
Separating Web Applications from User Data Storage with BSTORE

Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

This paper presents BSTORE, a framework that allows de-
velopers to separate their web application code from user
data storage. With BSTORE, storage providers implement
a standard file system API, and applications access user
data through that same API without having to worry about
where the data might be stored. A file system manager
allows the user and applications to combine multiple file
systems into a single namespace, and to control what data
each application can access. One key idea in BSTORE’s
design is the use of tags on files, which allows appli-
cations both to organize data in different ways, and to
delegate fine-grained access to other applications. We
have implemented a prototype of BSTORE in Javascript
that runs in unmodified Firefox and Chrome browsers.
We also implemented three file systems and ported three
different applications to BSTORE. Our prototype incurs
an acceptable performance overhead of less than 5% on a
10Mbps network connection, and porting existing client-
side applications to BSTORE required small amounts of
source code changes.

1 INTRODUCTION

Today’s web applications have application-centric data
storage: each application stores all of its data on servers
provided by that application’s developer. For example,
Google Spreadsheets [14] stores all of its documents on
Google’s servers, and Flickr [37] stores all of its photos
at flickr.com. Coupling applications with their storage
provides a number of benefits. First, users need not setup
or manage storage for each application, which makes it
easy to start using new apps. Second, each application’s
data is isolated from others, which prevents a malicious
application from accessing the data of other applications.
Finally, users can access their data from any computer,
and collaborate with others on the same document, such
as with Google Spreadsheets. Indeed, application-centric
data storage is a natural fit for applications that perform
server-side data processing, so that both client-side and
server-side code can easily access the same data.

Although the application-centric data model works well
in many cases, it also has a number of drawbacks. First,
users are locked into using a single application for ac-
cessing any given piece of data—it is difficult to access
the same data from multiple applications, or to migrate
data from one application to another. By contrast, in
the desktop environment, vi and grep have no prob-

lems accessing the same files. Second, application devel-
opers are forced to provide storage or server resources
even if they just want to publish code for a new appli-
cation, and even if users’ data is already stored in other
applications. By contrast, in the desktop environment,
http://gnu.org/grep might only distribute the code
for grep, and would not maintain servers to service users’
grep requests. The makes it difficult for application de-
velopers to build client-side web applications.

To address this problem, we present BSTORE, a sys-
tem that allows web application developers to decouple
data storage from application code. In BSTORE, data
can be stored in file systems, which provide a common
interface to store and retrieve user data. File systems can
be implemented by online services like Amazon S3 [4],
so that the data can be accessed from any browser, or by
local storage in the browser [12, 36], if stronger privacy
and performance are desired. Multiple file systems are
combined into a single namespace by the file system man-
ager, much like the way different file systems in Unix are
mounted into a single namespace. Finally, applications
access data in BSTORE through the file system manager,
without worrying about how or where the data is stored.

One challenge facing BSTORE is in providing security
in the face of potentially malicious applications or file
systems. While the application-centric model made it
impossible for one application to access another applica-
tion’s data by design, BSTORE must control how each
application accesses the user’s shared data. Moreover,
different users may place varying amounts of trust in file
systems: while one user may be happy to store all of their
data in Amazon S3, another user may want to encrypt any
financial data stored with Amazon, and yet another user
may want his grade spreadsheets to be stored only on the
university’s servers.

A second challenge lies in designing a single BSTORE
interface that can be used by all applications and file sys-
tems. To start with, BSTORE’s data storage interface must
be flexible enough to support a wide range of application
data access patterns. Equally important, however, is that
any management interfaces provided by BSTORE be ac-
cessible to all applications. For example, any application
should be able to specify its own access rights delegation
or to mount its own file systems. If our design were to
allow only the user to specify rights delegation, appli-
cations might be tempted to use their own file system
manager when they find the need to specify finer-grained

1

access control policies or mount application-specific file
systems. This would fracture the user’s file namespace
and preclude data sharing between applications.

A final challenge for BSTORE is to support existing
web browsers without requiring users to install new plug-
ins or browser extensions. While a browser plug-in could
provide arbitrary new security models, we want to allow
users and application developers to start using BSTORE
incrementally, without requiring that all users switch to a
new browser or plug-in simultaneously.

BSTORE’s design addresses these challenges using
three main ideas. First, BSTORE presents a unified file
system namespace to applications. Applications can
mount a new file system by simply supplying the file
system’s URL. A file system can either implement its
own backend storage server or can use another BSTORE
file system for its storage. Second, BSTORE allows ap-
plications to associate free-form tags with any files, even
ones they might not have write access to. Using this single
underlying mechanism, BSTORE enables an application
to organize files as it chooses to, and to delegate access
rights to other applications. Finally, BSTORE uses URL
origins as principals, which are then used to partition the
tag namespace, and specify rights delegation for files with
different tags.

To illustrate how BSTORE would be used in practice,
we ported a number of Javascript applications to BSTORE,
including a photo editor, a vi clone, and a spreadsheet
application. All of the applications required minimal
amount of code changes to store and access data through
BSTORE. We also implemented several BSTORE file
systems, including an encrypting file system and a check-
pointing file system. Our prototype of BSTORE incurs
some in-browser processing overheads, but achieves over-
all performance comparable to using XMLHttpRequest
directly for a typical home network connection.

The rest of this paper is organized as follows. Section 2
provides motivation and use cases for BSTORE. Sec-
tion 3 details BSTORE’s design, and Section 4 discusses
our prototype implementation. Section 5 describes our
experience using BSTORE in porting existing Javascript
applications and in implementing file systems. Section 6
evaluates BSTORE’s performance overheads, and Sec-
tion 7 discusses some of BSTORE’s limitations. Related
work is discussed in Section 8 and finally Section 9 con-
cludes.

2 MOTIVATING EXAMPLES

BSTORE can benefit the users and developers of a wide
range of web applications, by giving users control over
their data, by making it easier for applications to share
data, and by removing the need for application developers
to provide their own storage servers. An existing web
application that has its own storage servers can also use

BSTORE to either export its data to other applications, or
to access additional data that the user might have stored
elsewhere. The rest of this section describes a few use
cases of BSTORE in more detail.

User wants control over data storage. In the current
web application model, application developers are in full
control of how user data is stored. Unfortunately, even
well-known companies like Google and Amazon have had
outages lasting several days [2, 23, 30], and smaller-scale
sites like the Ma.gnolia social bookmarking site have lost
user data altogether [21]. To make matters worse, the cur-
rent model does not allow users to prevent such problems
from re-occuring in the future. Some sites provide special-
ized backup interfaces, such as Google’s GData [13], but
using them requires a separate backup tool for each site,
and even then, the user would still be unable to access
their backed-up data through the application while the
application’s storage servers were down.

With BSTORE, users have a choice of storage providers,
so that they can store their data with a reliable provider
like Amazon or Google, even if they are using a small-
scale application like Ma.gnolia. If the user is concerned
that Amazon or Google might be unavailable, they can
set up a mirroring file system that keeps a copy of their
data on the local machine, or on another storage service,
so that even if one service goes down, the data would still
be available.

