
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Virtual Processor:

Fast, Architecture-Neutral Dynamic Code Generation

Ian Piumarta

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie,

4, place Jussieu, 75252 Paris Cedex 05, France

ian.piumarta@inria.fr

Abstract

Tools supporting dynamic code generation tend too
be low-level (leaving much work to the client ap-
plication) or too intimately related with the lan-
guage/system in which they are used (making them
unsuitable for casual reuse). Applications or vir-
tual machines wanting to benefit from runtime code
generation are therefore forced to implement much
of the compilation chain for themselves even when
they make use of the available tools. The VPU is an
fast, high-level code generation utility that performs
most of the complex tasks related to code genera-
tion, including register allocation, and which pro-
duces good-quality C ABI-compliant native code. In
the simplest cases, adding VPU-based runtime code
generation to an application requires just a few lines
of additional code—and for a typical virtual ma-
chine, VPU-based just-in-time compilation requires
only a few lines of code per virtual instruction.

1 Introduction

Dynamic compilation is the transformation of some
abstract representation of computation, determined
or discovered during application execution, into na-
tive code implementing that computation. It is
an attractive solution for many problem domains
in which high-level scripts or highly-compact rep-
resentations of algorithms must be used. Exam-
ples include: protocol instantiation in active net-
works, packet filtering in firewalls, scriptable adap-
tors/interfaces in software object busses, policy
functions in flexible caches and live evolution of
high-availability software systems. In other domains
it is an essential technique. In particular, virtual
machines that interpret bytecoded languages can
achieve good performance by translating bytecodes
into native code “on demand” at runtime.

A dynamic code generator is the part of a dynamic
compiler that converts the abstract operations of the
source representation into executable native code.
It represents a large part (if not the bulk) of any
dynamic compiler—and certainly the majority of its
complexity. However, very few utilities exist to ease
the task of creating a dynamic code generator and
those that are available are ill-suited to a simple,
“plug-and-play” style of use.

1.1 Related work

Several utilities have been developed to help with
the implementation of static code generators. Ex-
amples include C-- [1], MLRISC [3] and VPO [2]
(part of the Zephyr compiler infrastructure). How-
ever, very few tools have been developed to help
with the implementation of dynamic code genera-
tors. Those that do exist are concerned with the
lowest (instruction) level of code generation.

ccg [9, 12] is a collection of runtime assemblers im-
plemented entirely in C macros and a preprocessor
that converts symbolic assembly language (for a par-
ticular CPU) embedded in C or C++ programs into
macros calls that generate the corresponding binary
instructions in memory. It is useful tool for build-
ing the final stage of a dynamic code generator, but
constitutes only a small part of a dynamic compiler,
and deals exclusively in the concrete instructions of
a particular architecture.

vcode [6] and GNU Lightning [13] are attempts to
create virtual assembly languages in which a set of
“typical” (but fictitious) instructions are converted
into native code for the local target CPU.1 Both of
these systems present clients with a register-based
abstract model. Register allocation (one of the most

1GNU Lightning is based on ccg and is little more than a

collection of wrappers around it.

difficult code generation problems to solve) is left
entirely to the client, and both suffer from prob-
lems when faced with register-starved, stack-based
architectures such as Intel.2

Beyond these systems code generators rapidly be-
come intimately tied to the source language or sys-
tem with which they are designed to operate. Com-
mercial Smalltalk and Java compilers, for example,
use sets of “template” macros (or some function-
ally equivalent mechanism) to generate native code,
where the macros correspond closely to the seman-
tics of the bytecode set being compiled. Adapting
them for use in a different application (or virtual
machine) requires significant work. Tasks such as
register allocation also tend to be adapted for the
specifics of the source language. (One notable ex-
ception is the Self compiler [4], for which a fairly
language-neutral model of stack frames and regis-
ters was developed. Nevertheless, the rest of the
Self compiler is so complex that nobody has man-
aged to extract and reuse it in a completely different
context.)

1.2 The VPU

The VPU fills the gap between trivial “virtual as-
sembly languages” and full-blown dynamic compil-
ers intimately tied to their source language and its
semantics. It is a complete “plug-and-play” dy-
namic code generator that can be integrated into
any application in a matter of minutes, or used as
the backend for a dynamically-compiled language
or “just-in-time” compiler. It presents the client
with a simple, architecture-neutral model of com-
putation and generates high-quality, C-compatible
native code with a minimum of time and space over-
heads. It assumes full responsibility for many of the
difficult tasks involved in dynamic code generation,
including register allocation and the details of lo-
cal calling conventions. Applications and language
implementations using the VPU are portable (with
no source code changes) to all the platforms sup-
ported by the VPU; currently PowerPC, Sparc and
Pentium.

A useful analogy might be to consider languages
that are “compiled” into C source code which is
then passed to an existing C compiler for conver-
sion into the final executable. The VPU could be
used in a similar fashion: its input “language” is

2GNU Lightning solves the “Pentium problem” by sup-

porting just 6 registers. vcode solves the problem by mapping

“excess” registers within its model onto memory locations,

with all the performance penalties that this implies.

#include <stdio.h>

#include <stdlib.h>

typedef int (*pifi)(int);

pifi rpnCompile(char *expr);

int main()

{
int i;

pifi c2f= rpnCompile("9*5/32+");

pifi f2c= rpnCompile("32-5*9/");

printf("\nC:");
for (i = 0; i <= 100; i += 10)

printf("%3d ", i);

printf("\nF:");
for (i = 0; i <= 100; i += 10)

printf("%3d ", c2f(i));

printf("\n\nF:");
for (i = 32; i <= 212; i += 10)

printf("%3d ", i);

printf("\nC:");
for (i = 32; i <= 212; i += 10)

printf("%3d ", f2c(i));

printf("\n");
return 0;

}

Figure 1: Temperature conversion table generator. This
program relies on a procedure rpnCompile() to create
a native code functions converting degrees Farenheit to
Celsius and vice-versa.

semantically equivalent to C and its output is C-
compatible native code. The difference is that the
VPU is integrated into the application and performs
its compilation at runtime, sufficiently fast that the
application should never notice pauses due to dy-
namic code generation.

