complete component does not con-
tain code to compute the completions since this would
restrict its reusability. Instead, it calls out to an external
method to compute the completions during Ajax re-
quests. The name of this method is provided as a pa-
rameter during the rendering of the original page, and it
is saved in a page property along with the id attribute
of the HTML form element. The auto-complete com-

ponent is general-purpose and reusable: there can be
multiple auto-complete form elements on the same
page, and each auto-complete element can use a differ-
ent mechanism to compute completions.

The third usage of page properties in Fiz is for form
validation. When a form is initially rendered in Fiz, one
or more validators can be associated with each field in
the form. Information about these validators is saved in
a page property, including the name of a method that
will perform the validation, one or more parameters to
pass to that method (for example, the validateRange
method takes parameters specifying the end points of
the valid range), and additional information used to
customize the HTML formatting of error messages
when validation fails. When the form is posted Fiz uses
the information in the page property to validate the in-
formation in the form; if any validations fail then Fiz
automatically returns error messages for display in the
browser. In this case the browser-server communica-
tion mechanism is a form post rather than an Ajax re-
quest, but it uses the same page property mechanism.
The form validation mechanism also allows forms to be
validated dynamically as the user fills them in, using
Ajax requests to request validation.

9 Related Work
9.1 View State

Most existing Web frameworks provide little or no sup-
port for managing the state of Ajax requests. One ex-
ception is Microsoft’s ASP.NET framework, which
includes a mechanism called View State that is similar
to the reminder mechanism in Fiz. View State is used
extensively by components in ASP.NET [5,8]. The
View State mechanism provides each control with a
ViewState property in which it can store key-value
pairs. ASP.NET automatically packages all of the
ViewState properties for all components into a single
string, which is sent to the browser as part of the
HTML for a page. Any “postbacks” for that page
(which include both Ajax requests and form posts) in-
clude the View State, which is deserialized and made
available to all of the components that handle the post-
back. Components can modify their View State while
handling the request, and a new version of the View
State is returned to the browser as part of the response.

The primary difference between View State and re-
minders is that View State is monolithic: all of the state
for the entire page is transmitted in every interaction. In
contrast, reminders are more granular: each request
includes only the reminders needed for that request.
The View State approach avoids the complexity of de-

82

WebApps ’10: USENIX Conference on Web Application Development

termining what information is needed for each request,
but it results in larger data transfers: every request and
every response contains a complete copy of the View
State for the entire page. Many of the built-in ASP.NET
components make heavy use of View State, so it is not
unusual for a page to have 10’s of Kbytes of View
State [8]. Complaints about the size of View State are
common, and numerous techniques have been dis-
cussed for reducing its size, such as selectively dis-
abling View State for some components (which may
impact their behavior).

The security properties of View State are similar to
those for reminders. View State is base-64 encoded to
make it difficult to read, and by default a MAC is at-
tached and checked to prevent tampering. However, the
MAC is not session-specific so applications must attach
an additional “salt” to prevent replay attacks between
sessions; reminders eliminate this problem by using a
different MAC for each session. View State also sup-
ports encryption, but by default it is disabled.

It is possible for applications to modify the View State
mechanism so that View State is stored on local disk
instead of being transmitted back and forth to the
browser. This provides a solution somewhat like page
properties. However, the approach of storing View
State on disk does not appear to be heavily used or well
supported. For example, the problem of garbage col-
lecting old View State is left up to individual applica-
tions.

9.2 Query Values

A simpler alternative than either reminders or page
properties is to use URL query values: if a component
needs state information to handle an Ajax request, it
can serialize that state when rendering the original page
and incorporate it into the URL for the Ajax request as
a query value; when the request is received, the com-
ponent can read the query value and deserialize its
state. This approach works well for simple state values
where security is not an issue, and it is probably the
most common approach used for Ajax requests today.
However, it leaves serialization and deserialization up
to the application and does not handle any of the secu-
rity issues associated with Ajax state. In addition, the
query-value approach does not easily accommodate
changes to the state, since this would require modifying
the URLs in the browser. The reminder mechanism
handles all of these issues automatically. If the Ajax
state becomes large, then query values will have over-
head problems similar to those of reminders and View
State.

9.3 Alternative application architectures

The issues in managing Ajax state arise because the
functionality of a Web application is split between the
server and the browser. In most of today's popular Web
development frameworks this split must be managed
explicitly by application developers. However, there
exist alternative architectures for Web applications that
change this split and the associated state management
issues.

One approach is to change the application structure so
that it is driven by Javascript in the browser. In this
approach the server does not generate HTML,; its sole
purpose is to provide data to the browser. The applica-
tion exists entirely as Javascript running in the browser.
The initial page fetch for the application returns an
empty HTML page, plus <script> elements to
download Javascript. The Javascript code makes Ajax
requests to the server to fetch any data needed for the
page; the server returns the raw data, then Javascript
code updates the page. As the user interacts with the
page additional Ajax requests are made, which return
additional data that is formatted into HTML by
Javascript or used to modify the DOM. Google’s
Gmail is one example of such an application.

In a Javascript-driven application there is no need for
the server to maintain state between Ajax requests: all
of the interesting state is maintained in Javascript struc-
tures in the browser. For example, if a Javascript-driven
application contains a component like the TreeSection,
parameters for the TreeSection such as the data source
method and HTML formatting information are main-
tained in Javascript variables on the browser. The
server can process each incoming request independ-
ently and there is no state carried over from one request
to another. There are still security issues with this ap-
proach, but they are simpler and more obvious: the
server treats each request as potentially hostile and
validates all arguments included with the request.

The biggest disadvantage of Javascript-driven applica-
tions is the overhead of downloading all of the
Javascript code for the application; for complex appli-
cations the Javascript code could be quite large [9].
This approach also requires the entire application to be
written in Javascript, whereas the traditional server-
oriented approach permits a broader selection of lan-
guages and frameworks. There exist a few frameworks,
such as Google’s GWT [7], where application code can
be written in other languages (Java in the case of GWT)
and the framework automatically translates the code to
Javascript.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

83



Javascript-driven applications also have the disadvan-
tage of exposing the application's intellectual property,
since essentially the entire application resides on the
browser where it can be examined. To reduce this ex-
posure some applications use Javascript obfuscators
that translate the Javascript code into a form that mini-
mizes its readability. These obfuscators can also com-
pact the code to reduce the download overheads.

Another alternative architecture is one where the parti-
tioning of functionality between server and browser is
handled automatically. The developer writes Web ap-
plication code without concern for where it will exe-
cute, and the framework automatically decides how to
partition the code between server and browser. In this
approach the framework handles all of the issues of
state management, including the related security issues.
Automatic partitioning has been implemented in several
experimental systems, such as Swift [2]. Although
developers can use these systems without worrying
about Ajax state issues, the framework implementers
will still have to face the issues addressed by this paper.

9.4 Dynamic application state

The Ajax state discussed in this paper consists of in-
formation used to manage a Web user interface, such as
information about the source(s) of data and how to ren-
der that data in the Web page. However, Ajax is often
used to address another state management problem,
namely the issue of dynamic application state. If the
state underlying an application, such as a database or a
system being monitored, changes while a Web page is
being displayed, Ajax can be used to reflect those
changes immediately on the Web page. A variety of
mechanisms have been implemented for “pushing”
changes from Web servers to browsers, such as Comet
[3,13]. The issue of managing dynamic application
state is orthogonal to that of managing Ajax state: for
example, the techniques described in this paper could
be used in a Comet-based application to keep track of
the data sources that are changing dynamically.

10 Conclusion

Managing the state of Web applications has always
been complex because the application state is split be-
tween server and browser. The introduction of Ajax
requests requires additional state to maintain continuity
across requests related to a single page, yet the stateless
nature of most servers makes it difficult to maintain this
state. Furthermore, if Ajax-driven interactions are to be
implemented by reusable components then even more
state is needed to maintain the modularity of the sys-
tem.

This paper has explored two possible approaches to
maintaining Ajax state, one that stores the state on the
browser (reminders) and one that stores state on the
server (page properties). Although both approaches
meet the basic needs of Ajax-driven components, each
of them has significant drawbacks. The browser-based
approach introduces overheads for shipping state be-
tween browser and server, and it creates potential secu-
rity loopholes by allowing sensitive server state to be
stored in the browser. The server-based approach intro-
duces overheads for saving state as part of sessions, and
it has garbage-collection issues that can result in the
loss of state needed to handle Ajax requests if the user
returns to old pages. Based on our experiences we be-
lieve that the disadvantages of the server-based ap-
proach are preferable to those of the browser-based
approach.

In the future we expect to see the use of Ajax increase,
and we expect to see pages with more, and more com-
plex, Ajax components. As a result, the issues of man-
aging Web application state will probably become even
more challenging in the future.

11 Acknowledgments

Jeff Hammerbacher and the anonymous referees made
many useful comments that improved the presentation
of the paper. This work was supported in part by a
grant from the Google Research Awards program.

12 References

[1] Anley, Chris, Advanced SQL Injection in SQL
Server Applications
(http://www.nextgenss.com/papers/advanced_sql_i
njection.pdf).

[2] Chong, S., Liu, J., Myers, A., Qi, X., Zheng, L.,
and Zheng, X., “Secure Web Applications via
Automatic Partitioning,” Proc. 21" ACM Sympo-
sium on Operating System Principles, October
2007, pp. 31-44.

[3] Cometd project home page (http://cometd.org/).

[4] Crockford, D., The application/json Media Type
for JavaScript Object Notation (JSON), IETF RFC
4627, http://tools.ietf.org/html/rfc4627, July 2006.

[5] Esposito, D., “The ASP.NET View State,” MSDN
Magazine, February 2003,

[6] Garrett, Jesse James, Ajax: a New Approach to
Web Applications, http://www.adaptivepath.
com/ideas/essays/archives/000385.php.

[71 Google Web Toolkit home page
(http://code.google.com/webtoolkit/).

84

WebApps ’10: USENIX Conference on Web Application Development

[8] Mitchell, S., Understanding ASP.NET View State,
http://msdn.microsoft.com/en-
us/library/ms972976.aspx, May 2004.

[9] Optimize a GWT Application
(http://code.google.com/webtoolkit/doc/latest/Dev
GuideOptimizing.html).

[10] Ousterhout, J., Fiz: A Component Framework for
Web Applications, Stanford CSD technical report,
http://www.stanford.edu/~ouster/cgi-
bin/papers/fiz.pdf, January 2009.

[11]Reenskaug, Trygve, Models-Views-Controllers,
Xerox PARC technical notes, December, 1979
(http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-
12-MVC.pdf).

[12]Reenskaug, Trygve, Thing-Model-View-Editor,
Xerox PARC technical note, May 1979
(http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-
05-MVC.pdf).

[13] Russell, Alex, Comet: Low Latency Data for the
Browser, March 2006
(http://alex.dojotoolkit.org/2006/03/comet-low-
latency-data-for-the-browser/).

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 85



SVC: Selector-based View Composition for Web Frameworks

William P. Zeller and Edward W. Felten

{wzeller, felten}@cs.princeton.edu
Princeton University

Abstract

We present Selector-based View Composition (SVC), a
new programming style for web application develop-
ment. Using SVC, a developer defines a web page as
a series of transformations on an initial state. Each trans-
formation consists of a selector (used to select parts of
the page) and an action (used to modify content matched
by the selector). SVC applies these transformations on
either the client or the server to generate the complete
web page.

Developers gain two advantages by programming in
this style. First, SVC can automatically add Ajax support
to sites, allowing a developer to write interactive web ap-
plications without writing any JavaScript. Second, the
developer can reason about the structure of the page and
write code to exploit that structure, increasing the power
and reducing the complexity of code that manipulates the
page’s content.

We introduce SVC as a stateless, framework-agnostic
development style. We also describe the design, imple-
mentation and evaluation of a prototype, consisting of
a PHP extension using the WebKit browser engine [37]
and a plugin to the popular PHP MVC framework Code
Igniter [8]. To illustrate the general usefulness of SVC,
we describe the implementation of three example appli-
cations consisting of common Ajax patterns. Finally, we
describe the implementation of three post-processing fil-
ters and compare them to currently existing solutions.

1 Introduction

The growth of Ajax has resulted in increased interac-
tivity on the web but imposes additional developmental
costs on web developers. Many browsers do not support
JavaScript (and therefore Ajax), including search engine
crawlers, older browsers, browsers with JavaScript (JS)

disabled, and screen readers. These browsers will not be
compatible with portions of a site which exclusively use
Ajax.

The standard “best practice” when creating a site that
supports both JS and non-JS browsers is to use a tech-
nique called progressive enhancement [5]. A developer
first creates a site that works in non-JS browsers and then
uses JavaScript to add interactivity. For example, a page
might include a link titled “Click here for more” which
loads a new page when clicked. Progressive enhance-
ment might involve modifying that link to load and insert
additional content in-line using Ajax, without navigat-
ing to a new page. Progressively enhanced sites work in
both JS and non-JS browsers, but require the developer to
duplicate much of the site’s functionality in order to re-
spond appropriately to both Ajax and non-Ajax requests.
(We use the term non-Ajax request to refer to a request
that loads an entirely new page and Ajax request to refer
to a request made by an existing page which completes
without leaving the current page).

Alternatively, a developer may choose to only sup-
port JS browsers. With this approach, a developer di-
rectly implements functionality using JavaScript or uses
a framework such as Google Web Toolkit (GWT) [20],
which provides server-side support for generating client-
side JavaScript, but provides no easy way of supporting
non-JS browsers.

Currently, developers face a choice. They can ei-
ther support both JS and non-JS browsers by duplicating
much of a site’s functionality or risk preventing certain
users and search engines from accessing and indexing
their sites.

We believe this tradeoff is unnecessary. We present a
new programming style, SVC, which allows a site to be
constructed in a way that can support Ajax and non-Ajax
requests automatically, providing both interactivity and
backwards compatibility.

USENIX Association

WebApps 10: USENIX Conference on Web Application Development

87



1.1 Background: MVC

The model/view/controller (MVC) architectural pattern
is commonly used in web frameworks (e.g., Django,
Ruby on Rails, Code Igniter, Struts, etc. [11, 29, 8, 34]).
In web MVC (which differs somewhat from traditional
MVC), a model encapsulates application data in a way
that is independent of how that data is rendered by the
application. The view accepts some number of models
as input and transforms them into appropriate output that
will be sent to the browser. The controller connects the
models and views, typically by bundling up model data
and sending it to the view for rendering.

The view accepts data as input and produces a string
as output. This output may include information about
its type (e.g., HTML, XML, or JSON [23]), but is other-
wise treated as an opaque string by the framework. After
being manipulated by some number of post-processing
filters, the string is sent directly to the browser. Because
the view’s output is treated as an opaque string, it is dif-
ficult for the framework to reason about the structure of
the content. These views are complicated by the need to
provide both Ajax and non-Ajax versions of a site.

1.2 Our Approach: SVC

SVC is a programming style that changes how views
construct their output. Instead of returning an opaque
string, a view describes the output as a sequence of
transformations. Each transformation consists of a se-
lector, used to query the document, and an action, used
to modify the DOM [2] nodes matched by the selector.
The framework, which previously operated on an opaque
string, now has knowledge of both the structure of the
page as well as how the page was composed. SVC ex-
presses page content in a manner that is succinct, power-
ful, and portable.

A key benefit of SVC is that the framework can choose
whether to apply the transformations on the server or on
the client (where possible). When called on to respond
to an Ajax request, it returns a list of transformations
needed to convert the current page into the new page, us-
ing client-side JS. The use of selectors allows both client-
and server-side code to convert the list of transformations
into the same complete document, allowing SVC to pro-
vide automatic Ajax support and automatic progressive
enhancement to pages written in this style. This benefit
relies on the portability (from server to client) of SVC’s
transformation rules.

SVC does not attempt to replace existing template
systems. Instead, a developer composes different views
(which may be the output of a template). The devel-
oper describes where the composition should occur us-
ing selectors (described in Section 3.1.1). Developers

may continue to use any template language with SVC.

Additionally, SVC does not interfere with existing
code. Both JavaScript and existing controllers not using
SVC will continue to work without modification. This
allows SVC to be added to an existing site and used only
when necessary (without the need to immediately refac-
tor legacy code).

Finally, SVC is able to use its knowledge of a page’s
structure to provide developers with a succinct and famil-
iar post-processing mechanism. This allows developers
to write code to filter a page based on its content without
forcing them to parse the page themselves.

1.3 Contributions and Organization

This paper makes the following contributions:

62 We describe the architecture of SVC and discuss
how it differs from the traditional MVC model.

83 We describe the server-side and client-side compo-
nents that make up SVC and discuss our design de-
cisions.

84 We describe the implementation of an SVC proto-
type. The prototype consists of a PHP extension
written in C++ using the WebKit engine [37], a PHP
plugin for the MVC framework Code Igniter [8],
and a client-side JavaScript plugin that handles Ajax
responses.

§5 We present a complete minimal example of a site
implemented with and without SVC to show how
our approach differs. We also briefly describe a
number of example sites and filters we implemented
using SVC.

We evaluate the performance of our implementation in
Section 6, before discussing related work and conclud-
ing.

2 Architecture

SVC extends the model/view/controller (MVC) pattern
to manage responsibilities currently handled by the de-
veloper. Fig. 1(a) shows how a request travels through
a traditional MV C application which supports both Ajax
and non-Ajax requests. (The “model” in MVC is irrele-
vant to this discussion and omitted.)

The request is sent to a controller which calls the
appropriate view depending on the type of request. If
the request is a non-Ajax request, the non-Ajax view is
called. This view outputs the HTML document which is
rendered by the browser.

In the case of an Ajax request, the controller calls the
Ajax view which outputs data in a format that can be read

WebApps ’10: USENIX Conference on Web Application Development

Traditional Model

Request —{| Controller

Y

No Ajax? Yes
[Cnon-Ajax View || [CAjax View ||
Complete HTML XML/JSON

Server-sidle ——»

View output
(unmodified)

SVC

Apply
Transformations
on Server

[ I Transformations
Complete HTML (JSON)

]

B Code to handle
rowser XML/JSON data

Apply
Browser SVC JS | ransformations

on Client

<+—— (Client-side

(a)

(b)

Figure 1: Architecture of SVC. Boxes surrounded by a double line represent components that are the developer’s responsibility.
Fig. 1(a) shows the traditional MVC architecture (with models omitted) for sites supporting both Ajax and non-Ajax requests. A
request is sent to the controller which loads either an Ajax or non-Ajax view. The developer must write both views, as well as
client-side code which handles the output of her Ajax view. Fig. 1(b) shows the SVC model. A request is sent to a single view,
which can decide to use SVC or not use SVC. The view uses SVC by sending it a transformation list. SVC responds to a non-Ajax
request by applying the transformations on the server and returning a complete HTML page. SVC responds to an Ajax request
by simply returning the transformation list as JSON. The transformation list is applied by the client-side SVC JS to the current
document in the browser. In Fig. 1(b), SVC allows the developer to write only one view and no client-side code.

by client-side code (typically XML or JSON). While this
output may contain HTML snippets, custom client-side
JS is required to insert the snippets in the page at the ap-
propriate positions. Both views must be created by the
developer, who must duplicate functionality to provide
both Ajax and non-Ajax output. In addition, the devel-
oper needs to write client-side code to handle the output
created by her Ajax view. Because the framework knows
nothing about the view’s structure, it cannot assist in this
process.

SVC’s extension to MVC is shown in Fig. 1(b). The
request is sent to a controller which now calls only one
view regardless of the type of request. Instead of out-
putting HTML for a non-Ajax request and XML/JSON
for an Ajax request, the developer describes the page as
a series of transformation rules as well as any items on
which the transformations depend. The transformation
list is sent to the SVC, which decides how to act based

on the type of request.

In the case of a non-Ajax request, SVC applies the
transformation list on the server-side, creating a com-
plete HTML document on the server. This document is
then sent to the browser.

In the case of an Ajax request, SVC converts the trans-
formation list to a form readable by client-side code.
This serialized list is sent to the client where the trans-
formations are applied directly to the current document
in the browser. As SVC includes all the client-side code
necessary to apply the transformations to the document,
the developer does not need to write any client-side JS
when creating an Ajax-compatible site.

Using the architecture in Fig. 1, SVC is able to auto-
matically generate both Ajax and non-Ajax versions of
a site. In addition, SVC needs to progressively enhance
the site and inject a script into all pages to handle client-
side actions. Specifically, SVC adds a CLASS attribute

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

89



to each element needing to be enhanced and inserts a
SCRIPT tag into the head of the document which points
to the client-side SVC JS. This script adds a click event
handler to each element with the above class and also
manages requesting and applying the transformation list.
Progressive enhancement and script injection are made
possible by a post-processing filtering system that SVC
uses internally and exposes to developers.

SVC is stateless—it operates only on the transformation
list provided by the view. It does not store HTML or
output from previous requests, nor does it depend on the
state of the browser (i.e., which requests have previously
occurred).

SVC consists of a server-side API, server-side code
to handle both Ajax and non-Ajax requests, client-side
code to handle the output of Ajax requests, and a filter-
ing module, both used internally and made available to
developers.

3 Design

3.1 Server-side Components

Developers use the SVC server-side API to describe how
a page should be constructed.

3.1.1 Selectors and Actions

SVC asks a developer to construct a page by defining a
list of transformation rules. These rules consist of a se-
lector, used to locate one or more nodes in the DOM,
and an action, used to modify nodes matched by the se-
lector. By defining a page as a series of transformation
rules, SVC is able to respond to both Ajax and non-Ajax
requests appropriately. SVC is able to decide whether
to send the list of transformations to the client for con-
version using JS or to convert the list on the server (by
applying each transformation, in order) and return a full
HTML document to the browser.

We consider next how a transformation rule is ex-
pressed: how the web programmer specifies the selection
of portions of a page, and how the programmer expresses
which action to take on the selected portions.

Selectors Selectors provide a way to query HTML doc-
uments. Selectors were introduced as part of the CSS1
Specification [24], where they were used to identify the
DOM nodes to which styling rules would be applied. Ta-
ble 1 shows a few examples of selectors.

The selector syntax is simple and includes shortcuts
that make HTML queries more succinct. Additionally,
developers have grown accustomed to selectors due to
their ubiquity in CSS. These benefits resulted in a num-
ber of JS libraries adopting selectors as a query language,

Selector Examples

Selector Description

* All elements

#foo Elements with id foo
.bar Elements with class bar
div All div elements

div[f="b"] div elements with
attribute £ = b

div > a a elements that are
children of div
elements

Table 1: A few examples of selectors. The complete selector
syntax can be found in the W3C Selectors Level 3 Recommen-
dation [4].

including Closure, Dojo, jQuery, MooTools, Prototype,
and YUI [7, 13, 22, 25, 26, 39]. Initially, JS libraries
were forced to re-implement much of the selector syn-
tax due to a lack of browser support, but recent proposals
(i.e, the Selectors API [36]) have led to increased support
in browsers.

We chose selectors because they are expressive, suc-
cinct, familiar to developers, designed with HTML in
mind, and supported by a growing number of browsers.

An alternative choice for a querying mechanism might
be XPath [10] or a custom template language. XPath is
more expressive than selectors but is more verbose and
designed for XML, not HTML, so HTML shortcuts do
not exist. Also, developers are less familiar with XPath,
because it is not as widely used as selectors in front-end
web development.

Another option might be to offer a custom template
language. A custom template language would force de-
velopers to annotate their code with template instruc-
tions, which could conflict with existing template sys-
tems in use. A template language would also need to
be implemented on both the client and server-side and
would require developers to learn a new layout language.
We chose not to take this approach, as selectors already
meet our needs.

Actions The second part of a rule is an action. Actions
define the set of operations a developer can perform on a
document during composition. We modeled our API af-
ter the jQuery manipulation functions. We consider the
jQuery manipulation functions a reasonable approxima-
tion of the actions needed by developers. Table 2 shows
the actions our SVC implementation makes available.
SVC allows developers to define additional actions.
These actions only need to be written once and could
be distributed with SVC or as a set of plugins. Creat-

WebApps ’10: USENIX Conference on Web Application Development

Examples of Actions

Action Result

Add class ¢

Append el inside

Set attribute a to b

Set css property a to b
Set inner HTML to el
prepend (s, el) Prepend el inside
remove (s) Remove from DOM
removeClass (s,c) Remove class c

text (s, t) Set inner text value to t

addClass (s, c)
append(s,el)
attr(s,a,b)
css(s,a,b)
html (s,el)

Table 2: Actions supported by our SVC prototype. Each action
is passed a selector s as the first argument. The result of each
action is performed on all nodes matching the selector. More
actions could be added to an SVC implementation, with the
only requirement that they be implemented in both server and
client-side code.

ing a new action consists of writing client- and server-
side code that implements the action on the client and
server, respectively. Since the only requirement for
an action is that it can be executed on the server and
client, actions could manipulate the DOM or provide un-
related functionality. For example, a location ac-
tion could be written to redirect a page, which would
set an HTTP Location header on the server and use
window. location to redirect on the client.

3.1.2 Example

To illustrate how a developer would use selectors and ac-
tions to modify a page, we show a few example transfor-
mations in Table 3. Our implementation of SVC provides
a class called SVCList which represents a list of transfor-
mations. Each command consists of an action, which is a
method that accepts a selector as the first argument along
with any additional arguments needed by the action.

We now describe how SVC responds to a request us-
ing commands 1-5 from Table 3 (for brevity, we ignore
commands 6-10).

If SVC receives a non-Ajax request, it needs to con-
struct the entire page and send it to the browser. SVC
does this by taking the initial page (here, simply the
string “<a></a>") and applying each transformation to
it, in order. The result of applying the transformations
can be seen in in the “Output” column of Table 3.

If SVC receives an Ajax request, it sends only the
transformation list to the client. This list is encoded as
JSON [23], so the actual data sent to the client is:

// action, selector, arguments

[["text", ["a", "x"I1,

["append", ["a", "<b>y</b>"]],
["html", ["b", "t <s>u</s> u"l],
["prepend", ["b", "<i>z</i>"]]]

This JSON list of transformations is applied to the cur-
rent document in the browser by the SVC client-side JS.

3.1.3 Initial Content

SVC responds to an Ajax request with a list of transfor-
mations that operate on an existing document (residing
in the browser). However, when a non-Ajax request is
made, SVC must respond with a complete page. One
option would be to always generate a complete page and
discard the unnecessary portion when responding to Ajax
requests. This would require generating the complete
initial page for each request. Instead, we provide the
method initial, which allows a developer to define
the initial page on which to apply transformations. If the
argument to this method is the name of a controller, that
controller is called. If the argument is a text string, that
text is used as the initial page.

function page () {
Sthis->svc->initial ("base’);
Sthis->svc->text (title’, 'Page title’);
Sthis->svc->html (' body’, ’'<b>The body<b/>");
}

When an Ajax request is made to page, the controller
base does not run and only the list of transformations
(text and html) is returned to the client. When a non-
Ajax request is made, SVC (on the server side) applies
the transformation list to the output of the base con-
troller.

The separation of the initial page from the transforma-
tion list allows SVC to only run the necessary code in
response to an Ajax request.

3.1.4 Progressive Enhancement

Once the developer has specified a list of dependencies
and transformations, SVC is able to respond to both Ajax
and non-Ajax requests correctly. Remember, however,
that the developer has written the site without Ajax in
mind, so no links on the site cause an Ajax request to
occur. SVC needs to progressively enhance pages to use
Ajax where appropriate. The developer is in no position
to do this herself, since she does not know (and should
not need to know) the internals of our client-side library.

Links should only be enhanced to use Ajax if an Ajax
request makes sense in the context of the current page.
If no selector in the transformation list matches an el-
ement on the page, the transformation list will have no

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

91



Using Selectors and Actions to Modify HTML

Command

Output of $s—>toHTML ()

$s = new SVCList (’'<a></a>'");
Ss—>text ("a’, 'x");
Ss—>append ('a’, ’'<b>y</b>");
$s—>html ("b’, 't <s>u</s> u’);
Ss—>prepend ('b’, ’'<i>z</i>");
Ss—>remove (i, s’);
Ss—>css('a’, 'color’, ’'red’);
Ss—>attr (' [stylel’, ’style’, '');
$s—->addClass ('b’, ’'cl’);

0 Ss-—>remove(’.cl’);

— O 00 1O\ L A~ Wi~

<a></a>

<a>x</a>

<a>x<b>y</b></a>

<a>x<b>t <s>u</s> u</b></a>
<a>x<b><i>z</i>t <s>u</s> u</b></a>
<a>x<b>t u</b></a>

<a style="color:red; ">x<b>t u</b></a>

<a style="">x<b>t u</b></a>
<a style="">x<b class="cl">t u</b></a>
<a style="">x</a>

Table 3: Each command is run in order, from top to bottom. The output (on the right) shows the HTML output if the SVCList were

converted to a complete HTML document at each step.

effect. However, a developer may define transformations
that may happen (if the selector matches) but do not need
to happen. These will effectively be ignored when the
transformations are applied on the client.

Our SVC implementation provides the method
rewrite (foo,bar) which specifies that all links
pointing to controller foo should be rewritten to use
Ajax if the current controller or any dependencies of the
current controller is bar. Providing bar is necessary
because Ajax requests may only be appropriate in the
context of a specific page. For example, loading a new
tab using Ajax would only work if the element contain-
ing the tab exists in the current page.

3.1.5 Filters

SVC also provides filters, which allow the modification
of the output of a view. Filters exist in other frameworks
(e.g., Django Middleware [12]) and are used to rewrite
pages in a variety of ways (see Sec. 5.2.2 for examples
of filters). Our implementation of SVC provides the class
SVCFilter to manage filter registration.

SVC uses filters internally to rewrite links on a page
and to automatically inject the SVC client-side JS into
the page. To illustrate the use of filters, we show how
SVC injects its client-side code into the page.

function insert_svc_js ($head) {
$svc_js = '<script src="SVC.Jjs"></script>’;
Shead->append ($svc_7Js) ;

}

// converts ...<head></head>... to:
// <head><script src="SVC.js"></script></head>
Ssvcfilter—->register (‘head’, ’insert_svc_js’);

SVCFilter also supports action shortcuts, allowing this
to be written more succinctly:

$svc_js = ’<script src="SVC.js"></script>’;
Ssvcfilter—>append (' head’, $svc_js);

Filters are similar to view transformations with two
important differences. First, filters are always applied on
the server-side and never on the client. This is necessary
in certain situations, such as in the above script example.
It is also necessary if the developer wants to prevent data
from ever appearing on the client site. For example, a
transformation list would not be the appropriate place to
sanitize user input, because the user input would be sent
to the client as part of the transformation list. Writing
code as a filter ensures that conversion happens on the
server.

The second difference between filters and view trans-
formations is that filters can run on pieces of a docu-
ment before the pieces are converted into the full doc-
ument. For example, take commands 3-5 from Table 3.
In an Ajax request, the server returns a list of transfor-
mations. This list contains three snippets of HTML with
may match a selector (i.e., “<b>y</b>”, “<s>u</s>
u”, and “<i>z</1i>”). Filters are run on each snip-
pet independently, allowing post-processing to occur on
Ajax output. In a non-Ajax request, filters are run on the
complete document before being sent to the browser.

To allow filters to run on pieces of a document be-
fore they are converted to a full document, we permit
only a limited subset of selectors to be used in filters.
Specifically, we only allow simple selectors, which are
defined by the W3C Selectors spec [4]. Simple se-
lectors may only refer to specific nodes and not their
position in a document. For example, “title” and
“ahref$=jpg]” are examples of simple selectors,
while “div > a”isnot. Simple selectors are necessary
because filters run on pieces of the document in response

92

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

to an Ajax request, independent of where they may later
reside in the DOM. SVC is unable to determine where
those pieces will exist in the complete document after
they are composed on the client-side.

3.2 Client-side Components

The client-side component of SVC consists of a JS script.
This script has two responsibilities. The first is to pro-
gressively enhance the page to make Ajax calls. The
second is to load a transformation list from the server
using Ajax and apply that transformation list to the cur-
rent document in the browser. The client-side script must
apply this transformation list in the same way it would
be applied on the server. This ensures that the resulting
document is the same, regardless of where the conversion
occurred.

4 Implementation

The server-side API consists of four classes that are
needed by compatible implementations.

SVCList SVCList represents a transformation list. This
class provides action methods (append, addClass, etc),
each of which pushes a new transformation to the end of
the list. SVCList provides the method t oHTML which
applies each transformation in order and then returns the
HTML representation of the final document. Also pro-
vided is t oJSON, which serializes the transformation list
as JSON.

SVCManager SVCManager provides two methods to
developers. The first is initial, which accepts one
or more controller names as arguments. The second is
rewrite (foo, bar), which rewrites all links to the
controller foo when the controller bar has been exe-
cuted.

SVCFilter SVCFilter allows the developer to register
post-processing actions. These actions will run regard-
less of the controller (or view) called. SVCPFilter pro-
vides the method register (simple_selector,
callback), which runs the callback function
callback with an argument of each node matched by
simple_selector. SVCFilter also provides action
methods as a convenience, allowing simple filters to be
easily created.

Snippet The Snippet class represents a parsed HTML
fragment. Snippet objects are used internally by SVCList
to actually perform transformations. Note that the site
will only output the result of the parser used by Snippet,
which means the developer is constrained to the HTML

supported by the parser. Implementations of SVC should
use liberal parsers. The Snippet class is typically hidden
from developers by accepting strings as input to most ac-
tion methods. For example, the following two function
calls are equivalent:

$svclist->html ("body’, "foo <b>bar</b>');
S$svclist->html (' body’,
new Snippet (' foo <b>bar</b>"));

The Snippet class supports all action methods. These
methods can accept a selector as the first argument, in
which case the selector runs on the nodes in the snippet
matched by the selector. Snippet action methods can also
be called on the snippet itself, which runs the actions on
all top-level nodes.

In addition to these classes, the implementation has the
following responsibilities:

Script Injection Our SVC implementation injects its
client-side JS into the current page using a filter which
appends a script tag to the head element of the page.

Progressive Enhancement Progressive enhancement in-
volves a step on the server and the client. On the server,
each link that should be rewritten (checked by comparing
rewrite calls to the current controller and dependency
list) is annotated with a special CLASS attribute using a
filter.

When the page loads, the SVC JS searches for any
element having this special class and adds a c1lick or
submit event to this element. When this event occurs,
the script uses Ajax to load a transformation list from the
server.

Client-side Code The client-side component of SVC
consists of a single JS script. This script progressively
enhances the site, loads a transformation list from the
server, and applies this list to the current document.

4.1 Implementation Details

We implemented a prototype of SVC as a plugin for
the PHP MVC framework Code Igniter (1.7.2). We im-
plemented the Snippet class as a PHP extension writ-
ten in C++. We used the WebKit engine (used by the
Safari [30] and Chrome [6] browsers) to parse HTML
and WebKit’s querySelectorAll function (defined
as part of the Selectors API [36]) to perform selector
matching. Specifically, we used WebCore (which is a
component of WebKit), from the WebKitGTK+ 1.1.15.3
distribution [38]. WebKitGTK+ was chosen due to its
compatibility with Ubuntu (no GUI code was used). SV-
CList, SVCFilter and SVCManager were written in PHP.
We implemented Snippet actions in C++.

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 93



The client-side code consists of a 4.3/1.7KB (un-
compressed/compressed with YUI Compressor [40]) JS
file. This code uses jQuery (1.3.2) to handle actions
and selectors. We chose jQuery because it supports
the same CSS 3 Selector syntax supported by WebKit’s
querySelectorAll, and because many of our ac-
tions exist as functions in jQuery. The file size above
does not include the size of jQuery, which is 19KB (com-
pressed and Gzipped).

The client-side SVC library has been successfully
tested in Internet Explorer (6,7,8), Safari (4), Chrome
(3.0) and Firefox (3.5).

S Examples

5.1 Complete Minimal Example

To make SVC more complete, we give a full example
of a minimal site implemented with and without SVC in
Figure 3.

This site consists of a page containing the text “A brief
overview” and a link, titled “Show more”, which loads
more content when clicked. This link should load more
content inline using Ajax when available but continue to
work in non-JS browsers. Figure 3 (a)-(d) shows this
site implemented without SVC. A controller contains the
methods index and more which are executed when /
and /more are called, respectively.

Both controllers pass an array consisting of a title, a
boolean (whether to show more content) and an optional
content string to the template (b). This template replaces
the title with the passed value and either outputs a link
pointing to additional content or the content itself. The
more method responds to an Ajax request with a JSON
version of the data array.

On the client, custom JS is required to interpret the
JSON (c). Note that this JavaScript performs much the
same function as the template (setting the title, inserting
content, etc).

An SVC version of this site can be seen in Figure 3 (e)-
(g). The template (f) consists of the initial page, which
is loaded by the index method in (e). The method
more defines three transformations which are either re-
turned as JSON (in response to an Ajax request) or ap-
plied to the output of index method (in response to a
non-Ajax request). Note that no custom JS is necessary
because SVC JS will apply the transformations on the
client-side automatically. Figure 3 (h) shows how SVC
transforms the index page (the more page is omitted
for brevity) by inserting its client-side script and added
the class svc_rewrite to the appropriate links.

5.2 Additional Examples
5.2.1 Sites

We implemented three sites to illustrate the usefulness of
SVC. We briefly describe these sites below.

Tabs We created a site consisting of a number of tabbed
pages. The transformation list of each page changes the
title of the document, sets the correct tab header (by set-
ting a class), and sets the content of the page. The tab
content is positioned inside of a tab-specific div, which
allows us to rewrite links to use Ajax if that tab-specific
diwv exists.

Status Feed We implemented a site to allow users of
a fictional social network to update their status, which
is combined on a single page. The transformation list
consists of new status updates. These status updates are
prepended to the current list of updates in response to
an Ajax request or set as the current list of updates in
response to a non-Ajax request.

Form Validation We implemented an example of form
validation using SVC. Form validation is an Ajax pattern
which must also be implemented in server-side code to
prevent a malicious user from inserting invalid data into
the application.

Each input element is given an associated span el-
ement to hold errors (e.g., Fig. 2(a)).

<input type="text" name="name"/>
<span id="name_error"></span>

<input type="text" name="email"/>
<span id="email_error"></span>

(a) Two inputs with associated error spans

$Ssvclist—->text (' spanffemail_error’,
"Email error’);

(b) Setting email error text

Figure 2: Setting an error message with SVC.

The form controller depends on a method which gen-
erates the form. The controller then sets the appropriate
error message (e.g., Fig. 2(b)). If the form is submitted
using Ajax, the error message will be updated in place.
If it is submitted without Ajax, the error message will be
properly set when the page reloads.

5.2.2 Filter Examples

We implemented three filters to illustrate the ease with
which they allow developers to post-process pages. An
example of filter code can be found in Appendix A.

Example not using SVC Example using SVC
(a) Controller (e) Controller
<?php <?php

class Article extends Controller { class Article extends Controller {

function index () {
$data = array(’title’ => ’Brief Overview’,
’showing_more’ => FALSE); }

function __ construct () {
Sthis->svc—>rewrite (‘more’, ’index’);

echo view (’index.php’, $data); function index () {
} S$this->svc->initial (view (' index_svc.php’));
}
function more () {
$data = array(’title’ => ’'More Content’,
’content’ => view (’'morecontent.php’),
’showing_more’ => TRUE);

function more () {
Sthis->svc—>initial (’ index’);
Sthis->svc—>text ('title’, ’'More Content’);
Sthis->svc—>remove (’ a¥show_more’) ;

if (is_ajax()) { Sthis->svc—>html (/ #more_content’,
echo Json_encode ($data) ; view ('morecontent.php’));
} else { }
echo view(’index.php’, $data);
} }
}
(f) index_svc.php
} <html>
<head><title>Brief Overview</title></head>
(b) index.php <body>
<html>

<head><title><?=$title?></title> A brief overview.
<script src="/Jjs/jquery.js"></script>
<script src="/js/morecontent.js"></script>

</head><body>

<a href="/more" id="show_more">Show More</a>

<div id="more_content"></div>
A brief overview.
<? if (!$showing_more) { 2>
<a href="/more" id="show_more">Show More</a>
<div id="more_content"></div>

</body></html>

morecontent .php

(9)
Some <b>more</b> content

<? } else {?>
<div id="more_content"><?=$content?></div>
<? } 7>
SVC Output Example
</body></html> —_ (h) SVC generated index
<html>
(c) morecontent.js <head>

function more_content_clk (json) { <title>Brief Overview</title>

$('a#show_@ore’).?emovef); <script src="svc.js"></script>
document.title = json.title; </head>
S (" #more_content’) .html (json.content) ; <body>
}
) A brief overview.
S (function () {
) ) <a href="/more" id="show_more"
S (" #show_more’) .click (function() {

class="svc_rewrite">Show More</a>
$.getJSON (’ /more’, more_content_clk);
1 return false; <div id="more_content"></div>

4

. </body></html>

(d) morecontent.php

Some <b>more</b> content

Figure 3: Two implementations of a web page containing the link “Show More”. When clicked, additional content is loaded. Both
Ajax and non-Ajax calls are supported. The left column ((a)-(d)) shows this page implemented without SVC. The right column
((e)-(g)) implements the page using SVC. The SVC output of the index page can be seen in (h). SVC has inserted its client-side
script and added the class svc_rewrite to the appropriate links.