Finally, users might be concerned about how a financial
application like Mint.com stores their financial data on
its servers, and what would happen if those servers were
compromised. Using BSTORE, users can ensure that their
financial data is encrypted by mounting an encrypting file
system, so that all data is encrypted before being stored
on a server, be it Mint.com or some other storage provider.
In this model the user’s data would still be vulnerable if
the Mint.com application were itself malicious, but the
user would be protected from the storage servers being
compromised by an attacker.

User accesses photos from multiple applications.
There is a wide range of web applications that provide
photo editing [9], manipulation [26], sharing [15], view-
ing [32], and printing [31]. Unfortunately, because of
the application-centric storage model, users must usually
maintain separate copies of photos with each of these ap-
plications, manually propagate updates from one applica-
tion to another, and re-upload their entire photo collection
when they want to try out a new application. While some
cross-application communication support is available to-
day through OAuth [25], it requires both applications to
be aware of each other, thus greatly limiting the choice of
applications for the user.

With BSTORE, all photo applications can easily access
each other’s files in the user’s file system namespace. The

2

2 FS Manager does
ACL Check & Routing

Applications Photo Editor
photo.com

Text Editor
jsvi.com

Money Manager
finance.com

Encrypt FS
encrypt.com

Checkpoint FS
undo.com

Local Storage
localfs.com

BROWSER

Spreadsheet
officeapps.com

FS Manager

ACLTable MountTable

fsmgr.com

Photo Storage
cheapfs.com

Storage
Backend

Network

Storage
Backend

Root FS
reliablefs.com

Network
Use Root FS for underlying storage

File Systems

Figure 1: Overview of the BSTORE architecture. Each component in the browser corresponds to a separate window whose web page is running
Javascript code. All requests to the BSTORE file system are mediated by the FS manager. Arrows (except in the get response flow) indicate possible
direction of requests in the system.

user can also specify fine-grained delegation rules, such
as granting Picasa access to lower-resolution photos for
publishing on the web, without granting access to full-
resolution originals. Web sharing applications such as
Picasa could still store separate copies of photos on their
servers (for example, for sharing on the web); this could
be done either through an application-specific interface,
as today, or by mounting that user’s Picasa file system in
BSTORE’s file system manager.

Small-scale developer builds a popular application.
In addition to common web applications like GMail and
Picasa, there are a large number of niche web applications
written by developers that might not have all of Google’s
resources to host every user’s data. For example, MIT’s
Haystack group has written a number of client-side web
applications that are popular with specific groups of users.
One such application is NB [22], which allows users to
write notes about PDF documents they are viewing. Cur-
rently, NB must store everyone’s annotations on MIT’s
servers, which is a poor design both from a scalability and
security perspective. BSTORE would allow individual
users to provide storage for their own annotations. Many
other small-scale web application developers are facing
similar problems in having to provision significant server-

side storage resources for hosting essentially client-side
web applications, and BSTORE could help them as well.

3 DESIGN

The BSTORE design is based on the following goals:
Independence between applications and storage

providers. In an ideal design, applications should be
able to use any storage providers that the user might have
access to, and the user should be able to manage their data
storage providers independent of the applications. In par-
ticular, this would enable a pure Javascript application to
store data without requiring that application’s developer
to provide server-side storage resources.

Egalitarian design. BSTORE should allow any appli-
cation to make full use of the BSTORE API, and avoid
reserving any special functionality for the user. One exam-
ple is access control mechanisms: we would like to allow
applications to be able to subdivide their privileges and
delegate rights to other applications. Another example is
mounting new file systems into the user’s namespace: any
application should be able to mount its own server-side re-
sources into BSTORE, or to encrypt its data by mounting
an encrypting file system.

3

No browser modifications. BSTORE should not re-
quire browser modifications and should work with exist-
ing browser protection mechanisms (same origin policy
or SOP).

3.1 Overview
Figure 1 illustrates BSTORE’s architecture. A user’s
BSTORE is managed by a trusted file system manager
(FS manager). It mediates all file system requests in the
system. Applications (shown at the top of the figure),
send their file system requests to the FS manager, which
routes them to the appropriate file system (shown at the
bottom of the figure). The FS manager also performs
access control during this request routing process.

The Javascript code for the FS manager, applications,
and file systems run in separate protection domains
(browser windows) and are isolated from each other by
the browser’s same origin policy. All communication
happens via postMessage, which is the browser’s cross-
domain communication mechanism.

The FS manager allows users and applications to mount
different file systems and stitch them together into a uni-
fied namespace. A BSTORE file system exports a flat
namespace of files, and does not have directories. Files
do not have a single user-defined name; instead each file
has a set of tags. An application can categorize a file as
it sees fit by setting the appropriate tags on that file. At a
later time, it can search the file system and recall files that
match a specific tag expression. Using tags in this manner
for file system organization allows each application the
flexibility to organize the file system as it chooses.

File tags are also the basis for access control in
BSTORE. An application uses tags to delegate a subset of
its access rights to another application. The FS manager
keeps track of these delegations in the ACL table and
enforces access control on every file system request.

3.2 BSTORE API
Table 1 shows the API calls exported by the FS manager
to each application, and Table 2 shows the API calls
exported by each BSTORE file system to the FS manager.

The API calls in Table 1 are divided into two categories,
shown separated by a line in the table. The calls in the top
category are file system calls that correspond directly to
API calls in Table 2. The calls in the lower category are
FS manager-only calls related to access rights delegation
and creating mountpoints. Among the file system calls,
create and search operate on a file system handle (fs h),
and the rest of the calls operate on a file handle (fh). The
get and set calls operate on entire objects; there are no
partial reads and writes. This design choice is consistent
with the behavior of majority of web applications, which
read and write entire objects, and with other web storage
APIs, such as Amazon S3 and HTML5 local storage.

FS manager API call Return Rights
on success needed

create(fs h, init tags) fh, ver write to creator tag
search(fs h, tag expr) fh list read matching files
set(fh, data, [match ver]) ver write on file
get(fh) ver, data read on file
stat(fh) ver, size read on file
delete(fh, [match ver]) — write on file
settag(fh, tag) ver read on file
gettag(fh) ver, tag list read on file
rmtag(fh, tag) ver read on file
setacl(target principal, tags, perms) — —
getacl([target principal]) delegation list —
rmacl(target principal, tags, perms) — —
encrypt(plaintext) ciphertext —

Table 1: API exported by the FS manager to each BSTORE application.
The rights column shows the rights needed by an application to perform
each API call.

FS API call Return on success
create(init tags, acltagset) fh, ver
search(tag expr, acltagset) fh list
set(fh, data, acltagset, [match ver]) ver
get(fh, acltagset) ver, data
stat(fh, acltagset) ver, size
delete(fh, acltagset, [match ver]) —
settag(fh, tag, acltagset) ver
gettag(fh, acltagset) ver, tag list
rmtag(fh, tag, acltagset) ver

Table 2: API exported by each BSTORE file system to the FS man-
ager. The FS manager fills in the acltagset based on the requesting
application’s access rights.