The rest of this paper is organised as follows: Sec-
tion 2 describes the feature set and execution model
of the VPU from the client’s point of view. Section 3
then describes in some detail the implementation of
the VPU, from the API through to the generation of
native code (and most of the important algorithms
in between). Section 4 presents a few performance
measurements, and finally Section 5 offers conclu-
sions and perspectives.

2 Plug-and-Play code generation

A simple (but complete) example illustrates the
use of the VPU. Figure 1 shows a program that
prints temperature conversion tables. It relies on
a small runtime compiler, rpnCompile(), that con-
verts an input expression (a string containing an
integer function in reverse-polish notation) into ex-
ecutable native code. The program first compiles

#cpu pentium

pifi rpnCompile(char *expr)

{
insn *codePtr= (insn *)malloc(1024);

#[.org codePtr

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

]#

while (*expr) {
char buf[32];

int n;

if (sscanf(expr, "%[0-9]%n", buf, &n)) #[

! expr += n - 1;

pushl %eax

movl $(atoi(buf)), %eax

]#

else if (*expr == ’+’) #[

popl %ecx

addl %ecx, %eax

]#

else if (*expr == ’-’) #[

movl %eax, %ecx

popl %eax

subl %ecx, %eax

]#

else if (*expr == ’*’) #[

popl %ecx

imull %ecx, %eax

]#

else if (*expr == ’/’) #[

movl %eax, %ecx

popl %eax

cltd

idivl %ecx, %eax

]#

else

abort();

++expr;

}
#[leave

ret]#;

return (pifi)codePtr;

}

Figure 2: Low-level code generation based on macro ex-
pansion. The input string is scanned for literals and
arithmetic operators, and Intel native code generated
accordingly. The sections delimited by ‘#[. . .]#’ de-
scribe the code to be generated (and also “group” their
contents like C curly braces). A preprocessor converts
these sections into macro calls that produce the binary
instructions in memory.

two temperature conversion functions c2f and f2c,
and then uses them to produce a conversion table.
The implementation of the “dynamic compiler” is
encapsulated entirely within the rpnCompile() pro-
cedure.

Figure 2 shows one possible implementation of the
rpnCompile() procedure. It uses ccg to create Intel

#include "VPU.h"

pifi rpnCompile(char *expr)

{
VPU *vpu= new VPU;

vpu ->Ienter()->Iarg()

->LdArg(0);

while (*expr) {
char buf[32];

int n;

if (sscanf(expr, "%[0-9]%n", buf, &n)) {
expr += n - 1;

vpu ->Ld(atoi(buf));

}
else if (*expr == ’+’) vpu->Add();

else if (*expr == ’-’) vpu->Sub();

else if (*expr == ’*’) vpu->Mul();

else if (*expr == ’/’) vpu->Div();

else

abort();

++expr;

}
vpu ->Ret();

void *entry= vpu ->compile();

delete vpu;

return (pifi)entry;

}

Figure 4: VPU-based code generation.

native code for a function implementing the input
expression. (The program fragments shown in Fig-
ures 1 and 2 combine to form a complete program,
whose output is shown in Figure 3.)

Figure 4 shows an alternative implementation of
rpnCompile() that uses the VPU to produce the
same native code in a platform-independent man-
ner. The VPU appears to clients as a single C++
class. A client constructs an instance of this class
on which it invokes methods corresponding to the
operations of an abstract stack machine. Once a
complete function has been described the client asks
the object to compile it. The result is the address
of the native code implementing the function which
can be subsequently be called from both statically-
and dynamically-compiled code, just like a “nor-
mal” ‘pointer to function’. When the function is
no longer needed the client can return the memory
to the heap using the standard C library function
free(). Figure 5 shows the code generated by the
VPU-based rpnCompile() procedure when run on
the PowerPC.

Note that the only client-side state is the vpu in-
stance itself; this would be the case no matter how
complex the function being compiled. All instruc-
tion arguments (such as the constant argument for
the Ld instruction) can be computed at runtime.

C: 0 10 20 30 40 50 60 70 80 90 100

F: 32 50 68 86 104 122 140 158 176 194 212

F: 32 42 52 62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 212

C: 0 5 11 16 22 27 33 38 44 50 55 61 66 72 77 83 88 94 100

Figure 3: Output generated by the temperature conversion program.

-------------------------- code gen

003b14f0 mr r4,r3

003b14f4 li r5,9

003b14f8 mullw r4,r4,r5

003b14fc li r5,5

003b1500 divw r4,r4,r5

003b1504 addi r3,r4,32

003b1508 blr

-------------------------- 28 bytes

-------------------------- code gen

003b1560 mr r4,r3

003b1564 addi r4,r4,-32

003b1568 li r5,5

003b156c mullw r4,r4,r5

003b1570 li r5,9

003b1574 divw r3,r4,r5

003b1578 blr

-------------------------- 28 bytes

Figure 5: Generated code for PowerPC.

2.1 The VPU’s model of computa-
tion

Clients are presented with a stack-based module
of computation that includes a complete set of
C operations: arithmetic and shift, type coercion,
bitwise logical, comparison, memory dereference
(load/store), reference (address-of argument, tem-
porary or local label), and function call (both static
and computed). Three additional operators are pro-
vided for manipulating the emulated stack: Drop(),
Dup(n = 0) (which duplicates buried values when
n > 0) and Put(n) (which stores into a buried loca-
tion in the stack). These last two operations allow
non-LIFO access to data on the stack.