94

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

USENIX Association WebApps *10: USENIX Conference on Web Application Development 95



CoralCDN Filter CoralCDN [18] is a free peer-to-peer
content distribution network. It provides an elegant URL
structure that allows a resource to be turned into a “cor-
alized” resource by simply appending .nyud.net to
the hostname. Fig. 6 shows a complete SVC filter which
rewrites all links and images in a page having the class
“coralize”. Fig. 7 shows the regular expressions used by
a WordPress plugin [9] to perform the same search.

CSRF Form Filter Cross-Site Request Forgery vulner-
abilities allows an adversary to perform actions on be-
half of a user by maliciously submitting data to a trusted
site [31]. A complete description of CSRF vulnerabil-
ities is outside the scope of this paper, but a common
defense against CSRF attacks is to insert a CSRF token
into all form elements which will be submitted to the
current site using the POST method. This token can be
used by the server to verify that requests were sent by the
user and not a malicious site. We wrote a filter that uses
SVC to insert a token as a child of the appropriate form
elements.

Script Coalescing Filter JavaScript can be compressed
to reduce its size. A web service, called Reducisaurus
[27], accepts URL arguments consisting of one or more
JS files or JS code. Reducisaurus combines all scripts
into a single, compressed file. We wrote a filter to convert
all script tags to the appropriate URL arguments. The
filter removes these scripts from the page and appends a
link to the compressed JS file to the document’s head
element.

6 Performance Evaluation

Three aspects of SVC impose performance costs on the
application. SVC needs to parse each snippet, run selec-
tors, and perform actions. We evaluate these costs below
and show the total performance cost of an example site.
All tests were run on an desktop Dell XPS Dimension
9150 (Pentium D 2.8Ghz) machine with 2GB of RAM
running Ubuntu 9.10 (Linux Kernel 2.6.31-16-generic).
We used PHP 5.2.10 and Apache/2.2.12 (where applica-
ble).

Parsing time To evaluate the parsing speed of our SVC
implementation, we parsed the content of 10,000 popu-
lar websites according to Alexa [1]. The Alexa list of the
most popular million sites was downloaded on 21-Nov-
2009 and the first page of each site was downloaded on
Nov 24, 2009. We parsed the content of the first 10,000
sites, skipping any site that did not return an HTTP 200
status. We compare our parsing speed to the speed of
DOMDocument [14], which is an HTML parser built

100

70 ,/"‘
60
50
40 -t
30 /
20 | DOMDocument
10 ‘ . SVC o |

0 10 20 30 40 50 60 70

Parse Time (ms)

— |
—
.,

% of Sites Parsed

Figure 4: Parse time of 10,000 popular sites. SVC is compared
to DOMDocument, an HTML parser that comes with PHP. This
graph shows that, e.g., 80% of sites were parsed in 15ms.

| html —— N
Aj(s) | attr e /

0 200 400 600 800 1000 1200
Content Size (KB)

Figure 5: Mean DOM manipulation time as a function of con-
tent size. Each action (html, attr, and text) was called
100 times on each content size, which varied from 0 to 1 MB
(incrementing by 64 KB).

into PHP (we did not use DOMDocument for our imple-
mentation because it does not support selectors). DOM-
Document does not parse JavaScript or CSS, while We-
bKit (used by our implementation) does. See Fig. 4 for
the results of our parsing tests. The cost to parse a page
is a cost not imposed on traditional PHP sites, which can
output their content directly.

Selector query time The cost of running a selector on
a document depends on the complexity of the selector
and complexity of the document. We test selector per-
formance by implementing MooTool’s SlickSpeed test
suite [32] in SVC. The SlickSpeed test suite runs 40 se-
lectors of varying complexity against a standard 108KB
web page.

We ran the test suite 1000 times and calculated the to-
tal time spent running each test. The result was a mean

WebApps ’10: USENIX Conference on Web Application Development

time of 59.180ms (std.dev = 2.906), giving a mean of
1.498ms per selector.

Actions In our implementation of SVC, actions are
mapped to manipulations of WebKit’s internal DOM
tree. The cost of DOM manipulation is dependent on
the type of action performed, which largely depends on
WebKit’s internal performance. We measured the perfor-
mance of three actions (html, attr, and text) in Fig-
ure 5. Each action was called with a varying amount of
random data, from O to 1024KB. Content was escaped to
ensure that additional HTML tags were not introduced.

These costs are only imposed on non-Ajax requests.
For the cost of client-side DOM manipulation, see Dro-
maeo [28, 16].

7 Related Work

We are aware of no tool that allows for automatic pro-
gressive enhancement of non-JS sites, which SVC al-
lows. Various frameworks allow Ajax code to be auto-
matically created (e.g., Cappuccino, GWT, RJS (a Ruby
on Rails feature) and SproutCore [3, 20, 21, 33]). Al-
though these frameworks provide a convenient means
of generating JavaScript, they do not generate code that
supports both JS and non-JS browsers. In fact, these
frameworks make it difficult or impossible to support
non-JS browsers when using their Ajax capabilities.

Various server-side frameworks allow DOM manipu-
lation (e.g., Genshi, DOMTemplate, GWT [19, 15, 20]).
We are not aware of any framework that allows manipu-
lation to happen on either the client or server depending
on the type of request, or any framework that uses DOM
manipulation as a means to allow for automatic Ajax in-
strumentation.

FlyingTemplates [35] proposes a system where tem-
plates are sent to the client along with data to replace
variables in the template. The key idea of FlyingTem-
plates is to allow templates to be static and to send the
data that will be substituted in the template separately. If
templates are static, they can be cached by the browser
and served statically by the website. SVC differs signif-
icantly from FlyingTemplates. FlyingTemplates requires
a template parser to exist on the client. Additionally, it
has no notion of conditional template replacement (all re-
placement happens on the client). FlyingTemplates also
only runs on an initial template. Once it has performed
replacement on a template, it cannot operate on that re-
placed data. This makes it unable to assist in automatic
Ajax instrumentation. Also, FlyingTemplate only works
in JS browsers because it relies on the client to do tem-
plate substitution.

Post-processing filters exist in a number of frame-
works. The main advantages of SVC over filters in other

frameworks is the ability to register a filter using selec-
tors and the ability to run filters on pieces of the doc-
ument. The most similar filtering mechanism found is
Genshi’s [19], which allows XPath expressions to be
used in filters.

8 Conclusions

The paper presents SVC as a novel programming style
that can reduce development costs related to web pro-
gramming. SVC allows developers to create both Ajax
and non-Ajax versions of a site by composing different
pieces of a page together using selectors. Developers can
create Ajax sites without writing JavaScript, while also
supporting non-JS browsers. SVC can be integrated with
existing sites and does not interfere with previously writ-
ten controllers, JavaScript, or template systems.

SVC also provides a succinct filtering mechanism that
allows post-processing to be expressed more clearly than
existing solutions.

We implemented a prototype of SVC for PHP and
the Code Igniter framework, but it could easily be ex-
tended to other languages and frameworks. The only re-
quirement is an HTML parser and selector support. In
Python, for example, the Ixml library could be used di-
rectly, without the need to compile a separate HTML
parser (also, Ixml supports selectors directly) [17].

Since SVC manages Ajax calls, client-side JS plug-
ins could be written which implement common Ajax pat-
terns. For example, supporting the “back’ button (which
can be tricky in Ajax applications) could be handled au-
tomatically.

Acknowledgements

We would like to thank Joe Calandrino, Will Clarkson,
Thorsten von Eicken, Ari Feldman, J. Alex Halderman,
Jon Howell, Tim Lee, and the anonymous referees for
their helpful comments and suggestions.

References

[1] Alexa Top 1,000,000 Sites (Updated Daily). http://www.alexa.
com/topsites.

[2] BYRNE, S., HORS, A. L., HEGARET, P. L., CHAMPION, M.,
NicoL, G., ROBIE, J., AND WooOD, L. Document object
model (DOM) level 3 core specification. W3C recommenda-
tion, W3C, Apr. 2004. http://www.w3.org/TR/2004/REC-DOM-
Level-3-Core-20040407.

[3] Cappuccino. http://cappuccino.org.

[4] CELIK, T., ETEMAD, E. J., GLAZMAN, D., HICKSON,
I., LINSsSs, P., AND WILLIAMS, . Selectors Level
3. W3C proposed recommendation, W3C, Dec. 2009.
3http://www.w3.0org/TR/2009/PR-css3-selectors-20091215/3.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

97



(3]

(6]

CHAMPEON, S., AND FINCK, N. Inclusive Web Design For
the Future. http://www.hesketh.com/publications/inclusive_web_
design_for_the_future/, Mar. 2003.

Chrome. http://google.com/chrome.

A Filter Examples

Below is an example filter, described in Section 5.2.2.

[7] Closure. http://code.google.com/closure/library/. <21h o oye o
‘pnhp .
18] Code lgniter. htp://eodeigniter.com. S e URL to coraicon Silo: Exploiting JavaScript and DOM Storage for Faster Page Loads
[9] Coralize for wordpress (v.08b). http://theblogthatnoonereads. function coralize (Surl) {
davegrijalva.com/2006/02/12/coralize/. zhost :/I;arze—url (Surl, PHP_URL HOST);
s ="' " .$host; .

[10] DEROSE, S., AND CLARK, J. .XML path language (XPath) // append ' .nyud.net:8080’ to host James Mickens
version 1.0. W3C recommendation, W3C, Nov. 1999. http: return str_replace($s, Ss.’.nyud.net:8080” .

I/www.w3.0rg/TR/1999/REC-xpath-19991116. —ep oy yue.net: ’ Microsoft Research

[11] Django. http://www.djangoproject.com. } mickens@microsoft. com

[12] Django Middleware. http://docs.djangoproject.com/en/1.1/
topics/http/middleware/. function c_img($s) {

[13] Dojo. http://dojotoolkit.org. izria:tiiii;?e (is;i?ttr (orer)li

- , surl);

[14] DOMDocument. http://php.net/manual/en/class.domdocument. }
php. Abstract fast-loading pages result in happier users, longer visit

[15] DOMTemplate‘ http://Www.domtemplate.com. function Cc_a ($S) { A d b t . b' t d f t h times’ and higher revenues for page owners. For exam-

161 Dromaeo. http://dromaeo.com. Surl = coralize($s—>attr (’href’)); modern we page contains many 0 JGC S, an elicn- _ . . . _

ol P $s->attr(‘href’, Surl); ing these objects requires many network round trips— ple. when the e-commerce site Shopzilla reduged 1ts av

[17] FAASSEN, M. Ixml. http://codespeak.net/Ixml/. ) L . . erage load time from 5 seconds to 1.5 seconds, it boosted
N establishing each HTTP connection requires a TCP .

[18] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIERES, D. handshak d h HTTP y . page views by 25% and revenue by 10% [4]. Faster loads
Dem.ocratizing content publication with C(.)ral. In NSDI'04: Pro- // Coralize all elements with class ’coralize’ aI'l shake, and eac . request/response p?lr re- also lead to more advertising impact, since GOOgle’S Ad-
ceedings of the Ist conference on Symposium on Networked Sys- $svcfilter->register (’img.coralize’, ‘c_img’); quires at least one round trip. To decrease a page’s load Words svstem preferentially displavs ads whose tareet
tems Design an.d (mplementation (Berkeley, CA, USA, 2004), $svcfilter—>register(’a.coralize’, 'c_a’); time, designers try to minimize the number of HTTP re- 1 yd . Fl’(] 91 S y h p y 1 el gd
USENIX Association, pp. 18-18. . . pages load quickly [9]. Search engines also make load-

101 Genshi. hitos//ecnshi.cdeewall quests needed to fetch the constituent objects. A com- ing speed a factor in their page rankings [22]

[2 : ensll. ttp.TgeTks. LE s 1 1ki mon strategy is to inline the page’s JavaScript and CSS Given all of this, web designers have acc'umulated a

(20} Google Web Toolkit. ttp'//COde'goog e_'comlwebt.oo i Figure 6: A filter which rewrites all links and images (having files instead of using external links (and thus separate series of techni ues, for decreasine load times. Souder’s

[21] HANsSON, D. H. RIS. http://wiki.rubyonrails.org/howtos/ o (1555 “coralize”) to use the CoralCDN web service. HTTP fetches). Unfortunately, browsers only cache ex- ) . quet & L
rjs-templates. . o influential book High Performance Web Sites lists 14 of

[22] jQuery. http://jquery.com ternally named objects, so inlining trades fewer HTTP these techniques [23], with the most important one be
ety MEPTAREIOm, . requests now for greater bandwidth consumption later if . o ’ p

[23] JSON (JavaScript Object Notation). http://www.json.org. A user revisits a pace and must refetch uncacheable files ing to minimize the number of HTTP requests needed

= ’ i 2 u A% u u . .

[24] LiE, H. W., AND BOs, B. Cascading style sheets, level 1 recom- $c22§irEt\ ]pffgziiﬁizeivf(§<](1T3Lzl<\;fﬁr;ffii " tp g ed Silo. 1 TavaSeriot and to construct a page. Over 80% of user-perceived load
mendation. first edition of a recommendation, W3C, Dec. 1996. [P\ ThEEp\:\/\/ . %2) (\/. %2 ["\" ] . #2\>) /17, 78 DOl\ler IlteW System, (Cla € b iho,theVerang aV;lI—;:’?%)Pan time is spent downloading HTML, JavaScript, images,
http://www.w3.0rg/TR/REC-CSS1-961217. 1.nyud.net:8080%47, S$content); s Oilag}f g red u.c(ej:ho .ednum er o & and other objects, and 40-60% of page visitors arrive

st he bndidh i 1 oINS ity ancmpycche 35, By minmiing e b

[26] rototype- ttp://prototypejs.org. , NS ”corzlize - [{,\,] ;°i>) /i,' ;s datab g ient b p gA sil bled y HTTP requests needed to build a page, developers reduce

[27] Reducisaurus. http://code.google.com/p/reducisaurus/. 1 nyud.net:808084/, Scontent); ; al aselon a clien mai];l;; 1 1 OI-ICIIEII( € paégvehuses the number of round—trips needed to fetch the page’s ob-

(28] RESIG, J. JavaSeript Performance Rundow.  hitp://ejohn.org/ $content = preg_replace (’/(\<(imgla)\s+.+?cla this local storage as an -style chunkstore. When a o ¢ and they avoid TCP slow starts for now-superfluous
blog/javascript-performance-rundown/. SS\=["\’].%x?coralize.*?["\/].%? (src|href) \= browser requests a Silo-enabled page, the server returns HTTP connections.

[29] Ruby on Rails. http://rubyonrails.org. ["\7 1) (\/.%2["\"].%2\>) /1", ’S$lhttp://’.$_S a small JavaScript shim which sends the ids of locally

[30] Safari. http://apple.com/safari/. zi\o/iie[;S)TTPfHOST’ 1.’ .nyud.net:80808$4", ave.lilable chunks to 'the server. The server responds with 1.1 The Costs and Benefits of Inlining

[31] SHIFLETT, C. Security Corner: Cross-Site Request Forgeries. Scontent — preq_replace (’/ (\<(img|a)\s+.#? (sr a list of the Cl.ll]I.lkS in the ml.med page, and the raw (.iata A obvi 0 eliminate HTTP s s o
http://shiflett.org/articles/cross-site-request-forgeries. Clhref)\=["\"1) (\/.*2["\" ] .#?class\=["\"].* for chunks missing on the client. Like standard 1n11n1ng, n obvious Wgy 0 ¢ 1m1n.a e requests 1s .0

[32] SlickSpeed (MooTools). http://mootools.net/slickspeed/. 2coralize.«?["\"].%?\>)/i’, ’$1http://’.$_8 Silo reduces the number of HTTP requests; however, it ~ Make pages contain fewer objects. Unfortunately, this

[33] SproutCore. http://sproutcore.com. ERVER [’ HITP_HOST'] .’ .nyud.net:808034", facilitates finer-grained caching, since each chunk corre- gpproach resul.ts in lgss interesting pages, so dev.elopers

[34] Struts. http:/struts.apache.org. seontent) sponds to a small piece of JavaScript or CSS. The client-  1nstead use object inlining [23]. Multiple JavaScript ﬁl.es

[35] TATSUBORI, M., AND SUZUMURA, T. Html templates that fly: a side portion of Silo is written in standard JavaScript, soit ~ are concatenated to form a smaller number of JavaScript

template engine approach to automated offloading from server to

runs on unmodified browsers and does not require users

files; similarly, multiple style sheets are combined into

client. In WWW "09: Proceedings of the 18th international con- Figure 7: Taken verbatim from the Coralize for Wordpress plu-
I ereggel "9'1 6(‘;Vorld wide web (New York, NY, USA, 2009), ACM, gin [9]. In addition to being difficult to read, these regular ex-
PP- ' pressions would incorrectly match an img element with the

[36] VAN KESTEREN, A., AND HUNT, L. Selectors api level « P S
I. Tech. rep., W3C, Dec. 2009. http://www.w3.0re/TR/2009/ class donot.corahze and would not match elements with ir
regular spacing.

CR-selectors-api-20091222/.
[37] The WebKit Open Source Project. http://webkit.org.
[38] WebKitGTK+. http://webkitgtk.org.
[39] The YUI Library. http://developer.yahoo.com/yui.

a single CSS file. In both cases, the number of HTTP
requests decreases.

The greatest savings occur when all of the JavaScript
and CSS is directly inserted into the page’s HTML. Such
aggressive inlining delivers all of the page’s HTML,

Users avoid slow web sites and flock towards fast ones. CSS, and JavaScript in a single HTTP fetch. Unfortu-
A recent study found that users expect a page to load in nately, the significant reduction in load time comes with
two seconds or less, and 40% of users will wait for no a price—since the browser cache can only store URL-
more than three seconds before leaving a site [1]. Thus, addressable objects, the individual HTML, CSS, and

to install special plugins.

1 Introduction

[40] YUI Compressor. http://developer.yahoo.com/yui/compressor/.

WebApps ’10: USENIX Conference on Web Application Development USENIX Association USENIX Association WebApps *10: USENIX Conference on Web Application Development 99



JavaScript files cannot be cached. Instead, the browser
caches the aggregate inlined HTML, and if any of the
embedded objects change, the browser must refetch the
bytes for all of the objects. Ideally, we would like the
best of both worlds: aggressive inlining which maintains
the cacheability of the constituent objects.

1.2 Our Solution: Silo

Silo is our new framework for deploying fast-loading
web applications. Silo exploits JavaScript to implement
a delta-encoding HTTP protocol between an unmodi-
fied web browser and a Silo-aware web server. A Silo
web server aggressively inlines JavaScript and CSS, and
breaks the inlined HTML into chunks using Rabin finger-
prints [18]. When a browser requests the page, the server
does not return the inlined HTML—instead, it returns a
small JavaScript shim which uses the browser’s DOM
storage [26] as a chunk cache. The shim informs the
server of locally available chunks. The server responds
with a list of chunk ids in the page, as well as the raw
data for any chunks that do not reside on the client.

By aggressively inlining, browsers can fetch the
HTML, CSS, and JavaScript for a Silo-enabled page in
at most two HTTP round trips (§3.1). However, using
chunking, Silo restores the cacheability that was pre-
viously destroyed by aggressive inlining. Indeed, Silo
introduces a finer granularity of caching, since data is
cached at the level of 2 KB chunks instead of entire files.
This reduces bandwidth requirements when updating al-
ready cached HTML, JavaScript, and CSS files that have
changed, but that retain some of their old content. Since
client-side chunk data is associated with an entire do-
main, chunks downloaded from one page in a domain
can be used to reconstruct a sibling. Thus, Silo can ex-
ploit the fact that different pages in the same domain of-
ten share content [5, 21].

1.3 Our Contributions

This paper makes the following contributions:

e We show how unmodified browsers can exploit
JavaScript and DOM storage to implement a delta-
encoding protocol atop standard HTTP.

e We provide new empirical data on the composition
of web pages and how their content changes over
time.

e We demonstrate that for pages with significant
amounts of JavaScript and CSS, Silo’s new protocol
can reduce load times by 20%—-80% while provid-
ing finer-grained caching than the standard browser
cache.

We also discuss the fundamental challenge of defining
“load time” in the context of modern web pages which

contain rich interactive content and thousands of lines of
JavaScript, Flash, and other code.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background information on the HTTP
protocol and describe the basic JavaScript features that
Silo leverages. In Section 3, we describe how Silo uses
these features to layer a custom delta-encoding protocol
atop standard HTTP. Section 4 provides our PlanetLab
evaluation, wherein we serve real web data under real-
istic network conditions to explore Silo’s benefits. We
discuss related work in Section 5 before concluding in
Section 6.

2 Background

In this section, we provide a brief overview of the
HTTP protocol, describing the particular elements that
are relevant to the Silo architecture. We also describe the
JavaScript features that we use to implement the client-
side portion of the Silo protocol. Finally, we explain how
Rabin fingerprints can be used for delta-encoding.

2.1 The HTTP Protocol

A browser uses the HTTP protocol [6] to fetch objects
from a web server. A top-level page like www.cnn.com
is composed of multiple objects. Silo separates these ob-
jects into four classes.

e HTML describes a page’s content.

e (Cascading style sheets (CSS) define how that con-

tent is presented.

e JavaScript code allows the page to respond to user

inputs and dynamically update itself.

e Multimedia files like images, movies, and sound

files provide visual and audio data.

The standard browser cache can store each class of ob-
ject. However, the first three object types consist of
structured, text-based data that changes relatively slowly
across object revisions. In contrast, multimedia files
have binary data that rarely changes in-place. Thus,
only HTML, CSS, and JavaScript are amenable to delta-
encoding (§2.3), a technique for describing different ver-
sions of an object with respect to a reference version.
Importantly, the standard browser cache stores whole
objects at the URL-level—HTTP provides no way to
delta-encode arbitrary objects with respect to previously
cached versions.

To increase fetch parallelism, a browser tries to open
multiple connections to a single web server. HTTP is a
TCP-based protocol, and TCP setup and teardown are ex-
pensive in terms of RTTs. Thus, HTTP version 1.1 intro-
duced persistent HTTP connections, which allow a sin-
gle TCP session to be used for multiple HTTP requests

100

WebApps ’10: USENIX Conference on Web Application Development

and responses. On highly loaded web servers or prox-
ies, maintaining too many persistent connections can ex-
haust memory, file descriptors, and other computational
resources, hurting parallelism if many persistent connec-
tions are idle but no more can be created to handle new,
active clients. Mindful of this threat, some proxies and
web servers use stringent timeouts for persistent connec-
tions, or close them after a few objects have been trans-
ferred [2, 11].

Figure 1(a) demonstrates how a browser might down-
load a simple web page consisting of a single HTML file
and four external objects. First, the browser opens a per-
sistent HTTP connection to the web server and fetches
the page’s HTML. As the browser parses the HTML, it
finds references to the page’s external objects. It fetches
a.css and c.css using its preexisting HTTP con-
nection; in parallel, the browser opens a second persis-
tent connection to get b.css and d. js. The browser
constructs the entire page in approximately three HTTP
round trips (one RTT to fetch the HTML, and two RTTs
to fetch the four objects over two persistent HTTP con-
nections) !.

In popular browsers like Firefox 3.0, IE 7, and Safari
3, a JavaScript fetch prevents the initiation of new par-
allel downloads. This is because the fetched JavaScript
may change the content of the subsequent HTML (and
thus the external objects that need to be fetched). Newer
browsers use speculative parsing techniques to contain
the side effects of erroneously fetched objects. Develop-
ers have also invented various application-level hacks to
trick browsers into doing parallel JavaScript fetches [24].
Regardless, a browser can only open a finite number
of parallel connections, so the fetching of non-inlined
JavaScript generally adds to the load time of a page.

2.2 JavaScript

JavaScript [7] is the most popular language for client-
side scripting in web browsers. With respect to Silo,
JavaScript has three salient features. First, JavaScript
programs can dynamically modify the content of a web
page. Second, JavaScript can associate large amounts
of persistent local data with each web domain. Third,
JavaScript can use AJAX calls [7] to construct new com-
munication protocols atop HTTP.

2.2.1 Manipulating the DOM

JavaScript represents the state of a web page using the
Document Object Model (DOM) [28]. The DOM pro-
vides a standard, browser-neutral API for querying and

THTTP 1.1 allows clients to pipeline multiple requests over a sin-
gle connection, but many web servers and proxies do not support this
feature or support it buggily. Pipelining is disabled by default in major
browsers.

manipulating the presentation and content of a page. In
the context of Silo, the most important DOM calls are the
ones which allow pages to overwrite their own content.

e When a JavaScript program calls
document .open (), the browser clears any
preexisting presentation-layer data associated with
the page, i.e., the JavaScript state is preserved, but
the page’s old HTML is discarded.

e The application writes new HTML to
the page wusing one or more calls to
document .write (html_str).

e Once the application has written all of the new
HTML, it calls document.close (). This
method instructs the browser to finish parsing the
HTML stream and update the presentation layer.

Using these calls, a web page can completely overwrite
its content. Silo leverages this ability to dynamically
construct pages from locally cached data chunks and new
chunks sent by Silo web servers.

2.2.2 Associating Web Domains With Local Data

JavaScript does not provide an explicit interface to the
browser cache. JavaScript-generated requests for stan-
dard web objects like images may or may not cause the
associated data to lodge in the cache, and JavaScript pro-
grams cannot explicitly write data to the cache. Further-
more, there is no way for a JavaScript program to list the
contents of the cache.

For many years, the only way for JavaScript to store
persistent, programmatically-accessible client-side data
was through cookies [10]. A cookie is a small file asso-
ciated with a particular web domain. When the user vis-
its a page belonging to that domain, the browser sends
the cookie in the HTTP request. The domain can then
read the cookie and send a modified version in the HTTP
response. JavaScript provides a full read/write interface
for cookies. However, browsers restrict the size of each
cookie to a few kilobytes, making cookies unsuitable for
use as a full-fledged data store.

To solve this problem, Google introduced Gears [8],
a browser plugin that (among other things) provides a
SQL interface to a local data store. Although Gears pro-
vides a powerful storage API, it requires users to modify
their browsers. Luckily, modern browsers like IE8 and
Firefox 3.5 support a new abstraction called DOM stor-
age [26]. DOM storage allows a web domain to store
client-side key/value pairs. By default, browsers allo-
cate 5-10 MB of DOM storage to each domain. The
DOM storage API has been accepted by the W3C Web
Apps Working group [26] and will likely appear in the
upcoming HTMLS standard. Given this fact, Google re-
cently announced that it was ramping down active de-
velopment on Gears, and that it expected developers to

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development 101



<html> | G

<link href="a.css"/> d\ET a.css
<link href="b.css’/> | | Css—,
<link href="c.css"/> :\F‘H
<script src="d.js"/> |
csS !
| Q. /

<html>

(a) The standard HTTP protocol.

<script>
pageCids = ['f4fd", "b21f, ...];
missingCids = nonLocalCids(pageCids);

updateChunkCache(fetch(missingCids));
overwriteHTML(pageCids); - ounk data
N\'\SS\Y\

</script>

(b) The basic Silo protocol. See Section 3.2 for optimizations.

Figure 1: Fetching a simple web page.

migrate to the standardized HTMLS5 storage mechanisms
once HTMLS gained traction [14].

Web applications most commonly use DOM storage
to buffer updates during disconnected operation. Silo
uses DOM storage in a much different fashion, namely,
as an application-level chunk cache that enables delta-
encoding (§2.3) for web pages.

2.2.3 AJAX

A JavaScript program can use the AJAX interface [7]
to explicitly fetch new web data. AJAX data is named
by URL, and a JavaScript application can inspect and set
the headers and the body of the HTTP request and re-
sponse. Thus, an application can use AJAX to layer arbi-
trary client-server protocols atop HTTP. Silo uses AJAX
to implement a custom delta-encoding HTTP protocol
inside unmodified web browsers.

2.3 Delta-encoding

Delta-encoding is a technique for efficiently describ-
ing the evolution of a data object. Each version of the
object is represented as a set of edits or “deltas” applied
to a reference version of the object. Once a client down-
loads the full reference object, it can cheaply reconstruct
a newer version by downloading the deltas instead of the
entire new object.

Many distributed systems employ chunk-based delta-
encoding. Each object is broken into small, contiguous
byte ranges; a single edit modifies one or more of these
chunks. Hosts transmit their edits by sending the posi-
tions of deleted chunks, and the positions and data of
new chunks.

If chunk boundaries are determined by fixed byte off-
sets, an edit which increases or decreases an object’s size
will invalidate all chunks after the edit point. To avoid
this problem, distributed systems typically eschew fixed
length chunks and use content-delimited chunks instead.
In these systems, chunk boundaries are induced by spe-
cial byte sequences in the data. LBFS [16] popularized
a chunking method in which applications push a sliding
window across a data object and declare a chunk bound-
ary if the Rabin hash value [18] of the window has [V ze-
roes in the lower-order bits. By varying N, applications
control the expected chunk size. With content-based
hashing, an edit may create or delete several chunks, but
it will not cause an unbounded number of chunk invali-
dations throughout the object.

Distributed systems typically name each chunk by the
SHAL hash of its content. This allows different hosts to
independently pick the same name for the same chunk.
Hosts can determine whether they store the same version
of an object by exchanging the chunk ids in their copies
of the file. By comparing these lists, a peer can deter-
mine whether it needs to delete content from its local
version or fetch new chunks from the other host. Silo
uses a similar protocol to delta-encode the transmission
of previously viewed web pages.

3 Silo Architecture

Ideally, the Silo protocol would be implemented as
an extension to HTTP, and commodity web servers and
browsers would ship with native Silo support. However,
to ease deployability, our current Silo architecture lever-

102

WebApps ’10: USENIX Conference on Web Application Development

ages JavaScript to execute on unmodified browsers. Web
servers must still be modified, but this is much less oner-
ous than modifying millions of end-user browsers.

Our Silo architecture consists of three components:
a Silo-aware web server, an unmodified client browser,
and a JavaScript shim that is generated by the server and
which implements the client side of the Silo protocol. In
this section, we describe this architecture in more detail.
We also describe several optimizations to the basic Silo
protocol; some of these optimizations mask performance
issues in current JavaScript engines, and others leverage
cookies to reduce the number of RTTs needed to con-
struct a page.

Silo’s goal is to reduce the time needed to assem-
ble a page’s HTML, CSS, and JavaScript. Borrowing
Firefox’s event terminology, we refer to this time as the
page’s DOMContentLoaded time [15]. Fetching a
page’s HTML, CSS, and JavaScript is necessary but of-
ten insufficient to produce a fully functioning page. For
example, pages often contain multimedia files which are
not amenable to Silo-style delta encoding. Silo is orthog-
onal to techniques for improving the load times of these
objects. We return to this topic when we describe our
evaluation methodology (§4.1).

3.1 The Basic Protocol

Figure 1(a) depicts how a web page is constructed us-
ing the standard HTTP 1.1 protocol. The browser first
retrieves the HTML for the page. As it parses the file,
it issues parallel fetches for the externally referenced ob-
jects. In Figure 1(a), we assume that the client cache
is empty, and that the browser can issue two fetches in
parallel. Thus, the browser must use three HTTP round
trips to construct the page (one to send the initial GET,
and two to download the external objects).

Figure 1(b) depicts how a Silo-enabled page is fetched.
The browser issues a standard GET for the page, but the
web server does not respond with the page’s HTML.
Instead, the server sends a small piece of JavaScript
which acts as the client-side participant in the Silo pro-
tocol. The JavaScript shim contains an array called
pageCids; this array lists the ids of the chunks in the
page to construct. The shim inspects the client’s DOM
storage to determine which of these chunks do not re-
side locally. The shim uses a synchronous AJAX POST
to send the missing chunk ids to the server. The server
replies with the raw data for the missing chunks. The
client assembles the relevant chunks and overwrites the
page’s current HTML, reconstructing the original inlined
page. In this fashion, the basic Silo protocol uses two
HTTP round trips to fetch an arbitrary number of HTML,
CSS, and JavaScript files.

<html>
<script>
/+xCode for Silo shimx/
</script>
<style type=text/css>
/*Inlined css for a.cssx/
</style>
<script>
/*Inlined JavaScript for d.jsx/
</script>
</html>
<!-—- Chunk manifest
cid0, offset0, lenO
cidl, offsetl, 1lenl

———>

Figure 2: When the client chunk cache is empty, the
Silo server responds with inlined HTML which is im-
mediately usable by the browser. The client shim asyn-
chronously parses the chunk manifest at the bottom of
the HTML and updates the local chunk cache.

3.2 Optimizations

Handling Cold Client Caches: At any given moment,
40%—60% of the users who visit a page will have no
cached data for that page [25]. However, as shown in
Figure 1(b), a Silo server does not differentiate between
clients with warm caches and clients with cold caches—
in either case, the server’s second message to the client
is a string containing raw data for NV chunks. If the client
has an empty cache, it must synchronously perform N
substring operations before it can extract the /N chunks
and recreate the inline page. In current browsers, this
parsing overhead may be hundreds of milliseconds if in-
lined pages contain hundreds of KB of data (and thus
hundreds of chunks).

To improve load times in these situations, Silo sends
a different second message to clients with empty chunk
caches. Instead of sending raw chunk data that the client
must parse before it can reconstruct the page, the server
sends an inlined version of the page annotated with a
special chunk manifest at the end (see Figure 2). The
chunk manifest resides within an HTML comment, so
the client can commit the annotated HTML immediately,
i.e., without synchronously performing substring opera-
tions. Later, the client asynchronously parses the man-
ifest, which describes the chunks in the inlined HTML
using a straightforward offset+length notation. As the
client parses the manifest, it extracts the relevant chunks
and updates the local chunk cache.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 103



<script>

pageCids = ['f4fd", "b21f, ...];

missingChunks = {'f4f2": ‘rawData0",
‘4c2d’: ‘rawData1’,

-k
overwriteHTML(pageCids);
updateChunkCache(missingChunks);
updateCookie(missingChunks);
</script>

Figure 3: Single RTT Silo protocol, warm client cache.

Leveraging HTTP Cookies: Silo uses cookies (§2.2.2)
in two ways to reduce the number of HTTP round trips
needed to construct a page. First, suppose that a client
has an empty chunk cache. Even if the server uses anno-
tated HTML to eliminate synchronous client-side string
operations, the client must expend two HTTP round trips
to construct the page. However, the client shim can set a
“warm cache” variable in the page’s cookie whenever it
stores chunks for that page. If the server does not see this
cookie variable when the client sends the initial HTTP
GET operation, the server knows that the client chunk
cache is cold, either because the client has never visited
the page before (and thus there is no cookie), or the client
has visited the page before, but the local cache is empty
for some other reason (e.g., because previous writes to
DOM storage failed due to a lack of free space). Regard-
less, the server responds to the initial HTTP GET with
annotated HTML. This allows a Silo client with a cold
cache to fetch all of the HTML, CSS, and JavaScript in a
single HTTP round trip.

Clients with warm caches can also use cookies to in-
dicate the contents of their cache. Whenever the client
shim updates the chunk cache for a page, it can add the
new chunk ids to the page’s cookie. The next time that
the browser requests the page, the server can inspect the
cookie in the initial HTTP GET and determine which
page chunks already reside on the client. The server can
then directly respond with the Silo shim and the missing
chunks, eliminating the second HTTP round trip required
by the basic Silo protocol.

Browsers typically restrict cookie sizes to 4 KB, the
minimum cap allowed by RFC 2109 [10]. SHA1 hashes
are 20 bytes, so a cookie could hold a maximum of 204
SHAT1 chunk ids. If chunks are 2 KB on average, then

a cookie could reference a maximum of 408 KB of lo-
cal chunk cache data. For many popular web pages, 408
KB is sufficient to delta-encode several versions of the
page (§4.3). However, some pages are so big that even a
single snapshot of their HTML, CSS, and JavaScript will
not fit in 408 KB of chunk-addressable storage. Fortu-
nately, Silo can expand the addressable range by lever-
aging the fact that Silo servers have complete control
over chunk names. Name-by-hash allows different ma-
chines to agree on chunk names without a priori commu-
nication, but Silo clients never assign chunk ids—servers
always determine the mapping between chunk ids and
chunk data. Thus, servers can use ids that are much
shorter than SHA1 hashes. For example, a server could
assign each new, unique chunk a strictly increasing 3
byte id. Since client-side DOM storage is partitioned by
domain, these ids only have to be collision-free within a
domain, not the entire Internet. With 3 byte ids, a domain
could define over 16 million unique chunks before hav-
ing to “reset” the namespace. A 4 KB cookie could store
1365 of these 3 byte ids. With 2 KB chunks, this would
allow clients to name roughly 2.7 MB of local cache data.
As we show in Section 4.3, 2.7 MB of storage should be
more than sufficient to delta-encode multiple versions of
a page’s HTML, CSS, and JavaScript.
Finally, we note that Silo is agnostic to the specific
method in which data is chunked. Indeed, websites are
free to pick the granularity of caching that best suits their
needs. For example, if a web site knows that its HTML
evolves in a structured way, it can define an HTML-
specific chunking function for its pages. Alternatively,
a site could decide to chunk at the whole file level, i.e.,
with each CSS and JavaScript file residing in its own sin-
gleton chunk. Silo is not bound to a specific chunking
mechanism—it merely leverages chunking to provide in-
lining without destroying the cacheability of individual
objects.
The Full Protocol: Given all of these optimizations,
we now describe the full version of the Silo protocol. We
separate our description into two cases: when the client
has a cold chunk cache, and when the client has a warm
cache.
e Cold cache: The client generates an HTTP GET re-
quest for a page, sending a cookie which indicates
a cold cache. The server responds with annotated
HTML as shown in Figure 2. The browser commits
the annotated HTML immediately; asynchronously,
the Silo shim parses the chunk manifest, extracts the
associated chunks, and writes them to DOM stor-
age. In this scenario, Silo needs one HTTP round
trip to assemble all of the page’s HTML, CSS, and
JavaScript.

o Warm client cache: The client generates an HTTP
GET request for a page, sending a cookie which in-

104

WebApps ’10: USENIX Conference on Web Application Development

dicates a warm cache. If the client can fit all of the
local chunk ids within the cookie, it can receive the
Silo shim and the missing chunk data in a single
server response (see Figure 3). Otherwise, it falls
back on the basic, two RTT Silo protocol depicted
in Figure 1(b).
As we show in the evaluation section, Silo’s primary ben-
efit is to reduce load times for clients with cold caches;
client with completely warm caches have no fetch laten-
cies to mask. However, for clients with only partially
warm caches, Silo reduces the fetch penalty since an ar-
bitrary number of stale objects can be updated using at
most two HTTP round trips. Furthermore, if pages use
fine-grained chunking, data can be invalidated at a much
finer level, reducing the fetch bandwidth in addition to
the fetch latency.

3.3 Other Design Decisions

When a client has a partially warm cache, Silo asyn-
chronously writes new chunks to disk. As we show in
Section 4.2, Firefox’s writes to DOM storage can require
more than a hundred milliseconds. Thus, to avoid fore-
ground resource contention during the page load, Silo
synchronously extracts in-memory versions of the new
chunks needed to assemble the page, but it always defers
writes to stable storage for a few seconds (our current
prototype waits 5 seconds).

The regular browser cache stores data belonging to
<script> tags. These tags can store arbitrary data
as JavaScript strings. Thus, Silo could use the standard
browser cache as a chunk store by writing blobs to scripts
whose names were chunk ids. At first glance, this ap-
proach seems attractive since it obviates the need for a
separate chunk cache, and it would work on unmodi-
fied browsers. However, browsers provide no way for
JavaScript applications to explicitly insert data into the
cache. Instead, applications implicitly warm the browser
cache as a side-effect of fetching external data. Even
simple web pages will likely contain at least a few tens of
chunks; thus, a client which wanted to store these chunks
using <script> tags would have to issue a large num-
ber of HTTP requests. This would obviously lead to huge
increases in page load times. Thus, <script> tags are
a poor substitute for DOM storage.

4 Evaluation

In this section, we evaluate Silo by serving real web
content from a Silo deployment on PlanetLab. We
demonstrate that Silo can substantially improve load
times for pages with large amount of CSS and JavaScript.
We also provide an analysis of how content chunks
evolve within the same page and across different pages.