The rights column in Table 1 shows the access rights
needed by an application to perform each API call. When
an application makes a file system call, the FS manager
uses the access rights delegated to the application to fill
in the acltagset shown in API calls in Table 2. The file
system uses the acltagset to perform access control, as
will be described in more detail in Section 3.5.

Current browsers use the URL domain of a web appli-
cation’s origin as the principal while applying same origin
policy to enforce protection between browser windows.
Since one of our goals is to not modify browsers, we also
choose URL domains of an application’s or file server’s
origin as principals in BSTORE.

3.3 Tags
A tag is an arbitrary label that a principal can attach to a
file (e.g., low-res on a photo file). A file can have multiple
tags set by different principals. Tagging is the underlying
mechanism using which an application (or user) can both
organize the BSTORE namespace in ways meaningful to
it, as well as to delegate access rights to other applications.

Applications use settag to tag a file. An application
can tag other applications’ files as long as it can read
those files. This allows an application to categorize files
in BSTORE in a manner that best fits its purpose. For
example, a photo editor application can tag a photo file
with the date of the photo, location at which it was taken,
or the names of people in it. To avoid applications clob-
bering each others tags, each principal gets its own tag

4

namespace, and can only set tags within that namespace.
So, a low-res tag set by Flickr is actually flickr.com#low-
res, and is different from low-res tag set by Google Picasa
(which is picasa.com#low-res).

In BSTORE, tag-based search is the only mechanism
by which applications can lookup files and get handles on
them. search takes a file system handle and a tag query
expression and returns files in that file system whose list
of tags satisfy the tag query, and which are readable by the
requesting application. The tag query expression supports
simple wildcard matches. settag and search together
allow an application to organize the BSTORE namespace,
and recall data in ways meaningful to it.

Applications use gettag to retrieve a list of all tags for
a file, including those set by other applications. rmtag
allows an application to delete only the tags that were set
by the same principal as the application.

3.4 File systems
Every mounted BSTORE file system has a Javascript com-
ponent running in a browser window. This Javascript
component exports the BSTORE file system API to the FS
manager, and services requests from it. Some file systems
store their data on network storage or on local storage
(e.g., reliablefs.com and localfs.com in Figure 1). Others,
called layered file systems, store their data on existing
BSTORE file systems and layer additional functionality
on them (e.g. encrypt.com encrypting data and storing it
on reliablefs.com).

All file systems (except the root file system) are spec-
ified in mountpoint files. A mountpoint file for a file
system contains information to mount the file system, in
a well known format. This information includes the URL
for the file system Javascript code, file system configura-
tion parameters, and mountpoint tags. Just as it creates
other files, an application uses the create call to create a
mountpoint file with the right configuration information
in the right format. Other applications can use the mount-
point file to access the file system referenced by it, as long
as the access control policy allows it. Since mountpoint
information can contain sensitive data (such as creden-
tials and mountpoint tags), the application uses the FS
manager’s encrypt API call to encrypt the information
and stores the encrypted information in the mountpoint
file. The FS manager encrypts data using a key that is ini-
tialized when it is first set up, as described in Section 3.8.

To access a file system, an application passes a handle
to the file system’s mountpoint file to create and search
API calls. If the file system is not already mounted, the
FS manager uses this handle to read the mountpoint file,
decrypt the mountpoint information, and launch the file
system in a separate browser window using this informa-
tion. Once the file system is initialized, the FS manager

adds the file system to its mount table and routes requests
to it.

Storing the mountpoint information encrypted allows
an application to safely give other applications access to
a file system, without giving away credentials to the file
system. An application can also safely give other appli-
cations a copy of the mountpoint files it created, which
can be used for mounting without leaking any sensitive
information.

A user or application that created a mountpoint file may
want to tag all files in that file system with a particular tag
to enforce access control on all files in that file system.
It is cumbersome to tag each file individually with that
tag at mount time. Instead, BSTORE allows mounting file
systems with mountpoint tags that are logically applied
to every file on that file system.

3.5 Access control
A BSTORE principal obtains all its access rights through
delegation from other principals. As the base case, the
file system’s principal is assumed to have full access to
all files on that file system. A principal A can specify a
delegation rule to delegate a subset of its access rights to
another principal B. Delegation is transitive and principal
B can in turn delegate a subset of rights it obtained from
A to another principal C. Given all the delegation rules
in the system, BSTORE computes the access rights that
are transitively granted by any principal A to another
principal B, by computing the transitive closure of the
delegation rules. The access rights for an application with
principal A to a file on principal F ’s file system are the
rights that are transitively delegated by F to A.

Delegation rules use file tags to specify the files to
which they apply. Since tags are application-defined prop-
erties on files, this allows an application (say, Picasa) to
easily express intentions such as “Flickr can read all my
low resolution photos on any file system,” without having
to search through the entire file system for low resolution
photos and adding Flickr to each file’s access control list.

The delegation rules described above are decentralized,
and each file system can independently delegate access,
maintain delegation rules from other principals, and com-
pute transitive delegations itself. However, in practice,
it is convenient for users to specify their access control
policy in a single place. To achieve this, all delegation
rules are centralized in the FS manager. File systems
also follow a convention that, when mounted, they del-
egate all access to the FS manager. This allows the FS
manager to make access control decisions for that file
system (by using delegation from the FS manager’s prin-
cipal to specific applications). In case a file system does
not want to use the FS manager’s centralized ACL man-
ager (e.g. in the case of an application mounting its own

5

application-specific file system), it can choose not to fol-
low this convention.

The FS manager maintains an ACL table of all delega-
tion rules. A delegation rule is of the form 〈A, B, T,R〉,
and signifies that the rights R (read or read write) are
delegated from principal A to principal B for every file
that is tagged with all the tags in tag set T . Going back
to the example above, Picasa’s intentions translate to a
delegation rule 〈picasa.com, flickr.com, picasa.com#low-
res, read〉. Any principal (application or file system) can
invoke setacl and rmacl API calls on the FS manager to
add and remove delegation rules. Both these calls take B,
T , and R as arguments. A principal can use the getacl
call to retrieve its delegations to a particular target prin-
cipal. It can obtain all its delegations to any principal by
omitting the target principal parameter to getacl.

The FS manager computes and maintains the transitive
closure of the delegation rules added by all the principals.
On a request from application A to file system F , the FS
manager looks up the transitive closure and includes all
the rights transitively delegated by F to A in the request
before sending it to F (these rights are indicated by ar-
gument acltagset in Table 2). The FS manager does not
fetch tags from F and do the rights check itself to avoid
an extra round trip. The file system F checks the rights
before performing the operation.

BSTORE’s access control rules allow one principal to
delegate access based on tags from another principal. In
our example, if the user’s low-resolution photos are al-
ready tagged kodak.com#low-res, Picasa can delegate
access to flickr.com based on that tag, instead of tagging
files on its own. However, this opens up the possibil-
ity of kodak.com colluding with flickr: if kodak tags all
files with this tag, flickr will be able to access any file
accessible to Picasa. The FS manager makes this trust
relation explicit by verifying, on each ACL check, that the
principals in a delegation rule’s tags are also allowed to
perform the operation in question. Thus, in our example,
Picasa’s delegation rule would not apply to files tagged
kodak.com#low-res that kodak.com was not able to access
itself.