Control flow is provided by unconditional Br(n)

and conditional branches, Bt(n) and Bf(n). The
interpretation of ‘truth’ is the same as in C: zero
is ‘false’, anything else is ‘true’. (The VPU treats
the condition codes register as an implicit value on
the stack that is reified only when a logical result
is used as an integer quantity. For example, there
is no reification of the result of a comparison when
the next operation is a conditional branch.)

The argument ‘n’ in the above branch instructions

refers to a local label. Labels are maintained on a
parallel stack, with control scopes being pushed and
popped in a strictly LIFO fashion. Local labels are
created and defined via three instructions:

• Begin(n) pushes n undefined local labels onto
the label stack;

• Define(n) associates the current program
counter value with the n th entry in the label
on the stack; and

• End(n) pops the topmost n entries off the label
stack.

Control is permitted to jump forward out of a local
scope, implicitly truncating the emulation stack at
the destination label. Conversely, a balanced stack
is enforced for backward branches (loops). A local
label can remain undefined providing it is never re-
ferred to within the function body. Attempting to
jump to a label that is never Defined will raise an
error at (dynamic) compile time.

Formal arguments are declared immediately after
the prologue. The type of the argument is explicit in
the declaring instruction (Iarg() or Darg()). Argu-
ments are referred to within the function by position
relative to the first (corresponding to the ‘leftmost’
argument in the equivalent C declaration); 0 is the
first actual argument.A single LdArg(n) is provided
to push an actual argument onto the stack; the type
of the value pushed onto the stack is implicit and
corresponds to the explicit type given in the instruc-
tion that declared the argument.

Temporaries are similar to arguments, but can be
declared and destroyed at any point within the body
of the function. For example, Itmp creates a new
local int variable on the temporary stack. Sub-
sequent LdTmp(n) and StTmp(n) instructions read
and write temporaries, with n = 0 referring to the
topmost (most recently declared) temporary. The
DropTmp(n) instruction pops the topmost n tempo-
raries off the stack.

int main(int argc, char **argv)

{
VPU *vpu= new VPU();

Label fn;

vpu->Define(fn)->Ienter()->Iarg()

->Itmp()

->Ld(0)->StTmp(0)->Drop()

->Begin(1)->Define(0)

->LdTmp(0)->Ld("%d\n")
->Icall(2, (void *)printf)->Drop()

->LdTmp(0)->Ld(atoi(argv[1]))->Add()

->StTmp(0)

->LdArg(0)->Le()->Bt(0)

->End(1)

->DropTmp()

->Ld(0)->Ret()

->compile();

fn(atoi(argv[2]));

free(fn);

return 0;

}

Figure 6: Dynamically constructing a function that uses
local variables, labels and conditional branches. The
program takes two command-line arguments: a loop
‘step’ and ‘limit’. (The program compiles the first into
the dynamic code as a constant and passes the second
to it as an argument.) A temporary variable is created
and initialised to 0. A local label is then created and
defined. The value of the temporary is then printed, it
is stepped and compared to the limit (‘Le’ is a ‘less-or-
equal’ comparison); if the limit has not been reached the
loop continues. The local label is then popped of the
label stack and the local variable destroyed before re-
turning 0. Running this program with the arguments ‘3
10’ prints ‘0 3 6 9’ on stdout. The indentation reflects
the depth of the label and emulation stacks within the
function body. Note that the Define instruction is over-
loaded to accept integer arguments (local labels on the
label stack) and Label objects (global labels whose val-
ues remain available to the client application after com-
pilation). Label is a convenience class provided by the
VPU that includes overloaded definitions of operator()
to simplify the invocation of dynamically-compiled code
(eliminating the need to cast its address to a pointer-to-
function type).

The compile() method requires that both the emu-
lation and temporary stacks be empty after the final
Ret() instruction in the function.

Figure 6 shows a rather more complete example that
uses temporary variables, local labels and condi-
tional branches.

3 Implementation of the VPU

Figure 7 shows the four phases of compilation within
the VPU. The function described by the client is
converted into an internal abstract representation.

VPU *myVPU= new VPU:

myVPU->insn()...

Enter
Iarg
Define
LdArg
LdI
Iadd
IretmyVPU->compile()...

insn selectionassembler

malloc()

myFunction()

ccg cheeseburg

processor.md

VPU

program

heap

optimise register alloc

myProg.cc :

Figure 7: The VPU’s architecture. An internal represen-
tation of the function and emulation stack is constructed
in response to the client invoking methods on a vpu.
Compilation involves performing analyses and optimisa-
tions on the internal representation, followed by instruc-
tion selection and register allocation (each of which can
affect the other) to associate concrete instructions, phys-
ical registers and runtime stack locations with each ab-
stract instruction. After sizing the final code space is al-
located by calling malloc() into which a runtime assem-
bler generates executable native code. Target-specific
parts of the instruction selection and assembly phases
are generated automatically from a processor descrip-
tion file by the program cheeseburg, similar in spirit to
the iburg and lburg family of code generator genera-
tors.

Various optimisations are performed followed by
concrete instruction selection and register alloca-
tion. Native code is then generated in memory, with
a little help from ccg.