4.1 Methodology

Gathering and Serving Real Web Data: For our Silo-
aware web server, we used a modified version of the
Mugshot replay proxy [13]. Mugshot is a system for
capturing and replaying the behavior of JavaScript-based
web applications. A browser-side Mugshot JavaScript li-
brary records the bulk of the nondeterminism like GUI
activity and calls to the random number generator. A
special Mugshot proxy sits between the real web server
and the browser; this proxy records the binding between
the URLSs in client HTTP requests and the data that is re-
turned for those URLs. Later, at replay time, Mugshot
uses the replay proxy as a web server, letting it respond
to data requests from the replaying client code. This en-
sures that the data fetched at replay time is the same data
that was fetched at logging time.

To test the Silo protocol, we first ran the Mugshot
proxy in its standard logging mode, capturing HTTP
headers and data from real websites. We then switched
the proxy into replay mode and had clients use it as their
web proxy. When clients requested a page whose con-
tent we previously logged, the proxy served that page’s
objects directly from its cache. We modified the replay
mode to support the Silo chunking protocol described in
Section 3.2. Thus, we could simulate Silo’s deployment
to an arbitrary web site by logging a client’s visit to that
site, clearing the client-side cache, and then revisiting the
page in Silo-enabled replay mode.

Experimental Setup: Our experimental setup consisted
of a client machine whose browser fetched content from
a Silo-aware web server. The client browser resided on
a Lenovo ThinkPad laptop running Windows 7. The lap-
top had an Intel Core 2 Duo with 2.66 GHz processors
and 4GB of RAM. The server ran on a PlanetLab node
with a 2.33 GHz Intel Core Duo and 4 GB of RAM. The
client communicated with the server over a residential
wireless network. Across all experiments, the RTT was
stable at roughly 150 ms, and the bandwidth varied be-
tween 700-850 Kbps. Thus, network conditions were
similar to those experienced by typical cable modems
or DSL links. In the results presented below, we used
the Firefox 3.5.7 browser, but the results for IES were
similar. We present Firefox results because IE8 does not
yet define the DOMContentLoaded event, whose us-
age we describe shortly. Silo using Rabin chunking with
an expected chunk size of 2 KB.

In real life, when a browser loads a page, it opens mul-
tiple simultaneous connections to multiple servers and
proxies. In our experimental setup, the client browser
fetched everything from a single Mugshot proxy. To en-
sure that we did not unduly constrain fetch parallelism,
we configured Firefox to open up to sixteen persistent
connections to a proxy instead of the default of eight.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 105



1500 229%*

20%

1000

o
x Other
500 mcss
OJavaScript
0 EHTML
°
43°
&Qr
N
N

(a) Content type by byte size. xWordpress blog contains 5.1 MB.

6.7% 37%
150 .
219 41%
2
o
= 100
o 21% 339 Other
‘G o 7:3% 27%
= 50 43% 41% 23% mCSS
OJavaScript
0 EHTML
O @ & ¢ FE S AR e
FLFL TS EL
@L;: ‘%_\Q & Aa N & L
SRS &S
& °

(b) Content type by fraction of objects.

Figure 4: Content statistics for several popular web pages. Top-level fractions are the percentage of content that is

potentially inlineable (HTML+CSS+JavaScript).

100%

g = O DOMContentLoaded
£ 9
T 75% M Load
- 3
§ &
s 50%
S c
Q
o O
o 8 25%
St
0%
IR S P ) S N R
2%’ & F TS FEE LS
& @i‘"\ <& @‘\é éé
S &
&

(a) Cold cache.

100%

o O DOMContentLoaded
£ c
-,:.g 75% H Load
T 5
s
S a9
> £ 50%
S 2
S g 25%
E s ’
s
s 0%
QD @ e & AR NS I o
2%, & F o & & FE &
, & ‘
N <
&

(b) Warm cache.

Figure 5: Page load times.

In an actual Silo deployment, a web server would al-
ways compress the chunk manifests that it sent to clients.
However, we found that many web servers do not com-
press the HTML and the CSS that they transmit 2. To
provide a fairer comparison, the Silo server only gzip-
ed its chunk manifest if the logged HTML page was also
compressed. Our Silo server also closed persistent con-
nections whenever the logged persistent connection was
closed.

Defining Load Time: One of Silo’s benefits is that it re-
duces page load time. The intuition is straightforward—
by decreasing the number of round trips needed to con-
struct a page, the browser spends less time stalling on the
network and builds pages faster. Unfortunately, provid-
ing a precise definition of load time is difficult.

At the end of the exchanges shown in Figures 1(a) and
(b), the page’s HTML, JavaScript, and CSS have been
fetched and parsed. The browser has calculated the lay-
out and presentation format of the content, but it may not
have fetched some of this content. In particular, multime-
dia objects like images and advertisements may or may
not have been downloaded in parallel with the DOM con-

2JavaScript is rarely sent compressed since several browsers have
buggy decompression routines for scripts.

tent. Thus, the “full” page load may not coincide with the
completion of the DOM load.

To further complicate matters, some sophisticated web
pages use JavaScript code to defer certain fetches. For
example, upon initial load, some sites defer the fetching
of content at the (not yet scrolled-to) bottom of the page.
Some pages also split their fetches into a lightweight
“top-half”” which quickly displays visual elements, and a
more heavyweight “bottom-half” which grabs the large
resources that are actually represented by the GUI ele-
ments. Defining load times in these cases is difficult—
the initial page load may seem quick, but if users try to
access the rich data too quickly, they may experience a
second, more painful load time.

Firefox issues the DOMContent Loaded JavaScript
event when it has fetched all of a page’s HTML, CSS,
and JavaScript. It fires the 1oad event when all of
the page’s content has been fetched. Silo definitely re-
duces the time to DOMContentLoaded; in the sim-
ple example of Figure 1, this time is reduced from three
RTTs to two. Silo typically reduces the time to Load as
well. However, for any given page, 1oad time is usu-
ally heavy-tailed [17, 19, 27]. This is caused by a vari-
ety of events, such as random network congestion which
slashes throughput for some TCP connections, or heav-

400

DOM Storage Writes
(ms)

o @ & 8 & & A LR e
¥ QX PSS
A S S & S

& T © S8
S &

Figure 6: DOM storage write overheads.

ily loaded servers for widely shared third-party images or
advertisements. Techniques for optimizing load times for
multimedia files, e.g., through image spriting [23], are
complimentary but orthogonal to Silo. However, for the
sake of completeness, our results in Section 4.2 describe
Silo’s impact on both DOMContentLoaded time and
load time.

4.2 Reducing Page Load Times

Figure 4 shows the content statistics for several pop-
ular web pages. It is interesting to note the size of the
JavaScript files; as shown in Figure 4(a), many websites
have hundreds of KB of JavaScript code, and JavaScript
makes up more than 60% of the byte content for the front
pages of Wikipedia, BBC, and CNN. This result is per-
haps counterintuitive, since modern web applications are
popularly characterized as being multimedia-heavy. This
conventional wisdom is certainly true, but it does un-
derestimate the pervasiveness and the size of JavaScript
code.

Whereas Figure 4(a) breaks down content type by byte
size, Figure 4(b) describes content type by object count.
Viewed from this perspective, there are fewer opportu-
nities for inlining. For example, in the popular DavisW
Wordpress blog, 22% of all bytes are HTML, but only
6.7% of distinct objects are HTML. Similarly, in the
BBC front page, 69% of all bytes belong to HTML,
JavaScript, and CSS, but only 27% of the total objects are
inlineable. The number of distinct objects governs the
number of HTTP requests needed to build a page. Thus,
the difference between Figure 4(a) and (b) may seem to
doom any efforts to reduce load times through inlining.
However, web designers typically structure pages such
that the most important objects load first. For example,
code for ad-generation may load asynchronously, and
embedded movie players often do not start to prefetch
data until the rest of the page has loaded. Thus, Silo still
has many opportunities to reduce load times.

Figure 5 shows how quickly Silo-enabled pages load
in comparison to their “standard” versions. Silo’s benefit

is measured as the fraction of the standard load time that
Silo eliminates. The best achievable reduction is 100%,
and negative percentages are possible if a Silo page loads
slower than its standard counterpart. Figure 5(a) depicts
Silo’s performance when client caches are empty, i.e.,
we compare a Silo page load with an empty chunk cache
to a load of the regular page when the standard browser
cache is empty. In five of the eleven websites, Silo re-
duces DOMContentLoaded times by 25% or more.
The other sites have fewer synchronous object fetches
on the critical path for page loading, so Silo-enabled
versions of these pages load no faster, or even slightly
slower due to Silo’s computational overheads. However,
Silo generally does little harm, and often provides non-
trivial benefits.

Unsurprisingly, Figure 5(a) shows that Silo re-
duces DOMContentLoaded times more than it re-
duces load times. However, we emphasize that
the DOMContentLoaded event represents the earliest
point at which a page is ready for human interaction, so
minimizing DOMContentLoaded time is worthwhile.
We also note that for five of the eleven sites, Silo also
reduces 1oad times by 20% or more.

Figure 5(b) shows load times when clients have warm
caches and Silo uses the single RTT protocol described
in Figure 3. In all cases, caches were warmed with data
from 9 AM on May 11, 2010, and browsers were sub-
sequently directed towards replayed page content from
an hour later. Silo generally provides few benefits when
caches are warm—few (if any) new objects must be
fetched, so there are fewer network round trips for Silo
to mask. However, Silo did provide a large benefit to the
Wordpress site, since the small change in HTML content
necessitated the transfer of the entire 1 MB file in the
standard case, but only a few chunks in Silo’s case. In
this scenario, Silo reduced latency not by hiding a round
trip, but by dramatically reducing the amount of data that
had to be shipped across the wide area.

Silo reads from DOM storage to gather locally cached
chunks, and it writes to DOM storage to cache new
blocks sent by the server. In Firefox’s current imple-
mentation of DOM storage, even small reads and writes
are fairly expensive, with writes being two to five times
slower than reads. Figure 6 shows Silo’s write through-
put for committing all of a page’s chunks, showing that
this operation, undertaken when clients have completely
cold caches, generally requires 50-150 ms. The DOM
storage API is a new browser feature that is currently
unused by most sites, but we expect its throughput to im-
prove as the API becomes more popular and browser im-
plementers have a stronger motivation to make it fast.

106

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 107



700 2.8%

5 600
=
= 500
-
Y 400
& 300
g' 200 23% A B New KB
@ 100 15% DOld kB
0
o(,\'z,e,\z(Jéés\%«(»s
O 2> &
';& ‘\erx %VQQ Fr S & \®Q «0605\@
G N
o«b &‘$
Figure 7: Byte turnover: 1 hour.
—. 700 0.1% 7.3%
w
5 600 e
g 0 8.1%
o
T 400
‘:’ 300 0.1%
7 41%
T 200 26% m New KB
2 6% . 0% oo 15%
= 100 ° H DOld KB
g ,mAnnll A
G @ 2 A D A DK o
FE FE TS FE P
G &
&L <

Figure 8: Byte turnover: 12 hours.

4.3 Turnover Rates for Inlineable Data

Figures 7, 8, and 9 show how inlineable page con-
tent evolved over a 24 hour period starting at 9:30 AM
on Friday, January 8, 2010. These results show that
byte turnover varies widely across pages. For example,
the Apple website showed no variation at all during this
particular period. The Wordpress blog also showed lit-
tle change, since the bulk of its content consisted of a
large HTML file with minimal deltas and a set of static
CSS. In contrast, the New York Times site had 21% of
its chunks replaced in an hour; after a day, almost half
of the chunks were new. The Wikipedia front page had
a similar level of turnover, since it also rotates top-level
stories frequently. Interestingly, despite it high level of
visual turnover, CNN only generated 2.8% new chunks
in an hour, and 7.6% new chunks over the period of a
day. This is because CNN contained large amounts of
stable JavaScript and CSS (see Figure 4).

During the observation period, most byte turnover re-
sulted from changes to a page’s HTML. However, CNET,
CNN, and the New York Times occasionally added or
deleted JavaScript files which managed advertisements.
CNN also replaced a 522 byte chunk in a CSS file.

Figure 10 depicts the level of byte sharing between
different pages in the same domain. We distinguish be-
tween a top-level front page, e.g., www.cnn.com, and
a second-level page which is directly referenced by the
front page. Figure 10(a) depicts the average similarity

_ 700 7.6%
w
£ 600
=]
<= 500
-
G 400
% 300 0.1%
g 200 4% mNewKs
= 100 oold KB
X 9
‘0\0% Q,&’b '1&% Q\z Q)%L éé @é ‘27’2'* @QQ’ s&‘»@e’%
o0 & & W C TN O
& ¥ f KSR
)
@Q S

Figure 9: Byte turnover: 24 hours.

of five random second-level pages to each other, whereas
Figure 10(b) shows the average similarity of these pages
to the front page. These results show that second-level
pages have more in common with each other than with
their front pages. However, the CNN and CNET front
pages offer significant opportunities for clients to warm
their chunk caches for subsequent second-level page
views.

When examining the second-level New York Times
pages, Silo reported a large amount of redundant data.
Upon checking Silo’s log files, we discovered that each
page repeated the same <script> tag four times.
The script was a piece of advertising management code
hosted by a third party. Its multiple inclusions were
apparently harmless in terms of the page’s behavior,
but scripts are obviously not required to be idempotent.
Thus, Silo’s chunking scheme is useful for alerting con-
tent providers to potentially unintended duplication of
scripts.

5 Related Work

Silo’s most direct inspiration was LBFS [16], a net-
work file system layered atop a distributed chunk store.
In LBFS, each file is represented as a set of Rabin-
delimited chunks. Clients and servers maintain an index
of locally stored chunks. Whenever hosts must exchange
files, they transfer chunk manifests indicating the data
involved in local file operations; a host only fetches raw
chunk data if no local copy exists.

Silo uses the advanced programming environment of
modern browsers to implement an LBFS-like protocol
atop HTTP. Value-based Web Caching [20] has a sim-
ilar goal. VBWC introduces two new proxies, one in-
side the network belonging to an ISP, and another on the
client. The browser issues web requests through the local
proxy, and the local proxy engages in an LBFS protocol
with the ISP proxy, which fetches and chunks web con-
tent. Unlike Silo, VBWC requires modification to client
machines, hindering deployability. VBWC also does not

108

WebApps ’10: USENIX Conference on Web Application Development

8.9%
600 15%

400

KB in SLP
(A w.r.t. Different SLP)

16%
W New KB
9
200 Q!SA: 26% D oold KB
. el |
\N\\éxved‘a 8 ot o v\ﬂ'\‘“es

(a) Similarity of two second-level pages.

40%
600 29%

400 82%

65% W New KB
200 100%
E ﬁ/ Told KB
0 T T |

\N\\éxved‘a 8¢ ot o e

KB in SLP
(A w.r.t. Front Page)

(b) Similarity of front page and second-level page.

Figure 10: Intra-domain page similarity. Top-of-bar fractions are the percentages of new content.

exploit object inlining to reduce the volume of HTTP re-
quests issued by the client.

A variety of other projects have explored delta-
encoding for web traffic. For example, Douglis studied
the degree of similarity between different pages on the
same site [5]. Chan described how objects that already
reside in a browser cache can act as reference objects
for delta-encoding new files [3]. Savant extended both
lines of research, showing that delta-encoding of HTML
files from the same site can achieve compression ratios
of greater than 80% [21].

Web developers can reduce user-perceived load times
by deferring the fetches for components which are
not immediately needed. For example, Yahoo Im-
ageLoader [29] provides a JavaScript framework for de-
laying the load of images that the user will not need
within the first few seconds of viewing the page; such
images might be positioned beneath the initially visible
portion of the page, or they might only be needed if the
user performs a certain action. The Doloto [12] tool pro-
vides a similar service for JavaScript code. Doloto ana-
lyzes a pages JavaScript behavior and identifies two sets
of code: code which is invoked immediately, and code
which is used infrequently, or only used a few seconds
after the initial page load. After collecting this work-
load data, Doloto rewrites the application code, loading
the former code set at page initialization time, and lazily
downloading the latter set, only fetching it on demand
if its functionality is actually needed. Silo is orthogo-
nal to projects like ImageLoader since its delta-encoding
does not apply to multimedia files. Silo is complimentary
to projects like Doloto since Silo can reduce the transfer
time of any JavaScript that Doloto labels as “immediately
necessary.”

6 Conclusions

Slow web pages frustrate users and decrease revenues
for content providers. Developers have created various
ways to defer or hide fetch latencies, but perhaps the
most effective technique is the most straightforward: re-
ducing the number of HTTP requests required to build

a page. Unfortunately, this strategy presents content
providers with a quandary. They can reduce the num-
ber of objects in each page, but this can negatively im-
pact the rich content of the page. Alternatively, the con-
tent provider can inline the bodies of previously exter-
nal JavaScript and CSS files. However, this destroys the
cacheability of these files, since standard browser caches
only store objects named via external URL pointers.

In this paper, we introduce Silo, a new framework
for reducing load times while preserving cacheability.
Silo exploits JavaScript and DOM storage to implement
a delta-encoding protocol atop standard HTTP. Using
the Silo protocol, a web server can aggressively inline
JavaScript and CSS without fear of losing cacheabil-
ity. Indeed, since Silo has complete control over its
DOM storage cache, it can provide a finer granularity of
caching than that provided by the browser. Silo’s client-
side component consists of standard JavaScript, meaning
that Silo can be deployed to unmodified browsers. Ex-
periments show that Silo’s inlining and chunking proto-
col can reduce load times by 20%—-80% for pages with
large amounts of JavaScript and CSS. Additionally, a
Silo web server’s chunking facilities, in concert with its
ability to record HTTP sessions, provide a useful plat-
form for studying the turnover rate of data in web pages.

References

[1] AKAMAI TECHNOLOGIES. Akamai Reveals 2 Sec-
onds as the New Threshold of Acceptability for eCom-
merce Web Page Response Times, September 14
2009. http://www.akamai.com/html/about/
press/releases/2009/press_091408.html.

[2] CHAKRAVORTY, R., BANERJEE, S., CHESTERFIELD,
J., RODRIGUEZ, P., AND PRATT, I. Performance Op-
timizations for Wireless Wide-area Networks: Compar-
ative Study and Experimental Evaluation. In Proceed-
ings of Mobicom (Philadelphia, PA, September 2004),
pp- 159-173.

[3] CHAN, M. C., AND W00, T. Cache-based Compaction:
A New Technique for Optimizing Web Transfer. In Pro-
ceedings of INFOCOM (New York, NY, March 1999),
pp- 117-125.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 109



(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

DixoN, P. Shopzilla Site Redesign: We get what we
measure. In Presentation at O’Reilly Conference on Web
Performance and Operations (June 2009).

DouagLis, F., AND IYENGAR, A. Application-specific
Delta-encoding via Resemblance Detection. In Proceed-
ings of USENIX Technical (San Antonio, TX, June 2003),
pp. 113-126.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK,
H., MASINTER, L., LEACH, P., AND BERNERS-LEE,
T. Hypertext Transfer Protocol —- HTTP/1.1. RFC 2616
(Draft Standard), June 1999.

FLANAGAN, D. JavaScript: The Definitive Guide, 5 ed.
O’Reilly Media, Inc., 2006.

GOOGLE. Gears: Improving Your Web Browser. http:
//gears.google.com/, 2008.

GOOGLE. AdWords: How does load time affect my land-
ing page quality? http://adwords.google.com/
support/aw/bin/answer.py?answer=87144,
20009.

KRISTOL, D., AND MONTULLI, L. HTTP State Man-
agement Mechanism. RFC 2109 (Draft Standard), Febru-
ary 1997.

LiN, X.-Z., Wu, H.-Y., ZHU, J.-J., AND WANG, Y.-
X. On the Performance of Persistent Connection in Mod-
ern Web Servers. In Proceedings of the ACM Symposium
on Applied Computing (Fortaleza, Ceara, Brazil, March
2008), pp. 2403-2408.

LIvsHITS, B., AND KICIMAN, E. Doloto: Code Split-
ting for Network-Bound Web 20 Applications. In Pro-
ceedings of SIGSOFT Symposium on the Foundations of
Software Engineering (2008), pp. 350-360.

MICKENS, J., HOWELL, J., AND ELSON, J. Mugshot:
Deterministic Capture and Replay for JavaScript Appli-
cations. In Proceedings of NSDI (San Jose, CA, April
2010).

MILIAN, M. What’s powering Web apps: Google
waving goodbye to Gears, hello to HTMLS.
In Los Angeles Times (November 30 2009).

http://latimesblogs.latimes.com/
technology/2009/11/google—gears.html.

MoziLLA DEVELOPER CENTER. Gecko-Specific DOM
Events. https://developer.mozilla.org/
en/Gecko-Specific_DOM_Events.

MUTHITACHAROEN, A., CHEN, B., AND MAZIERES,
D. A Low-bandwidth Network File System. In Proceed-
ings of SOSP (Banff, Canada, October 2001), pp. 174—
187.

OLSHEFSKI, D., NIEH, J., AND AGRAWAL, D. Inferring
Client Response Time at the Web Server. In Proceed-
ings of SIGMETRICS (Marina del Rey, CA, June 2002),
pp. 160-171.

RABIN, M. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in Com-
puting Technology, Harvard University, 1981.

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

RAJAMONY, R., AND ELNOZAHY, M. Measuring
Client-Perceived Response Times on the WWW. In Pro-
ceedings of USITS (San Francisco, CA, March 2001).

RHEA, S., LIANG, K., AND BREWER, E. Value-Based
Web Caching. In Proceedings of the World Wide Web
Conference (Budapest, Hungary, May 2003), pp. 619-
628.

SAVANT, A., AND SUEL, T. Server-Friendly Delta Com-
pression for Efficient Web Access. In Proceedings of
the International Workshop on Web Content Caching and
Distribution (Hawthorne, NY, September 2003).

SINGHAL, A., AND CuTTS, M.
ing site speed in web  search
http://googlewebmastercentral.
blogspot.com/2010/04/
using-site-speed-in-web-search-ranking.
html, April 9 2010.

SOUDERS, S. High Performance Web Sites: Essential

Knowledge for Front-End Engineers. O’Reilly Media,
Cambridge, MA, 2007.

SOUDERS, S. Loading Scripts Without Blocking. In
High Performance Web Sites blog (April 27 2010).
www.stevesouders.com/blog/2009/04/27/
loading-scripts-without-blocking.

Us-
ranking.

THEURER, T. Performance Research, Part 2: Browser
Cache Usage—Exposed! In Yahoo User Interface Blog
(January 4 2007). yuiblog.com/blog/2007/01/
04/performance-research-part-2.

W3C WEB APPS WORKING GROUP. Web Stor-
age:  W3C Working Draft. http://www.w3.
org/TR/2009/WD-webstorage-20091029, Oc-
tober 29 2009.

WELSH, M., CULLER, D., AND BREWER, E. SEDA:
An Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of SOSP (Chateau Lake Louise,
Canada, October 2001), pp. 230-243.

WORLD WIDE WEB CONSORTIUM. Document Object
Model. http://www.w3.org/DOM, 2005.

YAHOO! YUI2: ImageLoader. http://developer.
yahoo.com/yui/imageloader, 2010.

110

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association



Pixaxe: A Declarative, Client-Focused Web Application Framework

Rob King
Principal Researcher, TippingPoint DVLabs

Abstract

This paper provides a brief introduction to and overview
of the Pixaxe Web Application Framework (“Pixaxe”).
Pixaxe is a framework with several novel features, in-
cluding a transparent template system that runs entirely
within the web browser, an emphasis on developing rich
internet applications as simple web pages, and pushing as
much logic and rendering overhead to the client as possi-
ble. This paper also introduces several underlying tech-
nologies of Pixaxe, each of which can be used separately:
Jenner, a completely client-side template engine; Esel, a
powerful expression and query language; and Kouprey, a
parser combinator library for ECMAScript.

1 Introduction

There has been an explosion of frameworks for the
building of Rich Internet Applications (RIAs). Frame-
works exist using every popular (and unpopular) pro-
gramming paradigm, language, and server side technol-
ogy. Frameworks range in complexity from a simple
JavaScript libraries that merely ease the handling of nor-
mal DOM events to frameworks that completely abstract
away HTML and JavaScript. Some frameworks run en-
tirely on the client, while others require considerable
server side support.

This paper describes the Pixaxe Web Application
Framework (‘“Pixaxe”). Pixaxe is interesting in that it
focuses on creating web pages using a powerful, func-
tional expression language that is a superset of normal
XHTML. The compiler and virtual machine for this lan-
guage is implemented entirely in ECMAScript and runs
entirely within a web browser. By evaluating these ex-
pressions, web pages are rendered, inputs are validated,
and client-server communication is initiated.

Pixaxe’s other interesting features include a complete
parser combinator library running entirely within a web
browser, an extremely server agnostic design (more so

than most “server agnostic” frameworks), an extremely
easy to use Model-View-Controller (MVC) design, and a
very bandwidth-frugal design that transmits a page only
once and then transmits only changes to interesting data.

Pixaxe was deisgned to be very useful in developing
web interfaces for legacy applications, or in other situ-
ations where the web interface is not the primary inter-
face to a set of data. It was also designed to be very
efficient in the use of server resources, by limiting re-
quired bandwidth and performing as much computation
and rendering on the client as possible. In fact, Pixaxe re-
quires nothing more of a server than the ability to serve
static files.

In feel, Pixaxe is closest to XForms [9] !, in that it
views web pages as declarative interfaces modifying lo-
cal models that can then be synchronized with servers
without reloading the page.

2 A Short Example

Unlike some other application frameworks, Pixaxe at-
tempts to keep web application development as close to
web page authoring as possible. It does not abstract away
HTML, CSS, or any other web technology but instead
encourages the developer to write directly in HTML us-
ing a declarative, template-driven approach. This al-
lows developers to leverage existing technologies to the
largest extent possible, and turns XHTML into a power-
ful interface description language (especially when using
the XSLT macros provided by Pixaxe, discussed in sec-
tion 3.5).

Figure 1 illustrates a simple example of a Pixaxe ap-
plication. When viewed in a web browser, this example
would be rendered as shown in Figure 2.

This example shows some interesting features of Pix-
axe: there are no explicit calls in any scripting language,
it looks like a normal XHTML document, and there are
some special template directives freely mixed with the
markup. What is unusual is that this page is rendered,

USENIX Association

WebApps 10: USENIX Conference on Web Application Development 111



Figure 1 A simple Pixaxe application.

<html>
<head>
<title>Simple Example</title>
<script type="text/javascript"
src="pixaxe.js" />
</head>

<body>
<p><b>A Two Color Gradient</b></p>
<table style="width: 100%;">
S{for 1 from 0 to 256 by 16 return
<tr>
${for j from 0 to 256 by 16 return
<td style="background:
rgb (0, ${j}, ${i});">
0,8{J},${1}
</td>
}
</tr>
}
</table>
</body>
</html>

Figure 2 Rendered output (in Apple Safari).

112

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

along with the special template directives, entirely by
the client. This page could be stored in a file on a lo-
cal filesystem and opened in a web browser, and it would
be rendered correctly.

This illustrates one of the core guiding principles of
Pixaxe development: all display and rendering should
be done by the client. This stems from the assump-
tion that the web interface is but one of many interfaces
to the same datasource. This example also provides a
sample of Pixaxe’s template syntax which is based on
a purely functional and side-effect-free expression lan-
guage known as Esel 2.

This example shows how Pixaxe integrates with other
technologies and encourages developers to write web
pages correctly and portably while still reaping the ben-
efits of Pixaxe.

3 Developing Rich Internet Applications
With Pixaxe

Pixaxe attempts to keep development of rich internet ap-
plications similar to the development classic web pages.
It integrates a classic Model-View-Controller MVC) de-
velopment paradigm (as described in [6]) and declarative
paradigm, but does not enforce this. Pixaxe itself views
a web page as two combined entities: a template and
a store. The template corresponds roughly to the view
portion of the MVC model, and the store corresponds
roughly to the model portion. The controller portion of
the MVC model (handling user input) is handled by a
combination of Esel expressions embedded in templates
(which validate the input and update the model) and the
store (which synchronizes the model with all interested
parties and instructs the page to re-render if necessary).

Brief overviews of the template language, store, han-
dling user input, and client-server communications are
presented below.

3.1 The Jenner Template Language

The template language of Pixaxe is known as Jenner. It
is capable of being used independently of Pixaxe as a
simple client-side template engine. (Jenner itself is a su-
perset of the Esel expression and query language, which
itself may be used independently of Jenner).

The Jenner template language is a full-fledged expres-
sion and data query language. Jenner expressions are
used to retrieve and optionally transform data from a
store and insert the results into the rendered page. Jenner
expressions can also be used to validate user input and
update the store when data changes.

Jenner’s syntax and semantics are similar to those of
Java’s Unified Expression Language (see [1]); these sim-
ilarities are intentional. While many small expressions

are valid in both languages, the two are different enough
to be considered generally incompatible.

Jenner has two different types of expressions: value
expressions and reference expressions. The name “value
expression” is perhaps misleading, since all Jenner ex-
pressions return a value, but it is useful to differentiate
between the two types of expressions.

3.1.1 Value Expressions

An Jenner value expression can take two forms: literal
and bracketed. A literal expression is used to declare a
single value, though this literal expression may contain
other subexpressions (which would be bracketed).

For example, these are all valid literal expressions:

42

Hello, World!
true

null

Each of the above expressions are, as are all expres-
sions in Jenner, typed. Jenner supports all primitive types
defined by ECMAScript, except for the undefined value
which is treated as equivalent to null.

Jenner also supports a special collection type, which is
roughly equivalent to an ECMAScript array. Jenner pro-
vides a powerful list comprehension syntax, discussed
below, for expressing collections.

A bracketed expression is one that begins with the spe-
cial sequence ${ and ends with the character }. Inside
these delimiters, other Jenner expressions may be em-
bedded, including other bracketed expressions. Within
these brackets, the full expression language is available.

Jenner supports most common operators, including
basic and modular arithmetic, boolean combination,
string concatenation, and a C-style trinary conditional
operator. Jenner also includes operators for testing set
membership and fast tests for empty strings and collec-
tions.

Jenner also supports variable lookups (but not assign-
ment). These can be written in a fashion similar to that of
ECMAScript. Variables are exported to the Jenner run-
time by the hosting environment; it is not possible to ac-
cess objects that are not directly referencable from these
exported variables.

As an example, this expression returns the sum of the
value of the aNumber variable and 1, if aNumber is
defined. If aNumber is not defined, null is returned:

${empty aNumber ? null : aNumber + 1}

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 113



Bracketed expressions may also contain function calls.
Functions cannot be defined in Jenner itself; they must
be exported by the hosting application. Functions can
be namespaced to avoid name collision. Jenner contains
by default a reasonable standard library of functions, but
developers are encouraged to write and share new collec-
tions of functions.

Perhaps the most interesting form a value expression
is Jenner’s list comprehension expression, known as a
FLWR expression. > FLWR expressions are used to cre-
ate Jenner collections and are also used to query collec-
tions of data by comprehending a collection of results
matching some predicate.

FLWR expressions always evaluate to a collection,
even if that collection is empty. FLWR expressions can
be viewed as iterative constructs, where a variable is as-
signed a numeric value from some lower bound to some
upper bound. For each iteration of this loop, the value
is incremented by an optional step expression or by one.
FLWR expressions provide lexical scoping — local vari-
ables can be declared that are visible only within the
body of a FLWR expression. For each value generated
by some generator expression, if it an optional condi-
tional clause evaluates to true, the value is added to the
resulting collection in order.

For example, this expression would create a new col-
lection consisting of all members of an array of strings
which are longer than three characters, with each result
capitalized:

for i from 0 to names.length - 1
var s := names[i]
where s.length > 3
return upper (s)

FLWR expressions are similar to the FLWOR expres-
sions of the XQuery language (see [8]); this similarity is
intentional.

3.1.2 Reference Expressions

Jenner also supports expressions that return a reference
to an object in the hosting application. References are
represented as a tuple consisting of an object reference
and a (possibly empty) property name of that object.

Reference expressions are delimited by #{ and }.
Within these delimiters, a subset of the full Jenner value
syntax is allowed; the result of the embedded expression
must be either null or an object with an optional property
name. Only objects exported from the hosting applica-
tion are vali.

This example expression would return a reference to
the object denoted by people.addresses with a
property name of 1:

#{people.addresses[1]}

Reference expressions cannot be mixed with value ex-
pressions and may not be embedded in other expressions;
they must be entirely standalone.

Reference expressions do not directly support assign-
ment; this is considered a feature. Instead, they may be
used by the hosting application as a target for assign-
ment, but the hosting application is free to use or not use
reference expressions in any way.

3.1.3 Node Expressions

Jenner also provides a node type. This provides a literal
syntax for elements which is identical to the XML syntax
for specifying elements. A node literal may be used in an
expression anywhere a literal is allowed.

Since nodes may contain other nodes and Jenner ex-
pressions, a web page can therefore be considered a sin-
gle large Jenner expression.

Node literals’ names must be specified directly; they
cannot be expressions. This applies as well to the names
of attributes in node literals. The contents of attributes
and nodes, however, can be any valid non-node Jenner
expression.

Jenner can leverage any expression. This has some
interesting consequences. For example, a conditional ex-
pression can be used to only render a node depending on
the state of the application. For example, this template
could be used to display a list of messages should any be
present:

<body>
${not empty msgs ?
<ul>
${for i from 0 to msgs.length - 1
return

<li style="text:
${msgs[i] .unread ?
"red’” : '"black’}">
${msgs[i]}
</1li>
}

</ul>

<p>No messages</p>}
</body>

Note the embedded Jenner expression inside the
style attribute of the 1i element.

Jenner’s template language is not particularly new or
unique; it bears large similarities to templates used by
Sun’s Java Server Pages (see [2]) or other server-side

114

WebApps ’10: USENIX Conference on Web Application Development

template systems. What makes Jenner interesting is that
all template evaluation and rendering is performed en-
tirely by the client. Jenner is believed to be the first
completely client-side template system in which markup
and template instructions can be freely mixed (other than
XSLT).

Jenner has some advantages over other client-side
template systems. For example, while most modern web
browsers support XSLT templates, there are no standard
ways to apply XSLT transformations multiple times;
generally the transformations are applied only once, at
page load. Jenner may re-render the page at any time.
Some other templating systems, such as JavaScriptMVC
# perform template evaluation and rendering entirely on
the client, but do not allow markup and template instruc-
tions to be freely mixed.

3.2 Storing Data

As stated above, Pixaxe loosely follows the MVC
paradigm for development. A single page has a view
component in the form of a Jenner template and a sin-
gle model in the form of a store. The store contains all
data that is relevant to the application at any given time.

Pixaxe keeps the store synchronized between all inter-
ested parties. When the data in the store changes, Pixaxe
calls Jenner to re-render the page. If the user performs an
action that results in client-server communication, Pix-
axe serializes the store and passes it to the server, and
then updates the store with the results of server process-
ing. If the user performs input that updates the store, the
page is re-rendered to reflect the new values.

When the store is serialized and sent to the server, the
server may make changes and send an updated version of
the store back to the client. The client can then re-render
the page to reflect the new values. Note that this asyn-
chronous transmission of the serialized store to and from
the server is the only client-server communication in Pix-
axe; the page itself is downloaded only once. This can
result in significant bandwidth savings, and also allows
for a very abstract server interface - client-server com-
munication is reduced to synchronizing a simple JSON
document.

Pixaxe integrates with Jenner by the simple expedi-
ent of setting the global store to be Jenner’s default envi-
ronment. Therefore, all but the simplest Pixaxe applica-
tions will contain something like this line somewhere in
a script element:

com.deadpixi. jenner.defaultEnvironment =
new com.deadpixi.pixaxe.Model (

Pixaxe tries to keep the creation of

the store as declarative as possible. The
com.deadpixi.pixaxe.Model constructor
takes two arguments: the first is a single object that
becomes the store. Developers are encouraged to write
this object using ECMAScript object literal syntax, to
keep to the declarative programming style as much as
possible. An optional second argument to the constructor
is a URL whose contents (which must be JSON, see [3])
will be loaded into the store after the page has finished
loading.

As an example, this might be the object used as the
store of a simple address book, with some potentially
useful initial values:

"addresses": [
{"name": "Rob",
"name": "jking@deadpixi.com"},
{"name": "Betsy",
"name": "betsy@example.com"}

This object would then be available to Jenner as
its default environment, and therefore expressions in
the template would have access to a variable called
addresses.

Alternatively, this object (which is expressed in JSON)
could be placed in a separate file, and a URL specify-
ing that file could be passed as the second argument to
the Model constructor. This would cause this file to be
loaded and merged with the store after the page has fin-
ished its initial load.

Note that the page is initialized only once, at page
load time. The page itself is never again transmit-
ted across the network, and there is no HTML form
style ‘“submit-reload” cycle. The store is synchro-
nized between client and server using the de facto stan-
dard XMLHttpRequest method, and the page is re-
rendered by re-evaluating the Jenner expression which
makes up the page.

3.3 Handling User Input

In keeping with Pixaxe’s goal of leveraging existing tech-
nology, Pixaxe using XHTML as a rich interface speci-
fication language. Standard XHTML form controls are
used to create input elements (possibly augmented by
XSLT macros, see section 3.5).

Input controls can be placed anywhere in a document.
If a control is placed inside of a form element, then ma-
nipulating the control will result in some type of syn-
chronization of the store with the server (note that this

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 115



does not mean a traditional XHTML form submission).
Controls outside of a form element result only in local
changes to the store (which may of course be synchro-
nized with the server later).

Pixaxe supports all HTML control elements, including
input, button, select, and textarea. Each of
these controls can be linked to the page’s store by placing
a reference expression in the element’s name attribute.
Pixaxe will then ensure that the value in the store and the
controls’s value are synchronized.

For example, this declaration would create a text in-
put element whose value would be placed in the name
property of the page’s store:

<input name="#{name}"
value="${name}" />

In this example, whenever the user activates a submis-
sion control, the page’s template is re-evaluated, render-
ing the input control with the current value of the name
variable in the store. Any change in the control’s value
by the user would be automatically placed into the store.
This synchronization between store, template, and user
allows for a very powerful and declarative method of in-
terface specification.

This gives rise to a very simple, two stage process for
the handling of input when the user-activated submis-
sion control is not part of a form. First, the page’s store
is updated such that all controls that reference the store
have their values placed in the store. The page is then
re-rendered.

For example, this page will automatically re-render to
display the current value of the name control whenever
the user activates the submit control:

<p>Hello, ${empty name ? ’Stranger’
name}</p>

<input name="#{name}" />

<input type="submit" value="0Ok" />

No client-server communication takes place when the
user activates the submit control in this example: the
store’s name variable is updated and the page is re-
rendered by re-evaluating its template locally.

To integrate form controls with Pixaxe, the semantics
of the standard attributes assigned to form controls is
overloaded. The meanings assigned to each attribute are
described below:

accept The optional accept attribute can be used to
modify or validate the value of the control before it
is copied to the store. The Jenner expression speci-
fied in the accept attribute is evaluated each time

the control’s value is evaluated and the value of the
accept expression is instead copied to the model.

name If the value of the name attribute is an Jenner ref-
erence expression, then the control is linked to the
model. Whenever the user activates a submit con-
trol, the value of the current control is copied to the
property pointed to by the reference.

value If the value of this attribute is an Jenner expres-
sion, it is evaluated each time the page is rendered
and the value of the control is set to the result.

These attributes are all specified as part of the HTML
standard. All other attributes may contain Esel expres-
sions; these will be evaluated and set each time the page
is rendered (see, for example, the st yle attribute in Fig-
ure 1).

Synchronization with the store is bidirectional. If the
store is updated through some other means (generally
through client-server communication), the control is up-
dated to keep its value synchronized. Thus, controls al-
ways accurately reflect the state of the store and vice-
versa.

All types of controls can be used, but controls of type
hidden are treated specially. A hidden control is used
to set an initial default value for some part of the store.
Thus, the developer can initialize certain values in the
store when the page initially loads.

3.4 Client-Server Communications

Client-server communication is done entirely via JSON
documents POSTed to URIs asynchronously. Communi-
cation is not viewed as a imperative action, but rather as
a synchronization of the state of the page’s store with the
server (by convention this is known as “synchronizing
the world”).

Client-server communication is initiated when the user
activates a submit control that is a child of a form ele-
ment. There are two possible methods of communication
in that case: classic form submission, and store synchro-
nization.

If a form element’s enctype attribute is not set to
“text/javascript”, then the form is submitted as per the
HTML standard and whatever is returned from the form
replaces the contents of the page. This is used to inter-
face with legacy code that insists on using normal HTML
form submission semantics.

If a form element’s enctype attribute is set to
“text/javascript”’, however, the form is not submitted us-
ing the classic method. Instead, Pixaxe first synchro-
nizes the values of all controls with the page’s store. The
page’s store is then serialized into JSON and POSTed

116

WebApps ’10: USENIX Conference on Web Application Development

asynchroniously to the URL specified by the form’s tar-
get. It is expected that the server return a JSON ob-
ject which is then merged with the page’s store. This
merge process simply copies all properties from the re-
turned object to the store with the same name, potentially
overwriting the values of old properties or adding new
ones. Properties that are not named in the returned ob-
ject are not affected. Note that in this case, the page is
not reloaded in any way; it is simply re-rendered locally
by Jenner.

