
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

vBlades: Optimized Paravirtualization for the
 Itanium Processor Family

Daniel J. Magenheimer and Thomas W. Christian
Hewlett-Packard Laboratories

dan.magenheimer@hp.com, twc@fc.hp.com

Abstract
Virtualization of an “uncooperative” architecture often has severe performance consequences. Paravirtualization has
recently been suggested as a solution to performance issues, but it introduces unacceptable supportability problems.
The HP Labs vBlades project has identified a novel hybrid approach – which we call optimized paravirtualization.
We examine methods for both virtualizing and paravirtualizing the Itanium processor, and then demonstrate
optimized paravirtualization to maximize performance while simultaneously minimizing supportability concerns.

1 Introduction
As computer performance increases, it becomes more
desirable to utilize available performance flexibly and
efficiently. On even the smallest personal computer,
multiprocessing enables several applications to share
the processor. Other techniques such as virtual memory
and I/O device abstraction support the illusion that each
application controls all physical resources, or even
more resources than are physically available. In the
pursuit of efficiency, one thing has remained constant:
general-purpose operating systems assume that they
have complete control of the system’s physical
resources. The operating system thus assumes
responsibility for allocation of physical resources,
communication and management of external storage.

Virtualization changes that. Similar to the way that a
general-purpose operating system presents the
appearance to multiple applications that each has
unrestricted access to a set of computing resources, a
virtual machine manages a machine’s physical
resources and presents them to one or more operating
systems, creating for each the illusion that it has full
access to the physical resources that have been made
visible.

Virtual machines were the subject of extensive research
in the 1960s and 1970s [1, 2, 3, 4, 5]. Originally
developed to enable expensive mainframe resources to
be shared by several operating systems or other
privileged applications, they were quickly applied to
other problem domains including system management,
software development and security [6, 7, 8].
Increasingly, data centers are demanding rapid
adaptability, requiring a single server to run one
operating system for a period of time then be quickly

redeployed to run another operating system serving a
different purpose. Some high-end servers today provide
hardware-based partitioning mechanisms [9] to allow
multiple operating systems to share the same server. On
an even broader scale, the grid promises the capability
of sharing underutilized, geographically dispersed
computing resources [10]. The resource management
capability that results from virtual machines can help
solve these problems by separating the operating
system from the underlying hardware in ways that can
yield new levels of flexibility.

Researchers have devoted years to the study and
deployment of virtual machines for the x86 (IA-32)
platform. As a result, much work has appeared in the
literature describing the issues that arise in virtualizing
the x86 architecture [11, 12]. The Itanium (IA-64)
processor was introduced in 1999, beginning a family
of 64-bit processors intended for high-end servers and
workstations. Co-developed by Intel and HP, Itanium is
known for the high performance made possible by its
explicitly parallel architecture, but Itanium has another
attribute that has been less widely publicized: it was
expressly designed with features that provide increased
security for computer systems [13]. These features
make Itanium eminently suitable for future Adaptive
Enterprise and grid applications. It is useful to
understand the virtualization issues for this architecture
and determine how the benefits of virtualization will
apply. We explore these issues and describe how we
have made use of virtualization on Itanium for the HP
Labs vBlades virtual server project.

2 vBlades Approach and Overview
A Virtual Machine Monitor (VMM) is a software layer
that virtualizes the available resources of a computer

mailto:dan.magenheimer@hp.com
mailto:twc@fc.hp.com

and multiplexes them among one or more guest
operating systems. Implementing a VMM can be fairly
straightforward if the target architecture was designed
to support virtualization but quite complex if not. The
Instruction Set Architecture (ISA) of a machine must
conform to certain constraints for it to be fully
virtualizable – that is, able to be represented as an exact
duplicate by the VMM [4]. Unfortunately, these
constraints are not met for the predominant x86
architecture, nor are they met for Itanium.