3.1 Creation and analysis of abstract
code

This phase has the following goals:

• create of an abstract representation of the input
function;

• verify the internal consistency of the function;

• perform architecture-neutral optimisations on
the representation;

• resolve ambiguities in the stack arising from
nonlinear control flow;

• eliminate dead instructions (unreachable or
which compute unused values);

vpu->Ld(3)

->Ld(4)

->Add()

->StTmp(0)

->Drop()

Ld=3

Ld=4

Add

StTmp

Drop

Figure 8: Internal representation of the abstract instruc-
tions and their input and output stacks. In this example
the stack initially contains just temporaries and argu-
ments. The two Ld instructions push new locations to
the head of the stack; the tails of their respective output
stacks point to the first location of their input stacks.
The Add instruction consumes two input stack elements
and pushes a new location for the result; the tail of its
output stack therefore points to the third location of
its input stack. The StTmp instruction has no stack ef-
fect and hence its input and output stacks are identical
(and refer to the same location). The Drop instruction
pops the first element off the stack; its output stack is
therefore just the tail of its input stack.

• create optimal conditions for the following reg-
ister allocation phase.

3.1.1 The abstract representation

A function is represented as a doubly-linked list
of abstract instructions. Each instruction contains
pointers to its input stack and output stack. The
stack representation is similar to that described
in [7] and consists of a linked list of stack locations.
The “tail” of the stack is shared between successive
instructions (rather than recreating a complete list
of stack locations for each instruction), as illustrated
in Figure 8.

This representation not only reduces memory re-
quirements but also guarantees properties that are
critical to the VPU’s compilation process:

• the lifetime of any value on the stack is ex-
plicit: it begins with the instruction that cre-
ates the corresponding location and ends with
the instruction that removes the location from
its output stack;

• any two elements on the stack that represent
the same logical value will also share identity
(a single stack location object represents the

LdI(0)

Define(0)

Dup()

Icall(fn)

Drop()

LdI(1)

Iadd()

Dup()

LdI(10)

Ieq()

Bf(0)

...

g

b

c

d

f

f

h

a

a

a

a

a

a

e

e

e

e

e

e

conflicte

LdI(0)

Define(0)

Dup()

Icall(fn)

Drop()

LdI(1)

Iadd()

Dup()

LdI(10)

Ieq()

Bf(0)

...

g

b

c

d

f

f

h

i

i

merge

locations

i

i

i

i

i

i

i

i

i

i

Figure 9: Contradictions in the stack caused by control
flow. When two or more flows of control merge the VPU
ensures that stack location identity is preserved between
the branch and the destination. Whenever conflicts are
detected (in this case because a loop iteration variable
is kept on the stack) a new location is allocated and
replaces the two original conflicting locations.

value for all instructions that might reference
it): a single location object represents a given
value for the entirety of its lifetime.

3.1.2 Control flow analysis

A control flow graph is constructed for the abstract
representation. This graph is a set of {source →
destination} tuples formed from the union of ex-
plicit control flow and that implied by linear flow
into a label (represented by a Define instruction):

{branch → label} ∪ {insni−1 → labeli}

The graph is used primarily to detect and correct
location ambiguities introduced by loops. This sit-
uation occurs, for example, when a loop uses a tem-
porary location on top of the stack as an iteration
variable. The output stack (at the point of the back-
wards branch) will not represent the same set of lo-
cations as the input stack (at the head of the loop).
Figure 9 illustrates the problem. The VPU resolves
this situation by replacing the two “colliding” loca-
tions with a newly-allocated location, which restores
location identity over the lifetime of the loop.

3.1.3 Type analysis

Simple analysis is performed on the program to de-
termine the input types of each instruction. This
is necessary, for example, to unambiguously asso-
ciate a concrete arithmetic instruction with a virtual
instruction that has only one form (which might
represent either an integer or floating point oper-
ation) and also to ensure that instructions hav-
ing restricted types (shift instructions, memory ref-

erences, etc., which are only defined for integer
operands) are being used correctly.

For each instruction the types of the input argu-
ments (if any) are verified to ensure that they are
consistent with each other and with the output type
of the instruction; if the output type is not known
then it is inferred from the input types. The output
type is stored in the instruction’s output location
for use in checking the input types of subsequent
instructions.

The type checking phase also determines the “class”
(void, integer, float, condition code, etc.) of the in-
struction’s result. This class is stored in the output
location for use during instruction selection. The
combination of input classes and output class for
a given instruction will be referred to below as the
mode of the instruction.

3.1.4 Optimisations on the abstract represen-
tation

The VPU performs relatively few optimisations on
the abstract program. The goal is to generate high-
quality (but not necessarily optimal) code as quickly
as possible. For a particular optimisation to be con-
sidered it must satisfy the following conditions:

• The VPU must be able to detect the opportu-
nity for, and then implement, each optimisa-
tion in parallel with some other essential oper-
ation that would be necessary even for “unop-
timised” compilation. In other words, all opti-
misations must be “piggy-backed” onto some
other, required, traversal or manipulation of
the abstract representation.

• Only optimisations that have a significant
effect-to-cost ratio are considered.

• Global optimisations are not considered.
(Their cost is always significant, requiring addi-
tional traversals of the abstract representation
and/or the creation and maintenance of addi-
tional data structures.)

• Peephole optimisations, that transform partic-
ular sequences of instructions into a more ef-
ficient sequence, are also not considered. The
costs associated with “pattern matching”, and
the need for an additional pass over the code,
are not justified by the relatively small result-
ing gain in code quality [5].

Optimisations that do meet these criteria are con-
stant folding, jump chain elimination and the re-
moval of dead code. They can be performed (for
example) in parallel with control flow or type anal-
ysis.

Constant folding is trivial. For a given instruction
of arity n, if the topmost n elements of its input
stack are never written and are associated with Ld

instructions then:

• the n Ld instructions are deleted from the pro-
gram;

• the constant result r of the operation is calcu-
lated;

• the original operation is transformed into
Ld(r).