For example, assume that the page’s store is displayed
here, as JSON:

"name": "Arthur",
"id": 42

If the user activated a submit control contained by
a form element whose enctype attribute is set to
“text/javascript”, the page’s store would be serialized and
submitted as described above.

Below is an example response from the server, which
would be returned as the body of the response to the
POST request.

{
"id". -1,
"invalid": true

Pixaxe would merge this response with the page’s
store, resulting in the new contents of the store.

{

"name": "Arthur",
"id": -1,
"invalid": true

After this synchronization process, the template is re-
rendered locally by Jenner.

Forms whose enctype is “text/javascript” may also
place an Esel expression in their accept attribute. This
expression must evaluate to frue, or the server synchro-
nization will not happen. This expression can be used to
validate user input before initiating client-server commu-
nications. The form will still be re-rendered even if this
validation fails, giving the application a chance to inform
the user of invalid input.

3.5 XSLT Macros

Pixaxe comes with a collection of XSLT stylesheets.
These stylesheets define macros, which consist of spe-
cial nodes in the original markup that are transformed by

XSLT at page load time to a collection of normal HTML
markup and Jenner template instructions.

Several useful XSLT macros exist, including macros
that create paged tables, modal dialog boxes, lightboxes,
tab boxes, and AJAX-style file upload controls. These
stylesheets can be applied automatically by most modern
web browsers at page load time.

One interesting aspect of these macros is that they are
implemented entirely in regular HTML and Jenner in-
structions. They therefore require no additional server
side support. Since the macro expansion is applied only
at page loading time, it does not significantly affect page
re-render times.

These macro packages can be arbitrarily complex. For
example, Figure 3 illustrates the code for a simple tab
box on a web page, and Figure 4 illustrates the rendered
page. Figure 5 illustrates (partially) the expansion of the
dppx:tab-box and dppx : t ab macros.

Macros can be arbitrarily complex, giving develop-
ers the ability to abstract away as much XHTML as
desired. Additionally, by allowing the free mixing of
Jenner markup and HTML, XSLT stylesheets applied to
pages have a much richer “target language” than tradi-
tional stylesheets.

3.6 Putting It All Together

This example demonstrates a complete, if simple, Pix-
axe application that uses a large number of the described
features. This example application builds a very sim-
ple, shared bulletin board. Users can post short messages
which are then visible to all other users.

First, the page store is declared. This should be placed
in a separate file from the web page, in this example
called “store.js”.

com.deadpixi.jenner.defaultEnvironment =
new com.deadpixi.pixaxe.Model ({
msgs: [],
newMsg: ""
}, "messages.json");

The second argument is a URL that points to a file
that is assumed to contain the list of messages currently
known to the server as a single JSON object, with a prop-
erty called “msgs”. This URL will be used to load the
initial values into the page’s store after the page has fin-
ished loading.

The rest of the application is defined in a normal
XHTML file. For brevity, only the body element of this
file is shown below. Esel standard function now is used
to indicate to the user how up to date the page’s display
is. Below this is a list of messages retrieved from the
Server.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 117



Figure 3 An example of a page using XSLT macros.

<body>

<dppx:tab-box>
<dppx:tab label="First Tab" selected="true">
<p>Tab bodies can consist of arbitrary HTML and Jenner markup.</p>
<p>For example, here is the current value of the "name"
variable in the Store: ${name}</p>
</dppx:tab>

<dppx:tab label="Second Tab">
<p>Another tab.</p>
</dppx:tab>

<dppx:tab label="Third Tab">
<p>Yet another tab.</p>
</dppx:tab>

<dppx:tab label="Fourth Tab">
<p>Tabs everywhere!</p>
</dppx:tab>
</dppx:tab-box>

</body>

Figure 4 The rendered example of the source in Figure 3.

118

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

Figure 5 A partial expansion of the dppx : tab-box and dppx : t ab macros.

<fieldset><input type="hidden" value="id4127134"
name="#{controller.dppx_tabselid4127132}"/>
<legend><input type="submit"
name="#{controller.dppx_tabselid4127132}"
class="dppx-tab dppx-tab-left
dppx-tab-${controller.dppx_tabselid4127132
= 71d4127134" ?
"un’ : '’ }selected"
accept="1d4127134" value="First Tab" />
<input type="submit"
name="#{controller.dppx_tabselid4127132}"
class="dppx-tab dppx-tab-${
controller.dppx_tabselid4127132
= 71d4127149" ?
un’ : '’ }selected"
accept="1d4127149" value="Second Tab" />

<div class="dppx-tab-body
dppx-tab-body-${controller.dppx_tabselid4127132
= 71d4127134" ? 'un’ : "’ }selected">
<p>Tab bodies can consist of arbitrary HTML and Jenner markup.</p>
<p>For example, here is the current value of the "name"
variable in the Store: ${name}</p>

</div>
action="/cgi-bin/post.cgi">
<body> <input type="submit"
<p>${msgs.length} value="Add Message" />
message${msgs.length != 1 ? </form>

st 'Y< /p>
<p>Updated at S${now()}.</p>

This would create a complete and fully functional ap-
<ul> plication, except for the server components. The list
${for i from 0 to msgs.length - 1 of messages could be a simple JSON document. The
var m := msgs[i] return message posting script would need only to deserialize
<li>${m}</1i> the contents of the POSTed store from JSON, extract
the "newMsg” property from this deserialized object, ap-
pend its value to the messages document, and return that

document to the client.

}

</ul>

After this, the user is given a text input area to post a
new message. This input control is linked to the page’s 4 Comparison to Other Frameworks
store by placing a reference expression in the control’s
name attribute. Pixaxe was designed to be very light in terms of server
resources. This makes it well suited for situations where
it is not the primary interface to a service, or where the
service is a legacy application.

This section compares Pixaxe to some other frame-
works, and helps illustrate the situations for which Pix-
axe is best suited.

<hr />
<input name="#{newMessage}" />

A submit control is placed inside a form element
whose action points to the message posting script on the

server. 4.1 Pixaxe and the Google Web Toolkit

The Google Web Toolkit (http://code.google.

<form enctype="text/javascript" com/webtoolkit/) is a mixed client-server toolkit

USENIX Association WebApps ’10: USENIX Conference on Web Application Development 119



from Google. The toolkit (commonly referred to as
“GWT”) relies heavily on the Java language for develop-
ment. GWT in fact compiles Java sources to JavaScript
code which is then executed on the browser.

GWT is in many ways the opposite of Pixaxe. De-
veloping with GWT follows much the same process as
developing any large Java application - there is a com-
pile/debug/edit cycle, and the use of Java-centric tools is
encouraged. GWT encourages a mixed object-oriented
and procedural development paradigm by building in-
terfaces programatically in Java (though there has been
more support lately for declarative interface specifica-
tion).

While GWT can be used in a server agnostic manner,
much of the code is written assuming a Java Servlet Con-
tainer 3 on the server. GWT also abstracts away large
amounts of HTML.

GWT has many advantages: an extremely large user
base, and the support of one of the largest technology
companies in the world, as well as numerous mature
tools (such as Eclipse ) that can make the development
of large applications considerably easier.

By the same token, GWT is often overkill for small
projects or in situations where a Java Servlet Con-
tainer is not available on the server. For smaller,
rapidly-developed applications, Pixaxe’s lack of a com-
pile/debug/edit cycle can be a major advantage. In situa-
tions where server resources are limited or Java technolo-
gies cannot be used, Pixaxe’s server agnosticism makes
it an attractive choice. Pixaxe would likely not scale well
to applications the size of Google Mail 7, but has easily
handled smaller applications.

4.2 Pixaxe and SproutCore

SproutCore (http://www.sproutcore.com) is a
popular client-centric toolkit used by many popular web-
sites. SproutCore is close in feel to Pixaxe. Sprout-
Core is client-focused, running its code solely within
the browser. It also favors a declarative interface spec-
ification, and development follows the Model-View-
Controller pattern. Its use in large, successful applica-
tions such as Apple’s MobileMe ® portal illustrates that
it can be successfully used for large projects and is a ma-
ture choice.

However, SproutCore differs from Pixaxe in a few
interesting ways. SproutCore still follows a shortened
compile/debug/edit cycle. SproutCore requires Ruby for
application development, though not to run or view ap-
plications. It is server agnostic for the most part, though
much of its documentation makes assumptions that Ruby
is used on the server side.

SproutCore development tends to use much more
JavaScript than Pixaxe. SproutCore could be called a

“JavaScript framework”, in that much of the business
logic of code is specified in JavaScript. Indeed, interfaces
are often built (semi-declaratively) using JavaScript.

Pixaxe enables an arguably simpler development path,
allowing purely declarative interfaces in XHTML and a
simple expression language. New “widgets” in Pixaxe
are easily created through simple XHTML, and option-
ally made reusable through simple XSLT macros.

Pixaxe and SproutCore are well suited to many of the
same tasks. SproutCore’s programming interface is more
powerful than that of Pixaxe, but is concomitantly more
complicated. For simple, radpily developed applications,
especially single-page applications, Pixaxe may be the
better choice.

4.3 Pixaxe and XForms

XForms (http://www.w3.0rg/MarkUp/
Forms/) was the direct inspiration for Pixaxe.
XForms is an application of XML for the specification
of data processing models for XML, and user interfaces
to those models. It does not require, but is often used
“on top of” XHTML, using the latter as part of its
presentation layer.

The original applications for which Pixaxe was used
were originally to be written in XForms. Unfortunately,
XForms is not natively supported in any mainstream web
browser. Therefore, Pixaxe was developed to provide a
similar development experience, but usable on any mod-
ern web browser.

XForms has the benefit of being extremely well speci-
fied, and builds on the extensive base of XML technolo-
gies specified by the W3 Consortium. XForms allows for
the free mixing of presentational markup and logic spec-
ification in a single page, and lends itself well to forms-
based development cycles.

Due to this strong inspiration, Pixaxe could easily be
used in any situation where XForms could be used, but
with the benefit of wider support. XForms was designed
to help create applications that were still web pages for
the most part, and this is a design goal shared by Pixaxe.

5 The Implementation of Pixaxe

This section of the paper discusses the implementation
details of Pixaxe, including all of the technologies upon
which it is built. The bulk of Pixaxe’s code lies in the
compiler and virtual machine for the Esel and Jenner lan-
guages. Also detailed here is the Kouprey parser combi-
nator library, which is used to create the parser for Esel.

120

WebApps ’10: USENIX Conference on Web Application Development

5.1 The Kouprey Parser Combinator Li-
brary

Pixaxe uses a parser combinator library known as
Kouprey °. Kouprey eases the development of devel-
oping parsers by allowing developers the ability to ex-
press grammars using simple ECMAScript statements
in something resembling Extended Backaus-Naur Form
(EBNEF, see [5]). The generated parsers are based on the
Parsing Expresson Grammar (PEG) formalism (see [4]).
Kouprey is available to be used separately from Pix-
axe. It has no dependencies other than a standard
ECMAScript runtime. It is sufficiently powerful that a
complete parser for the Component Pascal ' program-
ming language has been written entirely using Kouprey.
A full discussion of Kouprey is beyond the scope
of this document, but interested readers are encouraged
to consult the Kouprey home page at http://www.
deadpixi.com/kouprey.

5.2 Esel, Jenner, and Their Virtual Ma-
chine

The Jenner template language is built on top of a small
expression language known as Esel. Jenner’s syntax is a
pure superset of that of Esel, adding only the literal node
type syntax.

Esel uses Kouprey to generate its parser. Esel expres-
sions are compiled into abstract syntax trees, which are
then passed to a code generator. This code generator cre-
ates programs for a virtual machine designed to run Esel
expressions.

The Esel compiler, code generator, and virtual ma-
chine are written entirely in ECMAScript and are avail-
able for use independently from Pixaxe. Esel’s virtual
machine is a simple stack-based virtual machine with 32
instructions. The virtual machine itself is Turing com-
plete, and provides support for such advanced features
as lexically closed environments and a foreign function
interface with ECMAScript.

5.3 The Jenner Template Engine

Jenner, Pixaxe’s template engine, is remarkably simple
in its implementation. Upon page load, Jenner is passed
a DOM element object to treat as the root of the template;
by default this is the page’s body element.

The DOM of the page is then traversed. All text nodes
and all comment nodes of a special syntax (by default,
any comment node whose first two characters are “##”)
are appended to a single Jenner expression. Any time
an element node is encountered, it is assigned a unique
ID and a call to the special jenner :nodeset function
is appended to the expression. This is done recursively

until the entire page has been converted to a single large
Jenner expression. To render the page, the root of this
expression is simply evaluated.

The jenner:nodeset function is used to insert
nodes dynamically into the page using standard DOM
manipulation. The original page is copied to serve as a
template for each render. Jenner also performs extensive
caching of rendered and compiled results for speed.

Jenner also allows developers to override default han-
dling of elements and attributes by name. Pixaxe uses
this functionality to assign special meaning to various at-
tributes, mostly for form and input handling.

Jenner is available for use independently of Pixaxe.
Jenner could be very useful as a display technology for
other frameworks.

5.4 Pixaxe, Input Processing and Data
Management

Pixaxe itself builds data management capabilities on top
of Kouprey, Esel, and Jenner. It is essentially a very thin
layer on top of these technologies.

The vast majority of Pixaxe’s code is used in process-
ing user input, primarily performing form control value
processing and input validation. Page store management
is relatively simple, consisting mostly of copying values
from controls into the model and instructing Jenner to
re-render the page.

5.5 Client-Server Communications

Client-server communications in Pixaxe are simple, us-
ing the de facto standard XMLHt tpRequest (see [7])
support in modern web browsers to POST serialized ver-
sions of the page’s store and merge the returned informa-
tion into the store.

Pixaxe uses native JSON processing functions if pos-
sible for speed, but will fall back to using an JSON li-
brary written in ECMAScript if native functions are not
available.

One interesting feature provided by Pixaxe’s client-
server communications subsystem is the application
of callbacks. All communication takes place asyn-
chronously. The page store can include specially named
functions that will be invoked when the store is serial-
ized, when it is merged with the server, and on various
error conditions. Pixaxe provides a standard set of call-
back functions that will render an “input shield” over the
page, preventing any user interaction until the commu-
nications cycle is complete. Their use is, of course, op-
tional.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development 121



5.6 Cross-Browser Support

Kouprey and Esel are written in pure ECMAScript and
should work without modification in all conformant en-
vironments. Jenner and Pixaxe, however, are intimately
involved in the way the browser represents pages and
events and therefore must be written with cross-browser
support in mind.

Jenner and Pixaxe officially support Apple Safari (ver-
sions 4 and later), Microsoft Internet Explorer (versions
7 and later), and Mozilla Firefox (version 3 and later).
Other versions of these browsers and other vendors’
browsers may work but they are not extensively tested.

Different browsers require different syntax in certain
situations for Jenner templates. Most notably, some
browsers require expressions to be inside comment nodes
when they are inside table elements, while other
browsers require them to be bare. Similar situations arise
when dealing with o1 and ul elements. Jenner and Pix-
axe provide XSLT stylesheets that can be applied to the
page as it is loaded that automatically translate pages to
use the appropriate format, transparently to the devel-
oper.

6 The Future

Kouprey, Esel, Jenner, and Pixaxe are all under active
development and several interesting features are planned
for a future release.

Kouprey’s next version is expected to be considerably
faster and have better error handling and reporting. It
will also be rewritten to make grammar definitions more
natural when using the ECMAScript Compact Profile.

Esel’s virtual machine is being rewritten to be faster
and smaller. There are also some proposed language ex-
tensions, including destructuring assignment and n-way
case statements.

Jenner and Pixaxe will be much more tightly inte-
grated in a future release (though it is planned that Jen-
ner will still be usable without Pixaxe). A faster render-
ing algorithm is also being worked on that involves static
analysis of Esel expressions to determine which portions
of the page would be affected by certain changes to the
page’s store. Additionally, a real-time synchronization
mechanism is under development that would not require
users to manually indicate that a form is ready for pro-
cessing.

7 Availability

All of the technologies discussed in this paper are avail-
able under a a free software license. All of these tech-
nologies are currently available and in active use.

Download links and detailed documentation for
all technologies are available at http://wwww.
deadpixi.com.

References

[1] CHUNG, K.-M., DELISLE, P., AND ROTH, M. Expression lan-
guage specification. Part of the Java Community Process, see
http://www. jcp.org/en/jsr/detail?id=245.

[2] CHUNG, K.-M., DELISLE, P., AND ROTH, M. Java serverpages
2.1. Part of the Java Community Process, see http://www.
jcp.org/en/Jjsr/detail?id=245.

[3] ECMA INTERNATIONAL. Ecmascript language specification.
copy available at http://www.ecma-international.
org/publications/files/ECMA-ST/ECMA-262.p%
df.

[4] FOrRD, B.  Parsing expression grammars: A recognition-
based syntactic foundation. copy available at http://www.
brynosaurus.com/pub/lang/peg-slides.pdf.

[5] PaTTIS, R. E. Ebnf: A notation to describe syntax. copy
available at http://www.cs.cmu.edu/ pattis/misc/
ebnf.pdf.

[6] REENSKAUG, T. Thing-model-view-editor. archived copy avail-
able at http://heim.ifi.uio.no/ trygver/1979/
mvc-1/1979-05-MVC.pdf.

[71 W3 CONSORTIUM. Xmlhttprequest. a working draft, copy avail-
ableathttp://www.w3.0org/TR/XMLHttpRequest/.

[8] W3 CONSORTIUM. Xquery 1.0: An xml query language. copy
available at http://www.w3.0rg/TR/xquery/.

[91 W3 CONTORTIUM. Xforms 1.1. copy available at http://
www.w3.0rg/TR/xforms/.

Notes

UIn fact, Pixaxe’s original name was “JSONForms”.

2The name “Esel” was inspired by “ECMAScript Expression Lan-
guage”.

3“FLWR” from “for”, “let”, “where”, and “return”, the four basic
operations of the expression.

4See http://www.javascriptmvc.org.

Shttp://java.sun.com/products/servlet/

Shttp://www.eclipse.org

7http://mail.google.com

8http://www.me.com

9Kouprey was named after the Cambodian ox, by analogy to other
parser generators such as yacc and bison.

10See http://www.oberon.ch/.

122

WebApps ’10: USENIX Conference on Web Application Development

Featherweight Firefox

Formalizing the Core of a Web Browser

Aaron Bohannon
University of Pennsylvania

Abstract

We offer a formal specification of the core functionality
of a web browser in the form of a small-step operational
semantics. The specification accurately models the asyn-
chronous nature of web browsers and covers the basic as-
pects of windows, DOM trees, cookies, HTTP requests
and responses, user input, and a minimal scripting lan-
guage with first-class functions, dynamic evaluation, and
AJAX requests. No security enforcement mechanisms
are included—instead, the model is intended to serve as
a basis for formalizing and experimenting with different
security policies and mechanisms. We survey the most
interesting design choices and discuss how our model re-
lates to real web browsers.

1 Introduction

Web browsers are complex: they coordinate network
communication via many different protocols; they parse
dozens of languages and file formats with flexible er-
ror recovery mechanisms; they render documents graph-
ically, both on screen and in print, using an intricate sys-
tem of rules and constraints; they interpret JavaScript
programs; they manage users’ browsing history, book-
marks, passwords, and RSS feeds; they execute cryp-
tographic algorithms and protocols—and these are just
the obvious tasks! This complexity makes it very chal-
lenging to design effective security mechanisms for web
browsers: there are too many features to consider at once,
and it is easy for the some of the fundamental security
concerns to be obscured by more superficial problems.
“Web browser security” is actually an ambiguous term
that can refer to a diverse range of issues. First, the
browser codebase needs to be free from bugs such as
buffer overflows that could lead to a complete compro-
mise of a running browser. Next, the browser must cor-
rectly implement the protocols related to cryptography
and the public key infrastructure for securing HTTPS

Benjamin C. Pierce
University of Pennsylvania

communication and verifying digital signatures. To
many users, “browser security” may be about how the
interface helps them avoid phishing attacks and acciden-
tal installation of malware. And finally, a particularly
interesting aspect of browser security is the restrictions
that must be placed on web page scripts for the purpose
of ensuring information security when managing docu-
ments and scripts from different sources. This last secu-
rity problem is the one we are interested in addressing;
we will refer to it as web script security to distinguish it
from these other aspects of web browser security.

In current practice, web script security revolves around
the idea of a same-origin policy. An origin is based
on the domain name of a web page, and restrictions
are placed on the interactions that can take place be-
tween pages with different origins. However, it is actu-
ally somewhat difficult to characterize the “policy” that
these restrictions are intended to enforce; indeed, it is not
even very clear which particular restrictions are meant
by the phrase. Browsers implement origin-based re-
strictions on accessing the state of other windows, on
navigating other windows to new locations, on access-
ing windows by their string name, on making AJAX re-
quests, and on accessing and mutating cookies, but the
idea of an “origin” is defined and used differently in
each of these cases. For instance, whereas the ability
to access other windows’ state depends on the value of
the document.domain property, the ability to make an
AJAX request does not, and whereas some of these re-
strictions check that that the effective origins are identi-
cal, the ability for one window to navigate another de-
pends on a complex set of rules about the windows’ re-
lationship and does not actually require that their origins
be the same. Nonetheless, we will continue to use “same-
origin policy” to refer to all of these restrictions.

Beyond these inconsistencies, the same-origin policy
has other deficiencies. Whereas direct cross-domain in-
teraction via window data structures and AJAX messages
is disallowed, indirect cross-domain interaction by in-

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 123



sertion of new document nodes that trigger HTTP re-
quests is unrestricted. Furthermore, a script’s origin is
based solely on the URL of the page where it is placed
rather than the URL from which the script was retrieved,
and the origin of the data handled by scripts is never
taken into account. Another problem is that the mecha-
nisms that allow interaction between related domains (in-
volving setting the document.domain property) are in-
flexible and potentially dangerous [8]. Moreover, many
corner cases (especially those involving function clo-
sures) are missing in written specifications and are imple-
mented differently in different browsers (see the work on
Subspace [4] for an example). Finally, the same-origin
policy offers no help in addressing the pervasive security
problem of script-injection attacks, which are known as
XSS (“cross-site scripting”) attacks.

In comparison, what would an ideal proposal for web
script security look like? There should be a clearly
articulated policy that applies consistently to the web
browser’s operation as a whole. It should be flexible
enough to guarantee rigid security boundaries similar to
the same-origin policy when desired and also to permit
cross-domain communication for mashup-like behavior
if necessary. It should offer some account of XSS and
CSRF! attacks. It should be written at a level of detail
that makes it feasible to implement. Finally, it should be
specified in such a way that claims about it can be veri-
fied through rigorous proof or model checking.

This last goal makes the task especially challenging: a
formal specification of a security mechanism necessitates
a formal specification of web browser behavior at some
level of detail, and browsers are large systems with many
interdependent components. However, the complexity of
web browsers is exactly the reason it is important to write
a rigorous specification! There has been confusion about
the implementation of the relatively simple same-origin
policy; if one is interested in security mechanisms that
are even more sophisticated, it will be essential to pin
down their behavior in a precise and formal manner.

How does one develop a formal model of a web
browser? In theory, one could take a particular browser
implementation to be the model. But this is too much de-
tail: browser implementations are far too large to reason
about formally. If we build a model with the right level of
abstraction, we can study something of a more tractable
size, and more importantly, we can focus on the funda-
mental aspects of web script security, putting aside the
more superficial concerns until after the deeper logical
issues have been ironed out.

Using the right level of abstraction cuts down on the
size of a model, but there are still too many potentially

' A CSRF (“cross-site request forgery”) attack occurs when a script
on a page from one site generates an HTTP request resulting in an
unwanted server-side transaction on another site.

security-relevant browser features for us to consider them
all at once. We must begin with a core set of features.
Once polices and mechanisms for these features are well
understood, we can hope to extend the security mecha-
nisms to cover additional features. What we have put in
our initial browser model has been guided by our interest
in the following aspects of the browser setting:

e The system works with data and code from many
different principals, and security boundaries may
need to take into account the author of the data, the
author of the code, and the principal that caused the
code to be run.

e Scripts can be downloaded at any time and are al-
ways run in an environment that is shared with other
scripts. Therefore, dynamic evaluation of code is
fundamental to the web browser scripting model.

o There are multiple top-level environments in which
scripts can be run, and these environments change
each time the user visits a new page.

e Scripts contain first-class functions, which are,
among other things, used for event handling.

e The system is event-driven and events can be inter-
leaved in complex and possibly unexpected ways.

e Network messages can be generated in a variety of
ways by scripts and by the user; any message sent
could be relevant to information security.

The primary contribution of the work presented in this
paper is a formal specification of the core data structures
and operations of a web browser. We use a small-step, re-
active semantics that faithfully models the event-driven
nature of web browsers. In cases where the appropri-
ate browser behavior was not obvious, we referred to the
HTMLS specification [3] and ran tests on browser imple-
mentations. At the end of Section 5, we discuss some
of the differences between the HTMLS specification,
browser implementations, and our model. Concretely
our model is presented in the form of an OCaml pro-
gram? (about 2,500 LOC, including many comments).
The program is written in a form that corresponds very
closely to logical rules of inference, which are commonly
used in giving formal semantics to programming lan-
guages, and we can view it as a document to be read
by researchers interested in formal browser semantics.
Using OCaml as a concrete notation yields many bene-
fits. First, the type system of the language gives a sanity
check on the definitions. Second, the specification is ex-
ecutable, which facilitates testing and experimentation.
(To this end, we have also written parsers for the relevant
subsets of HTML, JavaScript, and HTTP.) The presenta-
tion here is structured around the main type declarations.

2It can be accessed here: http://www.cis.upenn.edu/
~bohannon/browser-model/

124

WebApps ’10: USENIX Conference on Web Application Development

2 Key Concepts

We follow a top-down approach in describing our model.
In this section, we survey the browser features that we
included and mention those we omitted. The remainder
of the paper describes the specification itself, beginning
from the outermost layer—the parts of a browser that
are directly observable via its user interface and network
connections—then moving on to internals.

Browsers display information in windows, many of
which may be open at one time. A window can be
navigated to a URL, which is the address of a docu-
ment. The default URL for a newly opened window is
“about : blank”, which refers to a blank page. URLs
that begin with “http :” refer to remote resources. When
a window is navigated to such a URL, the browser sends
an HTTP network request. The browser runs asyn-
chronously and can handle other events while it is wait-
ing for a network response.

For each URL that the user visits, browsers keep a
mapping of key-value pairs known as cookies. These can
be set each time an HTTP response is received, and the
ones corresponding to a particular URL will be sent with
each HTTP request for that URL. Including cookies al-
lows us to model CSRF attacks; moreover, the unautho-
rized acquisition of session cookies is one of the most
critical information security threats posed by XSS.

Browsers are designed to display HTML documents.
For our purposes, it suffices to consider a subset of
HTML with just a few basic features. It should allow tags
to be nested in one another in some fashion. It should
have some kind of text elements and link elements. It
should also have text input elements and button elements
that can be equipped with handlers, which are triggered
by user interaction. Finally, it should have tags for in-
cluding scripts in documents, both as source code that is
written in-line in the document and as references to re-
mote script files.

A document is transformed into a mutable document
node tree and placed in a window. We use the term page
to refer to a document node tree plus its related metadata,
such the URL from which it was retrieved.> A window
will display a sequence of pages over time as it is navi-
gated to new locations.

Obviously, to study web script security, one must also
have a model of the scripting language. The JavaScript
language, which is used in current browsers, has many
peculiarities and many of its peculiarities do have secu-
rity implications, given the particular manner in which
browser structures are represented in the JavaScript inter-
preter. However, instead of addressing problems that are
specific to JavaScript at this time, we are more interested

3We reserve the term document to refer to a static tree-like data
structure, such as an HTML document.

in understanding the security problems that are funda-
mental to any browser scripting language that can manip-
ulate the browser in the ways that JavaScript can. This is
a prerequisite step for understanding how to improve the
security of a specific language such as JavaScript. Two
of JavaScript’s features are of interest to us because they
seem especially useful in a web scripting environment
and pose special challenges in the context of security:
first-class functions and dynamic evaluation of code.

Although we want to restrict ourselves to a very simple
core scripting language, we do want to capture a com-
plete interface for scripting the browser components in
our model. Scripts should be able to refer to their own
window and refer to other windows by their name (which
is just a string). They should be able to open, close, and
navigate windows, as well as read and update their name.
The name of a window is important to have in our model;
it is relevant to security, both as a means of acquiring ac-
cess to windows and as a means to transfer information.
Scripts should be able to access a page’s node tree and
a page’s global scripting environment through a refer-
ence to the page’s window. We do not model the stan-
dard DOM in all of its details, but the scripting language
should have enough power to construct and manipulate
document node trees in arbitrary ways. Scripts should
also be able to read and write the browser’s cookies. Fi-
nally, scripts should be able to initiate AJAX-style HTTP
requests and handle the responses.

Although our model encompasses many of the core
features of a web browser, and certainly enough to make
the issue of web script security challenging and inter-
esting, there are many more features that we must leave
out of our model for now, with the hope of considering
them in the future. We do not consider relative URLs
and fragment identifiers, although these would be fairly
trivial. We do not consider virtual URLs schemes such
as “javascript :” and “data :”. We do not consider
object-oriented features in the scripting language, nor do
we consider object-style access to windows via the key-
word this (instead we include the expression self, a
synonym for window). We do not consider timer events,
page load events, or low-level input events related to
keystrokes and mouse movements. We do not consider
any sort of frames, which offer a slightly different rela-
tionship between pages than having only separate top-
level windows. We do not consider HTML forms nor
browser history. We do not consider accessing files on
the local machine. We do not consider any HTTP return
codes other than “200 OK”; in particular, we do not con-
sider HTTP redirects. We make no distinction between
http and https URLs. We do not consider the interac-
tion of web pages and scripts with plug-ins such as Flash
or Java. Finally, we do not consider the password man-
ager mechanism, nor any other browser extensions that

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 125



might interact with web pages. We view all of these fea-
tures as interesting and relevant to security, but we leave
them out for now in order to minimize the complexity of
our model.

Since our goal is to provide a foundation for research-
ing new security policies and mechanisms, we designed
our execution model as a “blank slate,” without any se-
curity restrictions built in to it by default.

3 Reactive Systems

To begin with, we need to consider what the high-
level “shape” of a browser’s specification should be. A
browser does not simply take an input, run for a while,
produce an output, and then halt. Rather, it is an event-
driven system: it consumes an input when one is avail-
able, which triggers some computation that may produce
one or more outputs; when (and if) it is finishes run-
ning in response to one input, it will wait for the next
input event. From the perspective of the scripts it runs,
a browser should appear as if it has just a single event
loop [3]. This sort of event-driven behavior can be cap-
tured by a fairly simple sort of state machine:

3.1 Definition: A reactive system is a tuple
(ConsumerState, ProducerState, Input, Output, —)

where — 1is a labeled transition system whose states are
State = ConsumerState U ProducerState and whose
labels are Act = Input U Output, subject to the follow-
ing constraints:

e for all C € ConsumerState, if C Q, then a €
Input and @ € ProducerState,

e for all P € ProducerState, if P % Q, then a €
Output,

e for all C € ConsumerState and ¢ € Input, there
exists a P € ProducerState such that C N P, and

e for all P € ProducerState, there exists an o €
Output and Q) € State such that P % Q.

Reactive systems never get “stuck,” although they may
get into a loop within the set of producer states and never
accept another input. When a reactive system is in a con-
sumer state, it must have some manner to handle what-
ever input comes along next, although it could choose to
drop it and not do anything interesting in response. Re-
active systems have a natural interpretation as a function
from (possibly infinite) streams of inputs to (possibly in-
finite) streams of outputs. Bohannon, et al. [1] discuss
these systems in more detail.

Given this template for a reactive system, what
remains is to instantiate the system parameters—
ConsumerState, ProducerState, Input, and Qutput—
with the particular data structures that are relevant for

web browsers. This will be done over the next two sec-
tions. What the system does is described by the transition
relation of the reactive system, which we only have space
to informally summarize in this paper as we describe the
data structures; its full definition is given in the accom-
panying OCaml code.

4 Browser Inputs and Outputs

In this section, we present the structure of all of the data
that goes into and comes out of a browser in our model.
We describe these data structures using abstract syntax;
for the purposes of an information security analysis, even
user input and GUI updates can be modeled syntactically,
as we will discuss in this section. We begin by looking at
the abstract syntax for URLs, which is shown in Figure 1.
We consider two kinds of URLs: a URL for a blank page
and a basic http URL (without any port number or frag-
ment identifier). The request_uri contains the path and
query string of the URL.

The abstract syntax that we use for documents (see
Figure 2) corresponds to an extremely simplified version
of HTML. For comparison, the literal, concrete HTML
syntax that would correspond to the abstract syntax is
given on the right. (In order to literally translate our
document constructs into well-formed HTML fragments,
some must be mapped to HTML expressions with more
than one tag, as shown.) Each construct in the abstract
syntax has an optional string elt_id, which should be
thought of as the value of the id attribute of an HTML
tag, if present. Unlike HTML, no further tags are allowed
in the text of paragraph, link, or button elements. We ap-
pend the suffix _list to syntactic categories as a way to
indicate a sequence of zero of more items, such as the
use of doc_list in the div construct.

The syntax of scripts is given in Figure 3. As with the
browser as a whole, the goal of designing the scripting
language is to capture the fundamental issues that make
web script security interesting. We settled upon a very
simple JavaScript-like core language—a dynamically
typed language with mutable variables, a few basic data
types, first-class functions, and dynamic evaluation—
along with a set of constructs for manipulating the data
structures of our browser model that is fairly complete
in comparison with the standard “browser object model”
(BOM) used in JavaScript. We didn’t attempt to cap-
ture all of the idiosyncrasies of the BOM interface (the
method for accessing cookies in JavaScript, for instance,
is pointlessly absurd); however, we did aim to make the
correspondence with the standard BOM very straightfor-
ward. We also did not try to aggressively eliminate re-
dundant constructs since some constructs will likely need
to be added, removed, and altered during the investiga-
tion of any particular security enforcement mechanism.

url = blank url
| http-url(domain, request_uri)

Figure 1: URL syntax.

elt_id == - | string

para(elt_id, string)
link(elt_id, url, string)
text(elt_id, string)

doc e.g., <p>string</p>
e.g., <p><a href="wurl">string</a></p>
e.g., <p><input type="text"
value="string"></input></p>
button(elt_id, string) e.g., <p><button>string</button></p>
inline_script(elt_id, expr) e.g., <script>expr</script>
remote_script(elt_id, url)  e.g., <script src="url"></script>
div(elt_id, doc_list) e.g., <div>doc_list</div>

126

WebApps ’10: USENIX Conference on Web Application Development

Figure 2: Document syntax.

As in JavaScript, there are a variety of basic types
(we do not consider classes, objects, or other user-
defined types). The types Null, Bool, Int, String, and
their corresponding literal expressions are straightfor-
ward. There is a type for URLSs in the language, with cor-
responding literal URL expressions. In JavaScript, URLs
are handled purely as strings, being parsed as needed;
however, by having a special type for URLSs in this lan-
guage, we can avoid putting a string parsing algorithm
in the main part of our semantics (such parsing could
be done by a library function with a semantics specified
completely separately). A value of type Type is a con-
crete representation of another value’s type.

For compactness and uniformity, our language has no
distinction between expressions and statements. Expres-
sions can be sequenced with a semicolon (;), and the
combined expression yields the result of the second ex-
pression when it is finished executing. If the first expres-
sion in a sequence results in an error, the second expres-
sion is not run. If the second expression results in an
error, the effects of the first expression are still registered
in the browser state. There is no need for a return con-
struct when there is no distinction between statements
and expressions. Conditionals and loops are standard.
A while loop always evaluates to null when it termi-
nates, as do other constructs with no sensible result. The
primitive_functions include any pure functions whose
semantics is independent of the web browser environ-
ment, such as functions to check the type of a value, to
perform arithmetic operations, or to convert data types to
and from strings. The specification of these operations is
completely orthogonal to the problem of a browser spec-
ification and is therefore not included in our work.

Like JavaScript, this language has first-class, anony-
mous functions with local variables. However, in this
language, functions always have exactly one parameter,
and their local variables must be declared at the begin-
ning of the function. Unary function application is de-
noted by expr(expr). Values of type Code represent a
syntax tree for an expression. Any expression can be
treated as a syntax tree by enclosing it with the code
construct. Code values can be evaluated with the eval
construct. (The expression will be evaluated in the en-
vironment that lexically encloses the eval expression.)
As with URLs, having a special type for syntax trees
differs from JavaScript (which passes strings to eval)
but allows us to define a rigorous semantics for dynamic
evaluation while putting aside the complex but uninter-
esting process of turning strings into expressions. Vari-
ables are dereferenced in the nearest (lexically) enclos-
ing scope in which they are defined. If not defined else-
where, a variable is dereferenced in the global scope of
the script, which is the environment associated with the
page in which the script was loaded. It is a runtime error
to dereference a variable that is not defined in some en-
closing scope. Variable assignment updates the variable
(or function parameter) in the nearest enclosing lexical
scope in which it is defined; if it is not defined in any en-
closing scope, then the assignment will create a binding
in the script’s global scope.

The scripting operations that are specifically relevant
to the web browsing environment are shown in Figure 4.
The construct get_cookie(u, k) evaluates to the cookie
value associated with the string key % for the URL u
or evaluates to null if no such cookie is defined. The
construct set_cookie(u, k, v) sets the cookie with key

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 127



type Null | Bool | Int | String | Url | Type window _operations self | opener(expr) | named win(ezpr)
Function | Code | Window | Node open(expr) | open_named(expr, expr)
expr

expr; expr get_location(expr) | navigate(expr, expr)
if(expr) {expr} else {expr} get name(expr) | set_name(expr, expr)
while(expr) {expr} get_root node(expr) | set_root_node(expr, expr)
primitive_functions expr.z | expr.c = expr

function(z) {var z;;

\
null | bool | int | string | wrl | type | close(expr) | closed(expr)
\
\
\
\

.} var x,; expr}

expr(expr) . ' ‘
code(expr) Figure 5: Window operation syntax.
eval(ezpr)

T node_operations remove(expr)

z = expr insert(expr, expr, expr)

browser_operations remove_handlers(ezpr)

Figure 3: Script syntax.

browser _operations

get_cookie(expr, expr)
set_cookie(expr, expr, expr)
xhr(expr, expr, expr)

window _operations
node_operations

Figure 4: Browser operation syntax.

k for the URL u to the string value v. The construct
xhr(u, m, h) initiates an AJAX request to the URL u,
sending the string m as the message body. The network
response will be expected to contain a script, which will
be passed in the form of a Code value as an argument to
the handler function # (which may then run it with eval
or dissect it in some other way using some of the primi-
tive operations that we leave unspecified).

The scripting operations relating to windows and
pages are shown in Figure 5. In JavaScript, there is a dis-
tinction between the Window object and Document ob-
ject. As implemented in JavaScript, this distinction does
not add any real expressive power, so we do not attempt
to emulate it in our language. A window can hold only
one page at a time; so a reference to a window is im-
plicitly a reference to a page, although which page that
is may change over time (if, say, the user navigates the
window elsewhere). The important thing for one to un-
derstand is which window-accessible data can vary when
the window’s page changes. These include the window’s
location URL, the root node of the document tree in the
window, and the global environment of the window.

The keyword self refers to the window that holds (or
held) the page in which the script was loaded; the con-
struct opener(w) refers to the window from which w
was opened. The construct named_win(s) evaluates to

the window whose name is the string s or evaluates to
null if there is no such window. A new window can be
opened to a particular URL w« using open(u). A win-
dow with a name n can be opened to a URL w using
open_named(u, n); however, if a window with that name
is already open, then that window will be navigated to the
URL u, and no new window will be opened. Both con-
structs for opening windows evaluate to the new (or navi-
gated) window. A window can be closed with close(w),
and closed(w) yields a Bool indicating whether or not
w 1is a valid reference to an open window.

The URL of the document currently in a win-
dow w can be read using get_location(w), and a
window can be navigated to a new URL wu using
navigate(w,w). (In JavaScript, this is done by as-
signing a value to the location property of a Window
object.) A window name can be read or updated us-
ing get_name or set_name. The root node of the doc-
ument node tree in a window w can be read using
get_root_node(w) and can be set to a new node node
using set_root_node(w, node). Every page has an as-
sociated environment that serves as the global environ-
ment for any scripts loaded into the page. For a page
in a window w, the variables in the global environment
can be read or updated using the constructs w.x and
w.x = expr.

add handler(expr, expr)

Figure 6: Window operation syntax.