3.6 File creation
An application (say app.com) creates a file using the cre-
ate call, by specifying a handle to the target file system
(say on fs.com). The application also specifies a list of ini-
tial tags to set on the new file. In addition, the FS manager
sets a special creator tag (fsmgr.com#app.com creator)
on the file.

For create to succeed, app.com should have write ac-
cess to the tag set consisting of the mountpoint tags of
the file system fs.com and the creator tag. The creator
tag is also used to delegate all access rights on that file
to the creator application. This is done by the FS man-

ager adding a delegation rule 〈fsmgr.com, app.com, fs-
mgr.com#app.com creator, read write〉.

3.7 File versions
Since BSTORE is shared storage, multiple applications
could be concurrently accessing a file. To help applica-
tions detect concurrent modifications, the BSTORE API
provides compare-and-swap like functionality. All files
are versioned. Mutating file system calls take an optional
match version argument and fail with a EMODIFIED error
if the current file version does not equal match version.
A file’s version number is automatically incremented on
every set operation, and most API calls also return the
current file version. Versioning proves useful in other
scenarios as well: it can be used to keep track of change
history, as in the case of the checkpointing file system de-
scribed in Section 5.2.2, and to support transparent local
caching of network storage.

3.8 Bootstrapping
We now give a brief overview of how a user interacts with
BSTORE, including initial setup of the different compo-
nents and subsequent use.

FS manager. We imagine that users will be able to
choose from multiple implementations of FS manager
from different vendors, depending on whom they trust
and whose UI they prefer. Once a user chooses a FS
manager, she sets up her browser by browsing to the
FS manager and configuring it with the information to
mount the root file system. The FS manager stores this
mount information in the browser’s local storage and uses
it for subsequent sessions. It also mounts the root file
system, and sets up BSTORE by initializing its encryption
key and delegation rules table. The user needs to repeat
the browser setup step for every browser she uses. The
BSTORE setup only happens once. During normal use,
the FS manager also provides the user with a UI to create
and manage delegation rules.

Applications. For each application, the user adds del-
egation rules to the FS manager to grant the application
access to specific files in BSTORE. The user initializes
the application with the FS manager URL, which it uses
to launch the FS manager if it is not already launched.
The application also stores the FS manager URL in its
network storage or local storage for subsequent sessions.

During normal use, when the user needs to choose a
file, applications present a file chooser interface to the
user. The file chooser allows her to search specific file
systems for files with specific tags, and to choose a file
from the results.

File systems. The user obtains an account for file sys-
tems that store data on the network. File systems provide
a friendly user interface using which the user can cre-
ate a mountpoint file containing the parameters for that
particular file system.

6

For example, when setting up the Photo Storage file
system from cheapfs.com (shown in Figure 1), the file
system UI prompts the user for her FS manager URL,
file system on which to create the mountpoint file, the
initial tag for the mountpoint file and mountpoint tags,
and creates an encrypted mountpoint file that includes the
user’s credentials to access the file system.

When the file system is launched during normal use, it
does not need any input from the user—the FS manager
sends it the mountpoint information stored in the mount-
point file as part of the file system initialization, which
includes the credentials required to access the file system.

3.9 Putting it all together
We now describe an example that illustrates how the dif-
ferent BSTORE components work together.

Say a user uses the Money Manager application shown
in Figure 1 to compute her taxes. Assume that the tax
files are tagged with finance.com#tax, where the principal
of Money Manager is finance.com, and that the tax files
are stored on reliablefs.com.

When the user launches Money Manager, it launches
the user’s FS manager in a separate browser window and
initializes communication with it. It then sends the FS
manager a search request to search for files with tag fi-
nance.com#tax on the reliablefs.com file system. The FS
manager mounts the file system (if necessary) by launch-
ing it in a separate browser window. Using its delegation
rules table, the FS manager computes the acltagset for
finance.com on reliablefs.com and forwards the request to
reliablefs.com file system with the acltagset. The file sys-
tem retrieves all files that are tagged with finance.com#tax
and returns only the handles of those files which are read-
able by finance.com, as specified by the acltagset. This
result is routed back to Money Manager by the FS man-
ager.

Money Manager uses these file handles to fetch the
file data by issuing get requests; these requests follow a
similar path as the search requests. Figure 1 illustrates
the request flow for a get request from Money Manager
to the reliablefs.com file system.

4 IMPLEMENTATION

We built a prototype of BSTORE, including the FS man-
ager and a storage file system, which together comprise
2199 lines of Javascript code, 712 lines of PHP, and 136
lines of HTML.

All BSTORE client-side components are written in
Javascript and work with the Firefox and Google Chrome
browsers. Each component runs in a separate browser win-
dow, and is loaded from a separate domain. Inter-domain
communication within the browser is via postMessage.
The origin domain of the caller is included by the browser

platform as part of the postMessage call, and is used as
the caller principal.

4.1 Storage file system
The Javascript component of the prototype storage file
system implements the BSTORE storage API. The net-
work storage component is written in PHP, and currently
runs on a Linux/Apache stack. Communication between
the file system Javascript and the PHP components is via
XMLHttpRequest POST. All information in the request
and response, except for file data, is JSON encoded. File
data in a set request is sent as a binary byte stream. File
data in the response of a get request is Base64 encoded,
since XMLHttpRequest does not support byte streams in
the response. The response is also gzip encoded to offset
the increase in size due to Base64 encoding.

User authentication to the file system is via username
and password. The network storage uses a ext3 file sys-
tem for storage and BSTORE files are stored as files in
the file system. A file’s version number is stored as an
extended attribute of the ext3 file and file tags are stored
in a database. The tags database is indexed for efficient
search.

4.2 FS manager
To keep track of delegation rules, BSTORE represents
each principal with a file in the root file system, containing
the delegation rules from that principal to other principals.
To avoid file system access on every access check, the
FS manager caches these rules in memory. A cached
entry for a principal is invalidated if the delegation rules
were changed for that principal in that FS manager. To
account for other FS manager instances, the cache entries
also have an expiry time (currently 5 minutes) and are
refreshed in the background. A better approach would be
to have the FS manager be able to register for notifications
from the file system when the files storing the delegation
rules are modified. Due to this and other similar examples,
we are considering adding version change notifications to
BSTORE.

5 APPLICATIONS AND FILE SYSTEMS

To illustrate how BSTORE would be used in practice,
we implemented one Javascript application that uses
BSTORE, and ported three existing Javascript web appli-
cations to use BSTORE. We also implemented encryption
and checkpointing file systems, to demonstrate the use of
layered file systems. Table 3 summarizes the amount of
code involved in these applications and file systems, and
the rest of this section describes them in more detail.

5.1 Applications
The following applications work with our current
BSTORE prototype:

7

Application/FS Original LOC Modified LOC
Shell 337 NA
Pixastic 4,245 81
jsvi 3,471 74
TrimSpreadsheet 1,293 66
EncryptFS 239 NA
CheckpointFS 595 NA

Table 3: Lines of Javascript code for BSTORE applications and file
systems.