Dead code occurs when a basic block is unreachable
or when a side effect-free sequence of instructions
computes a result that is never used. Any instruc-
tion that has a side effect (such as a store) sets an
attribute s on its input and output location. For
other operations of arity n, s is propagated from
the output location to the n topmost locations on
its input stack. During some subsequent traversal
of the program, if s is unset for the input location
of a Drop then both the Drop instruction and the
instruction that generated the dropped location can
be deleted from the program.3 (Since locations are
shared between all instructions that refer to them,
a Drop occurring along one control path will never
delete an instruction generating a value that is used
along an alternate path through the program.)

Elimination of unreachable code consists of finding
the transitive closure of reachable blocks starting
from the entry point of the function. Any block
not marked as reachable can safely be deleted. The
algorithm is trivial and can be performed in parallel
with the construction of the flow graph.

Jump chain elimination is performed in parallel with
the construction of the control flow graph. The
transformations are as follows:

Br+ → Bx(L) ⇒ Bx(L) pulls any destination
branch forward into a referent unconditional
branch; and

3This is best done during a backwards traversal of the

program, for example while assigning fixed and “constrained”

registers to instruction output locations as described below.

Bx → Br+(L) ⇒ Bx(L) pulls an uncondi-
tional branch forward into any referent branch.

These transformations are applied repeatedly for
each branch instruction in order to find the destina-
tion of the chain.

3.1.5 Summary

At this point in the compilation we have:

• a linear program consisting of abstract instruc-
tions;

• an input stack and output stack attached to
each instruction;

• a mode (type) associated with each instruction;

• a location in the emulation stack associated
with each value used in the program (but not
yet associated with any physical machine loca-
tion);

• certain guaranteed conditions that simplify the
subsequent phases of compilation, most impor-
tantly: no conflicts (contradictions in location
identity) between the input stack at each label
definition and the output stacks at each instruc-
tion that feeds control into the label.

3.2 Allocation of physical resources

This phase has the following goals:

• associate each sequence of one or more abstract
instructions with a sequence of zero or more
concrete machine instructions;

• determine the architectural characteristics and
constraints that might affect register allocation
(e.g, incoming/outgoing argument locations or
register selections imposed by particular ma-
chine instructions);

• allocate machine resources (registers, physical
stack locations) to each reified value in the emu-
lation stack while: respecting architectural con-
straints, avoiding move chains and minimising
the number of concrete instructions generated
for each abstract instruction.

3.2.1 Instruction selection

Instruction selection determines which concrete ma-
chine instructions should be emitted to implement
a given abstract instruction in the program.

Instruction selection and register allocation are inti-
mately related. The selection of instructions deter-
mines when (and possibly which) registers should
be allocated. Register allocation in turn can cause
spill and reload code to be inserted into the pro-
gram which in turn will use registers (which have
to be allocated). In any case, register selection can-
not begin until an initial instruction selection has
determined:

• whether a given combination of operation and
input/output modes is supported directly by
the hardware or whether a sequence of ma-
chine instructions is required to synthesise the
required operation;

• whether or not a given literal value can appear
as an immediate operand (according to its size
and whether the hardware supports an imme-
diate in the corresponding operand position);

• whether an operation must reify an integer
value in a register (for example, returning a log-
ical value as the result of a function call).

Several approaches to instruction selection are pos-
sible. The simplest is to implement an exhaustive
set of instruction emitters that covers all possible
combinations of operation × operand mode(s). This
approach has severe drawbacks:

• the number of emitters undergoes combinato-
rial explosion (from the number of possible per-
mutations of operand modes);

• exhaustive case analysis is required to deter-
mine the correct emitter for a given combina-
tion of operation and operand(s) (switches in-
side switches inside. . .);

• the case analysis code is difficult (or even im-
possible) to generate automatically. It must be
written (and maintained) manually;

• the resulting code generator is relative simple,
but large (because of a high degree of repeti-
tion) and slow (because of the many conditional
branches and indirect jumps in the case analy-
sis).

op

Tr

Ta Tb

add
sub

op Tr Ta Tb

R4 R4 R4
R4 R4 I4
R4 I4 R4
CC R4 R4

{ addi $0, $1, $2 }
{ addi $0, $2, $1 }
{ addi. $0, $1, $2 }

{ add $0, $1, $2 }

V= 0, R4=1, I4=2, CC=3, ...

= 111 = 21
= 112 = 22
= 121 = 25
= 311 = 53

R4 R4 R4
R4 R4 I4
R4 I4 R4
CC R4 R4

{ subi $0, $1, $2 }
{ subi $0, $2, $1 }
{ subi. $0, $1, $2 }

{ sub $0, $1, $2 }= 111 = 21
= 112 = 22
= 121 = 25
= 311 = 53

 0

 0

gen

...

...

mode(op) = Tr*16 + Ta*4 + Tb

mode

Figure 10: Table-driven instruction selection in the
VPU. The output and input operand mode(s) are en-
coded as a numeric signature. A table associated with
each operation maps mode signatures onto emitter func-
tions each of which deals with one particular combina-
tion of modes. (In this diagram the function pointers
are elided and instead the assembler template within
the emitter is show in its place.)

At the other extreme is the iburg approach which
transforms a formal, bottom-up rewrite grammar
into a program that finds minimal cost covers of
arbitrary subtrees in the intermediate representa-
tion. Each cover represents a (sequence of) machine
instruction(s) to be emitted. In general, by max-
imising the number of tree nodes consumed by each
cover the code generator minimises the number of
instructions generated. This approach suffers from
search complexity and the need for backtracking in
the algorithm, both of which slow down code gener-
ation noticeably and progressively as more highly-
optimised covers are added to the grammar to deal
with obscure cases. (This is especially significant
when all other phases of compilation are designed
to minimise compilation time.)