The most interesting among the constructs related to
document nodes are shown in Figure 6. Nodes have a
graph structure derived from the fact that some nodes
(div nodes in particular) can have children; all manip-
ulation of nodes must maintain the invariant that the
node graph is a forest. The construct remove(node)
updates the node store so that node is removed from
being the child of any div node or is removed from
being the root node of any page, if either is applica-
ble; the relationship of node and its children are unaf-
fected by this, which means that neither node nor any
of its descendants will be visible in any page after the
operation. The construct insert(parent, child, n) first
removes the node child (just as if remove(child) had
been evaluated) and then inserts child as the nth child
of parent. It is an error (and nothing is mutated) if
parent is not a div node, if parent has fewer than n
children, or if parent is a descendant of child in a node
tree. The construct remove_handlers(node) removes
all handlers from a text input or button node, and the
construct add_handler(node, h) adds the function h as
a handler for a text input or button node. When the value
of a text input box is changed or when a button is pushed,
each of the node’s handler functions will be applied to the
argument node and run.

We represent user interactions using the syntactic mes-
sages shown in Figure 7. We assume that a user refers
to a window using a natural number representing it’s
relative age among the open windows, the oldest win-
dow being 0. In this way, we need not model an ac-
tual two-dimensional graphical display. There are sev-
eral basic actions a user can take. The operations
load_in new window and load_in window represent

cases where the user directs the browser to some URL—
perhaps by typing in a URL, by selecting a bookmark,
or by clicking on a link in a page.* The constructs
link tonew window and link to named window are
used to represent cases where the user follows links that
open in different windows due to the target attribute
of the link. They both must include the window where
the link was found as their first piece of data, since that
window will be the deemed the “opener” of the new win-
dow. The user can also close windows, of course. The
constructs input_text and click button both take a
window and a natural number, representing the position
of the input box or button in the page. When these input
events are received, they will trigger the handlers of the
appropriate element.

There are four basic outputs that are visible to the user
in this model. First, a new window can be opened. There
is no data associated with the window_opened event be-
cause new windows are always created with an empty
page having the URL about : blank. When pages are
loaded or updated, there may be visible changes to the
document rendered on the screen. There is a data type
rendered_doc (not defined here) that captures the struc-
ture of the document node tree that is visible from the
user interface. In the page_loaded and page_updated
events, the entire document in the window is sent to the
user, regardless of how much of it was actually changed.
User output events play a rather non-obvious role in the
model. For the purposes of an information security anal-
ysis, we assume that all browser inputs, including those
from the network, are visible to the user; moreover, the

41f we included the HTTP Referer header in our model, we would
need to distinguish between clicking a link and typing in a URL.

128

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 129



user_input

user_output

user_window = window(nat)

load_in_new_window(url)
load_in_window(user_window, url)

link_to new_window(user_window, url)

link to_named window(user_window, string, url)
close_window(user_window)
input_text(user_window, nat, string)

click button(user_window, nat)
window_opened
window_closed(user_window)
page_loaded(user_window, url, rendered_doc)
page_updated(user_window, rendered_doc)

Figure 7: User I/O syntax.

browser operates deterministically, modulo the ordering
of the inputs. So in a theoretical sense, the user always
knows the complete browser state regardless of what user
interface outputs are generated in the model. We also as-
sume that no other principal can see these outputs, so
they do not have much significance in developing confi-
dentiality policies. However, they do become significant
if we wish to develop and reason about integrity policies.

The network-related input and output events are shown
in Figure 8. The request construct is a simplified ver-
sion of an HTTP request. Our model does not distin-
guish between GET and POST requests since the differ-
ence has little impact on web script security. The cookies
are key-value mappings, and an extra string can be sent
as the body of the request, as would be done in a POST
request. An output on the network consists of a domain
and a request. We abstract away from the DNS name
resolution process. We model a network connection with
the domain name to which the connection was made and
a natural number to distinguish between multiple con-
nections to the same domain. We take O to be the old-
est connection for which a response has not yet been
received, 1 to be the next-oldest, and so on. As stated
earlier, we do not model any HTTP responses other than
“200 OK”. We assume that the body of a response con-
sists of either a well-formed document or a well-formed
script.

5 Internal Browser Structures

We have seen the parts of the specification that describe
how a browser interacts with its environment. Now we
need to consider what internal bookkeeping is needed for
a browser to operate. There are choices to make here.
For example, one could choose to have document nodes
maintain references just to their parents, just to their chil-
dren, or to both. Our goal was to find a clear and succinct

way to describe how a browser operates; usually (but not
always) this seemed easiet to achieve by avoiding main-
taining redundant information in the state. So, in the ex-
ample of document nodes, we chose to have document
nodes maintain references only to their children.

A browser’s basic state is a tuple of six components
as shown in Figure 9: it has stores for windows, pages,
document nodes, activation records, and cookies, and a
list of the open network connections. The syntactic ele-
ments with the suffix _ref are unique atomic identifiers
that are generated freshly when new items are put into a
store during the browser’s execution; then they are used
to refer to the associated data in the various stores. A
cookie_id consists of a domain name, a path, and a string
value representing the key.

The basic browser data structures are defined in Fig-
ure 10. The data for a window includes its name (an
optional string) and a reference to its page. There is a
simple_window structure for windows that were opened
directly by the user, and an opened_window structure
for windows that have a reference to the window from
which they were opened. A window is considered to be
open (and therefore visible to the user) iff a reference to
the window appears in the window store of the browser.
Pages contain their location, a reference to their root doc-
ument node, a reference to the activation record contain-
ing their global environment, and a queue of scripts and
of markers for not-yet-received scripts that will need to
be executed in the future. If the browser is waiting idly
for its next input, the script queue of every page in the
browser will either be empty or will contain a marker
for a not-yet-received script at its head; any scripts at the
front of a queue that are in hand will be executed before
the browser halts.

The structure of document nodes mirrors the structure

of documents, except for a couple of details. First, there
is an extra piece of data for text and button nodes, a

130

WebApps ’10: USENIX Conference on Web Application Development

response

network_connection
network_input

request = request(request_uri, cookies, string)
network_output = send(domain, request)
doc_response(cookie_updates, doc)
script_response(cookie_updates, expr)
connection(domain, nat)
receive(network_connection, response)

Figure 8: Network I/O syntax.

open_connection_list)

window_store = [(window_ref, windowy), ..., (window_ref ,, window,,)]
page_store = [(page_ref , page,), ..., (page_ref,,, page,,)]
node_store = [(node_ref, nodey),...,(node_ref,, node,)]
act_red_store = [(act_red_ref,, act_redy), ..., (act_red_ref ,, act_rcd,,)]
cookie_store = [(cookie_idy, string,), ..., (cookie_id,, string,, )]
browser = browser(window_store, page_store, node_store, act_rcd_store, cookie_store,

Figure 9: Browser state.

value_list, which is their set of handlers. Second, both
kinds of script nodes need a flag to know whether they
have already been queued for execution on some page. A
script node must only be queued for execution once, even
if it is later moved. Finally, the div node keeps a list of
references to child nodes instead of a list of the literal
child data elements as is done in the doc data structure.

The type act_red is used for activation records, an
important part of the script evaluation. They contain a
bindings data structure, which is a mapping of variable
names to fully evaluated expressions. Moreover, activa-
tion records for local scopes must keep a reference to
their parent record for proper variable access and update.

The last component of a browser’s data is its list of
open network connections. A record must be kept of the
domain to which each request was made, the resource
that was requested, and enough data to properly handle
the resource when it arrives. A doc_connection is ex-
pecting a response with a document, which will be used
to build a new page in a window; so, a reference to that
window must be recorded. A script_connection is
expecting a response that pertains to a script node in
some document node tree; in order to find the appropriate
queue item for the script on the appropriate page, a ref-
erence to that script node must be kept. Given our other
implementation choices, the page_ref data here is actu-
ally redundant information, but tracking it here simplifies
our operational specification a bit. An xhr_connection
is expecting a response that should be given to a spe-
cific handler function. The handler function, a value, is
kept as part of the connection data structure, but the han-
dler must run with some definition for the window self.

Here we have an choice of recording this information us-
ing a window_ref or a page_ref . Either one would work,
as long as we can ensure that an AJAX response is never
run on a page other than the one for which it was in-
tended. This is slightly easier to do by keeping track of
the page_ref.

A few more data structures are needed to manage the
small-step evaluation of script expressions in browsers
(see Figure 11). The internal language of expressions
(expr) is a slight extension of the external scripting lan-
guage. It has a set of values that includes closures, a term
that represents an error, and a term that represents an ex-
pression in a particular scope, which will arise when clo-
sures are applied during evaluation. Closures and scoped
expressions refer to a static context that includes both an
activation record and a window reference that will deter-
mine the evaluation of the keyword self.

A browser in a running state requires a queue of tasks
in addition to the basic browser state. The task queue
keeps track of the script expressions that the browser
must evaluate before it can accept another input. A task
comprises an internal expression paired with the window
with respect to which it should be evaluated. A task
could equivalently be associated with a page instead of
a window. The association between windows and pages
cannot change between the time a task is enqueued and
when it is executed (this association can only change im-
mediately after receiving a network response). Since this
information is needed primarily for evaluating the self
keyword in the expression, we choose the window in-
stead of the page.

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 131



window

queuved_expr

open_connection

simple_window(window_name, page_ref )
opened_window(window_name, window_ref , page_ref)
known_expr (ezpr)

unknown_expr(node_ref)

page(url, node_ref , act_red_ref , queued _expr_list)

local(bindings, act_rcd_ref)

doc_connection(domain, req_uri, window_ref)
script_connection(domain, req_uri, page_ref , node_ref )
xhr_connection(domain, req_uri, page_ref , value)

page
node = para(elt_id, string)
| link(elt_id, url, string)
| text(elt_id, string, value_list)
| button(elt_id, string, value_list)
| inline_script(elt_id, expr, bool)
| remote_script(elt_id, url, bool)
| div(elt-id, node_ref _list)
act-red = global(bindings)
|
|
|

Figure 10: Browser data structures.

lexpr_context

value =
|
|
|

iexpr = walue
| error
|
|

task =

running_browser

context(window _ref , act_rcd _ref)
closure(iexpr_context, T, a1, . .., Ty, ieTpr)
win(win_ref)

node(node_ref)

scoped(iexpr_context, iexpr)

task(window_ref , iexpr)
running(task _list, browser)

Figure 11: Internal expressions and running browser states.

Each kind of input will initialize the task queue in
a different manner. When the user interacts with a
button or text box, the task queue will be initialized
with one task for each of the input control’s handlers.
When a network response to an AJAX request is re-
ceived, the queue will be initialized with the correspond-
ing xhr_connection handler. When a document is re-
ceived, a page will be created along with its script queue,
and the browser’s task queue will be initialized with the
items from the front of the page script queue that are
ready for execution. Similarly, when a network response
is matched with a script_connection, it will cause the
appropriate page script queue to be updated, and then the
ready items from the front of that queue will be trans-
ferred to the browser’s task queue. If script nodes are
inserted into a page as the browser executes tasks at
the head of the task queue, additional tasks correspond-

ing to those scripts will be enqueued at the back of the
browser task queue, provided they are not blocked by an
unknown_expr in their page’s script queue.

Given the definitions thus far, we can now state ex-
plicitly how a browser forms a reactive system. The in-
stantiations of ConsumerState, ProducerState, Input,
and Output are given in Figure 12. There is nothing
very interesting here, except for a couple of technical-
ities. According to the definition of a reactive system,
there must always be exactly one output when stepping
from a ProducerState; however, given our internal data
structures, in some cases a single small-step of execution
in our model may produce multiple outputs. Such a sys-
tem can be trivially reduced to a formal reactive system
by adding an output buffer to the producer state struc-
ture: if more than one output happens to be produced
in a step of the original machine, the derived machine

ConsumerState ::= browser

ProducerState ::= running_browser’
Input == wuser_input | network_input
Output == wuser_output | network_output | e

Figure 12: Internal expressions and running browser states.

will remain in a producer state and release one output
at a time over multiple steps. Thus running_browser’
would be identical to running_browser but with an out-
put buffer. On the other hand, since ProducerState is
technically required to produce an output on every step,
we use the symbol e to represent a trivial, “silent” output,
when there would otherwise be no output.’

6 Formalization Challenges

One particularly tricky issue is deciding exactly when
scripts will get executed. The HTMLS5 specification rec-
ommends that there be three different queues of scripts
that will get executed at different times, depending on
whether script tags have a defer attribute, an async at-
tribute, or neither. (This is motivated in part by the ex-
istence of JavaScript’s document.write() method; we
intentionally omitted such functionality from our specifi-
cation because it introduces a huge complexity overhead
while being a technique that should be avoided in modern
web programming.) Moreover, HTMLS5 prescribes that
remotely retrieved scripts should be executed after pars-
ing finishes, whereas inline scripts should be executed
“immediately.” On the other hand, some browsers such
as Firefox appear to nonetheless execute all scripts on a
page in the order they appear, regardless of whether the
scripts are inline or remote. We wanted to avoid the addi-
tional complexity associated with executing scripts mid-
way through parsing; so we chose a behavior that was
close to how Firefox behaves when all script tags have
the async attribute set. This choice could be tweaked in
the future, but the precise order of script execution seems
unlikely to affect the design of security mechanisms.
Another tricky case is what to do when a user nav-
igates away from a page but that page had some code
that is still runnable, say, as a button handler in another
page. When such a closure runs, it may attempt to ac-
cess its global environment or to use the self construct.
In the browsers we tested, if the window’s new page is
from the same origin as the old page, there are no diffi-
culties in running such a closure. However, if the new
page is from a different origin, some browsers raise er-
rors that are presumably security-related. For instance, in

SReactive systems that force each step to have an output are simpler
to reason about and no less useful for studying information security [1].

recent versions of Firefox, simply evaluating the expres-
sion self in such a closure generates an error, even if no
access of its properties or methods is attempted. This is
an interesting corner case of the same-origin policy for
which the correct restrictions are unclear and browsers
vary widely in their behavior. However, since we are not
modeling security restrictions, our specification raises no
errors in such cases. A related situation occurs when a
closure from a page remains executable after the page’s
window has been closed. It is not clear that security plays
any role in this case; nonetheless, there are a variety of
behaviors that can be observed in browser implementa-
tions. Some browsers will raise an error if the closure
tries to evaluate the expression self and others will not;
some browsers will purge the variables in the closure’s
global environment and others will not. We have cho-
sen to allow self to be evaluated to a reference to the
closed window and to leave the closure’s environment
intact. Our model does perform one sort of garbage col-
lection, though: a page will be removed from the page
store when the page’s window is closed or the page is re-
placed by a navigation operation. Primarily, this is done
to ensure that scripts received in network responses will
not be executed on a page that is no longer visible. How-
ever, the page’s associated nodes and activation records
are left in their respective stores after the page is removed
since these may be referenced elsewhere in the browser.

When a user navigates away from a page, there may
also be outstanding AJAX requests that have not received
aresponse. In this case, many browsers will call the state
change handlers for the requests before leaving the page,
as if the responses had come back with a dummy HTTP
response code such as 0. Similarly, when a user closes
a window, there may be outstanding AJAX requests for
the page in the window. Some browsers call the handlers
before closing the window, but others do not. Since we
are not modeling HTTP error responses, we simply chose
not to trigger the handlers in any of these situations.

7 Related Work

Our work was motivated by an investigation of the pa-
per “Information-Flow-Based Access Control for Web
Browsers” by Yoshihama, et al. [7]. Their work offers a
reasonable outline of a browser formalization; our work

132

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association USENIX Association

WebApps "10: USENIX Conference on Web Application Development 133



is an attempt to fill in the concrete details of a more
realistic browser model. Our model uses heap struc-
tures with references, which are important for under-
standing how information flows through a browser. Fur-
thermore, our model adds first-class functions, activation
records, and multiple global environments that are as-
sociated with page structures. In addition, we have bro-
ken the browser’s behavior down into a small-step, event-
driven semantics with a complete characterization of the
possible inputs and outputs of the system.

There have been other efforts to formalize subsystems
of a browser. Maffeis, et al. [5] have written a formal
specification for the JavaScript language. Their work is
in the same spirit as ours but nearly orthogonal in terms
of its content, in that they consider all of the details of the
JavaScript language itself without formalizing the lan-
guage’s integration with the browser. Gardner, et al. [2]
have developed a formal specification for a literal subset
of DOM Level 1 [6]. Their work is again in the same
spirit as ours but strives for greater accuracy in a nar-
rower domain. We did not attempt to implement a literal
subset of the DOM specification (as they did) but instead
specialized our node operations for the particular types
of nodes in our document model. Moreover, they devel-
oped a full-blown compositional Hoare-logic semantics,
whereas for our purposes a simpler operational specifi-
cation is sufficient.

The Browser Security Handbook [8], published on
Google’s web site, provides thorough documentation of
many different security-related behaviors that can be ob-
served in different browsers. Our methodology has been
first to try to understand how browsers would work with-
out any security restrictions, thus offering a platform on
which many different experiments with security enforce-
ment mechanisms can be performed. Moreover, for our
baseline, restriction-free semantics, we are not especially
interested in documenting every observable browser be-
havior, but rather in having a single semantics that em-
bodies a reasonable compromise between the different
existing behaviors and specifications. The key point for
us is to ensure that our formalization is close enough to
real-world browsers so that experimenting with new se-
curity mechanisms on top of it will offer meaningful in-
sight into how these designs would fare in reality.

The HTMLS5 [3] specification goes into a great deal
of detail about browser behavior. In fact, it seems to be
the only written account of many aspects of browser be-
havior. It covers many more features than we can put in
our formal model at this time; however, as a specification
written in English, it is necessarily somewhat imprecise,
and it does not cover all of the corner cases involving in-
tegration with a scripting language, such as cases involv-
ing function closures. In contrast, our work is intended
to be a platform for carrying out rigorous proofs.

8 Future Work

Our next goal is to use our formal model to experi-
ment with concrete confidentiality and integrity poli-
cies. To start, this means designing a system of secu-
rity levels and associating them with the input and output
events of the model [1]. In concept, this is a straightfor-
ward process; however, there are different ways to do
it, giving rise to different policies when combined with
the requirement of reactive noninterference. In com-
parison with the constraints of the same-origin policy,
noninterference-based polices will be more strict about
cross-domain interactions over the network but more lax
about cross-domain interactions that are confined within
the browser. Policy design, which should include an ac-
count of declassification and server-guided policy cus-
tomization, is an interesting topic, but even a basic policy
has a wide range of enforcement techniques that we may
wish to study—anything from globally removing opera-
tions from the scripting language to implementing a fine-
grained tracking of information flow. Our preliminary
investigations suggest that proving enforcement mecha-
nisms sound with respect to policies will be challeng-
ing, given the size of our browser model, but that it is
nonetheless feasible.

References

[1] BOHANNON, A., PIERCE, B. C., SIOBERG, V., WEIRICH, S.,

AND ZDANCEWIC, S. Reactive noninterference. In Proceedings of

the ACM Conference on Computer and Communications Security
(2009), ACM Press.

[2] GARDNER, P. A., SMITH, G. D., WHEELHOUSE, M. J., AND
ZARFATY, U. D. Local Hoare reasoning about DOM. In Pro-
ceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (2008), ACM Press.

[3] HYATT, D., AND HICKSON, I. HTML 5. Tech. rep., W3C, 2010.
http://www.w3.0rg/TR/html5/.

[4] JACKSON, C., AND WANG, H. J. Subspace: Secure cross-domain
communication for web mashups. In Proceedings of the Interna-
tional Conference on World Wide Web (2007).

[S] MAFFEIS, S., MITCHELL, J., AND TALY, A. An operational se-
mantics for JavaScript. In Proceedings of the Asian Symposium on
Programming Languages and Systems (2008). See also: Dep. of
Computing, Imperial College London, Technical Report DTR08-
13, 2008.

[6] NicoL, G., WoobD, L., SUTOR, R., APPARAO, V., ISAACS,
S., HOrs, A. L., WILSON, C., CHAMPION, M., ROBIE,
J., BYRNE, S., AND JACOBS, I. Document object model
(DOM) level 1 specification (second edition). W3C working
draft, W3C, Sept. 2000. http://www.w3.org/TR/2000/
WD-DOM-Level—-1-20000929/.

[7] YOSHIHAMA, S., TATEISHI, T., TABUCHI, N., AND MAT-
SUMOTO, T. Information-flow based access control for web
browsers. IEICE Transactions on Information and Systems E92.D,
5 (2009), 836-850.

[8] ZALEWSKI, M. Browser security handbook, Dec. 2009. http:
//code.google.com/p/browsersec/wiki/Main.

134

WebApps ’10: USENIX Conference on Web Application Development

DBTaint: Cross-Application Information Flow Tracking via Databases *

Benjamin Davis
University of California, Davis

Abstract

Information flow tracking has been an effective approach
for identifying malicious input and detecting software
vulnerabilities. However, most current schemes can
only track data within a single application. This single-
application approach means that the program must con-
sider data from other programs as either all tainted or
all untainted, inevitably causing false positives or false
negatives. These schemes are insufficient for most Web
services because these services include multiple applica-
tions, such as a Web application and a database applica-
tion. Although system-wide information flow tracking is
available, these approaches are expensive and overkill for
tracking data between Web applications and databases
because they fail to take advantage of database seman-
tics.

We have designed DBTaint, which provides infor-
mation flow tracking in databases to enable cross-
application information flow tracking. In DBTaint, we
extend database datatypes to maintain and propagate
taint bits on each value. We integrate Web application
and database taint tracking engines by modifying the
database interface, providing cross-application informa-
tion flow tracking transparently to the Web application.
We present two prototype implementations for Perl and
Java Web services, and evaluate their effectiveness on
two real-world Web applications, an enterprise-grade ap-
plication written in Perl and a robust forum application
written in Java. By taking advantage of the semantics of
database operations, DBTaint has low overhead: our un-
optimized prototype incurs less than 10-15% overhead in
our benchmarks.

*This research is partially supported by NSF CNS award 0644450
and by an AFOSR MURI award.

Hao Chen
University of California, Davis

1 Introduction

Information flow tracking has been very successful in
protecting software from malicious input. The program
identifies the sources of untrusted input, tracks the flow
of such input, and prevents this input from being used
in security sensitive contexts, such as the return ad-
dresses of function calls or the parameters of risky sys-
tem calls [16, 19]. Currently there are two types of infor-
mation flow tracking mechanisms: application-wide and
system-wide. The former tracks information flow within
the same application [16, 19], while the latter tracks in-
formation flow in the entire operating system [17].

As computation moves to the Web, Web services have
become highly attractive targets to attackers. In fact,
attacks involving malicious input to Web applications,
such as Cross-site Scripting (XSS) attacks, are among
top software vulnerabilities [4]. Information flow track-
ing is a logical approach for preventing these attacks by
tracking malicious input [10, 14]. However, the appli-
cation and effectiveness of information flow tracking is
limited by the only two types of current mechanisms:
single-application and system-wide tracking.

A typical Web service consists of multiple applica-
tions, such as a Web application, which implements busi-
ness logic and generates Web pages, and a database,
which stores user and application data. In multi-
application settings like Web services, single-application
information flow tracking is inadequate, as it would force
Web applications to decide between treating all the re-
sults of database queries as tainted or treating them as
untainted. This would inevitably result in false positive
or false negative when the database contains both tainted
and untainted data.

To enable cross-application information flow tracking,
one might resort to system-wide information flow track-
ing systems. However, there are several problems with
these systems. They track more information than needed
for protecting Web services, which comes at an unnec-

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 135



essary performance cost. Protecting against XSS attacks
requires tracking information flow only in the Web appli-
cation, database, and the information flow between them,
rather than in every operation in the entire system. Also,
these system-wide mechanisms fail to take advantage of
application semantics. Without the high-level semantics,
these systems cannot properly perform taint propagation
throughout complex database operations.

We introduce DBTaint, a system that provides in-
formation flow tracking across databases for enabling
cross-application information flow tracking. DBTaint ex-
tends the database to associate each piece of data with
a taint tag, propagates these tags during database oper-
ations, and integrates this system with existing single-
application taint tracking systems. By providing this in-
tegration via SQL rewriting at the database client-server
interface, DBTaint is completely transparent to Web ap-
plications. This allows developers to use DBTaint with
existing, real-world legacy applications without modify-
ing any Web application code.

DBTaint can provide more accurate information flow
tracking than single-application taint tracking systems.
Services using DBTaint will have fewer false positives
than systems that consider all values from external ap-
plications (like databases) as tainted. Similarly, services
using DBTaint will have fewer false negatives than sys-
tems that consider all values from the database as un-
tainted. Furthermore, since DBTaint tracks taint propa-
gation inside the database, it takes advantage of database
semantics to track taint propagation accurately. Besides
providing a more accurate taint tracking system, DBTaint
can also be used to detect potential vulnerabilities in ap-
plications. If user input is untainted during sanitization in
a Web application, inspecting the taint values of database
columns may reveal subtle security vulnerabilities. Our
insight is that if a column in the database contains both
tainted and untainted data, it may signal incomplete san-
itization in the database client, e.g., when user input is
santized only on a subset of program paths. Such obser-
vation should alert the programmers to audit the saniti-
zation functions in the program carefully.

We make the following contributions:

e We design and implement a system that tracks in-
formation flow across databases. This allows cross-
application information flow tracking to protect
Web applications from malicious user input.

e We improve on single-application taint tracking sys-
tems by reducing false positives/false negatives, and
improve on system-wide taint tracking systems by
tracking only the taint propagation that matters to
the target application and by taking advantage of
database semantics to improve tracking accuracy.

e Our system is also useful for analyzing certain be-
havior of database client applications, such as iden-
tifying potential incomplete sanitization in Web ap-
plications.

e We design a flexible system to integrate single-
application taint tracking systems with the Post-
greSQL database. This system allows legacy ap-
plications to take advantage of our system transpar-
ently.

e We implemented two prototypes of DBTaint that
work with real-world Web applications written in
Perl and Java. These prototypes, although unopti-
mized, have low performance overhead.

2  Design

DBTaint is a system that allows developers to track in-
formation flow throughout an entire Web service consist-
ing of Web applications and database servers. DBTaint
provides information flow tracking in databases and inte-
gration with single-application information flow mecha-
nisms. The system is completely transparent to the Web
applications, which do not need to be modified in any
way to take advantage of DBTaint.

We assume that the developer is benign, and has the
ability to replace the database interface and database
datatypes used in the Web service with the modified
(DBTaint) versions. We also assume that the single-
application taint tracking engine(s) used for each indi-
vidual Web application appropriately taints input from
unsafe sources (e.g. user input).

DBTaint propagates the taint information throughout
the multi-application system, but does not attempt to
actively prevent the program from operating unsafely.
Rather, by propagating and maintaining taint values for
each piece of data in the system, we provide developers
with the information needed to perform the sink check-
ing and handling appropriate for their setting. Although
DBTaint was motivated by Web services, our prototypes
provide cross-application information flow tracking to
any multi-application setting where applications commu-
nicate via databases. For brevity, we will refer to these
applications as Web applications onward.

2.1 Taint Model
2.1.1 Soundness

DBTaint helps improve the security of Web services by
tracking the trustworthiness of all the data values used
by the service. DBTaint marks each value as either un-
tainted or tainted. DBTaint marks a value as untainted

136

WebApps ’10: USENIX Conference on Web Application Development

only if it can determine that the value is trusted. There-
fore, when DBTaint marks a value as tainted, it could be
because DBTaint has determined that the value is indeed
untrusted or because DBTaint cannot determine whether
the value is trusted.

We say two values are in the same context if they
belong to the same column or their respective columns
are compared in a JOIN operation. With DBTaint, the
database marks an output value as untainted only if there
was an occasion when the same value in the same context
was marked as untainted when it entered the database, or
if the output value is derived from untainted values only.

The above property implies that:

o If a context contains two identical values but one is
tainted and the other is untainted, DBTaint may re-
turn this value either as tainted or untainted. Our
prototype chooses to always return this value as un-
tainted to improve the accuracy of taint tracking in
the Web application.

e DBTaint will never return a value as untainted if this
value has never entered the context as untainted and
is not derived from only untainted values.

2.1.2 Scope of Taint

DBTaint can work with any taint tracking mechanism
inside the Web application. In the simplest, and most
common, case, the taint value of a data when it exits the
database is the same as its taint value when it enters the
database. Consider an SQL query for the MAX of two
values in the database, where one value is 3 and tainted,
and the other value is 5 and untainted. DBTaint returns
the value 5 to the database client (the Web application)
untainted, because the value 5 was untainted when it en-
tered the database. Similarly, data in the result of a JOIN
query carry their taint values in the database, regardless
of the taint values of other data (e.g., data in the com-
mon columns during JOIN) that may have affected the
selection of the data in the result.

2.1.3 Backward Compatibility

We adopt the principle of “backwards compatibility”,
similar to the one described by Chin and Wagner [7], and
design DBTaint such that a DBTaint-unaware application
should behave exactly the same regardless of whether it
is retrofitted with DBTaint. Under this principle, when
DBTaint compares two data, it ignores their taint values.
Besides ensuring backward compatibility, this principle
also allows DBTaint to set the taint value of certain out-
put data more accurately. For example, consider comput-
ing the MAX of a tainted value 2 and an untainted value
2. Either value is an acceptable result for this query, but

we choose to return the untainted value. Similarly, in a
SELECT DISTINCT query, we again prefer to return
untainted versions of equal values when available.

2.2 Information Flow Tracking in the
Database Server

Because current mainstream database systems do not na-
tively provide a mechanism for storing taint information
associated with each piece of data, DBTaint provides a
mechanism for storing this information without losing
precision of the original data. Furthermore, DBTaint
propagates the taint information for database values dur-
ing database operations.

2.2.1 Storing Taint Data

DBTaint provides information flow tracking capabilities
in databases at the SQL level, requiring no changes to the
underlying database server implementation. Capabilities
added to the database at the SQL-level are likely simpler
and more portable than those made by modifying the un-
derlying implementation of a particular database server.
Furthermore, by utilizing SQL to maintain and operate
on the taint information, we avoid the need to provide
new mechanisms to insert, retrieve and operate on taint
information in the database server.

Many databases support composite data types, where
each data cell may store a tuple of data. We used this
feature to store taint information alongside associated
data values, allowing DBTaint to use the well-understood
SQL API for interacting with these taint values. The ad-
ditional functionality (like auxiliary functions) DBTaint
needs to add to the database can be done at the SQL-level
as well (e.g. via CREATE FUNCTION).

Compared to alternative implementation approaches
(e.g. storing taint bits in mirrored tables or additional
columns), we hypothesized that composite types would
be the simplest. It allowed our SQL-rewriting opera-
tions to rewrite each original query into exactly one new
query, avoiding the need for extra queries to maintain
mirrored tables. Also, using composite types allowed
us to build taint propagation logic into the database type
system rather than into each rewritten query.

2.2.2 Operating on Taint Data

In addition to creating the database composite types, DB-
Taint provides some database functions that make oper-
ating on these types simpler. We provide the database
functions getval () and gettaint () to extract the
data and taint values from a DBTaint tuple, respectively.
These functions are used in the SQL rewriting phase, de-
scribed in Section 2.4.1. DBTaint also provides neces-

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 137



sary database functions for these composite types (e.g.
equality and comparison operators). Finally, DBTaint
provides functions to propagate taint values in aggre-
gate functions (like MIN and MAX) and arithmetic opera-
tions (when one or more operand is tainted, the result is
tainted).

2.3 Information Flow Tracking in the
Database Client

DBTaint leverages existing single-application informa-
tion flow tracking systems to manage taint information
in the client, and integrates the single-application taint
tracking system with the new database server function-
ality at the interface between the two applications. DB-
Taint works with any mechanism for taint tracking in the
database client (the Web application). For instance, we
have implemented a version of DBTaint for Perl that uses
a modified version of Perl’s taint mode. We also devel-
oped a prototype version of DBTaint that uses an effi-
cient character-level taint tracking system for Java [7].
While the single-application taint engines propagate taint
throughout the single application, DBTaint handles the
propagation of this taint information across application
boundaries when this data is used in a SQL query.

Many other single-application taint tracking systems
exist, and DBTaint can be easily extended to integrate
with these engines as well. For example, there also ex-
ist preliminary implementations of PHP with support for
tainted variables.!

2.4 Database Client-Server Integration

Once we can track the information flow within a single
application and within a database, DBTaint must pro-
vide a way to propagate the taint information between
database client applications and the augmented database
server. While we could perform this by modifying the
Web application directly, this approach does not scale
well, as the user would need to modify every new Web
application individually. Furthermore, the amount of
work required to make the changes would scale with the
size and complexity of each Web application.

Instead, DBTaint integrates the information flow sys-
tems of the database client and database server at the in-
terface between these two systems. For example, Perl
programs generally use the DBI (DataBase Interface)
module to access database servers, and Java applications
often use JDBC (Java DataBase Connectivity) API. By
adding our DBTaint functionality at these interfaces, we
can integrate the taint tracking systems of multiple appli-
cations completely transparently to the Web application.

DBTaint requires three changes to the database inter-
face:

e Rewrite all queries to add additional placeholders
for taint values associated with the data values, and
to add appropriate taint values where appropriate.

e When the application supplies the parameter values,
determine and pass the corresponding taint values.

e When retrieving the composite tuples from the
database, collapse them into appropriately tainted
data values then return them to the Web application.

2.4.1 Rewriting SQL Queries

In DBTaint, the database server tables are composed of
composite values that contain both the data and the taint
value associated with that piece of data. However, since
the Web applications that use these databases are not
modified in any way, their data values and correspond-
ing SQL queries do not include the necessary informa-
tion to maintain the data taint values in the database. A
key component of the DBTaint system is the way the
SQL queries from the Web application are dynamically
rewritten to propagate taint information between the Web
application and the database server transparently to the
database client.

DBTaint performs two main types of transformations
on portions of SQL queries: tupling and flattening. These
operations performed on the appropriate parts of a SQL
query before passing it through to the database server.

Tupling is the process of taking a data value and con-
verting it into a tuple that contains the original value and
the associated taint value. For example, when a Web ap-
plication sends an INSERT query that includes a data
value to the database interface, DBTaint rewrites that
portion of the query into a tuple containing the data value
and the taint value of that data. If the Web application
passes a parameterized query (with 2 placeholders for
data values to be supplied later), DBTaint rewrites the
query to include additional placeholders for the corre-
sponding taint values.

Assume we specify a composite type using the Post-
greSQL syntax: ROW (x, y) where x is the data value,
and y is the corresponding taint value. If the Web appli-
cation passes the following query to the database:

INSERT INTO posts (id, msg) VALUES
(1, ?)

then DBTaint rewrites this query to include the taint
value of the 1 substring (e.g. O if untainted), and adds a
place for the taint value of the message data to be sup-
plied later.

INSERT INTO posts (id, msg) VALUES
(ROW(1,0), ROW(?,?))

138

WebApps ’10: USENIX Conference on Web Application Development

Flattening is the process of taking a tuple value in the
database and removing the associated taint value when it
is unneeded. We have designed DBTaint such that using
the system does not change the behavior of the Web ap-
plication. So, sometimes it is necessary for DBTaint to
extract only the data value for certain SQL operations in
order to perform the appropriate operations. For exam-
ple, if the Web application wishes to select rows where
a specific column is equal to a hardcoded value, then we
disregard the taint value during the selection process.

For example, when the Web application issues the re-
quest:

SELECT username FROM users WHERE
user_id = 0

Since in this case the taint value of the user_id field
is unimportant, DBTaint extracts only the data value and
the query becomes:

SELECT username FROM users WHERE
getval (user_id) = 0

2.4.2 Rebinding Parameterized Query Values

Applications often use parameterized queries for defense
against SQL injection attacks, improved performance,
and increased maintainability. Parameterized queries
use placeholders for parameters that the Web application
passes later. Often DBTaint must augment these queries
by adding additional placeholders for the corresponding
taint values. Unfortunately, this means that the index-
based bindings the Web application uses may no longer
be valid (e.g. binding a value to placeholder three may
no longer be the third parameter in the rewritten query).
Furthermore, because the Web application does not know
about these new taint parameters, DBTaint must provide
them to the database.

When a Web application attempts to bind a parameter
to a particular position in a SQL query, DBTaint inter-
cepts this request and computes the new, proper index
for that data value. Then, DBTaint not only binds that
data value, but the corresponding taint value, if appropri-
ate. This allows the Web application to use parameter-
ized queries with no knowledge of the underlying imple-
mentation of the composite types used by DBTaint.

2.4.3 Retrieving Database Values

The results of database queries are tuples of data and
taint values. DBTaint extracts the data values from these
tuples, then taints them as appropriate in the single-
application taint tracking engine used by the Web appli-
cation. This completes the propagation of taint values
back into the Web application.

3 Implementation

We have developed two different prototype implementa-
tions of our DBTaint system (one for Perl and one for
Java) to demonstrate the effectiveness of our approach.
These prototypes are fully capable of working with real-
world Web services that use the PostgreSQL database en-
gine.

3.1 Database

Both DBTaint prototypes assume the use of the Post-
greSQL database server. PostgreSQL is a popular, full-
featured, enterprise-class object-relational database sys-
tem. Users can create composite types from base types,
add custom functions, and overload operators. We lever-
age these features to manage the taint information stored
in our modified database tables.

3.1.1 Composite Types

DBTaint uses composite types to store data and taint in-
formation in PostgreSQL database tables. A composite
type is a type with the structure of a user-defined record,
and can be used in place of simple types in the database.
Each composite type we create has two elements: the
data value, and the associated taint value. We can main-
tain taint values at whatever granularity we like (e.g. per
character) but to simplify our examples here we use a
single taint bit. PostgreSQL uses the ROW () syntax to
specify composite type values, so we express a tainted
INT4 as the INT4t composite value ROW (37, 1).

3.1.2 Auxiliary Functions

During initialization, DBTaint determines all the native
database types used by the Web application by inspecting
the original database tables’ schemas. DBTaint uses the
CREATE TYPE command to create a new PostgreSQL
composite type for each of these native types. Before
these composite types can be used to create new com-
posite versions of the original database tables, DBTaint
creates a number of auxiliary functions to support these
new types. These auxiliary functions are used to preserve
the behavior expected by the database clients, and to sim-
plify the SQL query processing DBTaint performs at the
boundary of the database and other applications.
DBTaint generates the standard comparison operators
to allow the database to sort and compare composite
type values, and uses PostgreSQL’s operator overloading
capabilities to add taint-aware capabilities to the com-
mon operators (e.g. >, <=, +, -—). DBTaint cre-
ates aggregate functions (using CREATE AGGREGATE)
in the PostgreSQL database to create taint-aware ver-
sions of common aggregate functions, like MIN and

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 139



MAX. Additionally, DBTaint generates length () func-
tions for composite types with string values, and arith-
metic operators for numeric composite types. DBTaint
overloads arithmetic operators to provide interoperabil-
ity with base types, while propagating the taint infor-
mation to the resulting composite values. For example,
the operation “adding the integer 2 to the tuple ROW (5,
1) : :INT4t” returns ROW (7, 1) ::INT4t, which
retains the taint bit from the original tuple. DBTaint also
creates getval () and gettaint () functions for the
composite types, which extracts just the value or taint bit
for a particular piece of data. DBTaint sets the values and
taint bits using normal SQL statements, and therefore re-
quires no additional PostgreSQL functions to manipulate
this data on the server.

3.1.3 Table Creation

After creating the necessary composite types and aux-
iliary functions in the database, DBTaint automatically
replaces all of the simple types in the database tables
with their associated composite type versions. Note
that unless a Web application creates new tables during
operation, this table creation phase only occurs during
the initial installation and configuration stage. DBTaint
adapts default values, column constraints, and other ta-
ble properties as needed to match the new composite
types. Default values are considered “untainted” in this
process. For example, DBTaint converts a column with
type INT4 and default value of O into a composite type
column of type INT4t with default value ROW (0, 0) .

3.2 Perl Implementation

We developed an implementation of DBTaint for Web
applications written in Perl that use the popular DBI
module for accessing PostgreSQL databases. We use a
modified version of Perl’s “Taint Mode” to perform in-
formation flow tracking within the Web application.

3.2.1 Perl Taint Tracking

Our Perl implementation of DBTaint leverages the Perl
taint mode to track information flow through the Web
application. Perl’s taint mode is an active mechanism
that prevents some Perl operations from using untrusted
user input unsafely. Perl taints user input, and halts when
tainted values are used in certain unsafe situations (like
as a parameter tosystem). We only needed a passive
taint tracking engine for DBTaint, so we provide a mod-
ified Perl engine that does not halt in these situations, al-
lowing us to use DBTaint with applications not normally
compatible with Perl’s taint mode.