Shell provides basic commands that the user can use to
interact with the storage system, including search, set, cat,
stat, and unlink. We implemented this application from
scratch.

Pixastic [28] is an online Javascript photo editor that
performs basic transformations, such as rotate, crop, and
sharpen, on a user’s images. The version on the author’s
website allows a user to upload an image from their com-
puter, perform transformations on it, and download it
back to their computer. We modified Pixastic to work
with BSTORE, so that a user can load, manipulate, and
save images to BSTORE.

jsvi [18] is a vi-clone written purely in Javascript. The
original version supports most vi commands and is a fully
functional editor, but does not allow a user to load or save
files (even to her local desktop). It only temporarily saves
the file contents to a HTML text area, but they are lost
once the web page is refreshed. Our modified jsvi works
with BSTORE, and loads and saves files like a typical vi
editor.

TrimSpreadsheet [34] is an open-source Javascript
spreadsheet engine, and lets a user work with spreadsheet
data in the browser. In the original application, the spread-
sheet data was stored as HTML markup, which meant
spreadsheets could be edited in a browser but the changes
did not persist across browser sessions. We modified
TrimSpreadsheet so that it can save and load spreadsheet
data from BSTORE.

Modifying Pixastic, jsvi, and TrimSpreadsheet to work
with BSTORE was straightforward and involved less than
a day’s worth of work to understand each application
and add code to interact with BSTORE. Table 3 gives
a tally of the lines of code for each application; for the
applications we modified, the table also gives the number
of lines changed to port the application to BSTORE. As
can be seen from the table, porting applications required
relatively few modifications to the application code.

5.2 Layered file systems
This section describes the motivation, design details, and
usage of the encryption and checkpointing file systems.
Each file system is a few hundred lines of code and in-
volved a few days of effort to implement (as opposed to a
couple of months of work to implement the base system).
Given this experience, we feel that layering additional

functionality on an existing BSTORE system is relatively
easy.

5.2.1 Encrypting file system

Consider the scenario described in Section 2, where a
user wants to encrypt her financial data before storing it.
The user does not trust the underlying storage provider
enough to store sensitive data in the clear, but trusts en-
cryption functionality provided by, say, encrypt.com.
In BSTORE, she can configure her applications to talk
to the underlying storage via encrypt.com’s encrypting
file system. We built a sample encrypting file system,
EncryptFS, for this scenario, which works as described
below.

EncryptFS provides a setup UI that the user can use to
create a mountpoint. The setup process is similar to that
of the Photo Storage file system, described in Section 3.8.
The resulting mountpoint file stores the encryption pass-
word and the backing file system that EncryptFS uses
to store its data. Once the mountpoint is created, the
user adds a delegation rule to the FS manager allowing
EncryptFS access to its backing file system. The user
then proceeds to configure her financial application to use
EncryptFS as discussed in Section 3.8.

We use the jsCrypto library from Stanford to perform
cryptographic operations in Javascript [33]. We use the
OCB mode of encryption with block size, key, IV, and
MAC being 16 bytes. On a set request, the object contents
are encrypted using the encryption key. The MAC and
IV are attached to the beginning of the encrypted content,
and the request is then written to the storage. On a get
request, the encrypted content is fetched from storage,
MAC and IV are extracted, the rest of the content is
decrypted, the MAC on relevant tags is verified and the
decrypted content returned.

Tags are critical in making access control decisions and
so an untrusted FS cannot be trusted to return the cor-
rect tags. To get around this problem, EncryptFS MACs
tags during settag and on a gettag will only return tags
that have a valid tag. EncryptFS is relatively simple and
does not prevent replay or rollback attacks. We can use
well known techniques, such as those in the SUNDR file
system [19], to get around such attacks.

5.2.2 Checkpointing file system

Imagine a user who wants to try a new application, say
a photo retouching software that runs through her photo
collection and enhances images that are below a certain
quality. She does not trust the reliability of the software
and does not know whether it would leave her photo
collection in a damaged state if she lets it run on it. The
simple checkpointing file system, CheckpointFS, that we
describe here, helps with this situation by keeping an
undo log of all the changes that the application made to

8

the storage system, and at the end of the application run,
giving the user an option either to commit the changes or
to revert them.

The set up for CheckpointFS is similar to that of En-
cryptFS, except that the mountpoint configuration in this
case only consists of the backing file system where Check-
pointFS stores the data and its undo log.

CheckpointFS records undo information in its log for
every mutating operation. The undo information consists
of the operation performed, timestamp, and version infor-
mation for the file on which the operation was performed.
In addition, for settag and set, a copy of the file tags
and file contents respectively, is stored in the undo log.
CheckpointFS stores these undo log records in memory
and dumps them every minute to log files (numbered se-
quentially). These records could also be stored in browser
local storage instead of memory if crash safety is an issue.

CheckpointFS keeps logging requests until the user
indicates in its UI that she is done with her application
session. At this point, all in memory logs are dumped,
and CheckpointFS temporarily stops accepting further
requests. The user is then given the choice to either to
rollback to previous checkpoint or to commit the changes
thereby wiping out the old checkpoint and creating a new
one. If the user chooses to rollback, all the logs are read
and the version information is checked to make sure that
no other application performed an intervening mutating
operation on the backing file system that will be clobbered
by the rollback.

Though the current UI is simple and provides only
one checkpoint, the information CheckpointFS logs could
be used to provide more finer grained rollback capabil-
ities. For example, CheckpointFS could store multiple
checkpoints and allow the user to rollback to any previous
checkpoints, it could automatically take a checkpoint at
regular intervals, or it could provide a finer-grained undo
of a subset of files.

6 BSTORE PERFORMANCE

For BSTORE to be practical, it should have acceptable
overhead and its performance should be competitive with
alternate data access mechanisms for web applications.
Web applications today typically use XMLHttpRequest
(XHR) to asynchronously GET data from, and POST data
to web servers. We ran a set of experiments to measure the
performance of BSTORE under different configurations,
and compared it with XHR GET and XHR POST. We
also measured the overhead of BSTORE’s layering file
systems, and compared BSTORE’s performance on two
different browsers.

For all experiments, the BSTORE file system server was
an Intel Xeon with 2GB of RAM running Debian Squeeze,
with Apache 2.2 and PHP 5.3.2. The client machine was
an Intel Core i7 950 with 12GB of RAM running Ubuntu

Size BSTORE-Get XHR-Get BSTORE-Set XHR-Post
1 KB 17.6 ms 5.0 ms 18.9 ms 5.3 ms
5 KB 18.6 ms 6.0 ms 19.0 ms 5.9 ms

10 KB 19.7 ms 6.6 ms 19.4 ms 6.5 ms
100 KB 40.2 ms 18.8 ms 34.0 ms 15.7 ms
500 KB 117.5 ms 66.6 ms 102.3 ms 59.4 ms

1 MB 225.9 ms 141.2 ms 174.8 ms 116.8 ms

Table 4: Comparison of get and set operation performance on a BSTORE
file system to XHR-get and XHR-post.