The VPU takes an intermediate approach. It uses a
table-driven, non-backtracking algorithm and a few
simple heuristics to determine an optimal instruc-
tion sequence for a given combination of operation
and input/output modes (in effect, a minimal cost
cover for a “subtree” of depth one in the intermedi-
ate representation).

Figure 10 illustrates the table used to select machine
instructions for an abstract instruction. (The nodes
of the ‘tree’ in the VPU’s abstract program are the
locations in the simulation stack rather than the
operations themselves.) These tables are generated
trivially from a processor description file, part of
which is shown in Figure 11.

For a given operation, the input and output mode(s)
are combined into a numeric signature. Instruction
selection searches the table associated with the oper-
ation to find an emitter function matching the signa-

RI4: Add(RI4, LI4) { #[addi r($0), r($1), $2]# }
RI4: Add(RI4, RI4) { #[add r($0), r($1), r($2)]# }
CCR: Cmp(RI4, LI4) { #[cmpi r($1), $2]# }
RI4: Cmp(RI4, LI4) { #[cmpi r($1), $2]#

setcc($0, insn->op) }

Figure 11: Part of the processor description for Pow-
erPC. Each line describes the instruction(s) to generate
for a given combination of input and output modes (such
as RI4, representing to a 4-byte integer register). The
assembler between ‘#[’ and ‘]#’ delimiters is converted
into code that generates the corresponding binary in-
structions (by the ccg preprocessor, see Section 3.3).
The positional arguments refer to the modes in each
“rule” and are replaced with expressions representing
the physical location (register, stack offset, constant)
corresponding to that mode. (setcc is a function that
emits code to place 0 or 1 in a register depending on the
state of the condition codes and a given logical relation.)

ture (which it stores in the instruction for use during
final assembly). If no emitter is found (which means
the mode is illegal) then the first input operand that
is neither a register nor a constant is forced into a
register and the search repeated. If no match is
found with only register and literal inputs then the
first non-register operand is converted to a register
and the search repeats. If there is still no match
when all operands are in registers then the table
(which must provide register-register modes for all
instructions) is necessarily incomplete, indicating an
error in the machine description file itself.

This algorithm is much faster than BURG-style in-
struction selection and yet results in a similar qual-
ity of generated code on RISC processors.

After instruction selection we know precisely:

• the final class (constant, integer/floating point
register, void, etc.) of each location in the em-
ulation stack (and hence the required mode for
every abstract operation);

• the locations for which machine registers must
be allocated;

• the emitter function corresponding to each op-
eration for its particular mode (cached in the
instruction for use during final code generation,
as described below).

3.2.2 Register allocation

Before final register allocation can begin, the code
generator must satisfy any constraints imposed by

the architecture on the choice of registers. Three
kinds of constraints must be dealt with:

• input constraints: for example, on the Pentium
we have no choice but to place dividends in reg-
ister eax;

• output constraints: for example, on the Pen-
tium we have no choice but to retrieve the
quotient and remainder from the register pair
eax:edx;

• volatile registers: for example, on the PowerPC
registers r3 through r12 are clobbered across
function calls.

(The need to pass outgoing arguments, and find in-
coming arguments, in particular registers is just a
particular combination of the above constraints.)

A separate pass is made through the program to
preallocate constrained registers in their associated
emulation stack locations. The bulk of the algo-
rithm is as follows. For each instruction, in reverse
order (from the last to the first):

• if the input is required in a particular register
and this register is not flagged as clobbered in
the instruction, then

– assign the register to the instruction’s out-
put location

• if the instruction clobbers one or more registers,
then

– iterate over the instruction’s output stack
adding the register(s) to the set of clob-
bered registers for each emulation stack lo-
cation (final register allocation will avoid
allocating a register to a given location if
it is marked clobbered in that location);
and

– remove any preallocated register for the
location if it coincides with one the clob-
bered register(s).

Final register allocation can now be performed. The
allocator creates a bit mask for each register class
(integer, float, etc.) representing the set of available
registers in that class and then iterates (forwards)
over the program. For each instruction:

vpu->Ld(42)

->Ld("%d\n")

->Icall(printf)

->Ld(4)

->Add()

->Ret()

Ld=42

Ld="..."

Icall=pf

Ld=4

Ret

pile d’entrée

pile de sortie

Add

r3

r3 r4 !fe

Figure 12: Allocation of constrained registers. An ini-
tial backwards pass is made through the program. The
final Ret instruction requires its input in r3 (on the
PowerPC). The earlier call instruction requires its two
arguments in r3 and r4 and also clobbers registers 5

through 10 in all locations beneath them on the stack
(represented here by the mask ‘!fe’).

• if the instruction consumes inputs then add any
registers associated with its input locations to
the appropriate mask;

• if the instruction generates a value in a register
and the output location has not yet been al-
located a register, then remove a register from
the appropriate mask and assign it to the out-
put location;

• if the instruction occurs at a basic block bound-
ary (branch, label definition or call) then re-
build the register masks by

– resetting them to their initial state and

– iterating over the instruction’s output
stack, removing all registers encountered
from the mask.

This process is illustrated in Figures 12 through 14.

3.2.3 Register spill and reload

If the register allocator runs out of available regis-
ters then it must choose a register to free up for allo-
cation, by spilling it into the stack and then reload-
ing it later (sometime before the instruction that
uses its value). It is difficult to determine the op-
timal choice of register to spill without employing
expensive algorithms, however a good choice (and
frequently optimal) is to spill the register that is

vpu->Ld(42)

->Ld("%d\n")

->Icall(printf)

->Ld(4)

->Add()

->Ret()

Ld=42

Ld="..."