3.2.2 Perl DBI

In our Perl implementation we add our DBTaint database
interface functionality to the DBI (DataBase Interface)
module. The Perl taint mode engine we use in our imple-
mentation has a limitation: it only tracks the taint bit of
the entire variable as a whole. This means that, for exam-
ple, a string is either completely tainted, or completely
untainted. If a Web application assembles a query string
by concatenating tainted and untainted data, by the time
this string reaches the database interface it is impossible
to determine what parts of the original query was tainted,
and what was untainted. Note that this is not a problem
if we use a more sophisticated taint tracking engine, such
as the one used in our Java implementation below.

But, the Perl taint mode engine is still completely suf-
ficient for DBTaint if the application uses prepared state-
ments for its database queries. Prepared statements are
SQL statements with placeholders for parameters to be
supplied later. Prepared statements are used for perfor-
mance reasons, to separate SQL logic from the data sup-
plied, and to help prevent of SQL injection, and are quite
common in modern Web applications. When these pa-
rameters are supplied later, the DBTaint system can in-
spect the taintedness of these data values at the database
interface. In this way, we can properly propagate the taint
information across the boundary of the Web application
and the database application.

3.2.3 Other Modifications

The Web application we chose to use with DBTaint used
prepared statements for all of its SQL queries, which
made the DBI rewriting relatively simple. We slightly
modified the Apache-Session Perl module to use pre-
pared statements in a way that matched the rest of the
Perl application to simplify our DBI rewriting logic. We
also needed to modify the Encode Perl module to avoid
user values being inadvertently untainted during conver-
sion from UTF-8 encoding.

3.3 Java Implementation

We developed an implementation of DBTaint for Web
applications written in Java that use the popular JDBC
API to access PostgreSQL databases. We use a
character-level taint tracking system for Java, which
allows us to properly rewrite both prepared and non-
prepared statements without losing any taint information
from the Web application.

3.3.1 Java Taint Tracking

We use a character-level taint tracking engine for
Java. [7] This taint engine marks all elements of incom-

140

WebApps ’10: USENIX Conference on Web Application Development

ing HTTP requests as tainted (e.g. form parameters,
cookies, etc.), and propagates the taint bit throughout
the Web application. When these values are passed to
the database interface, DBTaint rewrites the queries ap-
propriately to propagate the taint bits between the appli-
cations. We were able to use this taint tracking engine
without any special configuration or modifications.

3.3.2 JDBC

In our Java implementation we add our DBTaint database
functionality to the JDBC (Java DataBase Connectivity)
classes. The Java information flow tracking engine we
use tracks taint bits on each character of each String
object. With this more precise information, we are no
longer limited to only prepared statements, as we no
longer depend on the parameters being separate from the
query to determine if they are tainted or not. When the
database interface receives a query with literals embed-
ded in the query string, DBTaint inspects the taint values
for the characters of that literal, and then adds the appro-
priate taint information when tupling the value.

For example, if the DBTaint system receives the fol-
lowing query in the JDBC interface:

INSERT INTO messages (msg) VALUES

(" first post’)

DBTaint will inspect the taint values of the substring
consisting of first post. DBTaint will then rewrite
the query with the appropriate taint values based on the
taintedness of the substrings. For example, if the first
post value was tainted, the query would be rewritten to:

INSERT INTO messages (msg) VALUES

(ROW (" first post’, 1))

We use Zql [5], a Java SQL parser, to parse the queries
so they can be rewritten in DBTaint. Rewriting param-
eterized queries is performed using the same approach
described above in the Perl implementation.

4 Evaluation

To demonstrate the effectiveness of DBTaint in real-
world systems, we evaluate the performance of our taint-
aware database operations, and run two popular Web ser-
vices with DBTaint. We executed all benchmarks on
a virtual machine running Cent OS 5 on a 2.6 Ghz In-
tel Core 2 Quad host with 4 GB of RAM. Our DBTaint
implementations are based on PostgreSQL version 8.3.7,
Perl version 5.10.0, and Java version 6 (1.6).

4.1 Database Operations

We first attempt to evaluate the overhead of the changes
we make on the database server. By replacing all prim-
itive data types in the database tables with composite

Operation [ native | DBTaint | overhead

INSERT row 0.5ms | 0.6ms 20%
SELECT ALL 23ms 26ms 13%
SELECT WHERE || 23ms 26ms 13%
EQUALS op 0.2ms Sms 2400%
LESS THAN op 0.2ms | 2.3ms 1050%
ADDITION op 0.2ms | 2.4ms 1100%

Table 1: Database operations incur high overhead (later
shown to not dramatically impact overall performance)

types, the database server now has more information to
manage, and is using custom composite types that have
not been optimized as thoroughly as the native types. Ta-
ble 1 contains the average run time of each of the follow-
ing tasks. Between each run, the database was restarted
and cached results were cleared to avoid measuring the
effectiveness of the database caches.

We note that the composite versions of many of these
operations are a great deal slower than their native coun-
terparts. We hypothesize that these discrepancies are due
to the fact that our DBTaint database operations were de-
fined to be simple and portable. The impact of these
slower operations in a benchmark of actual Web appli-
cation performance (Sections 4.5 and 4.6) indicates that
the performance penalties paid for more portable imple-
mentations of DBTaint may be of little concern in many
environments. Furthermore, it may be possible to greatly
improve these results by implementing the datatypes and
associated functions more efficiently (e.g. in C rather
than SQL). We analyze the source of these results in
more detail in Section 5.2.

4.2 Web Application: RT

We selected the enterprise-grade ticket tracking Web ap-
plication named Request Tracker (RT) [1] to evaluate the
effectiveness of DBTaint in a realistic environment. RT
is not designed to be used with Perl taint mode, and was
not created with DBTaint or any other information flow
tracking system in mind. It has over 60,000 lines of code.
It uses 21 different database tables to store information
about tickets entered into the system, users of the sys-
tem, transaction history of system modifications, access
control, and more. Other than installing our composite
datatypes and removing the inadvertent untainting in a
Unicode conversion function, we ran RT with DBTaint
without making any further changes to the Web appli-
cation. We successfully tracked the flow of user input
throughout the entire Web service: from the Web appli-
cation, into the database, and back.

To demonstrate that DBTaint does not alter the behav-

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 141



ior of the Web application, we recorded a series of inter-
actions with the Web application installed in an unmodi-
fied environment. We saved the database contents result-
ing from using the application in the unmodified environ-
ment for later reference. Then, after deploying the Web
application and running it in the DBTaint system, we re-
played these recorded Web actions in this environment.
When we compared the values of the database tables in
the DBTaint system with the values from the unmodi-
fied run, the only differences we observed were expected
variances in values like timestamps. We observed that
DBTaint allows the Web application to behave exactly
as it would in a normal environment, transparently pro-
viding the information flow tracking capabilities to the
entire Web service.

The RT application was not designed to function in
taint mode, and halts immediately if taint mode is en-
abled in a normal Perl environment. We modified the
Perl engine (see Section 3.2.1) to allow RT to function in
the taint mode. While we did not use Perl taint mode to
prevent active attacks, we analyzed the taint information
in the database to learn about information flow through
the Web application. Note that if the Web application
were designed to function in taint mode, it would not
need our modified Perl engine to work with DBTaint.

4.3 Analyzing Database Taint Values

After running RT in DBTaint, we could infer knowledge
about the application by simply inspecting the taint val-
ues of the data in the database. By glancing through the
taint values of the database records, we see that nearly all
of the user input stored in the database is marked tainted.
This implies that the Web application performs little in-
put filtering, and relies on output filtering to escape char-
acters to prevent XSS attacks. Upon inspection of the
application code, we found that the application stores
user input directly into the database, and escapes and
replaces dangerous characters before displaying them in
Web pages.

Columns with only untainted data Many of the
database columns contained only untainted values. We
observed that the values in these untainted columns were
either provided or generated by the Web application,
rather than originating from user input. For example,
the “type” field of the “tickets” table was always un-
tainted, because these values ranged across only a few
hard-coded choices in the RT application. Another col-
umn contains a timestamp for internal logging of actions
within the database. Because these timestamps were
generated by the Web application and not specified by
user input, they also appeared untainted in the DBTaint
database tables.

Columns with only tainted data There were also
columns composed entirely of tainted elements, such as
the “subject” column of the “tickets” table. Columns
with this property corresponded to mandatory form fields
that the user completes while using the application. Be-
cause this Web application uses output filtering rather
than input filtering, it passed user data directly from
the Web application to the database without sanitization.
Each element in the column contains untrusted data from
user input, and we can immediately tell that the appli-
cation is not performing input filtering on these values
before storing them.

Columns with mixed tainted and untainted data
While most table columns contained uniformly tainted
or untainted data, there were several columns containing
both tainted and untainted data. Upon further investiga-
tion, we observe that most of these are the columns for
optional form fields. The Web application provides a de-
fault (untainted) value, but if the user provides a value
of their own, it will show up as tainted in the database.
For example, the “finalpriority” column of the “tickets”
table has a default value of O, which is untainted in the
database if the user does not specify any value. However,
if the user does provide a value it will show up as tainted
in the database.

We investigated whether the application might not
have sanitized any of these user-supplied values. We dis-
covered that the application always sends data from these
columns to the Web framework, which sanitizes the data
before outputing them. Even though we did not find any
sanitization bugs in RT, DBTaint helped us gain confi-
dence in the completeness of sanitization in RT.

4.4 Enhancing Functionality

While DBTaint can be used to gain insight into the way
that data flows throughout the Web application, it can
also be used to enhance the functionality of the appli-
cation without incurring additional security risk. RT es-
capes angle braces and other potentially dangerous char-
acters from database values before using them to create
a HTML page. While this can certainly help prevent
cross-site scripting attacks, it also prevents the applica-
tion from using these dangerous characters in its default
values. For example, when a database column contains
mixed tainted (user input) and untainted (application de-
fault) data, without DBTaint the application must sanitize
all of them, unnecessarily restricting default values even
though they are safe.

With the cross-application information flow provided
by DBTaint, we were able to expand the functionality
of the Web application without losing security. Since
we can reliably track the flow of tainted data through

142

WebApps ’10: USENIX Conference on Web Application Development

Web Application \ Overhead ‘
Request Tracker (RT) 12.77%
JForum 8.49%

Table 2: Overall Web service overhead

the Web application and the database, we can avoid con-
cerns of false positives and false negatives that come with
single-application taint tracking schemes. Instead of es-
caping all data values before returning them to a Web vis-
itor, we modified the application to only escape tainted
values. Since user data remains tainted through the entire
Web service, dangerous characters will be escaped in ma-
licious input. On the other hand, trusted values (such as
application defaults) will be untainted and can be safely
included in HTML pages without undergoing this same
escaping procedure.

4.5 Performance

We tested the impact of DBTaint on the performance of
the RT Web application by timing the round trip time of
making a request to the Web application, processing the
request, and receiving the response. We performed 10
sets of 1,500 requests for the original (unmodified) ver-
sion of RT, and of RT running with our DBTaint proto-
type. To simulate and environment of a Web application
under load rather than just starting up, we recorded the
time for the last 1,250 requests of each set. Recall that
our Perl implementation is completely unoptimized, and
each SQL query is reprocessed every time the Web ap-
plication makes a database request. As Table 2 shows,
we note that even with no attempt at optimization, we
achieve less than 13% overhead in our prototype, which
we believe provides a high upper bound of the perfor-
mance impact of our approach.

4.6 Web Application: JForum

To evaluate the effectiveness of our Java implementation
of DBTaint, we selected JForum version 2.1.8, which is
(according to the documentation) a “powerful and robust
discussion board system.” [2] JForum includes more than
30,000 lines of code in 350 Java classes, and uses 59
database tables to maintain subforums, posts, messages,
access control, and more. We deployed JForum to a Tom-
cat server with the character-based taint tracking engine
described in Section 3.3.1.

We evaluated our Java implementation of DBTaint in
a similar way to our Perl evaluation in Section 4.2. We
recorded a series of Web events including logging in,
posting to the forum, and viewing existing posts. We

determined the performance overhead of our Java imple-
mentation on JForum to be less than 9% (Table 2).

Because our Java implementation uses a character-
based taint tracking engine, the query rewriting phase is
more sophisticated and complex than our Perl implemen-
tation. This is because it handles both parameterized and
non-parameterized queries, and checks the taint values
of each character in data strings. With this approach, we
originally observed an overhead of close to 30%. How-
ever, in our Java implementation, we added very simple
memoization to the parsing and rewriting of parameter-
ized queries, which dropped the performance overhead
to less than that of the Perl implementation, despite the
increased complexity. In situations where Web services
serve far more requests than there are distinct parame-
terized queries (which we believe is the common case),
caching the results from the query rewriting phase is a
simple way to improve performance in implementations
with sophisticated character-level query rewriting analy-
sis.

5 Discussion

DBTaint is an effective system for providing cross-
application information flow tracking through databases.
In this section we outline some of the benefits of DBTaint
over other systems, reflections on our prototype imple-
mentations, and applications of DBTaint to interesting
security problems.

5.1 Benefits

DBTaint has the following major benefits:

e End-to-end taint tracking throughout all applica-
tions in a Web service.

e Full support of the semantics of database opera-
tions. DBTaint tracks taint flow at the high database
operational semantics level, rather than at the low
instruction level.

e Efficiency. DBTaint only tracks the information
flow within the database and between the database
and its client applications, avoiding the overhead of
the extra tracking that system-wide solutions per-
form. Our unoptimized prototypes add only a minor
performance penalty to Web services.

e Only SQL-level changes to the database server, and
no changes to the Web application. Our major im-
plementation work is in modifying the database in-
terface. We don’t need to make any changes to the
database client because DBTaint intercepts and au-
tomatically rewrites all SQL queries from the client
as needed for our information flow tracking.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 143



Figure 1: DBTaint Serial Throughput

5.2 Database Performance

The performance impact of the composite forms of
database operations (summarized in Table 1) may ap-
pear to be surprising at first. We note that the composite
versions of INSERT statements execute somewhat more
slowly than the original queries. This is not particularly
surprising, as the database client is inserting twice as
many values in the composite version (a taint value for
each data value). Similarly, basic SELECT statements
are slightly slower than the original queries, likely for
similar reasons — there is simply more data to work with
in the composite version.

However, we note that the other operations (the equal-
ity operator, the less than operator, and the addition op-
erator) are much slower than their native counterparts.
We suspect that this is because native types have been
highly optimized in the underlying database engine. In
contrast, we added the composite version of these opera-
tors using high-level SQL functions. We hypothesize that
while most Web application performance is not bound by
mathematical operators in the database, substantial per-
formance improvements could be made by implementing
these composite types and their associated functionality
in C rather than SQL. These optimized datatypes could
be dropped in as replacements for our prototype SQL
implementation if the extra performance was necessary.
However, in testing our implementations with real-world
Web applications (Sections 4.5 and 4.6) we observed that
despite the large performance overhead of these oper-
ations, the overall performance of the Web application
was not dramatically impacted. As shown in Figure 1,
DBTaint has relatively little impact on the throughput of
the Web application serving requests despite the over-
head of database operations.

5.3 Applications of DBTaint

Persistence of taint information DBTaint allows the
taint information stored in the database to remain per-
sistent through multiple runs of the applications. This
allows an application that uses the database to run many
times without losing the taint information from the pre-
vious executions.

Comparison of different versions of application
DBTaint can be used to compare two different versions
of an application that use a database for storage. After
refactoring some user input sanitization code, for exam-
ple, programmers can run the old and new versions of a
Web application under DBTaint and compare the result-
ing database tables. Variations in the taint patterns of the
database columns may indicate a change in input saniti-
zation policies.

Identification of incomplete input sanitization In-
complete input sanitization contribute to many security
vulnerabilities. Common solutions for detecting incom-
plete input sanitization are static analysis and runtime
testing. Static analysis techniques are often expensive
and are prone to false positives and negatives. For run-
time testing, the testers must understand the sanitization
functions of the program to design malicious input to test
the completeness of the sanitization functions. DBTaint
provides an alternative mechanism to detect incomplete
input sanitization at runtime and requires no understand-
ing of the sanitization functions in the program.

Web applications typically sanitize untrusted input at
two moments: (1) input filtering, which sanitizes an input
as it enters the program; and (2) output filtering, which
sanitizes untrusted data just before the program embeds
the data into a generated Web page.

DBTaint has the ability to provide immediate insight
into the taint properties of the data in an application with-
out requiring the user to understand the application code.
For Web applications that perform no input filtering,

e Columns that contain only tainted data are likely for
storing mandatory user data.

o Columns that contain only untainted data are likely
for storing data hardcoded from or generated by the
applications themselves, rather than user input.

o Columns that contain mixed taint and untainted val-
ues are used for multiple purposes (e.g. data com-
ing from different applications or code paths), or for
optional data fields whose default value (set by the
program) is untainted but user value is tainted.

In applications that perform input filtering, such col-
umn analysis can be even more useful.

144

WebApps ’10: USENIX Conference on Web Application Development

e Columns where data are completely untainted indi-
cate that all of the values are either sanitized user
input or values produced by the application.

e Columns where data are completely tainted suggest
user data that has not been properly sanitized, which
may indicate a security vulnerability.

e Columns containing both tainted and untainted data
may indicate that the input sanitization is incom-
plete, i.e., the program sanitizes input data on some
paths but not on the other paths.

In the last two cases, DBTaint helps the auditor to re-
duce the search space for potential sanitization bugs.

5.4 Inadvertent Untainting

When using a taint engine, one must be careful to never
inadvertently untaint tainted data. DBTaint does not un-
taint any tainted values (manually or automatically), but
unfortunately the two single-application taint tracking
engines we used for our Perl and Java prototypes did per-
form some inadvertent untainting. This is not the fault
of DBTaint, but the problems in these other engines did
make our evaluation more difficult.

Perl’s taint mode is designed to automatically remove
the taint bit on data when it is matched against a regu-
lar expression. Perl assumes that a programmer using a
regular expression on a variable is validating the contents
of the variable, so Perl automatically untaints the value.
However, some Perl application and library code uses
regular expression for simple string processing, rather
than validation or sanitization, leading to inappropriate
untainting. We discovered that an encoding/decoding
UTF-8 conversion function was untainting all user input
in the RT application before the data reached the DB-
Taint database interface. We addressed this problem by
manually retainting the results of the function when the
original string was tainted before the decoding.

We encountered similar difficulties using our
character-based taint tracking engine for Java. The
Java engine we used provides efficient taint tracking
by extending String and other String-based classes to
maintain taint data. However, because the primitive data
types are not similarly extended, the engine cannot track
taint bits for a String converted to a character array and
back, for example. All taint bits are lost, inadvertently
and incorrectly untainting the resulting String. Due
to this limitation, some of the tainted values from the
JForum Web application received via POST submissions
became untainted before they reached the DBTaint
database interface. As some user input values were
inadvertently untainted, we were unable to perform a
meaningful analysis of the taint values of each database
column.

6 Related Work

The ability to access a Web service from anywhere
means that it must be able to handle input from any
source. Unchecked malicious input can lead to some
of the top reported software vulnerabilities in Web ap-
plications [3]. The information flow tracking pro-
vided by DBTaint is like a coarse-grained version of
where-provenance [6], allowing developers to identify
unchecked user input though multiple applications in the
Web service without requiring a whole-system solution.

Application-wide  information flow tracking
Splint [9] supports source code annotations that help
a programmer identify the flow of tainted information
within a program. TaintCheck [16] identifies vulnera-
bilities automatically by performing this analysis on a
binary running within its own emulation environment.
Xu et al. [19] leverage the source code of a program pro-
duce a version of that program that can efficiently track
information flow and identify attacks. WebSSARI [12]
targets web applications written in PHP specifically
with static analysis to identify the information flow of
unvalidated input and adds runtime sanitization routines
to potentially vulnerable code using that input. Lam
et al. [13] also targets web vulnerabilities with the
automatic generation of static and dynamic analyses of
a program from a description of an information flow
pattern. Because most modern Web services include
multiple applications, single-application information
flow tracking systems result in false positives and/or
negatives because they must assume database values
are either tainted or untainted without complete runtime
information. DBTaint avoids any need for manual
annotation and automatically provides information flow
propagation across Web service applications.

System-wide information flow tracking With archi-
tectural support, information flow tracking systems can
trace untrusted I/O throughout the system [17, 8] at
a fine memory address level granularity. These sys-
tems however, require substantial changes to the un-
derlying hardware or must emulate the entire system
with a performance penalty. Ho et al [11], provide the
same system-wide tracking with the Xen virtual machine
monitor and switch to a hardware emulator only when
needed to mitigate the performance penalty. However,
these approaches pay an unnecessary performance cost
by tracking much more than necessary for most Web ser-
vices. Other system-wide information flow tracking sys-
tems like HiStar [20] and Asbestos [18] are too coarsely
grained to track taint values of individual values through-
out the Web application and the database. These system-
wide approaches also fail to take advantage of the se-

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 145



mantics of information flow during database operations.
WASC [15] targets web applications and provides a dy-
namic checking compiler to identify flows and automati-
cally instrument programs with checks. They add sup-
port for inter-process flow tracking through databases
by maintaining external logs of all SQL transactions,
operands and associated tags. This approach lacks DB-
Taint’s ability to use taint values during internal database
operations (e.g. preferring untainted values in equality
operations for SELECT DISTINCT queries).

7 Conclusion

We have designed and implemented DBTaint, which
provides information flow tracking in databases to en-
able cross-application information flow tracking. When
database clients, such as Web applications, write into the
database, DBTaint stores data together with their taint in-
formation. When the database clients retrieve data, DB-
Taint tags the data with proper taint information. Our
implementation requires no modification to Web applica-
tions, and only SQL-level additions to the database. By
interposing on the database interfaces between Web ap-
plications and databases, DBTaint is transparent to Web
applications. We demonstrated how two Web applica-
tions, an enterprise-grade application written in Perl (RT)
and a robust forum application written in Java (JForum),
easily work with DBTaint. DBTaint not only can enable
cross-application taint tracking but may also identify po-
tential security vulnerabilities due to incomplete sanitiza-
tion without the need to understand sanitization functions
in the Web application. Because DBTaint takes advan-
tage of the semantics of database operations, its overhead
is low, and our unoptimized prototype implementations
add only 10-15% overhead to the entire system.

8 Acknowledgment

We wish to thank David Wagner and Erika Chin for help-
ful discussions and for providing Java character-level
taint tracking.

References
[1] Best Practical: Request Tracker. http://bestpractical.
com/rt/.
[2] JForum. http://jforum.net/.

[3] OWASP top 10 2007. http://www.owasp.org/index.
php/Top_10_2007.

[4] SANS: Top 20 internet security problems, threats and risks.
http://www.sans.org/top20/.

[5] Zql: Java SQL Parser. http://www.gibello.com/code/
zql/.

[6

=

BUNEMAN, P., KHANNA, S., AND TAN, W. C. Why and where:
A characterization of data provenance. In ICDT ’01: Proceedings
of the 8th International Conference on Database Theory (Lon-
don, UK, 2001), Springer-Verlag, pp. 316-330.

[7] CHIN, E., AND WAGNER, D. Efficient character-level taint

tracking for java. In SWS ’09: Proceedings of the 2009 ACM

workshop on Secure web services (New York, NY, USA, 2009),

ACM, pp. 3-12.

CRANDALL, J. R., WU, S. F., AND CHONG, F. T. Minos: Ar-

chitectural support for protecting control data. Transactions on

Architecture and Code Optimization 3 (2006), 359-389.

EVANS, D., AND LAROCHELLE, D. Improving security using

extensible lightweight static analysis. IEEE Software (2002).

[10] GUNDY, M. V., AND CHEN, H. Noncespaces: using random-
ization to enforce information ow tracking and thwart cross-site
scripting attacks. In Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2009), pp. 1-18.

[11] Ho, A., FETTERMAN, M., CLARK, C., WAR, A., AND HAND,
S. Practical taint-based protection using demand emulation. In
Proceedings of the 1st ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2006 (2006), pp. 29-41.

[12] HUANG, Y.-w., YU, F., HANG, C., Tsal, C.-H., LEE, D. T.,

AND KUO, S.-Y. Securing web application code by static anal-

ysis and runtime protection. In Proceedings of the 13th interna-

tional conference on World Wide Web (2004), pp. 40-51.

[13] LaM, M. S., LIVSHITS, B., AND WHALEY, J. Securing web
applications with static and dynamic information flow tracking.
In Proceedings of the 2008 ACM SIGPLAN symposium on Partial
Evaluation and Semantics-based Program Manipulation (2008).

[14] NADIJI, Y., SAXENA, P., AND SONG, D. Document structure
integrity: A robust basis for cross-site scripting defense. In Pro-
ceedings of the Network and Distributed System Security Sympo-
sium (2009).

[15] NANDA, S., LAM, L.-C., AND CHIUEH, T.-C. Dynamic multi-
process information flow tracking for web application security.
ACM/IFIP/USENIX 8th International Middleware Conference
(Middleware’07) (2007), 1-20.

[16] NEWSOME, J., AND SONG, D. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS) (2005).

[17] SuH, G.E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure
program execution via dynamic information flow tracking. In
ASPLOS-XI: Proceedings of the 11th international conference on
Architectural support for programming languages and operating
systems (New York, NY, USA, 2004), ACM, pp. 85-96.

[18] VANDEBOGART, S., EFSTATHOPOULOS, P., KOHLER, E.,
KROHN, M., FREY, C., ZIEGLER, D., KAASHOEK, F., MOR-
RIS, R., AND MAZIERES, D. Labels and event processes in
the asbestos operating system. ACM Trans. Comput. Syst. 25,
4 (2007), 11.

[19] Xu, W., BHATKAR, S., AND SEKAR, R. Taint-enhanced pol-
icy enforcement: A practical approach to defeat a wide range of
attacks. Usenix Security 2006 (2006).

[20] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIERES, D. Making information flow explicit in histar. In
OSDI ’06: Proceedings of the 7th symposium on Operating sys-
tems design and implementation (Berkeley, CA, USA, 2000),
USENIX Association, pp. 263-278.

[8

—_

[9

—

Notes

'We have not yet overcome the bugs in the original PHP taint im-
plementation, which crash the PHP interpreter.

146

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association



xJS: Practical XSS Prevention for Web Application Development

Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras, Evangelos P. Markatos

Institute of Computer Science,
Foundation for Research and Technology - Hellas

email: {elathan, vpappas, krithin, ligouras, markatos}@ics.forth.gr
Thomas Karagiannis
Microsoft Research,
Cambridge, United Kingdom

email: {thomas.karagiannis}e@microsoft.com

Abstract

We present xJS, a practical framework for preventing
code-injections in the web environment and thus assist-
ing for the development of XSS-free web applications.
xJS aims on being fast, developer-friendly and provid-
ing backwards compatibility.

We implement and evaluate our solution in three lead-
ing web browsers and in the Apache web server. We
show that our framework can successfully prevent all
1,380 real-world attacks that were collected from a well-
known XSS attack repository. Furthermore, our frame-
work imposes negligible computational overhead in both
the server and the client side, and has no negative side-
effects in the overall user’s browsing experience.

1 Introduction

Code-injection attacks through Cross-Site Scripting
(XSS) in the web browser have observed a signifi-
cant increase over the previous years. According to
a September-2009 report published by the SANS In-
stitute [34], attacks against web applications constitute
more than 60% of the total attack attempts observed on
the Internet. Web application vulnerabilities such as SQL
injection and Cross-Site Scripting flaws in open-source
as well as custom-built applications account for more
than 80% of the vulnerabilities being discovered. XSS
threats are not only targeted towards relatively simple,
small-business web sites, but also towards infrastructures
that are managed and operated by leading IT vendors [2].
Moreover, recently widely adopted technologies, such
as AJAX [15], exacerbate potential XSS vulnerabilities
by promoting richer and more complex client-side inter-
faces. This added complexity in the web browser en-
vironment provides additional opportunities for further
exploitation of XSS vulnerabilities.

Several studies have proposed mechanisms and archi-
tectures based on policies, communicated from the web
server to the web browser, to mitigate XSS attacks. The
current state of the art includes XSS mitigation schemes

proposing whitelisting of legitimate scripts [17], utilizing
randomized XML namespaces for applying trust classes
in the DOM [16], or detecting code injections by exam-
ining modifications to a web document’s original DOM
structure [26]. While we believe that the aforementioned
techniques are promising and in the right direction, they
have weaknesses and they fail in a number of cases.
As we show in this paper, whitelisting fails to protect
from attacks that are based on already whitelisted scripts,
while DOM-based solutions fail to protect from attacks
where the DOM tree is absent [7].

To account for these weaknesses, in this paper, we pro-
pose xJS, which is a practical and simple framework
that isolates legitimate client-side code from any possi-
ble code injection. Our contributions are thus twofold: 1)
we describe, implement and evaluate xJS and ii) we out-
line limitations of previous methodologies and a number
of attacks that defeat existing approaches.

Our framework could be seen as a fast randomization
technique. Instruction Set Randomization (ISR) [20] has
been proposed for defending against code injections in
native code or in other environments, such as code exe-
cuted by databases [9]. However, we believe that adapt-
ing ISR to deal with XSS attacks is not trivial. This is
because web client-side code is produced by the server
and is executed in the client; the server lacks all needed
functionality to manipulate the produced code. For ex-
ample, randomizing the JavaScript instruction set in the
web server requires at least one full JavaScript parser
running at the server. Thus, instead of blindly imple-
menting ISR for JavaScript, our design introduces Iso-
lation Operators, which transpose all produced code in
a new isolated domain. In our case, this is the domain
defined by the XOR operator.

We design xJS with two main properties in mind:

e Backwards Compatibility. We aim for a practical,
developer-friendly solution for constructing secure
web applications and we ensure that the scheme

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 147



1l:<div> 1l:<div>

2:<img onload=’"'render();’’'>2:<img onload=’''AlCtV..."'"'>
3:<script> 3:<script>

4:alert (’'Hello World’''); 4: vpSULJTV2NHGwJyW/NHY. ..
S5:<scripts> 5:</script>

6:</div> 6:</div>

Figure 1: Example of a web page that is generated by our
framework.

provides backwards compatibility. xJS allows web
servers to communicate to web browsers when the
scheme is enabled or not. A web browser not sup-
porting the framework may still render web appli-
cations, albeit without providing any of the security
guarantees of xJS.

e Low Computation Overhead. Our design avoids
the additional overhead of applying ISR in both
web server and client, which would significantly
increase the computational overheads. This is be-
cause the web code would be parsed twice (one in
the server during serving and one in the client dur-
ing execution). Instead, the isolation operator in-
troduced in xJS applies the XOR function to the
whole source corpus of all legitimate client-side
code. Thus, the randomization process is fast, since
XOR exists as a CPU instruction in all modern hard-
ware platforms, and does not depend on any partic-
ular instruction set.

We implement and evaluate our solution in three
leading web browsers namely FireFox, WebKit! and
Chromium, and in the Apache web server.

Our evaluation shows that xJS can successfully pre-
vent all 1,380 attacks of a well-known repository [14],
imposes at the same time negligible computational over-
head in the server and in the client side. Finally, our
modifications appear to have no negative side-effects
in the user web browsing experience. To examine
user-perceived performance, we examine the behavior
of xJS-enabled browsers through a leading JavaScript
benchmark suite [3], which produces the same perfor-
mance results in both the xJS-enabled and the original
web browsers.

2 The xJS Framework

The fundamental concepts of our framework are Isola-
tion Operators and Action Based Policies in the browser
environment. We review each of these concepts in this
section and, finally, we provide information about our
implementation prototypes.

I'WebKit is not a web browser itself, it is more like an applica-
tion framework that provides a foundation upon which to build a web
browser. We evaluate our modifications on WebKit using the Safari
web browser.

xJ8S is a framework that can address XSS attacks car-
ried out through JavaScript. However, our basic concept
can be also applied to other client-side technologies, such
as Adobe Flash. The basic properties of the proposed
framework can be summarized in the following points.

e xJS prevents JavaScript code injections that are
based on third party code or on code that is already
used by the trusted web site.

e xJS prevents execution of trusted code during an
event that is not scheduled for execution. Our
framework guarantees that only the web site’s code
will be executed and only as the site’s logic defines
it.

e xJS allows for multiple trust-levels depending on
desired policies. Thus, through xJS, parts of a web
page may require elevated trust levels or further user
authentication to be executed.

e xJS in principle prevents attacks that are based on
injected data and misuse of the JavaScript eval ()
function. We discuss eval () semantics in detail
in Sections 4 and 5.

Isolation Operators

xJS is based on Instruction Set Randomization (ISR),
which has been applied to native code [20] and to
SQL [9]. The basic concept behind ISR is to randomize
the instruction set in such a way so that a code injection
is not able to speak the language of the environment [21]
and thus is not able to execute. In xJS, inspired by ISR,
we introduce the concept of Isolation Operators (I0). An
IO essentially transposes a source corpus to a new iso-
lated domain. In order to de-isolate the source from the
isolated domain a unique key is needed. This way, the
whole source corpus, and not just the instruction set, is
randomized.

Based on the above discussion, the basic operation
of xJ8S is the following. We apply an IO such as the
XOR function to effectively randomize and thus isolate
all JavaScript source of a web page. The isolation is
achieved since all code has been transposed to a new
domain: the XOR domain. The IO is applied by the
web server and all documents are served in their isolated
form. To render the page, the web browser has to de-
isolate the source by applying again the IO and then ex-
ecute it.

Note that, in xJS, we follow the approach of random-
izing the whole source corpus and not just the instruc-
tion set as in the basic ISR concept. We proceed with
this choice since the web code is produced in the web
server and it is executed in the web browser. In ad-
dition, the server lacks all needed functionality to ma-
nipulate the produced code. For example, randomiz-
ing the JavaScript instruction set needs at least one full

148

WebApps ’10: USENIX Conference on Web Application Development

JavaScript parser running at the server. This can sig-
nificantly increase the computational overhead and user-
perceived latency, since the code would be parsed twice
(one in the server during serving and one in the client
during execution). However, the isolation can break web
applications that explicitly evaluate dynamic JavaScript
code using eval (). In that case, the web developer
must use a new API, xeval (), since xJS alters the
semantics of eval (). We further discuss this in Sec-
tion 5. Finally, we select XOR as the IO because it is
in general considered a fast process; all modern hard-
ware platforms include a native implementation of the
XOR function. However, our framework may be applied
with any other IO.

Figure 1 depicts an xJS example. On the left, we
show the source code as it exists in the web server and on
the right, we provide the same source as it is fetched by
the web browser. The JavaScript source has been XORed
and a Base64 [18] encoding has been applied in order
to transpose all non-printable characters to the printable
ASCII range.

Action Based Policies

xJS allows for multiple trust-levels for the same web
site depending on the desired operation. In general, our
framework suggests that policies should be expressed as
actions. Essentially, all trusted code should be treated
using the policy “de-isolate and execute”. For different
trust levels, multiple IOs can be used or the same IO can
be applied with a different key. For example, portions of
client-side code can be marked with different trust levels.
Each portion will be isolated using the XOR function, but
with a different key. The keys are transmitted in HTTP
headers (see the use of X-I0-Key, later in this section)
every time the server sends the page to the browser.

Expressing the policies in terms of actions has the fol-
lowing benefit. The injected code cannot bypass the pol-
icy, unless it manages to produce the needed result after
the action is applied to it. The latter is considered prac-
tically very hard, even for trivial actions such as the XOR
operation. One possible direction for escaping the policy
is using a brute force attack. However, if the key is large
enough the probability to succeed is low.

Defining the desired policy set is out of the scope of
this paper. For the purpose of our evaluation (see Sec-
tion 4) we use one policy, which is expressed as “de-
isolate (apply XOR) and execute”. Other example poli-
cies can be expressed as “de-isolate and execute under
user confirmation”, “de-isolate with the X key and exe-
cute”, etc.

2.1 Implementation

Browser Modifications. All three modified web browsers
operate in the following way. A custom HTTP header

field, X-I0-Key, is identified in each HTTP response.
If the key is present, this is an indication that the web
server supports the framework, and the field’s value de-
notes the key for the de-isolation process. This is also a
practical way for incremental deployment of the frame-
work in a backwards compatible fashion. At the mo-
ment, we do not support multiple keys, but extending the
browser with such a feature is considered trivial. On the
other hand, the web browser communicates to the web
server that it supports the framework using an Accept?
header field for every HTTP request.

As far as WebKit and Chromium are concerned, we
had to modify two separate functions. First, the func-
tion that handles all events (such as onload, onclick,
etc.), and second, the function that evaluates a JavaScript
code block. We modified these functions to (i) decode
all source using Base64 and (ii) apply the XOR oper-
ation with the de-isolation key (the one transmitted in
X-IO-Key)to each byte. FireFox has a different design.
It also uses two functions, one for compiling a JavaScript
function and one for compiling a script. However, these
functions operate recursively. We further discuss this is-
sue in Section 4.

Server Modifications. For the server part of xJS we
are taking advantage of the modular architecture of the
Apache web server. During Apache’s start-up phase
all configuration files are parsed and modules that are
concerned with processing an HTTP request are loaded.
The main processing unit of the apache web server is
the content generator module. A module can register
content generators by defining a handler that is config-
urable by using the SetHandler or AddHandler di-
rectives. These can be found in Apache’s configuration
file (httpd.conf).

Various request phases that precede the content gener-
ator exist. They are used to examine and possibly manip-
ulate some request headers, or to determine how the re-
quest will be handled. For example the request URL will
be matched against the configuration, because a certain
content generator must be used. In addition the request
URL may be mapped to a static file, a CGI script or a
dynamic document according to the content generator’s
operation. Finally after the content generator has sent a
reply to the browser, Apache logs the request.

Apache (from version 2 and above) also supports fil-
ters. Consider the filter chain as a data axis, orthog-
onal to the request processing axis. The request data
may be processed by input filters before reaching the
content generator. After the generator has finished gen-
erating the response various output filters may process
it before being sent to the browser.We have created an

2For the definition of the Accept field in HTTP requests, see:
http://www.w3.org/Protocols/HTTP/HTRQ Headers.
html#z3

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 149



Apache module which operates as a content generator.
For every request, that corresponds to an HTML file in
the disk, the file is fetched and processed by our mod-
ule. The file is loaded in memory and stored in a buffer.
The buffer is transfered to an HTML parser (based on
the HTMLParser module from libxml2 [39]). This is
an HTML 4.0 non-verifying parser with API compatible
with the XML parser ones. When the parsing is done
our module traverses the parser’s XML nodes in mem-
ory and searches for all nodes that contain JavaScript
(<script> nodes and events). If there is a match the
XOR operation is applied using the isolation key to each
byte of the JavaScript source. Finally all source is en-
coded in Base64.

After encoding all possible JavaScript source in the
web page, the buffer is sent to the next operating mod-
ule in the chain; this might be an output filter or the
web browser. Implementing xJS as a content gener-
ator module has the benefit of isolating by encryption
all JavaScript source before any dynamic content, which
might include XSS attacks, is inserted. Our framework
can cooperate with other server-side technologies, such
as PHP, in two ways: (a) by using two Apache’s servers
(one running xJS and the other one the PHP module)
and (b) by configuring PHP to run as a filter. All evalua-
tion results presented in Section 4 are collected using the
second setup.

Secret Key. The secret key that is used for the XOR
operation is a string of random alphanumeric characters.
The length of the string can be arbitrary. For all exper-
iments presented in this paper a two-character string is
used. Assuming that S; is the JavaScript source of length
l and K, is the secret key of length L, the encoding
works as follows: Enc(S;) = S; @ Ko 1),0 <i <l
It is implied that the ASCII values of the characters are
used. The secret key is refreshed per request. We do not
consider Man-in-the-Middle (MiM) attacks, since during
a MiM an attacker can alter the whole JavaScript source
without the need of an injection through XSS.

3 Attacks Covered

In this section we present a new form of XSS attack,
which we refer to as return-to-JavaScript attack, in anal-
ogy with the return-to-libc attack in native code. This
kind of XSS attack can escape script whitelisting, used
by existing XSS mitigation schemes. We further high-
light some important issues for DOM-based XSS miti-
gation schemes. All the attacks listed in this section can
be successfully prevented by xJS.

3.1 return-to-JavaScript Attacks

A practical mitigation scheme for XSS attacks is script
whitelisting, proposed in BEEP[17]. BEEP works as
follows. The web application includes a list of crypto-

graphic hashes of valid (trusted) client-side scripts. The
browser, using a hook, checks upon execution of a script
if there is a cryptographic hash in the whitelist. If the
hash is found, the script is considered trusted and exe-
cuted by the browser. If not, the script is considered non-
trusted and the policy defines whether the script may be
rendered or not. Script whitelisting is not sufficient. De-
spite its novelty, we argue here that simple whitelisting
may not prove to be a sufficient countermeasure against
XSS attacks. To this end, consider the following.