9.10. The web browsers we used were Firefox 3.5.9
and Google Chrome beta for Linux. The local network
between the client and the server is 100Mbps ethernet.

6.1 BSTORE file system performance
In our first experiment, we compare the performance of
BSTORE get and set with XHR GET and XHR POST on
a local network. The experiment consists of fetching and
writing image files of various sizes ranging from 1 KB to
1 MB. The server side for XHR GET and XHR POST is a
simple PHP script that sends back or accepts the required
binary data. The BSTORE get and set requests are to the
root file system, and mirror the request flow illustrated in
Figure 1, with delegation rules set to allow read and write
access to the required files for the application running the
experiment. Since this experiment is on a local network,
it highlights the overhead of BSTORE mechanisms, as
opposed to the network transfer cost. The web browser
used in this experiment is Firefox.

The results of the experiment are shown in Table 4. To
remove variability, we ran 24 runs of the experiment and
removed the runs with the two highest and two lowest
timings. The numbers shown in the table are the average
times of the remaining 20 runs. From the table, we see that
XHR operations are about three times faster than BSTORE
operations for small files. For a large file of 1 MB size,
BSTORE-Get is about 60% slower than XHR-Get and
BSTORE-Set is about 50% slower than XHR-Post. Most
of this overhead is due to processing within the browser.
For example, for BSTORE-Set on a 1 MB file, 19.9%
of the time is spent in encoding/decoding data in the
browser, 5.7% in communication within the browser using
postMessage, and 73.6% in communication between the
storage file system Javascript and backend server using
XHR POST.

BSTORE-Get is slower than BSTORE-Set due to gzip
overhead. Recall from Section 4 that the requests from
BSTORE storage file system Javascript to the backend are
in binary; the responses, however, are Base64 encoded
and gzipped, as XHR does not support byte streams in
the response. This means that BSTORE-Get involves
compression of data on the backend and decompression
in the browser, which is not present in BSTORE-Set. The
overhead for these operations dominates the total time as
the local network is fast.

9

Size BSTORE-Get XHR-Get BSTORE-Set XHR-Post
1 KB 117.7 ms 105.0 ms 117.6 ms 105.5 ms
5 KB 217.5 ms 205.0 ms 268.4 ms 255.3 ms

10 KB 218.9 ms 205.5 ms 268.9 ms 255.3 ms
100 KB 894.0 ms 927.7 ms 981.0 ms 1059.7 ms
500 KB 4223.2 ms 4172.9 ms 4451.5 ms 4409.4 ms

1 MB 8622.3 ms 8500.9 ms 8978.7 ms 8916.6 ms

Table 5: BSTORE FS performance on a 1Mbps, 100ms latency network.

Size BSTORE-Get XHR-Get BSTORE-Set XHR-Post
1 KB 27.5 ms 15.2 ms 29.1 ms 15.6 ms
5 KB 37.4 ms 16.6 ms 48.7 ms 36.1 ms

10 KB 38.5 ms 20.6 ms 49.5 ms 36.9 ms
100 KB 116.2 ms 94.8 ms 138.3 ms 119.8 ms
500 KB 451.4 ms 423.9 ms 498.9 ms 472.9 ms

1 MB 901.1 ms 863.2 ms 982.1 ms 935.1 ms

Table 6: BSTORE FS performance on a 10Mbps, 10ms latency network.

Though overhead of BSTORE requests seem high, they
represent performance on an unrealistically fast network.
On a more realistic network with lower bandwidth, the
network cost dwarfs BSTORE overhead as the next ex-
periment illustrates. Furthermore, these overheads are
primarily due to lack of support for binary data in XHR
responses and in postMessage, and can be significantly
reduced by adding this support. The responseBody at-
tribute of XHR, being considered by W3C for a future
version of the XHR specification, supports binary byte
streams, and is a step in this direction.

6.2 Wide-area network performance
In order to evaluate BSTORE overhead in real-world net-
works, we ran the same experiment as above on simulated
networks with realistic bandwidths and latencies. We
chose two network configurations: a 1Mbps network with
100ms round-trip latency, and a 10Mbps network with
10ms round-trip latency. The slow networks are emulated
using the Linux traffic control tool (tc).

The results are shown in Tables 5 and 6. We see from
the tables that the BSTORE overhead, as compared to
plain XHR, drops considerably. Overhead of BSTORE-
Get over XHR-Get for a 1 MB file drops from 60% in
local network to 4% on 10Mbps network, and 1.4% on
1Mbps network. Similarly, overhead of BSTORE-Set
over XHR-Post for a 1 MB file drops from 50% in local
network to 5% on 10Mbps network, and 0.7% on 1Mbps
network. It is clear from these results that the browser
overheads in BSTORE become insignificant compared to
network cost for realistic networks.

Another point illustrated in these tables is the effect of
gzip in slower networks. For a 1 MB file on slower net-
works, BSTORE-Get is faster than BSTORE-Set, whereas
the opposite held true on the local network. This is be-
cause gzip reduces the number of bytes transferred over
the network; on slow networks the resulting time saved
more than offsets the time taken to compress and decom-
press the data.

6.3 Performance of layered file systems
The previous experiments focused on the scenario of an
application accessing data on the BSTORE root file sys-
tem. BSTORE also supports layered file systems. In
this experiment, we measure the overhead of layered file
systems on the same workload as the previous experi-
ments. We use three layered file systems: a null layered
file system which passes data back and forth without any
modification, and EncryptFS and CheckpointFS described
in Section 5.2. The measurements are performed on the
local network.

Table 7 shows the results. From the table we see that
the overhead of a null layered file system is small—about
6% for BSTORE-Get and 7% for BSTORE-Set, for the
1 MB file. This overhead is due to the extra postMessage
calls and encoding/decoding as requests pass through the
layered file system and FS manager. We believe this
overhead is reasonable; also, on a slower network, this
overhead becomes a smaller fraction of the overall time,
further reducing its impact.

For EncryptFS, the bulk of the time is spent in cryp-
tographic operations. For a 1 MB file, decryption
takes 3095ms (85.1% of Get time) and encryption takes
2534ms (90.3% of Set time). We also observed that
a postMessage that follows a crypto operation takes
more than an order of magnitude longer than other
postMessage calls. We believe that this variability is
a characteristic of the Firefox Javascript engine. We con-
firmed our suspicion by testing postMessage times after
a CPU intensive tight loop, and observing that it does
indeed take an order of magnitude longer than normal.

For CheckpointFS, Get performance is close to that of
null layered file system, as it does not do anything on a
Get. The overhead in its Set operation is due to logging—
this involves an extra RPC to fetch the old file contents
and store them in the log. For this experiment, the old file
was always 1 KB in size.

6.4 Browser compatibility
Today people use many different browsers, and an im-
portant consideration for a good web application frame-
work is cross-browser support. We primarily imple-
mented BSTORE for Firefox, but were able to run it on
Google Chrome with a small modification. XHR POST
on Chrome does not support sending binary data, and
so we had to change our implementation to send data in
Base64 encoded form. We predict that porting BSTORE
to other browsers such as IE and Safari will require some
changes, mainly because of the difference in ways these
browsers handle events, postMessage, and some other
differences in Javascript engine.