Icall=pf

Ld=4

Ret

pile d’entrée

pile de sortie

Add

r3

r3 r4 !fe

!fe

!fe

!fe

!fe

!fe

r4

r3

r3

Figure 13: The situation before final allocation begins.
Since locations are shared, any registers constraints and
clobbered register sets are instantaneously propagated
forwards and backwards to all instructions that might
be affected.

vpu->Ld(42)

->Ld("%d\n")

->Icall(printf)

->Ld(4)

->Add()

->Ret()

Ld=42

Ld="..."

Icall=pf

Ld=4

Ret

pile d’entrée

pile de sortie

Add

r3

r3

r4

r31

r31

r31

r31

r31

r31

r3

r3

r4

r4

Figure 14: Final register allocation. A forward pass is
made through the program to complete register alloca-
tion. Registers allocation respects the clobbered register
masks stored in each location. The presence of the call
instruction sets this mask to !fe for the lowest (shown)
location in the stack thereby preventing a call-clobbered
register being allocated to it; instead it is allocated the
call-saved register r31.

most distantly used (MDU). An excellent approxi-
mation to the MDU register is available immediately
to the allocator in the emulation stack attached to
each instruction. The deepest location containing a
register of the required class typically corresponds
to the MDU. The allocator therefore scans the stack
(below the location for which it is trying to allocate)
to find this register and then inserts code just be-
fore the current instruction to spill it into a stack
location. This is illustrated in Figure 15.

R4:Ld=42 <r13> <r14> <r30> <r31>. . .

insn input stack

R4:Foo(...)

R4:Bar(<r31>)

...

...

...

<r31>

<r31>

hottest coldest

<@8>

Figure 15: Spilling a register. The instruction Bar re-
quires its input (a constant) in a register but none are
available. The allocator scans the input stack to find
the deepest register of the required class, in this case
r31. The corresponding location is changed to refer to
a location in the runtime stack (frame offset 8 in this
example) and the register reused.

R4:Ld=42(<r31>) <r13> <r14> <r30> <@8>. . .

R4:Foo(...)

R4:Bar(<@8>)

...

...

V4:Move(<r31>,<@8>)

spill

reload

<r31>

R4:Bar(<r31>)

...

V4:Move(<@8>,<r3>)

<@8>

<r3>

illegal mode

legal mode

Figure 16: Reloading a register. The spilled location no
longer represents a legal mode for its subsequent use in
the Bar instruction. The instruction selection algorithm
reconverts the location into a register (such that Bar’s
mode is legal), reallocates a register to hold the reloaded
value and inserts a Move pseudo-instruction into the pro-
gram to effect the reload.

Register reload is performed implicitly by rerunning
instruction selection for instructions that consume
spilled locations. If the new mode is legal then
the instruction can consume the value directly from
the spilled location and no further action is needed.
Otherwise the selection algorithm will convert the
spilled input argument(s) to register modes (as de-
scribed earlier), insert a ‘move’ pseudo-instruction
into the program to mark the reload, and reallocate
registers for the newly-inserted instruction. Fig-
ure 16 illustrates this process.

3.3 Final assembly

All that remains is to iterate over the code and call
the emitter function attached to each abstract in-
struction in the program. (The emitter function ap-

CPU OS libvpu.a emit.o

PowerPC Darwin 158,725 52,212
PowerPC GNU/Linux 175,612 52,088
Intel 386 GNU/Linux 124,791 31,374

Table 1: Compiled size of the VPU for 10,600 lines
of C++ source code. Approximately one third of the
compiled size, but less than 5% of the source code, is
accounted for by the instruction emitters (inlined calls
to ccg macros). With a little work the size of these
emitters could be reduced significantly (by replacing the
inline-expanded macros with function calls) at the cost
of slightly slower final instruction assembly.

propriate for a given operation and operand modes
is found during instruction selection and stored in
the abstract instruction to avoid having to rescan
the tables.) The code generator performs this iter-
ation twice. The first iteration generates code but
does not write any instructions into memory. In-
stead the program counter (PC) is initialised to zero
and the emitter called for each instruction in turn;
for each Define instruction, the value of the PC is
stored in the associated local label. At the end of
this first iteration the PC will contain the size of
the final code and each local label will contain the
offset of the label relative to the first instruction in
the generated code. Memory is then allocated for
the final code (by calling malloc() or some other,
application-defined memory allocator) at some ad-
dress M . Each local label then has M added to its
(relative) value to convert it to its final, absolute
address. Finally, the PC is set to M and a second
iteration made over the program to generate binary
instructions in memory at their final locations.

The assembler templates for binary instructions are
written using a runtime assembler generator called
ccg. A full description of it is beyond the scope
of this paper, but it should be noted that the cost
of assembling binary instructions using ccg is very
low: within the emitter functions, an average of 3.5
instructions are executed for each instruction gen-
erated in memory.

4 Evaluation

At least five metrics are important when evaluat-
ing a dynamic code generator: the size of the code
generator itself, its compilation speed, the memory
requirements during compilation, the size of the gen-
erated native code and the execution speed of that
code.

CPU clock v-insns/sec binary/sec

PowerPC G3 400 MHz 288,400 1.1 MB
PowerPC G4 1 GHz 610,000 2.5 MB
Intel P3 1 GHz 656,108 1.8 MB
Intel P4 3.6 GHz 1,611,111 4.1 MB

Table 2: Compilation speed. The third column shows
the number of virtual instructions compiled per second,
and the final column the amount of native code gen-
erated per second. These figures were calculated by
compiling 20 different input functions (of between 7 and
80 virtual instructions) 10,000 times in a loop. A to-
tal of 4,350,000 virtual instructions were compiled into
17.5 MBytes (PowerPC) or 11.7 MBytes (Intel) of na-
tive code, taking between 15 seconds (on the slowest
machine) and 2.7 seconds (on the fastest).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400 450

c
 =

 c
o

d
e

 s
iz

e
2

 (
b

y
te

s
)

n = number v-insns in input

Figure 17: Compiled native code size c (bytes) per n

virtual instructions, for each function of a medium-sized
program (a Lisp-like dynamic language and its runtime
system). The dotted line is a linear fit of the data points:
c = 4.4n.