Location of trusted scripts. As a first example, note
that BEEP does not examine the script’s location inside
the web document. Consider the simple case where an at-
tacker injects a trusted script, initially configured to run
upon a user’s click (using the onclick action), to be
rendered upon document loading (using the onload?
action). In this case the script will be executed, since it
is already whitelisted, but not as intended by the original
design of the site; the script will be executed upon site
loading and not following a user’s click. If, for example,
the script deletes data, then the data will be erased when
the user’s browser loads the web document and not when
the user clicks on the associated hyperlink.

Exploiting legitimate whitelisted code. Attacks may
be further carried out through legitimate white-listed
code. XSS attacks are typically associated with inject-
ing arbitrary client-side code in a web document, which
is assumed to be foreign, i.e., not generated by the web
server. However, it is possible to perform an XSS attack
by placing code that is generated by the web server in dif-
ferent regions of the web page. This attack resembles the
classic return-to-libc attack [11] in native code applica-
tions and thus we refer to as return-to-JavaScript. Return
oriented programming suggests that an exploit may sim-
ply transfer execution to a place in 1ibc?*, which may
cause again execution of arbitrary code on behalf of the
attacker. The difference with the traditional buffer over-
flow attack [29] is that the attacker has not injected any
foreign code in the program. Instead, she transfers exe-
cution to a point that already hosts code that can assist
her goal. A similar approach can be used by an attacker
to escape whitelisting in the web environment. Instead
of injecting her own code, she can take advantage of ex-
isting whitelisted code available in the web site. Note
that, typically, a large fraction of client-side code is not

30ne can argue that the onload action is limited and usually asso-
ciated with the <body > tag. The latter is considered hard to be altered
through a code-injection attack. However, note, that the onload event
is also available for other elements (e.g. images, using the <img> tag)
included in the web document.

“This can also happen with other libraries as well, but 1ibc seems
ideal since (a) it is linked to every program and (b) it supports opera-
tions like system (), exec(), adduser (), etc., which can be
(ab)used accordingly. More interestingly, the attack can happen with no
function calls but using available combinations of existing code [36].

150

WebApps ’10: USENIX Conference on Web Application Development

executed upon document loading, but is triggered during
user events, such as mouse clicks. Below we enumer-
ate some possible scenarios for XSS attacks based on
whitelisted code, which can produce (i) annoyance, (ii)
data loss and (iii) complete takeover of a web site.

Annoyance. Assume the blog site shown in Figure 2.
The blog contains a JavaScript function logout (),
which is executed when the user clicks the correspond-
ing hyperlink, Logout (line 4 in Fig. 2). An attacker
could perform an XSS attack by placing a script that calls
logout () when a blog entry is rendered (see line 7
in Fig. 2). Hence, a user reading the blog story will be
forced to logout. In a similar fashion, a web site that uses
JavaScript code to perform redirection (for example us-
ing window.location.href = new-site) can
be also attacked by placing this whitelisted code in an
onload event (see line 8 in Fig. 2).

Data Loss. A web site hosting user content that can be
deleted using client-side code can be attacked by inject-
ing the whitelisted deletion code in an onload event
(see line 9 in Fig. 2). AJAX [15] interfaces are popu-
lar in social networks such as Facebook.com and MyS-
pace.com. This attack can be considered similar to a
SQL injection attack [5], since the attacker is implicitly
granted access to the web site’s database.

Complete Takeover. Theoretically, a web site that has
a full featured AJAX interface can be completely taken
over, since the attacker has all the functionality she needs
a-priori whitelisted by the web server. For example, an e-
banking site that uses a JavaScript transact () func-
tion for all the user transactions is vulnerable to XSS at-
tacks that perform arbitrary transactions.

A workaround to mitigate the attacks presented above
is to include the event type during the whitelisting pro-
cess. Upon execution of script S1, which is triggered
by an onclick event, the browser should check the
whitelist for finding a hash key for S1 associated with
an onclick event. However, this can mitigate attacks
which are based on using existing code with a different
event type than the one initially intended to by the web
programmer. Attacks may still happen. Consider the
Data Loss scenario described above, where an attacker
places the deletion code in onclick events associated
with new web document’s regions. The attacker achieves
to execute legitimate code upon an event which is not ini-
tially scheduled. Although the attacker has not injected
her own code, she manages to escape the web site’s logic
and associate legitimate code with other user actions. At-
tacks against whitelisting, based on injecting malicious
data in whitelisted scripts, have been described in [26].

3.2 DOM-based Attacks

There is a number of proposals [16, 26, 13] against XSS
attacks, which are based on information and features pro-

vided by DOM [24]. Every web document is rendered
according to DOM, which represents essentially its es-
oteric structure. This structure can be utilized in or-
der to detect or prevent XSS attacks. One of the most
prominent and early published DOM-based techniques
is DOM sandboxing, introduced originally in BEEP.

DOM sandboxing works as follows. The web server
places all scripts inside div or span HTML elements
that are attributed as trusted. The web browser, upon
rendering, parses the DOM tree and executes client-side
scripts only when they are contained in trusted DOM
elements. All other scripts are marked as non-trusted
and they are treated according to the policies defined by
the web server. We discuss here in detail three major
weaknesses of DOM sanbdoxing as an XSS mitigation
scheme: (i) element annotation and (ii) DOM presence.

Element annotation. Enforcing selective execution
in certain areas of a web page requires identification of
those DOM elements that may host untrusted code or
parts of the web application’s code that inject unsafe con-
tent. This identification process is far from trivial, since
the complexity of modern web pages is high, and web ap-
plications are nowadays composed of thousands lines of
code. To support this, in Table 1 we highlight the number
of script, div and span elements of a few represen-
tative web page samples. Such elements can be in the
order of thousands in modern web pages. While there is
active research to automate the process of marking un-
trusted data [35, 23] or to discover taint-style vulnerabil-
ities [19, 25], we believe that, currently, the overhead of
element annotation is prohibitive, and requires, at least
partially, human intervention. On the contrary, xJS does
not require taint-tracking or program analysis to identify
trusted or untrusted parts of a web document or a web
application.

Facebook.com | MySpace.com | Digg.com
script 23 93 82
div 2708 264 302
span 982 91 156

Table 1: Element counts of popular home pages indicat-
ing their complexity.

DOM presence. All DOM-based solutions require the
presence of a DOM tree. However, XSS attacks do not
always require a DOM tree to take place. For exam-
ple, consider an XSS attack which bypasses the content-
sniffing algorithm of a browser and is carried within a
PostScript file [7]. The attack will be launched when the
file is previewed, and there is high probability that upon
previewing there will be no DOM tree to surround the
injected code. As browsers have been transformed to a
generic preview tool, we believe that variants of this at-
tack will manifest in the near future.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development 151



<html>
<head> <title> Blog! </title> <heads>
<body>

<a onclick="logout () ; ">Logout</a>

<div class="blog comments"> <ul>
<li> <img onload="logout () ;" src="logo.gif">

W 30 U W

w0

<li> <img onload="delete(123) ;">
10: </divs

<div class="blog_entry" id="123"> {...} <input type="button" onclick="delete(123)"></div>

<li> <img onload="window.location.href="http://www.google.com’ ;" src="logo.gif">

11: <a onclick="window.location.href='"http://www.google.com’;">Google</a>

12: </body>
13:</html>

Figure 2: A minimal Blog site demonstrating the whitelisting attacks.

Another example is the unofficially termed DOM-
Based XSS or XSS of the Third Kind attacks [22]. This
XSS type alters the DOM tree of an already rendered
page. The malicious XSS code does not interact with
the sever in any way. In such an attack, the malicious
code is embedded inside a URI after the fragment identi-
fier. > This means that the malicious code (a) is not part
of the initial DOM tree and (b) is never transmitted to the
server. Unavoidably, DOM-based solutions [16, 26] that
define trust classes in the DOM tree at server side will
fail. The exploit will never reach the server and, thus,
never be associated with or contained in a trust class.

3.3 Attacks Not Addressed

xJS aims on protecting against XSS attacks that are
based on JavaScript injections. The framework is not
designed for providing defenses against i frame injec-
tions and drive-by downloads [30], injections that are
non-JavaScript based (for example, through arguments
passed in Flash objects) and Phishing [12]. However,
some fundamental concepts of xJS can be possibly ap-
plied to non-JavaScript injections.

4 Evaluation

In this section we evaluate the xJS prototype. Our eval-
uation seeks to answer four questions: (a) how many real
XSS attacks can be prevented, (b) what the overhead on
the server is, (¢) what the overhead on the web browser
is and, finally, (d) if the framework imposes any side-
effects in the user’s browsing experience.

4.1 Attack Coverage

We first evaluate the effectiveness of the xJS framework
to prevent real-world XSS attacks. xJS aims on prevent-
ing traditional XSS attacks, as well as the XSS attacks
described in Section 3.

Real-world exploits. To verify that xJS can cope
with real-world XSS exploits, we use the repository
hosted by XXSed.com [14] which includes a few thou-

SFor more details about the fragment identifier, we refer the reader
tohttp://www.w3.org/DesignIssues/Fragment.html.

sands of XSS vulnerable web pages. This repository has
been also used for evaluation in other papers [26]. The
evaluation of the attack coverage through the repository
is not a straightforward process. First, XSSed.com mir-
rors all vulnerable web pages with the XSS code embed-
ded in their body. Some of them have been fixed after
the publication of the vulnerability. These updated pages
cannot be of use, since xJS prevents the code injection
before it takes place and there is no way for us to have
a copy of the original vulnerable web page (without the
XSS code in its body). Second, we have no access to
the vulnerable web server and, thus, we cannot use our
server-side filter for the evaluation.

To address the aforementioned limitations, we conduct
the evaluation as follows. First, we resolve all web sites
that are still vulnerable. To this end, we download all
10,154 web pages listed in XSSed.com, along with their
attack vectors. As the attack vector we define the URL
along with the parameters that trigger the vulnerability.®
Since XSS attacks that are based on a redirection with-
out using any JavaScript cannot be addressed by xJS,
we remove all such cases. Thus, we exclude 384 URLs
that have an iframe as attack vector, 416 URLs that
have a redirection to XSSed.com as attack vector and 60
URLs that have both an iframe and a redirection to
XSSed.com as attack vector.

After this first pre-processing stage, the URL set con-
tains all web pages that were vulnerable at some period
in time and their vulnerability can be triggered using
JavaScript; for example, the attack vector contains a call
to the alert () function. We then exclude from the
set all web-pages for which their vulnerability has been
fixed after it became public in XSSed.com. To achieve
this, we request each potentially vulnerable page through
a custom proxy server we built using BeautifulSoup [31].
The task of the proxy is to attach some JavaScript code
that overrides the alert () function with a URL request

®For example, consider the attack vector: http://www.
needforspeed.com/undercover/home.action?lang=
\")(script)alert (document.cookie) ; (/script)
&region=us

152

WebApps ’10: USENIX Conference on Web Application Development

to a web server located in our local network. Since all
attack vectors are based on the alert () function the
web server recorded all successful attacks in its access
logs. Using this methodology we manage to identify
1,381 web pages which are still vulnerable as of early
September 2009. Our methodology suggests that about
1 in 9 web pages have not been fixed even after the vul-
nerability was published.

We use the remaining 1,381 pages as our final testing
set. Since we cannot install our modified Apache in each
of the vulnerable web sites, we use our proxy for sim-
ulating the server-side portion of xJS. More precisely,
for each vulnerable page, we request the vulnerable doc-
ument through our proxy with a slightly altered vector.
For example, for the following attack vector,

http://site.com/page?
id=<script>alert ("XSS") ;</scripts>

the proxy instead requests the URL,

http://site.com/page?
id=<xscript>alert ("XSS") ;</xscripts>.

Notice that the script tag has been modified to
xscript. Using this methodology, we manage to build
all vulnerable web pages with the attack vector embed-
ded but not in effect. However, the JavaScript code con-
tained in the web document is not isolated. Thus, the
next step is to force the proxy to parse all web documents
and apply the XOR function to the JavaScript code. At
this point, all vulnerable web pages have the JavaScript
code isolated and the attack vector defunct. Hence, the
last step is to re-enable the attack vector by replacing the
xscript with script and return the web page to the
browser. All web pages also include some JavaScript
code responsible for the alert () overloading. This
code modifies all alert () calls to perform a web re-
quest to a web server hosted in our local network. If our
web server records requests, the alert () function is
called or, in other words, the XSS exploit run.

To summarize the above process, our experiment to
evaluate the efficacy of the xJS framework is the fol-
lowing. We request each web page from the collected set
which includes 1,381 still vulnerable web pages through
a custom proxy that performs all actions described above.
All web pages are requested using a modified Firefox.
We select the modified Firefox in Linux, because it is
easier to instrument through a script. We manually tested
a random sample of attacks with modified versions of
WebKit and Chromium and recorded identical behavior.

After Firefox has requested all 1,381 vulnerable pages
through our custom proxy, we inspect our web server’s
logs to see if any of the XSS attacks succeeded. Our
web server recorded just one attack. We carefully exam-
ined manually this particular attack and found out that

it is a web page that has the XSS exploit stored inside
its body and not in its attack vector [4]. The particular
attack succeeded just as a side-effect of our evaluation
methodology. If xJS were deployed in the vulnerable
web server, this particular attack would also have been
prevented. Hence, all 1,380 real-world XSS attacks were
prevented successfully by our framework.

Attacks presented in Section 3. For the attacks pre-
sented in Section 3, since to our knowledge they have
not been observed in the wild yet, we performed vari-
ous custom attack scenarios using a popular web frame-
work, Ruby on Rails [37]. We created a vulnerable blog
and then installed the vulnerable blog service to a modi-
fied Apache server and browsed the blog using all three
modified web browsers. As expected, in all cases, xJS
succeeded in preventing the attacks.

We now look at specific attacks such as the ones
based on a code injection in data and the careless use
of eval (). The injected code is in plain text (non-
isolated), but unfortunately it is attached to the isolated
code after the de-isolation process. The injected code
will be executed as if it is trusted. However, there is a
way to prevent this. In fact, the internal design of Fire-
fox gives us this feature with no extra cost. Firefox uses
ajs_CompileScript () function in order to compile
JavaScript code. The design of this function is recur-
sive and it is essentially the implementation of the actual
eval () function of JavaScript. When Firefox identifies
the script eval ($_GET (' 1id’)) ;, de-isolates it, calls
the eval () function, which in principle calls itself in
order to execute the $S_GET (' 1d’ ) part. At the second
call, the eval () again de-isolates the S_GET (’id’)
code, which is in plain text. The second de-isolation pro-
cess fails and thus the code does not execute.

Our Firefox implementation can address this type of
attack. WebKit and Chromium must be further modi-
fied to support this functionality. We have successfully
implemented this process in Chromium after a small
amount of code changes. However, this modification af-
fects the semantics of eval (). For a more detailed dis-
cussion, please see Section 5.

4.2 Server Overhead

We now measure the overhead imposed on the server by
xJ8S. To this end, we request a set of web pages that em-
bed a significant amount of JavaScript. We choose to use
the SunSpider suite [3] for this purpose. The SunSpider
suite is a collection of JavaScript benchmarks that ship
with WebKit and measure the performance of JavaScript
engines. It is composed of nine different groups of pro-
grams that perform various complex operations. We
manually select three JavaScript tests from the SunSpi-
der suite. The heavy test involves string operations with
many lines of JavaScript. This is probably the most

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 153



Server-Side/FE (heavy)

Server-Side/FE (medium)

Server-Side/FE (light)

140 i 14 10
< 120 ,/ 5 12 - 8
1004 o _____--- 10 2 6
E 80 E 8 £
© 60 o 6 e o 4
1 €E ,| -—=-=-=-=-=-=-=-- 1S
= 40 = 4 = 1
20 - - 2 —_——————— — - -
0 - T T T T T | 0 - T T T T T | 0 - T T T T T |
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
— = - Server (modified) Requests (%) — = - Server (modified) Requests (%) — = - Server (modified) Requests (%)
— - Server (vanilla) — = Server (vanilla) —— = Server (vanilla)

Figure 3: Server side evaluation when the Apache benchmark tool (ab) is requesting each web page through a Fast
Ethernet link. In the worst case (heavy) the server imposes delay of a factor of five greater, while in the normal case

the delay is only a few milliseconds.

Server-Side/DSL (heavy)

Server-Side/DSL (medium)

Server-Side/DSL (light)

1000 200 100
—~ 800 - —~ ’ —~ 80 —_—
8 o 77T , g =7 8 | ===
E - - E 400 E
[o] [o] [0}

2 400 2 2 40
F 200 = %0 Y
o+ o+ o+
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100

= = - Server (modified) Requests (%)

— = Server (vanilla) — = Server (vanilla)

= = - Server (modified) Requests (%)

= = = Server (modified) Requests (%)
— = Server (vanilla)

Figure 4: Server side evaluation when the Apache benchmark tool (ab) is requesting each web page through a DSL
link. In the worst case (heavy) the server imposes a fixed delay of a few tens of milliseconds, like in the case of the
Fast Ethernet setup (see Figure 3). However, this delay does not dominate the overall delivery time.

processing-intensive test in the whole suite, composed
of many lines of code. The normal test includes a typical
amount of source code like most other tests that are part
of the suite. Finally, the light test includes only a few
lines of JavaScript involving bit operations.

We conduct two sets of experiments. For the first set
we use ab [1], which is considered the de-facto tool for
benchmarking an Apache web server, over a Fast Ether-
net (FE) network. We configure ab to issue 100 requests
for the heavy, normal and light web pages, while the
xJSmodule is enabled. Then, we perform the same ex-
periments using the tests and with the xJS Apache mod-
ule removed. We repeat all the above with the ab client
running in a typical downstream DSL line (8 Mbps).

Figure 3 summarizes the results for the case of the ab
tool connecting to the web server through a FE connec-
tion. The modified Apache imposes an overhead that
ranges from a few (less than 6 ms and less than 2 ms
for the normal and light test, respectively) to tens of mil-
liseconds (about 60 ms) in the worst case (the heavy web
page). While the results are quite promising for the ma-
jority of the tests, the processing time for the heavy page,
which is over a factor of five greater, could be considered
significant. In Figure 4 we present the same experiments
over the DSL link. The overhead is still the same and

it is negligible (less than a roundtrip in today’s Internet)
since now the delivery overhead dominates. This drives
us to conclude that the Apache module imposes a fixed
overhead of a few milliseconds per page, which is not the
dominating overhead.

4.3 Client Overhead

Having examined the server-side overhead, we now mea-
sure the overhead imposed on the browser by xJS.
We use the SunSpider test suite with 100 iterations,
with every test executed 100 times. We use the
gettimeofday () function to measure the execution
time of the modified functions in each browser. Each
implementation has two functions altered. The one that
is responsible for handling code associated with events,
such as onclick, onload, etc., and the one that is
responsible for evaluating JavaScript code blocks. The
modifications of WebKit and Chromium are quite similar
(Chromium is based partially on WebKit). The modifica-
tions of Firefox are substantially different. In Firefox we
have modified internally the JavaScript eval () func-
tion which is recursive. These differences affect the ex-
perimental results in the following way. In WebKit and
Chromium we record fewer long calls in contrast with
Firefox, in which we record many short calls.

Firefox WebKit Chromium

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0 0 0
T T T T T T T T 1 T T T T T 1 T T T T T T T T 1
0 02 04 06 08 1 12 14 16 0 500 1000 1500 2000 2500 0 5 10 15 20 25 30 35 40

Delay (msec) Delay (msec) Delay (msec)

Figure 5: Cumulative distribution for the delay imposed by all modified function calls in the Firefox, WebKit and
Chromium implementation, respectively. As delay we assume the time needed for the modified function to complete
minus the time needed for the unmodified one to complete. Notice that the majority of function calls imposes a delay

of a few milliseconds.

In Figure 5 we present the cumulative distribution
of the delays imposed by all modified recorded func-
tion calls for Firefox, WebKit and Chromium, during a
run of the SunSpider suite for 100 iterations. As delay
we define the time needed for the modified function to
complete minus the time needed for the unmodified one
to complete. Observe that the Firefox implementation
seems to be the faster one. All delays are less than 1 mil-
lisecond. However, recall that Firefox is using a lot of
short calls, compared to the other two browsers. Firefox
needs about 500,000 calls for the 100 iterations of the
complete test suite. In Figure 5 we plot the first 5,000
calls for Firefox (these calls correspond to one iteration
only) of the complete set of about 500,000 calls, for vi-
sualization purposes and to facilitate comparison, and all
4,800 calls needed for WebKit and Chromium to com-
plete the test suite, respectively. Chromium imposes an
overhead of a few milliseconds per call, while WebKit
seems to impose larger overheads. Still, the majority of
WebKit’s calls impose an overhead of a few tens of mil-
liseconds.

4.4 User Browsing Experience

We now identify whether user’s browsing experience
changes due to xJS. As user browsing experience we
define the performance of the browser’s JavaScript en-
gine (i.e., running time), which would reflect the user-
perceived rendering time (as far as the JavaScript con-
tent is concerned) for the page. We run the SunSpider
suite as-is for 100 iterations with all three modified web
browsers and with the equivalent unmodified ones and
record the output of the benchmark. In Figure 6 we plot
the results for all different categories of tests. Each cat-
egory includes a few individual benchmark tests. As ex-
pected there is no difference between a modified and a
non modified web browser for all three platforms, Fire-
fox, WebKit and Chromium. This result is reasonable,

User Experience
1200

1000

G 800

< 600

i~ 400

200

3d access  bitops  controlfiow  crypto date math regexp  string

Webkit (modified) B Chromium (vanilla)
Webkit (vanilla) B Firefox (modified)
B Chromium (modified) B Firefox (vanilla)

Figure 6: Results from the SunSpider test suite. Notice
that for each modified browser the results are comparable
with the results of its unmodified equivalent. That is,
all de-isolated JavaScript executes as expected in both
modified and unmodified browser.

since after the de-isolation process the whole JavaScript
source executes normally as it is in the case with a
non compatible with the xJS framework web browser.
Moreover, this experiment shows that xJS is not restric-
tive with legitimate web sites, since all the SunSpider
suite (some thousands of JavaScript LoCs) run without
any problem or side-effect.

5 Discussion

We now discuss potential limitations of our approach and
offer possible workarounds.

JavaScript Obfuscation. Web pages served by xJS
have all JavaScript encoded in Base64. Depending on the
context this may be considered as a feature or not. For
example, there are plenty of custom tools that obfuscate
JavaScript on purpose. Such tools are used by certain
web sites for protecting their JavaScript code and prevent
visitors from copying the code. We should make clear
that emitting all JavaScript encoded does not harden the

154

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association

USENIX Association

WebApps *10: USENIX Conference on Web Application Development 155



development process, since all JavaScript manipulation
takes place during serving time. While debugging, web
developers may safely switch off xJS. Blueprint [38]
also emits parts of a web page in Base64.

eval() Semantics and Dynamic Code. As previously
discussed (see Section 4), in order for xJS to cope with
XSS attacks that are based on malicious injected data, the
semantics of eval () must change. More precisely, our
Firefox modifications alter the eval () function in the
following way. Instead of simply evaluating a JavaScript
content, the modified eval () function performs de-
isolation before evaluation. This behavior can break web
applications that are based on the generation of dynamic
JavaScript code, which is executed using eval () at
serving time. While this type of programming might
be considered inefficient and error-prone, we suggest the
following workaround. The JavaScript engine can be en-
hanced with an xeval () variant which does not per-
form any de-isolation before evaluation. The web pro-
grammer must explicitly call xeval () if this is the de-
sired behavior. Still, there is no possibility for the at-
tacker to evaluate her code (using xeval ()), since the
original call to xeval () must be already isolated.

Code Templates and Persistent XSS. Web developers
frequently use templates in order to produce the final
web pages. These templates are stored usually in a
database and sometimes they include JavaScript. The
database may also contain data produced by user in-
puts. In such cases, the code injection may take place
within the database (Persistent XSS). This may occur if
trusted code and a user input containing malicious code
are merged together before included in the final web
page. This case is especially hard to track, since it in-
volves the programmer’s logic to a great extent. The
challenge lies in that client-side code is hosted in an-
other environment (the database) which is also vulner-
able to code injections. xJS assumes that all trusted
JavaScript is stored in files and not in a database. If the
web developer wishes to store legitimate JavaScript in a
database then she can place it in read-only tables. With
these assumptions, xJS can cope with persistent XSS.
Recall from Section 2 that xJS module is the first to run
in the Apache module chain and, thus, all JavaScript iso-
lation will take place before any content is fetched from
databases or other external sources.

6 Related Work

The closest studies to xJS are BEEP [17], Nonces-
paces [16] and DSI [26]. Throughout the paper, we
have highlighted certain cases where the aforementioned
methodologies fail (e.g., see Section 3). We have pre-
sented attacks that escape whitelisting (proposed in [17])
and cases where DOM-based solutions [16, 26] are not
efficient. Our framework, xJS, can cope with XSS at-

tacks that escape whitelisting [6], and does not require
any information related to DOM; xJS can also prevent
attacks that leverage the content-sniffing algorithms of
web browsers [7].

Our technique is based on Isolation Operators and it
is inspired by Instruction Set Randomization (ISR) [20].
Solutions based on ISR have been applied to native code
and to SQL injections [9]. Keromytis discusses ISR as
a generic methodology for countering code injections
in [21] and he mentions that the technique can be po-
tentially applied in XSS mitigation. However, to the best
of our knowledge there has been no systematic effort to-
wards this approach before.

In [40] the authors propose to use dynamic tainting
analysis to prevent XSS attacks. Taint-tracking has been
partially or fully used in other similar approaches [26,
35, 28, 27]. Although xJS does not rely at all on taint-
ing, a source-code based tainting technique [43] can cer-
tainly assist in separating all server-produced JavaScript.
The server side of xJS will be able to efficiently mark
all legitimate client-side code and also identify malicious
data. However, the performance might degrade.

Blueprint [38] is a server-only approach which guar-
antees that untrusted content is not executed. The appli-
cation server pre-renders the page and serves each web
document in a form in which all dynamic content is cor-
rectly escaped to avoid possible code injections. How-
ever, Blueprint requires the web programmer to inject
possible unsafe content (for example comments of a blog
story) using a specific Blueprint API in PHP. Spotting all
unsafe code fragments of a web application is not trivial.
Blueprint imposes further a significant overhead com-
pared to solutions based on natively browser modifica-
tions, like xJ8S.

Enforcing separation between structure and content is
another prevention scheme for code injections [32]. This
proposed framework can deal with XSS attacks as well
as SQL injections. As far as XSS is concerned, the ba-
sic idea is that each web document has a well defined
structure in contrast to a stream of bytes, as it is served
nowadays by web servers. This allows the authors to
enforce a separation between the authentic document’s
structure and the untrusted dynamic content from user in-
put, which is attached to it. However, in contrast to xJS,
this technique cannot deal with attacks that are based on
the content-sniffing algorithms of browsers [7] as well
as attacks that modify the DOM structure using purely
client-side code [22].

Script accenting [10] is based also on XOR for isolat-
ing scripts in the web browser. Script accenting aims on
providing an efficient mechanism for implementing the
same origin policy in a web browser, but it is not explic-
itly related with XSS. Leaks that can take place due to
the DOM separation from the JavaScript engine, inside

156

WebApps ’10: USENIX Conference on Web Application Development

a web browser, and can lead to browser compromising
have been studied in [8]. These attacks can be considered
more severe than XSS and cannot be captured by xJS.
MashupOS [41] and subsequent work Gazelle [42] view
browsers as a multi-principal OS where a principal is la-
beled by a web site’s origin following the same-origin
policy [33]. MashupOS analyzed and proposed pro-
tection and communications abstractions that a browser
should expose for web application developers. In partic-
ular, <sandbox> is proposed to embed untrusted con-
tent and can be used by developers to prevent XSS at-
tacks as long as they can correctly differentiate trusted
content from untrusted ones. In comparison, our work
does not require explicit inclusion of untrusted content
from developers.

7 Conclusion

In this paper we present xJS, a practical and developer-
friendly framework against the increasing threat of XSS
attacks. The motivation for developing xJS is twofold.
First, we want an XSS prevention scheme that can cope
with the new return-to-JavaScript attacks presented in
this paper and second, we want the solution to be easily
adopted by web developers.

We implement and evaluate our solution in three lead-
ing web browsers and in the Apache web server. Our
evaluation shows that (a) every examined real-world XSS
attack can be successfully prevented, (b) negligible com-
putational overhead is imposed on the server and browser
side, and (c) the user’s browsing experience and per-
ceived performance is not affected by our modifications.

Acknowledgements

We would like to thank the anonymous reviewers for their feed-
back, Professor Angelos D. Keromytis for early discussions
and our shepherd Helen Wang. Her assistance for improv-
ing the paper was invaluable. Elias Athanasopoulos, Anto-
nis Krithinakis, Spyros Lygouras and Evangelos P. Markatos
are also with the University of Crete. Elias Athanasopoulos
is funded by the Microsoft Research PhD Scholarship project,
which is provided by Microsoft Research Cambridge.

References

[1] ab - Apache HTTP server benchmarking tool.
http://httpd.apache.org/docs/2.0/
programs/ab.html.

[2] McAfee: Enabling Malware Distribution and
Fraud. http://www.readwriteweb.com/
archives/mcafee_enabling malware_
distribution.and fraud.php.

[3] SunSpider JavaScript benchmark. http://
www2 .webkit.org/perf/sunspider-0.
9/sunspider.html.

[4] XXSed.com vulnerability 35059. http://www.
xssed.com/mirror/35059/.

[5] C. Anley. Advanced SQL injection in SQL server
applications. White paper, Next Generation Secu-
rity Software Ltd, 2002.

[6] E. Athanasopoulos, V. Pappas, and E. Markatos.
Code-Injection Attacks in Browsers Supporting
Policies. In Proceedings of the 2nd Workshop on
Web 2.0 Security & Privacy (W2SP), Oakland, CA,
May 2009.

[7] A.Barth, J. Caballero, and D. Song. Secure Content
Sniffing for Web Browsers or How to Stop Papers
from Reviewing Themselves. In Proceedings of the
30th IEEE Symposium on Security & Privacy, Oak-
land, CA, May 2009.

[8] A.Barth, J. Weinberger, and D. Song. Cross-Origin
JavaScript Capability Leaks: Detection, Exploita-
tion, and Defense. In Proceedings of the 18th
USENIX Security Symposium, Montreal, Quebec,
August 2009.

[9] S. W. Boyd and A. D. Keromytis. SQLrand: Pre-
venting SQL Injection Attacks. In Proceedings of
the 2nd Applied Cryptography and Network Secu-
rity (ACNS) Conference, pages 292302, 2004.

[10] S. Chen, D. Ross, and Y.-M. Wang. An Analy-
sis of Browser Domain-Isolation Bugs and a Light-
Weight Transparent Defense Mechanism. In Pro-
ceedings of the 14th ACM conference on Computer
and Communications Security (CCS), pages 2—11,
New York, NY, USA, 2007. ACM.

[11] S. Designer. Return-to-libc attack. Bugtraq, Aug,
1997.

[12] R. Dhamija, J. Tygar, and M. Hearst. Why Phishing
Works. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
581-590. ACM New York, NY, USA, 2006.

[13] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer.
Talking to Strangers Without Taking their Candy:
Isolating Proxied Content. In SocialNets *08: Pro-
ceedings of the Ist Workshop on Social Network
Systems, pages 25-30, New York, NY, USA, 2008.
ACM.

[14] K. Fernandez and D. Pagkalos. XSSed.com. XSS
(Cross-Site Scripting) information and vulnerable
websites archive. http://www.xssed.com.

[15] J. Garrett et al. Ajax: A New Approach to Web
Applications. Adaptive path, 18, 2005.

[16] M. V. Gundy and H. Chen. Noncespaces: Us-
ing Randomization to Enforce Information Flow
Tracking and Thwart Cross-Site Scripting Attacks.
In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 8-11, 20009.

[17] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced Embed-
ded Policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
601-610, New York, NY, USA, 2007. ACM.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 157



[18] S. Josefsson. RFC 4648: The Base16, Base32, and
Base64 Data Encodings, 2006. http://tools.
ietf.org/html/rfc4648.

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy:
A Static Analysis Tool for Detecting Web Appli-
cation Vulnerabilities (Short Paper). In Proceed-
ings of the 27th IEEE Symposium on Security and
Privacy, pages 258-263, Washington, DC, USA,
2006. IEEE Computer Society.

[20] G. Kc, A. Keromytis, and V. Prevelakis. Coun-
tering Code-Injection Attacks with Instruction-Set
Randomization. In Proceedings of the 10th ACM
conference on Computer and Communications Se-
curity, pages 272-280. ACM New York, NY, USA,
2003.

[21] A.D. Keromytis. Randomized Instruction Sets and
Runtime Environments Past Research and Future
Directions. Number 1, pages 18-25, Piscataway,
NJ, USA, 2009. IEEE Educational Activities De-
partment.

[22] A.Klein. DOM Based Cross Site Scripting or XSS
of the Third Kind. Web Application Security Con-
sortium, Articles, 4.7. 2005.

[23] L. C. Lam and T.-c. Chiueh. A General Dynamic
Information Flow Tracking Framework for Security
Applications. In ACSAC ’06: Proceedings of the
22nd Annual Computer Security Applications Con-
ference, pages 463-472, Washington, DC, USA,
2006. IEEE Computer Society.

[24] A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol,
J. Robie, M. Champion, and S. Byrne. Docu-
ment Object Model (DOM) Level 3 Core Specifi-
cation. World Wide Web Consortium, Recommen-
dation REC-DOM-Level-3-Core-20040407,2004.

[25] M. Martin and M. S. Lam. Automatic Genera-
tion of XSS and SQL Injection Attacks with Goal-
directed Model Checking. In Proceedings of the
17th USENIX Security symposium, pages 31-43,
Berkeley, CA, USA, 2008. USENIX Association.

[26] Y. Nadji, P. Saxena, and D. Song. Document Struc-
ture Integrity: A Robust Basis for Cross-site Script-
ing Defense. In Proceedings of the 16th Annual
Network and Distributed System Security Sympo-
sium (NDSS), San Diego, CA, Feb. 8-11, 2009.

[27] S. Nanda, L. Lam, and T. Chiueh. Dynamic
Multi-Process Information Flow Tracking for Web
Application Security. In Proceedings of the Sth
ACM/IFIP/USENIX international conference on
Middleware. ACM New York, NY, USA, 2007.

[28] A. Nguyen-tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically Hardening
Web Applications Using Precise Tainting. In Pro-
ceedings of the 20th IFIP International Information
Security Conference, pages 372-382, 2005.

[29] A. One. Smashing the stack for fun and profit.
Phrack magazine, 49(7), 1996.

[30] N. Provos, P. Mavrommatis, M. Rajab, and F. Mon-
rose. All your iFRAMES point to us. In Proceed-
ings of the 17th conference on Security symposium,
pages 1-15. USENIX Association, 2008.

[31] L. Richardson. Beautiful Soup-HTML/XML parser
for Python, 2008.

[32] W. Robertson and G. Vigna. Static Enforcement of
Web Application Integrity Through Strong Typing.
In Proceedings of the 18th USENIX Security Sym-
posium, Montreal, Quebec, August 2009.

[33] J. Ruderman. The same-origin policy, 2001.
http://www.mozilla.org/projects/
security/components/same-origin.
html.

[34] SANS Insitute. The Top Cyber Security Risks.
September 2009. http://www.sans.org/
top-cyber-security-risks/.

[35] R. Sekar. An Efficient Black-box Technique for De-
feating Web Application Attacks. In Proceedings
of the 16th Annual Network and Distributed Sys-
tem Security Symposium (NDSS), San Diego, CA,
Feb. 8-11,2009.

[36] H. Shacham. The Geometry of Innocent Flesh on
the Bone: return-into-libc without Function Calls
(on the x86). In CCS ’07: Proceedings of the
14th ACM conference on Computer and Commu-
nications Security, pages 552-561, New York, NY,
USA, 2007. ACM.

[37] B. Tate and C. Hibbs. Ruby on Rails: Up and Run-
ning. O’Reilly Media, Inc., 2006.

[38] M. Ter Louw and V. Venkatakrishnan. Blueprint:
Precise Browser-neutral Prevention of Cross-site
Scripting Attacks. In Proceedings of the 30th IEEE
Symposium on Security & Privacy, Oakland, CA,
May 2009.

[39] D. Veillard. Libxml2 project web page.
http://xmlsoft. org, 2004.

[40] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In Proceeding of the 14th Annual Net-
work and Distributed System Security Symposium
(NDSS), 2007.

[41] H.J. Wang, X. Fan, J. Howell, and C. Jackson. Pro-
tection and Communication Abstractions for Web
Browsers in MashupOS. In T. C. Bressoud and
M. F. Kaashoek, editors, SOSP, pages 1-16. ACM,
2007.

[42] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal
OS Construction of the Gazelle Web Browser. In
Proceedings of the 18th USENIX Security Sympo-
sium, Montreal, Canada, August 2009.

[43] W. Xu, E. Bhatkar, and R. Sekar. Taint-Enhanced
Policy Enforcement: A Practical Approach to De-
feat a Wide Range of Attacks. In Proceedings of the
15th USENIX Security Symposium, pages 121-136,
2006.

158

WebApps ’10: USENIX Conference on Web Application Development

SeerSuite: Developing a scalable and reliable application framework for
building digital libraries by crawling the web

Pradeep B. Teregowda

Madian Khabsa
Pennsylvania State University

Isaac G. Councill
Pennsylvania State University Google

Juan Pablo Ferndndez R.
Pennsylvania State University

Shuyi Zheng
Pennsylvania State University

C. Lee Giles
Pennsylvania State University

Abstract

SeerSuite is a framework for scientific and academic dig-
ital libraries and search engines built by crawling scien-
tific and academic documents from the web with a fo-
cus on providing reliable, robust services. In addition
to full text indexing, SeerSuite supports autonomous ci-
tation indexing and automatically links references in re-
search articles to facilitate navigation, analysis and eval-
uation. SeerSuite enables access to extensive document,
citation, and author metadata by automatically extract-
ing, storing and indexing metadata. SeerSuite also sup-
ports MyCiteSeer, a personal portal that allows users to
monitor documents, store user queries, build document
portfolios, and interact with the document metadata. We
describe the design of SeerSuite and the deployment and
usage of CiteSeer” as an instance of SeerSuite.

1 Introduction

Efficient and reliable access to the vast scientific and
scholarly publications on the web requires advanced cita-
tion index retrieval systems [21] such as CiteSeer [22, 4],
CiteSeer” [5], Google Scholar [9], ACM Portal [1], etc.
The SeerSuite application framework provides an unique
advanced and automatic citation index system that is us-
able and comprehensive, and provides efficient access to
scientific publications. To realize these goals our design
focuses on reliable, scalable and robust services.

A previous implementation, CiteSeer (maintained as
of this date), was designed to support such services.
However, CiteSeer was a research prototype and, as such,
suffered serious limitations. SeerSuite was designed to
provide a framework that would replace CiteSeer, to pro-
vide most of its functionality, but designed to be extensi-
ble. SeerSuite improves on several aspects of the original
CiteSeer with features such as reliability, robustness and
scalability. It does this by adopting a multi-tier architec-
ture with a service orientation and a loose coupling of

modules.

CiteSeer”, an instance of SeerSuite is one of the top
ranked resources on the web and indexes nearly one and
half million documents. The collection spans computer
and information science (CIS) and related areas such as
mathematics, physics and statistics. CiteSeer” acquires
its documents primarily by automatically crawling au-
thors web sites for academic and research documents.
CiteSeer” daily receives approximately two million hits
and has more than two hundred thousand documents
downloaded from its cache. The MyCiteSeer personal
portal has over ten thousand registered users.

While the SeerSuite application framework has most
of the functionality of CiteSeer, SeerSuite represents a
complete redesign of CiteSeer. SeerSuite takes advan-
tage of and includes state of the art machine learning
methods and uses open source applications and modules.
The structure and architecture of SeerSuite is designed to
enhance the ease of maintenance and to reduce the cost
of operations. SeerSuite is designed to run on off the
shelf hardware infrastructure.

With CiteSeer”, SeerSuite focuses primarily on CIS.
However, there are requests for similar focused services
in other fields such as chemistry [33] and archaeol-
ogy [37]. SeerSuite can be adopted to providing ser-
vices similar to those provided by CiteSeer” in these ar-
eas. SeerSuite is a part of the project Chemx Seer [3],
a digital library search engine and collaboration service
for chemistry. Though designed as a framework for
CiteSeer”-like digital libraries and search engines, the
modular and extensible framework allows for applica-
tions that use SeerSuite components as stand alone ser-
vices or as a part of other systems.

2 Background and Related Work

Domain specific repositories and digital library systems
have been very popular over the last decades with several
examples such as arXiv [23] for physics and RePEc [15]

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 159



for economics. The Greenstone digital library [10] was
developed with a similar goal. These repository systems,
unlike CiteSeer”, depend on manual submission of doc-
ument metadata, a tedious and resource expensive pro-
cess. As such CiteSeer” which crawls authors web page
for documents is in many ways a unique system, closest
in design to Google Scholar.