To see how BSTORE performs on Chrome, we ran the
first experiment using Chrome. Table 8 shows the results
as compared to performance on Firefox. Chrome is slower

10

Size No Layering Null Layered FS EncryptFS CheckpointFS
Get Set Get Set Get Set Get Set

1 KB 17.6 ms 18.9 ms 19.2 ms 19.9 ms 24.9 ms 28.2 ms 19.2 ms 37.8 ms
5 KB 18.6 ms 19.0 ms 20.3 ms 20.4 ms 45.0 ms 47.2 ms 20.4 ms 37.3 ms

10 KB 19.7 ms 19.4 ms 21.4 ms 21.1 ms 63.4 ms 65.2 ms 21.8 ms 38.8 ms
100 KB 40.2 ms 34.0 ms 43.0 ms 36.8 ms 300.5 ms 292.3 ms 45.0 ms 53.7 ms
500 KB 117.5 ms 102.3 ms 132.9 ms 110.0 ms 1494.5 ms 1359.8 ms 136.0 ms 123.2 ms

1 MB 225.9 ms 174.8 ms 238.5 ms 187.8 ms 3636.0 ms 2806.8 ms 247.4 ms 208.6 ms

Table 7: Performance of various layered file systems under BSTORE performing get and set operations.

Size Firefox Chrome
Get Set Get Set

1 KB 17.6 ms 18.9 ms 14.8 ms 15.6 ms
5 KB 18.6 ms 19.0 ms 15.8 ms 16.1 ms

10 KB 19.7 ms 19.4 ms 17.4 ms 18.6 ms
100 KB 40.2 ms 34.0 ms 47.6 ms 44.6 ms
500 KB 117.5 ms 102.3 ms 141.8 ms 143.4 ms

1 MB 225.9 ms 174.8 ms 258.4 ms 256.4 ms

Table 8: Performance of BSTORE on Firefox and Chrome.

than Firefox on larger files, and the difference is primarily
due to slower postMessage and slower XHR POST. For
example, for a 1 MB file get, postMessage was 30.2ms
in Chrome as compared to 7.2ms in Firefox, and XHR
POST was 226.1ms in Chrome as compared to 202.9ms
in Firefox. From these results, overall we can conclude
that BSTORE works reasonably well in Chrome.

7 DISCUSSION

In its current form, BSTORE does not support all appli-
cations. Collaborative web applications (such as email
and chat) need a server for reasons other than storage,
and BSTORE does not eliminate the need for such servers.
Social applications, such as Facebook, require sharing
data between users. BSTORE currently does not support
cross-user sharing; for one, the principals do not include
a notion of a user. We plan to explore extending BSTORE
to support cross-user sharing, perhaps by building on top
of OpenID. In the meanwhile, social applications can still
use BSTORE to store individual users’ files, and imple-
ment cross-user sharing themselves.

The principal of an application in BSTORE is the URL
origin from where the application is loaded. This makes
it difficult to support serverless applications, where the
Javascript code for the application can be hosted any-
where, or even passed around by email. BSTORE could
be extended to add support for principals that are a hash
or a public key corresponding to application code.

We have chosen to support an object get and set API
in BSTORE, which works well for many applications, in-
cluding the ones we used in our evaluation. Likewise, our
tagging model fits well with the data model of existing
applications like GMail and Google Docs [14], and can
be also used to express traditional file-system-like hierar-
chies. However, some applications may require a richer
interface for querying their data, such as SQL, and tags
cannot express the full range of such queries. Storing an

entire SQL table as a file in BSTORE may be acceptable
for small data sets, but accessing large data sets efficiently
would require adding a database-like interface along the
lines of Sync Kit [5].

With BSTORE, users potentially have to worry about
providing storage, whereas in the current model all stor-
age is managed by the application provider. The sim-
plicity of today’s model could also be supported with
BSTORE, where each application mounts its own storage
in the user’s file system manager, with the added bene-
fit that applications can now easily share data with each
other. At the same time, the user could have the option
of procuring separate storage from a well-known online
storage provider, such as Amazon S3 or Google, which
would then store data for other applications the user runs,
and backup data from existing application stores.

Due to the level of indirection between tags and the
associated access rights, a user may inadvertently leak
rights by tagging a file incorrectly without realizing it. To
avoid this risk, the file tagging UI in applications and FS
manager can resolve and display the new principals being
granted access due to the addition of the tag.

Currently, all BSTORE components run in separate
browser windows; this can present the user with too many
windows. This can be mitigated by running the FS man-
ager in a window and all the file systems as iframes within
the FS manager window. If extending the browser is feasi-
ble, a browser extension to support “background windows”
would provide a better user experience.

8 RELATED WORK

The idea of a unified file system namespace has been
explored in earlier systems like Unix and Plan 9 [27].
Moreover, various distributed file systems [1, 6, 16, 29]
provide a uniform storage platform, along with the se-
curity mechanisms needed for authentication and access
control. BSTORE addresses new challenges posed by web
applications, including the need for different storage mod-
els (using tags and tag search), the need for applications
to mount their own file systems, and the need for flexi-
ble delegation of access control, without requiring any
changes to client-side browsers.

Similar to tags in BSTORE, semantic file systems [11]
and the Presto document system [8] provide alternate file

11

system organization using file attributes, in addition to the
hierarchical file system namespace.

SUNDR [19] provides a network file system designed
to store data securely on untrusted servers, and ideas
from it would be directly applicable to designing a better
encrypting file system for BSTORE.

Google gears [12], HTML5 [36] local storage, and
Sync Kit [5] aim to improve web application performance
and enable offline use with client-side persistent storage.
However, these mechanisms still provide isolated storage
for each application, and do not address sharing of data
between applications.

There are also a number of browser plug-ins that pro-
vide alternative environments for deploying client-side
applications [3, 7, 20, 38]. While some of them provide
machine-local storage, none of them provide user-local
storage that is available from any machine that the user
might access. Accessing data stored in BSTORE from one
of these environments currently requires going through
Javascript; in the future, BSTORE could support native
bindings for other execution environments.

Some websites provide mechanisms, such as REST
APIs or OAuth, for users to access their data from ex-
ternal services. OAuth is an open protocol that allows
a user to share her web application data with another
web application from a different origin. However, unlike
BSTORE, both applications should know of each other
before hand, limiting the number of applications that can
use this. Also, OAuth requires involvement of the web
application servers and cannot support Javascript-only
applications with no backend. Google provides external
access to user data through APIs utilizing the Google Data
Protocol [13] in a similar manner. BSTORE simplifies
data sharing by avoiding the need for all applications to
know about each other ahead of time, and does not require
server involvement for data sharing.

Menagerie [10] allows sharing of a user’s personal data
between multiple web applications and provides stan-
dardized hierarchical naming and capability-based protec-
tion. However, like OAuth, it requires backend servers
to communicate with each other. Also, unlike BSTORE’s
tag-based mechanisms, Menagerie’s file systems don’t
support per-application file system organization and dele-
gation of access rights based on file properties.