The VPU is a little over 10,600 lines of C++ source
code. Table 1 shows the size of the compiled li-
brary (without symbols): about 170 KBytes and 125
KBytes on on PowerPC and Intel architectures, re-
spectively.

Table 2 shows the compilation speed, averaged over
16 different functions of various sizes, compiled
(and then free()ed) 10,000 times in a loop. On
three-year-old PowerPC hardware the VPU com-
piles 288,000 virtual instructions per second (gen-
erating a little over 1 MByte of code), and about
656,000 instructions per second (for a little over
1,8 MByte of native code) on Intel Pentium. On
current hardware the figures are 610,000 instruc-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300 350 400 450

m
 =

 m
e

m
o

ry
 o

v
e
rh

e
a

d
 (

b
y
te

s
)

n = number v-insns in input

Figure 18: Memory overhead m (bytes) per n virtual
instructions in each function of a medium-sized pro-
gram. The dotted line is a linear fit of the data points:
m = 908 + 120n.

tions/second (2.5 MBytes of native code) and 1.6
million instructions/second (over 4 MBytes of na-
tive code) on PowerPC and Pentium, respectively.

Figure 17 shows the generated code size plotted as
a function of the number of virtual instructions per
function for a much larger program (a dynamic com-
piler and runtime support for a complete, Lisp-like
programming language). The native code size is ap-
proximately 4.4 bytes per virtual instruction on the
PowerPC.

Figure 18 shows the memory requirements during
compilation (for the same Lisp-like language and
runtime system). Instantiating a VPU costs a lit-
tle under 1 KByte of memory, with an additional
120 bytes required per virtual instruction added to
that function. (All of this memory, other than that
required to hold the native code, is released by the
VPU once code generation is complete.)

The code produced by the VPU is typically be-
tween 10% and 20% larger than than that pro-
duced by ‘gcc -O2’ for an equivalent program. Nu-
merical benchmarks run at between 90% and 115%
the speed of the equivalent programs compiled with
‘gcc -O2’.

The VPU has been used to implement many differ-
ent kinds of language runtime support; for exam-
ple, dynamic binding (for dispatch to virtual func-
tions) with an inline cache. Dispatching through
a VPU-generated inline cache costs approximately

1.66 times a statically-compiled C function call.

5 Conclusions

The VPU is a plug-and-play dynamic code gener-
ator that provides application support for runtime
generation of C ABI-compatible native code. In-
tegrating the VPU into any application is trivial,
after which it can be used to generate arbitrary
functions (from simple “partial evaluation” type op-
timisations through compiling scripting languages
into native code for better performance). It is also
an ideal component for the core of portable “just-
in-time” compilers for dynamic languages, where a
VPU-based dynamic code generator can be added
with very little work.

Several projects are currently using the VPU aggres-
sively. It is the execution engine for the YNVM [10],
a dynamic, interactive, incremental compiler for a
language with C-like semantics, a Lisp-like syntax
(in other words, a C compiler in which programs
and data are the same thing) and the same per-
formance as statically-compiled, optimised C. The
JNJVM [11] is a highly-reflexive Java virtual ma-
chine built entirely within the YNVM that uses the
VPU directly to generate code for Java methods.
Outside the domain of languages the YNVM (with
a VPU inside) has been used to create C/SPAN [8],
a self-modifying web cache that modifies its cache
policies (by dynamically recompiling new ones) in
response to fluctuations in web traffic and network
conditions.

References

[1] http://www.cminusminus.org

[2] http://www.cs.virginia.edu/zephyr/papers.

html

[3] http://cs1.cs.nyu.edu/leunga/www/MLRISC/Doc/

html/INTRO.html

[4] http://research.sun.com/research/self/

papers/papers.html

[5] M. Chen, K. Olukotun, Targeting Dynamic Com-
pilation for Embedded Environments. 2nd USENIX
Java Virtual Machine Research and Technology Sym-
posium (Java VM’02), San Francisco, California, Au-
gust 2002, pp. 151–164.

[6] D.R. Engler, VCODE: a Retargetable, Extensible,
Very Fast Dynamic Code Generation System. SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 1996, pp. 160–170.

[7] A. Krall, Efficient JavaVM Just-in-Time Compi-
lation. International Conference on Parallel Archi-
tectures and Compilation Techniques, Paris, 1998,
pp. 205-212.

[8] F. Ogel, S. Patarin, I. Piumarta and B. Folliot,
C/SPAN: a Self-Adapting Web Proxy Cache. Work-
shop on Distributed Auto-adaptive and Reconfig-
urable Systems, ICDCS 2003, Providence, Rhode Is-
land, May 2003.

[9] Ian Piumarta, CCG: A Tool For Writing Dynamic
Code Generators. OOPSLA’99 Workshop on Simplic-
ity, Performance and Portability in Virtual Machine
Design, Denver Co, November 1999.

[10] I. Piumarta, YNVM: dynamic compilation in sup-
port of software evolution. OOPSLA’01 Workshop on
Engineering Complex Object Oriented System for
Evolution, Tampa Bay, Florida, October 2001.

[11] G. Thomas, F. Ogel, I. Piumarta and B. Folliot,
Dynamic Construction of Flexible Virtual Machines,
submitted to Interpreters, Virtual Machines and Em-
ulators (IVME ’03), San Diego, California, June 2003.

[12] http://www-sor.inria.fr/projects/vvm/

realizations/ccg/ccg.html

[13] http://www.gnu.org/software/lightning/

lightning.html

