
One-Click Distribution of Preconfigured Linux Runtime State

Richard Potter
Japan Science and Technology Corporation

potterr@acm.org

Abstract

Checkpointing virtual machines shows potential for allowing a user to download, install, and initialize a complete
software environment by selecting a web page link. Starting with the open source User-Mode Linux project, we
added checkpointing functionality and integrated the standard xdelta and curl utilities to handle compression, expan-
sion, and download. The current system allows researchers and others to configure Linux-based software demonstra-
tions in detail and save them as snapshots that can be as small as a few megabytes. Users can then easily replicate
every detail of the demonstrations without worrying about compilation, installation, dependencies or initial setup.

1. Introduction

Downloading and trying out a software demonstration
can be frustrating, because users must often search for
and install supporting programs and compatible librar-
ies. Additionally, users must initialize and setup the
unfamiliar software such that it demonstrates something
interesting.

The creator of the software demonstration, for example
a researcher, can reduce some of the frustrations by
reducing dependencies, providing automatic installation
scripts, and making the user interface simple enough for
a novice user. Clear instructions that describe how to
install and use the demonstration can help. However, it
is burdensome for the researcher to account for all the
environments of potential users or all the possible ways
that users might misinterpret the setup instructions.

Virtual machines can solve these problems, because
they make it possible for users to have the exact same
virtual environment, even if the users’ actual host hard-
ware is different. The researcher only needs to install
and initialize the demonstration in a virtual machine and
then create a checkpoint. Library dependencies only
need to be resolved for one virtual machine, and it can
be easier for the researcher to setup the demonstration
than to explain how to do it. Users can then download
and restore the checkpointed machine and experience
the demonstration with minimal distraction.

We have been exploring how to create and streamline
such a solution from open source components so that it
is possible for users to restore complete preconfigured
Linux environments by simply clicking on a web page
link. The central design problems were selecting the

virtual environment, performing the checkpointing,
compressing the checkpoints, and downloading and
restoring the checkpoints from a web browser.

2. SBUML

The first three problems were solved from our previous
work on SBUML [2,4], the computation Scrapbook for
User-Mode Linux (UML). UML [5] is a port of the
Linux kernel to Linux system calls and resources. For
example, whereas a hardware-based kernel might use a
SCSI device for block storage, UML uses files in the
host Linux. Similarly, UML simulates RAM by mem-
ory mapping files on the host. In fact, most of UML’s
state ends up in files on the host. To make SBUML, we
extended UML so that it places all these files in one
directory and also keeps track of the small amount of
remaining state such as open file descriptors, process
registers, and signal state. To checkpoint the system,
SBUML simply tells all UML processes to exit any
system calls that might modify the file descriptors and
then makes a copy of the directory full of state.

Because each snapshot contains all file systems, proc-
esses, kernel and user state, the raw state can be several
hundred megabytes. Fortunately, UML has a copy-on-
write (COW) block driver, so that it is only necessary to
save file system changes in each snapshot. Therefore,
raw snapshot sizes start at the size of the RAM used in
the UML machine. If there are few disk changes, snap-
shots can be as small as 32M or 64M.

To reduce this number more, SBUML is integrated with
the xdelta [7] utility so that only the overall binary
changes between snapshots need to be saved. This
makes it possible to create interesting snapshots that are

only a few megabytes in size, and in some cases as
small as 100,000bytes. These sizes can be practical to
download even with slow modem connections.

3. Download and Restore

When restoring a snapshot of a given name, SBUML
looks for a matching snapshot in a designated default
snapshot directory. When given a list of external URLs,
SBUML will also search though the external locations
whenever the snapshot is not found in the local default
snapshot directory. The curl utility is then used to
download the snapshot directory to inside the default
snapshot directory, where it serves as a cached copy.

If the snapshot has been delta compressed, information
about which snapshot it is delta compressed against (i.e.
the parent snapshot) is determined and used to auto-
matically do the expansion. If the parent snapshot is not
in the default snapshot directory, it is searched for in the
external URL locations and automatically downloaded
and recursively expanded if it too has been delta com-
pressed.

The web page link is created by linking to a small text
file that includes the snapshot name and the external
URLs where it can be found. When the user clicks on
the link, this information is passed to a simple web
browser helper application, which then passes it on to
SBUML’s restore command. If VNC server is running
inside the restored snapshot, VNC viewer is automati-
cally started and attached so that snapshots can have
graphical user interfaces.

4. Performance

As a concrete example, consider a snapshot designed to
demonstrate how the socket system call is used. The
snapshot has the source code for the nc (netcat) utility
compiled with debugging symbols. Two copies of
emacs are running, each with a gdb debugger session
for netcat. 15 breakpoints have been setup in each de-
bugger so that the program will stop on every socket
related system call, such as bind, accept, etc. Win-
dows are positioned so that both debuggers can be
viewed at the same time. Furthermore, the command
line necessary to start each netcat instance is pre-typed
along with necessary parameters so that all the user has
to do is press return in each debugger to have one in-
stance establish a socket connection with the other.

The raw size for this snapshot is about 43MB (32MB
for RAM, 11MB for disk changes from installing and

compiling netcat). When delta compressed against a
snapshot of a freshly booted 32MB machine, the snap-
shot size reduces to 8.4MB. After downloading (42
seconds on a fast ADSL line), it takes 7 seconds to de-
compress and 11 seconds to restore on a 600Mhz
Thinkpad X20 with 320MB of RAM.

5. Ongoing Work

The previous example could be used to annotate the
man page for the socket system call. Manual pages
for programming language components and even end-
user application features in spreadsheets and word
processors could be annotated similarly. Since all the
snapshots for documenting a single application would
be similar, delta compression could be very effective.
However, this all assumes that the user already has the
backing hard disk images and parent snapshots stored
locally. For the above example, this amounts to about
700MB of space to hold a RedHat 7.2 installation. The
Hash Copy techniques demonstrated in [3] is one possi-
ble solution direction that could reduce the need for the
initial large download. Use of the Self-certifying File
System as in [6] is another interesting possibility.

One issue users do have to worry about before clicking
on the snapshot link is security. Although the down-
loaded code runs entirely in user-mode, stronger secu-
rity is desirable, such as running the UMLs in a chroot
environment. In addition, high-level security specifica-
tions, such as the Secure Software Circulation Model
[1], could keep the system flexible while providing the
users with clearly defined security tradeoffs.

6. References

[1] K. Kato and Y. Oyama, “SoftwarePot: An Encap-
sulated Transferable File System for Secure Soft-
ware Circulation,” Proc. of the International Sym-
posium on Software Security 2002 .

[2] O. Sato, R. Potter, M. Yamamoto and M. Hagiya.
“UML Scrapbook and Realization of Snapshot
Programming Environment,” Proc. of the Interna-
tional Symposium on Software Security 2003 .

[3] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.
S. Lam, and M. Rosenblum, “Optimizing the Mi-
gration of Virtual Computers,” Proc. of the 5th
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2002.

[4] http://sbuml.sourceforge.net/
[5] http://user-mode-linux.sourceforge.net/
[6] UML for Knoppix:

http://unit.aist.go.jp/it/knoppix/uml/index-en.html
[7] http://sourceforge.net/projects/xdelta/