Cloud computing and storage services such as Amazon
S3 [4], and Nirvanix [24] provide web application devel-
opers with the option of renting storage and on-demand
computing. However, developers still need to bear the
costs of renting the server capacity, and make data man-
agement decisions on behalf of users. BSTORE allows
users to control their own data, such as by encrypting,
mirroring, or backing it up.

Cross-origin resource sharing [35] provides a mecha-
nism for client-side cross-origin requests. This allows for

pure client-side apps to access data from other websites
which will in turn implement cross domain authentication
and access control. However, using this mechanism alone
does not provide a single namespace for all user data,
and does not provide an access control and delegation
mechanism such as that provided by BSTORE.

Hsu and Chen [17] describe the design of a secure
file storage service for Web 2.0 applications. While the
motivation for their work is similar to ours, there are a
number of limitations of their work that BSTORE’s design
addresses. First, their file system doesn’t support a unified
namespace and there are no mountpoints. It cannot sup-
port delegation, encryption, or checkpointing, and doesn’t
support versioning, which means that applications sharing
data can run into problems. Finally, BSTORE’s tags allow
applications to annotate each others’ files, and to dele-
gate specific access, without requiring write privileges,
something that is not possible in Hsu and Chen’s system.

9 CONCLUSION

This paper presented BSTORE, a framework for separat-
ing application code from data storage in client-side web
applications. BSTORE’s architecture consists of three
components: file systems, which export a storage API
for accessing user data, a file system manager, which im-
plements the user’s namespace from a collection of file
systems, and enforces access control, and applications,
which access user data through the file system manager.
A key idea in BSTORE is the use of tags on files. Tags
allow applications to organize their data in different ways.
An application also uses tags to designate the precise files
it wants to delegate rights for to other applications, even
if it cannot write or otherwise modify those files itself.
The BSTORE file system manager interface is egalitarian,
allowing any application to specify delegation rules or
mount new file systems, in hopes of avoiding the need for
applications to supply their own file system manager.

A prototype of BSTORE is implemented in pure
Javascript, which runs on both the Firefox and Chrome
browsers. We ported three existing applications to run
on BSTORE, which required minimal source code mod-
ifications, and wrote one new application. We also im-
plemented three file systems, including ones that trans-
parently provide encryption or checkpointing capability
using an existing file system for storage. Finally, our pro-
totype achieves reasonable performance when accessing
data over a typical home network connection.

ACKNOWLEDGMENTS

We thank our shepherd, John Ousterhout, as well as Jon
Howell, Adam Marcus, Neha Narula, and the anonymous
reviewers for providing feedback that helped improve this
paper. This work was supported by Quanta Computer and
by Google.

12

REFERENCES

[1] A. M. Vahdat, P. C. Eastham, and T. E. Anderson.
WebFS: A global cache coherent file system. Tech-
nical report, UC Berkeley, 1996.

[2] S. Aaronson. Off the grid. http://

scottaaronson.com/blog/?p=428.
[3] Adobe. Adobe Flash. http://www.adobe.com/
flashplatform.

[4] Amazon. Amazon simple storage service. http:
//aws.amazon.com/s3/.

[5] E. Benson, A. Marcus, D. Karger, and S. Madden.
Sync Kit: A persistent client-side database caching
toolkit for data intensive websites. In Proceedings
of the World Wide Web Conference, 2010.

[6] B. Callaghan. WebNFS Client Specification. RFC
2054 (Informational), 1996.

[7] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applica-
tions on the web. In Proceedings of the 8th Sympo-
sium on Operating Systems Design and Implemen-
tation, San Diego, CA, December 2008.

[8] P. Dourish, W. K. Edwards, A. LaMarca, and M. Sal-
isbury. Using properties for uniform interaction in
the presto document system. In Proceedings of the
ACM Symposium on User Interface Software and
Technology (USIT). ACM, 1999.

[9] FotoFlexer. Fotoflexer: The world’s most advanced
online image editor. http://www.fotoflexer.
com.

[10] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Grib-
ble, and H. M. Levy. The organization and sharing
of web-service objects with menagerie. In Proceed-
ings of the World Wide Web Conference (WWW),
2008.

[11] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
toole. Semantic file systems. In 13thACM Sympo-
sium on Operating Systems Principles, pages 16–25.
ACM, 1991.

[12] Google. Gears: Improving your browser. http:
//gears.google.com/.

[13] Google data protocol. http://code.google.

com/apis/gdata/.
[14] Google docs. http://docs.google.com/.
[15] Google. Picasa web albums. http://picasaweb.

google.com.
[16] J. H. Howar, M. L. Kazar, S. G. Menees, D. A.

Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed
file system. ACM Transactions on Computer Sys-
tems, 6(1):51–81, 1988.

[17] F. Hsu and H. Chen. Secure file system services for
web 2.0 applications. In Proceedings of the ACM
Cloud Computing Security Workshop, Chicago, IL,
November 2009.

[18] jsvi – javascript vi. http://gpl.

internetconnection.net/vi/.
[19] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure

untrusted data repository (SUNDR). In Proceedings
of the 6th Symposium on Operating Systems Design
and Implementation, pages 91–106, San Francisco,
CA, December 2004.

[20] Microsoft. Silverlight. http://silverlight.
net/.

[21] R. Miller. Ma.gnolia data is
gone for good. http://www.

datacenterknowledge.com/archives/2009/

02/19/magnolia-data-is-gone-for-good/.
[22] MIT Haystack Group. NB 2.0. http://nb.csail.

mit.edu/.
[23] A. Modine. Web startups crumble under amazon

s3 outage. http://www.theregister.co.uk/
2008/02/15/amazon_s3_outage_feb_2008/.

[24] Nirvanix. http://www.nirvanix.com/.
[25] Oauth. http://oauth.net.
[26] Photofunia. http://www.photofunia.com.
[27] R. Pike, D. Presotto, K. Thompson, H. Trickey, and

P. Winterbottom. The use of name spaces in plan 9.
ACM SIGOPS Operating System Review, 27(2):72–
76, 1993.

[28] Pixastic – online javascript photo editor. http://
www.pixastic.com.

[29] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh,
and B. Lyon. Design and implementation of the sun
network filesystem. In Proceedings of the Summer
1986 USENIX Conference, 1985.

[30] S. Shankland and T. Krazit. Widespread google
outages rattle users. http://news.cnet.com/
widespread-google-outages-rattle-users/.

[31] Shutterfly. http://www.shutterfly.com.
[32] Slideroll. Slideroll online slideshows. http://www.

slideroll.com.
[33] E. Stark, M. Hamburg, and D. Boneh. Symmetric

cryptography in javascript. In Proceedings of the
Annual Computer Security Applications Conference,
2009.

[34] TrimSpreadsheet. http://code.google.com/p/
trimpath/wiki/TrimSpreadsheet.

[35] W3C. Cross-origin resource sharing: Ed-
itor draft. http://dev.w3.org/2006/waf/

access-control/, December 2009.
[36] W3C. HTML 5 editor’s draft. http://dev.w3.

org/html5/spec/, January 2010.
[37] Yahoo. flickr. http://flickr.com.
[38] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, May 2009.

13