The popularity of services provided by the origi-
nal CiteSeer and limitations in its design and archi-
tecture were the motivation behind the design of Seer-
Suite [18, 30]. The design of SeerSuite was an incre-
mental process involving users and researchers. User in-
put was received in the form of feedback and feature re-
quests. Exchange of ideas between researchers and users
across the world through collaborations, reviews and dis-
cussions have made a significant contribution to the de-
sign. In addition to ensuring reliable scalable services,
portability of the overall system and components was
identified as an essential feature that would encourage
adoption of SeerSuite elsewhere. During the process of
designing the architecture of SeerSuite, other academic
repository content management system (CMS) architec-
tures such as Fedora [28] and DSpace [8] were studied.
The Blackboard architecture pattern [34] had a strong in-
fluence on the design of the metadata extraction system.
The main obstacles in adopting existing repository and
CMS systems were the levels of customization and the
effort required to meet SeerSuite design requirements.
More specifically, implementation of the citation graph
structure with a focus on automatic metadata extraction
and workflow requirements for maintaining and updating
citation graph structures made these approaches cumber-
some to use.

In addition to repository, search engine and digital
library architectures, advances in metadata extraction
methods [24, 25, 19, 27, 32] and the availability of open
source systems have influenced SeerSuite design. We be-
gin our discussion of SeerSuite by describing the archi-
tecture.

3 Architecture

In the context of SeerSuite reliability refers to the ability
of the framework instances to provide around the clock
service with minimal downtime, scalability to the ability
to support increasing number of user requests and doc-
uments in the collection, and robustness to the ability of
the instance to continue providing services while some of
the underlying services are unavailable or resource con-
strained.

An outline of SeerSuite architecture is shown in fig-
ure 1. By adopting a loosely coupled approach for mod-
ules and subsystem, we ensure that instances can be
scaled and can provide robust service. We describe the

overall architecture in the web application, data storage,
metadata extraction and ingestion, crawling and mainte-
nance sections.

Wi
fisp)

Cortrallers
[Servlets)

DAD REST

Mairitenance
Corrections/

Repasita
Updates  paQ . O]
Index
Databases

DAD @

Dol

APT

Crawder iMs Ingestion SOAP
E Extraction
H S04P S04P S0AP S04P
E Corwerter(s) Fitter ParsCit HeaderParse
H H = TKT2 = 2 THT 2 THT
LTI ETTTTIT I B
£l snnnnnnenat

Figure 1: SeerSuite Architecture

3.1 Web application

The web application makes use of the model view con-
troller architecture implemented with the Spring frame-
work. The application presentation uses a mix of java
server pages and javascript to generate the user inter-
face. Design of the user interface allows the look and
feel to be modified by switching Cascading Style Sheets
(CSS). The use of JavaServer Pages Standard Tag Li-
brary (JSTL) supports template based construction. The
web pages allow further interaction through the use of
javascript frameworks. While the development environ-
ment is mostly Linux, components are developed with
portability as a focus. Adoption of the spring framework
allows development to concentrate on application design.
The framework supports the application by handling in-
teractions between the user and database in a transparent
manner.

Servlets use Data Access Objects (DAO) with the sup-
port of the framework to interact with databases and the
repository. The index, database and repository enable
the data objects crawled from the web to be stored and
accessed through the web, using efficient programmatic
interfaces. The web application is deployed through a
web application archive file.

160

WebApps ’10: USENIX Conference on Web Application Development

3.2 Data storage

The databases store metadata and relationships in the
form of tables providing transaction support, where
transactions include adding, updating or deleting objects.
The database design partitions the data storage across
three main databases. This allows for growth in any
one component to be handled by further partitioning the
database horizontally.

The main database contains objects and is focused on
transactions and version tracking of objects central to
SeerSuite and digital libraries implementations. Objects
stored in the main database include document metadata,
author, citation, keywords, tags, and hub (URL). The ta-
bles in the main database are linked together by the doc-
ument they appear in and are identified by the document
object id.

One of the most unique aspects of SeerSuite is the
citation graph. The nodes of this graph correspond to
documents or citations and the edges to the relationships
among them. This graph is stored in its own database.
The citation relationship is stored in a graph table in
the form of ‘cited by’ and ‘cites’ fields. In addition
the database stores a canonical representation of cita-
tion or document metadata which is basically the most
frequent and correct of the citations, as determined by
a Bayesian network. These records serve as a group-
ing point for metadata collected about a particular docu-
ment or citation. This database thus provides support for
autonomous citation indexing and related features. The
citation relationships are established by generating and
matching keys for the document metadata records dur-
ing ingestion or updates. The use of triggers allows data
in the graph database to be updated when transactions
such as insertions, deletions and corrections occur in the
main database. In addition to triggers, application logic
and maintenance functions maintain the link between the
graph and the main database. MyCiteSeer personaliza-
tion portal stores user information, queries and document
portfolios in a separate database. The link between the
user and the main database is through references in the
tags in the MyCiteSeer database and the main database
version tracking tables. A conventional RDBMS with
support for triggers is used to host these databases.

The repository system provides SeerSuite with the
ability, to provide cached copies of the documents
crawled. In addition to the cached copy, the repository
stores xml files containing extracted document metadata.
These files serve as backup copies of the metadata stored
in the databases. This is similar to the Fedora Object
XML document representation [28]. The repository is
organized into a directory tree. The top of the tree con-
sists of a root folder containing sub directories mapped
according to the segments in the document identifier. The

final level contains metadata, text and cached files. The
document identifier structure ensures that the there are a
nominal number of sub folders under any folder in the
tree structure.

An index provides a fast efficient method of storing
and accessing text and metadata through the use of an
inverted file. SeerSuite uses the Apache Solr an Index
application [16] supported by Apache Tomcat to provide
full text and metadata indexing operations. The meta-
data items are obtained from the database and the full
text from the repository. The interaction of the applica-
tion in the form of controllers is through the REST (Rep-
resentational state transfer) [20] interface. This allows
any indexing application supporting REST APT’s to be
adopted by SeerSuite. In addition, this enables introduc-
tion of newer feature sets in the index or new versions of
Solr without disruptions.

3.3 Metadata Extraction and Ingestion

Metadata extraction methods are built using Perl and
C++. To enable interaction with the extraction services,
a service oriented architecture is utilized using a Busi-
ness Process Execution Language (BPEL) or, for con-
venience, scripts. Each component of the extraction sys-
tem individually contributes to the final document, in this
case an xml file, which is then ingested. The feedback to
individual systems is manual adjusting of parameters or
replacing components. The system can be rewired to in-
clude or exclude any extraction modules or applications.

The user can either batch process the incoming data
or process each item individually. Addition of metadata
into the system is controlled by the ingestion system,
which interacts with main database using DAOs. The
ingestion system ensures that essential metadata is cor-
rectly and uniquely labeled, with the help of an object
identifier and checksum based de-duplication. In addi-
tion, the ingestion system makes use of listeners to share
notification data such as alerts that inform users and pro-
grams about objects of interest.

The ingestion process can itself be distributed across
machines, taking advantage of the Document Object
Identifier (DOI), database and shared repository services.
The DOl is issued by on of our web services with its own
database and tracks document identifiers and the time of
their issue.

3.4 Crawler

The suite also includes a Heritrix [11] based crawler for
harvesting documents from the web. The interface be-
tween the ingestion system and the crawler is based on
the Java Messaging Service over ActiveMQ [2]. Due to
the modularity of the design, other crawlers can be used.

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 161



The ingestion system sends URL submissions messages
containing a job identifier and url through the ingestion
channel, and the crawler responds with 'new content’
messages pointing to the acquired resource and meta-
data to the ingestion system. The crawler can use other
optional channels to provide status messages to listen-
ers. The crawler uses the Heritrix job submission sys-
tem which consumes messages in the submissions chan-
nel and processes these submissions.

3.5 Maintenance

Maintenance services support and enable associated
functionality for the ingestion and presentation systems.
Maintenance systems are responsible for updating the in-
dex, identifying metadata by inference, generating cita-
tion and document statistics, charts generation, and ex-
ternal data linking in the system. For convenience, com-
mon maintenance processes are available through a com-
mand line interface.

An evidence based inference system [19] utilizes a
Bayesian inference framework to determine canonical
metadata for documents in the collection. The system
builds an ideal citation record for a document inferring
from the information provided by citations and the doc-
ument metadata.

Citation graphs which accompany the document view
are generated from the graph database, by examining the
citation relationships and the distribution across years. In
addition to enabling access to extensive document meta-
data, SeerSuite allows documents in the collection to be
linked to copies or bibliographic records in other collec-
tions. SeerSuite provides components to map and link to
other services such as DBLP [7] and CiteULike [6].

The configuration of an SeerSuite instance or appli-
cation is controlled through properties and context files,
through which information about the file system for the
repository, database, index and system parameters can be
specified. The web application and the maintenance and
indexing functions use similar configuration files. In ad-
dition the SeerSuite distribution provides configuration
files or examples of configurations for applications used
such as the Solr index and Tomcat.

4 Workflow

The outline of the process of adding documents to Seer-
Suite instances is shown in Figure 2. Documents are
harvested from the web using focused crawlers (step
1). These documents are first converted from PDF or
PostScript format to text with application tools such as
PDFBox and TET or GhostScript for PostScript docu-
ments in the step labelled 2.

In step 3, to prevent processing of documents such as
resumes and non-academic documents part of the har-
vested collection, SeerSuite uses a regular expression
based filter on the converted text file. The converted, fil-
tered text is processed using state of the art automatic
metadata extraction systems. These include the Support
Vector Machine based header parser [24], which extracts
metadata such as titles, publication information, authors
and their affiliation, and abstract from the document. The
ParsCit [27] citation extraction system extracts citation
and context information from the document.

The ingestion system identifies unique documents and
requests a document identifier for the document. If the
document is found to be a checksum duplicate based on
content, URL mappings are updated to include alternate
URLS(s) in step 4. In the same step, the repository is up-
dated with a complete set of files including the document
in the original format. The converted text files, citations,
crawler and document metadata are placed in the relevant
document directory under the repository tree. In addition
to the individual metadata files, a file copy of the com-
plete document metadata is stored in the form of an xml
file. With updates and corrections, the xml files are up-
dated and stored with a version tag. In the main database
papers, authors citation and url mapping tables are up-
dated, triggering updates to the graph database. Updates
to the graph database ensure that the citation relationship
of the incoming metadata to the data already existing in
the collection is accurately maintained.

Documents in the database have a time stamp indicat-
ing time of update, helping the maintenance scripts per-
form incremental updates of the index. Incremental up-
dates are crucial in reducing the time required for mainte-
nance. With step 5, new or updated metadata are indexed.
The maintenance script scans the database for updated
and new documents and creates an in-memory indexable
document, including the document metadata fields and
citation information gathered across the main and cita-
tion graph databases. This document is then indexed by
the main Solr index over the REST interface with an up-
date command. The maintenance system optimizes the
index after each update, using an built in feature in Solr.

Statistics provide users with a perspective of the col-
lection from a citation, document and author ranking us-
ing aggregated citation information. Statistics are gen-
erated from the graph database, in the form of text files,
which are then presented to the user through the statis-
tics servlet interface. Maintenance scripts are manually
scheduled or run by the administrator.

5 An Instance of SeerSuite: CiteSeer”

CiteSeer” serves as a flagship deployment of SeerSuite.
It utilizes Apache Tomcat as the supporting platform

162

WebApps ’10: USENIX Conference on Web Application Development

Links represent actions, docurments files/data

Submissions Filter _h
_B @ Header Parser] -
Transfer] Database
— HEADER] Index
PDF/PS DCl Dedup @ (Updates)
Corwerter VT Transfer
Iz:ocusled ParsCit Irnference Updates
rawler B o
@ dITE INFO Statistics
TEXT @
@ Repasitony Charts
MET MET
Extraction Ingester Maintenance

Figure 2: SeerSuite Workflow: Links represent actions and documents data

with MySQL as the RDBMS. The deployment spans
multiple machines with varied configurations. Compo-
nents are distributed based on functionality on these ma-
chines. A pair of level 4 load balancing servers direct
traffic to a pair of webservers. The load balancers use a
connection based metric to determine to which server a
particular request will be directed. To ensure availabil-
ity, the load balancers are configured as a high availabil-
ity asymmetric cluster that uses open source linux high
availability software.

The web servers host the application on the Apache
Tomcat platform with the Tomcat instances as part of
an Apache Tomcat TCP cluster with session information
shared across the cluster. The application processes these
requests and processes them with the help of the index,
database or the repository.

In case of an search query, the application translates
the query to a suitable format and dispatches the query
to the Solr indices. The results are processed and pre-
sented to the user. CiteSeer” uses indices for document
and citation objects, table objects and disambiguated au-
thor objects. Requests for metadata are handled by the
MySQL database system containing the main graph and
the user databases. The repository is responsible for stor-
ing cached documents and the text and metadata files.
Requests for cached files are handled by the applica-
tion with support from the repository stored on a storage
server. The repository system is shared with the inges-
tion system and web servers, using the Global File Sys-
tem within the cluster.

The processing system is maintained separately from
the web application and data storage infrastructure. The
document processing systems are responsible for con-
verting and extracting the metadata from converted text
files. This operation is distributed across machines by di-
viding the incoming data into distinct sets, each set being
processed by individual machines across the cluster.

The deployment is supported by a staging and devel-
opment system, where new features are introduced and
reviewed before being introduced in the production sys-
tem. Major components in the system are backed up ei-
ther using component level replication services and or by
file level backups. In addition to backup on site, off site
backups are utilized to ensure redundancy.

CiteSeer” depends on operating system based security
and application security provided by firewalls plus intru-
sion detection systems and the underlying framework.
Application logs and Tomcat error and access logging
provide audit trails for bug fixes and troubleshooting.

Infrastructure adopted by CiteSeer” has led to several
issues. Frequent freezes occur due to deadlocks involv-
ing the shared file system. Hardware failures have led to
loss of data across the repository database. In such cases
back ups have helped restore services. The ability to re-
cover from these unfortunate losses showcase CiteSeer”
robustness.

5.1 Focused Crawling

For the initial crawling seeds, CiteSeer” assimilated the
complete collection of documents and their URLs from
CiteSeer with some exceptions. These documents were
ingested into the system by utilizing the already existing
information in the CiteSeer databases.

Though equipped with Heritrix, the new CiteSeer”
uses a customized focused crawler, which runs incre-
mentally. The crawler is run on a daily basis and can
fetch several thousand new documents every day. The
system maintains a list of parent URLs where documents
were previously found. The parent URL’s include aca-
demic homepages containing lists of online publications.

CiteSeer” has nearly two hundred thousand unique
URLSs containing links to publications. The crawl pro-
cess begins with the crawl scheduler, which selects a

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 163



. I Load Balancer r
== e
 E— User Interface

GFS
REST ODBC
Index Database :| Repository
IN QeSO s— s i" Dol
= Sstraeian =

NFS
MFS

E" .. Focused Crawler

Storage

Figure 3: CiteSeer” Deployment

thousand parent URLs based on an estimated likelihood
of these pages having new documents. The selected
URLs are fed to a seed crawler. The seed crawler re-
visits these thousand URLs and also follow links up
to two hops from each scheduled URL. By parsing
fetched pages, the seed crawler will retrieve all document
links eligible for processing. These represent documents
which will be later downloaded. If a document link is
found on a new URL, this URL will be added to the par-
ent URL list. This enables the parent URL list to expand.
The crawling system also maintains a list of document
URLSs and a list of document checksum hash values for
all previously crawled documents. These two lists help
avoid downloading duplicate documents. When the seed
crawler outputs a list of discovered document URLs, it
first compares them to the maintained document URL list
and filters out duplicate URLs. Therefore, documents
with same URLs will not be downloaded again. Only
new document URLs will be fed to the document crawler.

The document crawler then simply fetches all docu-
ments in PDF or PostScript from the input list. After
the documents are crawled, their checksum values are
calculated based on their content and compared to the
maintained checksum list by the ingestion system. Thus,
content based duplicates are removed. Finally, only new
documents are ingested into CiteSeer”. User submis-
sions to CiteSeer” are directly submitted to the crawler
seed listing. A user interface allows tracking of the doc-
uments obtained from a submitted URL. This allows the
user to determine, whether a document has been ingested
into CiteSeer”.

6 User Interface

A user interacts with SeerSuite through a number of web
pages. The most common of these include results of
searches, document details, and citation graphs. We de-
scribe a set of pages, whose coverage spans most of the
functionality provided by SeerSuite. The user interfaces
are built using jsp, backed by the controller servlets. A
navigation panel allows the user quick access to the main
pages. The access control to pages across the application
is based on the login system provided as part of MyCite-
Seer component.

6.1 Search Interface

Figure 4: Document Search Results

The search interface in SeerSuite allows users to make
queries across document, author, and table metadata ei-
ther by using the default query interface or an advanced
search interface. Search results are generated as a re-
sult of a user query. The results can be sorted according
to the relevance, citations, and recency of the document
ingestion. Since SeerSuite indexes document metadata
across entities such as title, authors and their affiliation,
year of publication, publication venue, keywords and ab-
stract, the user can make queries which span one or more
document or citation entities through the advanced query
interface.

Each search result includes the title, author names,
publication information and a short snippet of the text
containing the query terms. A javascript interface en-
ables users to view the abstract of a document from a
mouse over the down arrow associated with each search
result. The process and content of the search results are

WebApps ’10: USENIX Conference on Web Application Development

unique and can be ranked based on citations, relevance
and recency.

SeerSuite applications use a Solr instance configured
to index metadata fields defined by SeerSuite across doc-
uments in the collection. SeerSuite uses a simple rank-
ing algorithm based on the default ranking algorithm
provided by Solr for ranking results. These results are
boosted based on the location of where the results were
found and citations, e.g. a result containing the query
term in the title or author names have higher rank. New
ranking methods are readily implemented in Solr.

Relevance based searches are used by default in Seer-
Suite. The ability to rank documents based on the num-
ber of citations is an optional default.

SeerSuite uses author normalization for the metadata
extracted from the documents to provide a comprehen-
sive set of variations of the author names. The normal-
ization allows authors to be searched for through name
variants.

In addition to viewing results on the search results
page, the user can subscribe to search feeds, which up-
date the user when new results are available for a partic-
ular query.

6.2 Document Summary

The document view in figure 5, provides the user a view
of metadata information aggregated for each document.
This view contains extensive metadata about a individual
document including - title, author names, venue of pub-
lication, year of publication and the citations contained
in the document. The tabbed interface allows the user
to browse citation relationships and the metadata version
information. Link to the source of the document along
with the option to download a cached copy are provided.
In case the document is found at multiple URLSs, the page
lists all the alternate document URLs. The citation link-
ing information provided along with the document in-
cludes links to documents cited by this document. The
documents cited by the document are ranked by how well
they are cited in the collection. A graph illustrating the
citations to the document across years which can be use-
ful for identifying trends and impact is also displayed.

The document summary page provides several
MyCiteSeer interaction points. Add to Collection, Cor-
rect Errors and Monitor changes links allow the user to
insert documents to his collection, correct metadata and
monitor the document.

Corrections to the metadata involve several changes to
the document metadata and citation relationships. Seer-
Suite examines these relationships, updating the citation
graphs as necessary. It either creates or updates the ci-
tation cluster established for the current document af-
ter the corrections are submitted. A versioning system

enables the administrator to track changes to document
metadata. A user can view the modifications to the doc-
ument through the versions tab, which displays all ver-
sions of the document metadata and the attribution for
each update or correction.

The document view page contains data spanning mul-
tiple databases and the generation of this page is resource
intensive. In addition to providing metadata, the docu-

Figure 5: Document Summary

ment also allows the user to download the bibtex of the
article or collect the bibtex of the article in a meta cart
for download later. The page also provides several book-
marking links and the ability to copy document data pro-
vided on the page using browser plugins.

6.3 Citation Relationships

The citation graph generated and stored as part of the in-
gestion process and updated as part of the maintenance
process allows SeerSuite to provide users with tools for
citation analysis. Citation based relationships such as ac-
tive bibliography and co-citations are available for each
document through the related documents tab in the doc-
ument summary page. This relationship provides valu-
able information to users, allowing users to track docu-
ments of their interest. Such analysis is helpful in ex-
ploring topics and literature surveys. Active Bibliogra-
phy provides links between documents citing the same
set of documents and is one way grouping of documents.
Another method is by identifying Co-citations which are
links between documents which cite the same documents
to a particular document. Figure 6 shows the Active Bib-
liography of a document in CiteSeer™.

USENIX Association USENIX Association

WebApps 10: USENIX Conference on Web Application Development

165



The citation graph is dynamic, changing as a result
of corrections and other metadata updates. SeerSuite
indexes the citation relationships with the document.
Therefore, in addition to the database, rendering citation
relationships such as active bibliography and co-citations
requires queries to the database followed by queries to
the index. The listing of each citation in the relation-
ship is based on a similarity document measure imple-
mented at the index. The links utilize the cluster ID,
which is mapped to the document in case the document is
available in the collection. In case where the document
is not available, it points to the index listing of docu-
ments citing the citation entity. The citation relationships
and ranking of authors, documents and citations are also
summarized in a detailed year by year list in the statistics

pages.

Figure 6: Active Bibliography

7 MyCiteSeer

SeerSuite aims to provide the user with services which
improve the efficiency of the user in accessing informa-
tion. MyCiteSeer plays a crucial role in providing and
supporting these services. MyCiteSeer allows users to
store queries, document portfolios, tag documents, and
monitor and track documents of interest. The portal
space is available after user registration and login. We
briefly describe the user interface of MyCiteSeer.

Figure 7 shows the index page for MyCiteSeer. The
index page serves as the landing page, with the menu
providing links to other pages including the profile, col-
lections tags and monitoring pages.

The profile page presents the user with interfaces

to update information stored as part of his profile on
MyCiteSeer including the password for the account. In
the case where API support has been enabled, the profile
page also allows the user to request an API key.

The collections page allows the user to view collec-
tions of documents stored within the account. These col-
lections are user defined sets of documents, aggregated
under their profile for ease of access. The user can use
a collection to download bibliographic data for all docu-
ments in a collection.

Tags provide the user with a listing of tags defined by
the user and link to the documents tagged with that tag.
The tag portal page allows the user to view and delete
tags defined by the user and the documents these tags are
linked to.

The monitoring page allows users to track changes to
a document in the SeerSuite collection. Any updates to
document metadata, including the citation graph linked
with the document for documents in the monitored col-
lection are sent to the user through e-mail registered with
the system.

In addition to providing the user with a portal, MyCite-
Seer enables SeerSuite to utilize crowd sourcing or dis-
tributed error correction [29] for corrections to document
metadata. By assessing weights based on prior correc-
tions, the evidence based system can detect malicious
changes.

The application program interface component utilizes
MyCiteSeer user data for generating the access key and
controlling access to services provided. An user marked
as an administrator has additional functionality available
to him through MyCiteSeer. A subset of configuration
and administrative interfaces are made available through
an admin console.

The portal framework shares the structure and stor-
age with the main application. While the servlets for
MyCiteSeer are developed with SeerSuite in mind, the
interaction with SeerSuite applications can easily be ex-
tended to other projects and services. The MyCiteSeer
component interacts with SeerSuite ingestion and main-
tenance modules, using listeners. The maintenance and
ingestion service provide notifications on objects being
updated or processed through these listeners.

8 Other Interfaces

8.1 OAI

The Open Archives Initiative (OAI) provides an effi-
cient protocol metadata dissemination framework for
data sources such as a SeerSuite. A low barrier mech-
anism, OAl is particularly suitable for SeerSuite applica-
tions, enabling instances that provide metadata sharing,
publishing and archiving. SeerSuite supports interfaces

166

WebApps ’10: USENIX Conference on Web Application Development

Figure 7: MyCiteSeer” Index Page

compliant to the OAI-Protocol for metadata harvesting
(PMH) [14] previously established with CiteSeer [36].

In the earlier CiteSeer system, modified CGI scripts
were utilized for handling queries and generating com-
pliant content for the OAIL In contrast, requests made
to the SeerSuite OAI interface are handled by servlets,
which translate requests into data access calls. The
servlets assemble results in an OAI compliant manner,
which is presented to the client. SeerSuite supports the
full complement of OAI-PMH version 2 verb requests
and provides content in the Dublin Core format. Thus,
all document metadata is accessible to a client through
the OAI interface.

8.2 API

Application Programmable Interfaces (APIs) are cen-
tral for programmatic access to the repository. Through
REST [20] web services, SeerSuite supports the needs of
both programmers aiming to access metadata from the
digital library and software agents looking to exchange
information between digital libraries. SeerSuite APl is a
revamped version of the previously developed CiteSeer
API [35] which was SOAP/WSDL-based.

The goal of the SeerSuite API is to share metadata
with developers and software agents. Moving to a REST-
based web service from a SOAP/WSDL-based one re-
duces the size of requests and the responses exchanged
between the client and the server. Hence, developers can
retrieve information faster, and total network traffic is re-
duced. The version of the API deployed in CiteSeer”
provides access to the papers, authors, citations, key-
words, and citation contexts. The API caller may pro-

vide a SQL-like query to be executed as a filter on the
matching set. The resource URI formats are shown in
table 1. Objects are identified by document IDs (docid),
author IDs (aid) and citation IDs (cid). SeerSuite API
can output the results in both XML and JSON formats
depending on the callers preference.

| Type | URI Format

Paper http://host/papers/ [docid]

Author | http://host/authors/[aid]

Citation | http://host/authors/[cid]

Table 1: CiteSeer® API Resource URI Formats

SeerSuite adopts Jersey [12] as a library to build the
RESTful web service, which in turn implements the
JAX-RS [13] reference. SeerSuite requires users looking
to use the API to have a valid MyCiteSeer account. Ac-
count information in MyCiteSeer is used to generate an
Application ID (appid) which has to be passed in every
HTTP request as a mechanism of authentication. Daily
limits for users are monitored and can be managed by
administrators for performance.

9 Federation of Services

CiteSeer” includes several unique services, which are not
part of the SeerSuite application framework. Provision-
ing for these services is an unique aspect of the Seer-
Suite framework. Many of these services have evolved
as a result of research and are still being developed. The
developer builds and operates these services indepen-
dently, sharing hosting infrastructure with the main ap-
plication. Separate tables and databases and index oper-
ations maybe provisioned for each service. In the follow-
ing sections, we briefly discuss Table search and author
disambiguation search.

9.1 Table Search

Tables in documents often contain important data not
present elsewhere. Table search services are based on
TableSeer developed as part of the project [31]. Table
search automatically extracts tables metadata, and in-
dexes and ranks tables present in a SeerSuite collection.
While table search shares components of the web appli-
cation and shares the repository with SeerSuite, the index
and extraction components are independent of SeerSuite.

The SeerSuite interface utilizes the main application
framework for interaction with the table index. The
queries results from the index are again processed and
presented by the main application framework. Indepen-
dent operation of the index from the main index allows
for more efficient query processing and ranking of table

USENIX Association USENIX Association

WebApps ’10: USENIX Conference on Web Application Development 167



search results. The results utilize the SeerSuite file sys-
tem infrastructure view the result of particular pages of
the tables in cached documents. The ingestion, main-
tenance and updates services for Table search are inde-
pendent of SeerSuite, allowing for flexibility in research
and development. Some aspects of the table search in-
gestion system require access to the document metadata
such as title, author not extracted as part of Table ex-
traction, which are acquired from the main SeerSuite in-
stance metadata.

Table search has served as a template for the devel-
opment of similar services such as algorithm and figure
search, which are in development.

9.2 Author Disambiguation

Author disambiguation enables users to identify whether
records of publications in a SeerSuite collection refer to
the same person. The author disambiguation service pro-
vided by SeerSuite is based on an efficient integrative
framework for solving the name disambiguation prob-
lem. A blocking method retrieves candidate classes of
authors with similar names and a clustering method, DB-
SCAN, clusters papers by author. The distance met-
ric between papers used in DBSCAN is calculated by
an online active selection Support Vector Machine algo-
rithm(LASVM) [26]. This system has been utilized in
CiteSeer”. The disambiguation application identifies dis-
tinct authors based on header information which includes
author affiliation and co-authorship.

The implementation makes use of already existing au-
thor object data in the main database, and generates clus-
ter IDs for disambiguated authors that are stored in a sep-
arate table and index. Results for disambiguated author
queries are handled by main application framework by
interacting with the main database and the index. A pro-
file page exists for each disambiguated author, with au-
thor affiliation, impact, and publications garnered from
the SeerSuite instance. The profile page also provides
a link, if available, to the author homepage obtained
through a system HomePageSeer. An incremental algo-
rithm replacing the offline batch algorithm currently used
is in development.

10 Usage

CiteSeer” receives nearly two million requests from
across the globe. A significant portion of this traffic is
as a result of document views, downloads and searches.
An analysis of access logs is presented in this section.
The graph in figure 8 shows average hits per month
for CiteSeer” during the year 2009. The search group-
ing includes requests for document and author search.

i B Document B Downloads O MyCiteSeer B Other M Search

0 I
1 2 3 4 5 6 7 8 g 10 " 12

Figure 8: CiteSeer” Traffic in 2009

The ’other’ grouping includes queries for citing docu-
ments, legacy mappings (redirects from CiteSeer), OAI,
and requests to author profile and static pages. Docu-
ment related requests include downloads and summary
views. The graph indicates a growth in the number of
hits, driven by downloads, views of citation relation-
ships, and search. The number of document views have
grown by a lesser margin. During this time, the collec-
tion of documents in CiteSeer” grew by 200,000 docu-
ments with updates to document metadata through cor-
rections.

The majority of the referrals to CiteSeer” are through
pages hosted on CiteSeer” (67 %). A number of users
(29 %) arrive without a referrer,(i.e., users landing di-
rectly on CiteSeer” or requests by crawlers). Redirection
from CiteSeer contribute (1 %); references from Google,
Google Scholar (2 %,1 %), Yahoo, and Bing (all <1 %).

Other 19%

Japan 1%
Canada 1%
rance 2%

Linited States 54% nkrniown 3%
India 3%
China 4%

Germany 5%
Tanwan 5%

Figure 9: Country Profile

Figure 9 shows a division of traffic from different
countries in 2009 identified using GeoIP. Among users

Greal Britain 3%

WebApps ’10: USENIX Conference on Web Application Development

of CiteSeer”, nearly half of users are from the United
States. Taiwan, Germany, China, India, UK, France,
and Canada are other major sources of traffic. Traffic
from two hundred and twenty countries are grouped un-
der ’other’.

Along with valid accesses, CiteSeer” experiences a va-
riety of attacks every day. These attacks involve access to
forbidden areas, portscans, SQL injection attacks, double
decoding, buffer overflow, and cross scripting attempts.

11 Collaboration and Distribution

SeerSuite has been developed in collaboration with sev-
eral groups across the world. This collaboration includes
exchange of ideas, development of modules and host-
ing of services. Independent copies of CiteSeer” are
maintained by these research groups at University of
Arkansas, National University of Singapore and King
Saud University.

Data collected as part of crawls, document metadata,
anonymized user log data are available on request. Sev-
eral research groups have already taken advantage of
these datasets. The source code for SeerSuite has been
released under the Apache software license version 2 on
sourceforge.

To improve adoption of SeerSuite based systems and
provide the user an efficient way to explore and deploy
instances. A virtual appliance with SeerSuite has been
made available for such a purpose. The appliance uses
open source components and contains a complete de-
ployment of SeerSuite. This allows users to explore and
operate instances of SeerSuite, in the pre-installed VM.
The use of the virtual appliance also benefits developers
and testers.

User feedback and comments have helped improve
both user the experience and the troubleshooting bugs.
SeerSuite enables other innovative and valuable tools to
be built using metadata extracted and published. Such
efforts include projects such as PaperCube [17] and
JabRef.

12 Lessons Learned and Future Work

By adopting a multi-tier architecture, open source appli-
cations and the use of software frameworks, SeerSuite
has improved upon the client server architecture initially
adopted by CiteSeer. In addition this is an approach that
has provided reliable scalable services in CiteSeer”.

One of the lessons learned is in the provisioning of
infrastructure. To allow SeerSuite instances to grow to
large sizes without constraints on storage and computa-
tion, virtualization and distributed computing need to be
utilized and managed.

The number of requests for metadata and data from the
CiteSeer” collection emphasizes the need for developing
automated methods data sharing such as API and OAI
services for SeerSuite instances. There have also been
requests for a content based similarity and duplicate de-
tection service, which is under development.

With the new design adding features in SeerSuite is
more straight forward. However, further work on sepa-
rating components is required to support systems which
make use of a smaller subset of services. These systems
may not include the citation graph service. Among other
services, MyCiteSeer should be developed as a stand
alone service. This will easily enable other services such
as HomePageSeer that take advantage of login based ac-
cess. Development of MyCiteSeer as an independent ser-
vice, shared across many Seer instances is under con-
sideration. This would allow users to share information
across projects and instances.

One of the continuing major challenges is new and
high quality metadata extraction. Another is that mod-
ules will need to be refactored to support massive crawls
using parallelization at the module level.

A number of optimizations have been implemented in
SeerSuite, prominent among these is the citation rela-
tionships stored in the index. This allows citation rela-
tionship queries which form document summary views
to be more readily handled. Such an optimization has the
drawback in that updates to these relationships are only
available to the user once there has been updates to the
index.

A federation of services model adopted for newer ser-
vices benefits both users and developers. This model
gives users a peek into new features and researchers an
easy a way to include new services. From a development
standpoint, this is also useful since services can be tested
and users can provide feedback.

Improvements to the User Interface will be required to
support upcoming features. Ranking of results and im-
proving relevance in search are active topics of research.
Performance analysis tests for SeerSuite to identify pos-
sible improvements and issues are being designed.

13 Summary

We have described the design, architecture, and deploy-
ment of SeerSuite. We believe SeerSuite overcomes
many of the issues in an earlier system, CiteSeer, which,
due to its design, limited growth and extensions to other
services. SeerSuite is designed to take advantage of open
source applications, frameworks and state of the art com-
ponents. It also allow users to readily build mashups and
related applications. The use of loose coupling of mod-
ules and federated services enables SeerSuite to easily
offer new features and components.

USENIX Association USENIX Association

WebApps *10: USENIX Conference on Web Application Development 169



The user interface allows search, document summary
views, and citations clustering. We identify workflows
for generating these pages. Various features such as
tagging, building collections and correcting documents
were identified for the MyCiteSeer portal. In addition to
providing services through the web user interface, Seer-
Suite also provides services through the OAI/PMH and
API interfaces.

The statistics and usage pattern for CiteSeer”, a Seer-
Suite instance, provide information about growth in traf-
fic and the profile of users based on the country of origin.
We show that SeerSuite is a collaborative venture with
open source code and virtual appliances that encourage
adoption and research. We believe that SeerSuite will
continue to improve and support a wide variety of ser-
vices and user needs while remaining scalable, reliable
and robust.

14 Acknowledgments

We gratefully acknowledge partial support from the NSF
and useful comments by Yves Petinot.

References

[1] ACM Portal. http://portal.acm.org/portal.cfm.
[2] ActiveMQ. http://activemqg.apache.org/.

[3] ChemySeer. http://chemxseer.ist.psu.edu.

[4] CiteSeer. http://citeseer.ist.psu.edu.

[5] CiteSeer”. http://citeseerx.ist.psu.edu.

[6] CiteULike. http://www.citeulike.org/.

[7] DBLP. http://www.informatik.uni-trier.de/
~ley/db/.

[8] Dspace. http://www.dspace.org/.

[9] Google Scholar. http://scholar.google.com/.
[10]
(11]
[12]
[13]

Greenstone. http://www.greenstone.org/.

Heritrix. http://crawler.archive.org/.

Jersey APL. https://jersey.dev. java.net/.

JSR 311. https://jsr3ll.dev.java.net/nonav/
releases/1.1/index.html.

[14] Open archives initiative - protocol for metadata harvest-

ing v.2.0. http://www.openarchives.org/OAI/
openarchivesprotocol.html.

[15]
[16]
[17]

RePEc. http://repec.org/.
Solr. http://lucene.apache.org/solr/.

BERGSTROM, P. Papercube.
peterbergstrom.com.

http://papercube.

[18] CouNcILL, I. G., GILES, C. L., Iorio, E. D., GOrI, M.,
MAGGINI, M., AND Puccl, A. Towards next generation cite-
seer: A flexible architecture for digital library deployment. In
Research and Advanced Technology for Digital Libraries, ECDL

2006 (2006), pp. 111-122.

CounciLL, I. G., L1, H., ZHUANG, Z., DEBNATH, S.,
BoOLELLI, L., LEE, W. C., SIVASUBRAMANIAM, A., AND
GILES, C. L. Learning metadata from the evidence in an on-line
citation matching scheme. In JCDL (2006), pp. 276-285.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

FIELDING, R. T. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Califor-
nia, Irvine, Irvine, California, 2000.

GARFIELD, E. ”Science Citation Index”a new dimension in in-
dexing. Science 144,3619 (1984), 649 — 654.

GILES, C. L., BOLLACKER, K. D., AND LAWRENCE, S. Cite-
seer: An automatic citation indexing system. In Digital Libraries
(1998), pp. 89-98.

GINSPARG, P. Can Peer Review be better Focussed.
http://people.ccmr.cornell.edu/~ginsparg/
blurb/pg02pr.html.

HAN, H., GILES, C. L., MANAVOGLU, E., ZHA, H., ZHANG,
Z., AND Fox, E. A. Automatic document metadata extraction
using support vector machines. In JCDL ’03: Proceedings of the
3rd ACM/IEEE-CS joint conference on Digital libraries (2003),
pp- 37-48.

HAN, H., MANAVOGLU, E., ZHA, H., TSIOUTSIOULIKLIS, K.,
GILES, C. L., AND ZHANG, X. Rule-based word clustering for
document metadata extraction. In SAC (2005), pp. 1049-1053.

HUANG, J., ERTEKIN, S., AND GILES, C. L. Efficient name
disambiguation for large scale databases. In The 10th European
Conference on Principles and Practice of Knowledge Discovery
in Databases (2006), pp. 536-544.

Isaac CouUNcILL, C. L. G., AND KAN, M.-Y. Parscit: an
open-source crf reference string parsing package. In Proceedings
of the Sixth International Language Resources and Evaluation
(LREC’08) (Marrakech, 2008), European Language Resources
Association.

KAHN, R., AND WILENSKY, R. A framework for distributed
digital object services. International Journal on Digital Libraries
6,2 (2006), 115-123.

LAWRENCE, S., BOLLACKER, K., AND GILES, C. L. Dis-
tributed error correction. In DL '99: Proceedings of the fourth
ACM conference on Digital libraries (1999), p. 232.

L1, H., CouNcILL, I., LEE, W.-C., AND GILES, C. L. Cite-
seerx: an architecture and web service design for an academic
document search engine. Poster Session 15th International World
Wide Web Conference (2006).

Liu, Y., BAI, K., MITRA, P., AND GILES, C. L. Tableseer:
automatic table metadata extraction and searching in digital li-
braries. In JCDL (2007), pp. 91-100.

MCCALLUM, A., FREITAG, D., AND PEREIRA, F. C. N. Maxi-
mum entropy markov models for information extraction and seg-
mentation. In ICML (2000), pp. 591-598.

MITRA, P., GILES, C. L., SUN, B., AND L1U, Y. Chemxseer: a
digital library and data repository for chemical kinetics. In CIMS
’07: Proceedings of the ACM first workshop on CyberInfrastruc-
ture: Information Management in eScience (2007), pp. 7-10.

Ni11, H. P. Blackboard systems, part one: The blackboard model
of problem solving and the evolution of blackboard architectures.
Al Magazine 7,2 (1986), 38-53.

PETINOT, Y., GILES, C. L., BHATNAGAR, V., TEREGOWDA,
P. B., HAN, H., AND COUNCILL, I. Citeseer-api: towards seam-
less resource location and interlinking for digital libraries. In
CIKM (2004), pp. 553-561.

PETINOT, Y., TEREGOWDA, P. B., HAN, H., GILES, C. L.,
LAWRENCE, S., RANGASWAMY, A., AND PAL, N. ebizsearch:
an oai-compliant digital library for ebusiness. In JCDL (2003),
pp. 199-209.

TAN, Q., MITRA, P., AND GILES, C. Metadata extraction and
indexing for map search in web documents. In Proceeding of the
17th ACM CIKM (2008), pp. 1367-1368.

170

WebApps ’10: USENIX Conference on Web Application Development

USENIX Association



	webapps10cover
	webapps10_fm
	webapps10_contents
	webapps10_message
	webapps10_1b
	webapps10_1c
	webapps10_2b
	webapps10_2c
	webapps10_2d