Ideally, an operating system should be able to run
without modification on a VMM, while retaining the
illusion that it is running directly on physical hardware
and owns all resources. Different methods have been
suggested to support this illusion on an architecture that
is not fully virtualizable; such methods almost always
result in significant performance degradation.

Some VMMs intentionally compromise the virtual
machine interface in exchange for greater performance.
For example, VMware provides an add-on driver
which, when loaded by a Windows guest, greatly
reduces the I/O overhead [14]. Other VMMs provide an
explicit API and allow or require a guest operating
system to port to the VMM, a technique the Denali
project [15, 16, 17] has named paravirtualization.

The Xen [18] team demonstrated how paravirtualization
improves performance, scalability and simplicity at the
cost of a small set of changes to the guest operating
system. Xen has crystallized a set of design principles
that we paraphrase here:

1. Existing application binaries must run unmodified.

2. Multiple commercially available operating systems
must be supported.

3. Paravirtualization is necessary for performance and
security, especially on “uncooperative” machine
architectures.

4. Hiding the effects of resource virtualization is
generally unnecessary and impacts not only
performance and security but also correctness.

These design principles explain the justification for
paravirtualization but they say nothing about its major
disadvantage: operating system modifications,
especially significant ones, can be problematic in the
real world.

First, if substantial modification is required, the
operating system provider may summarily reject the
necessary changes. This is true not only for proprietary
operating systems but also for open source operating
systems. For example, the simple changes required for

Xen’s XenoLinux impact architecture-independent code
in the Linux distribution. Historically, there has been
some reluctance to change this code for architecture-
specific features.

Second, in a research or academic environment,
operating system variations are common and it is
probably reasonable to expect a separate operating
system image for operation in a virtual environment. In
a production environment, loading a different operating
system image is unwieldy. For a commercial operating
system provider, doubling the number of distributed
operating system images is a supportability issue and
almost certainly unacceptable.

To address these concerns, we suggest two additional
design principles for the “Xen of Virtualization”:

5. Operating system changes for paravirtualization
must be minimized and limited to architecture-
dependent code.

6. One paravirtualized operating system image must
be capable of running either native or as a guest
under the VMM.

The HP Labs vBlades project is exploring virtualization
on Itanium to support a virtual server environment. The
vBlades goals include:

• Concurrent execution of multiple operating system
images, each with their own application set, in
isolated protection domains with security and
privacy enforced by hardware.

• Optimal server utilization through allocation and
dynamic management of virtual servers that map to
fractional, integral or aggregated physical servers.

• Comprehensive measurement, monitoring and
control capabilities for detailed performance
analysis, QoS monitoring, resource management
and accounting.

• Resource management and security protocols that
enable integration of vBlades virtual servers into
utility data centers and the grid.

VBlades supports both virtualization and
paravirtualization. The vBlades hypervisor handles
emulation of privileged operations while the vBlades
virtualization abstraction layer (VAL) provides the API
used by ported guests. The components may be used
separately or together. That is, operating systems may
run fully virtualized, undertake a complete port to the
VAL or use the facilities in combination. By starting
with a fully virtualized system, making performance
measurements for selected benchmarks then adding
VAL calls to resolve performance issues, an optimal

balance can be found between the magnitude of the
required modifications and performance. We call this
hybrid approach optimized paravirtualization.

3 Virtualizing the Itanium Processor
As was previously noted, the present Itanium
architecture is not fully virtualizable [4]. This section
describes some of the most important issues with
Itanium virtualization and the approaches used by
vBlades to resolve the issues. It is intended to be
illustrative, not comprehensive.

3.1 CPU Virtualization
3.1.1 Ring Compression
Four privilege levels or rings are supported on Itanium.
Privilege level zero (PL0) is the most privileged and the
only level at which privileged instructions may be
executed. Itanium operating systems typically utilize
only two privilege levels: the operating system runs at
PL0 with all privileges and user processes run
unprivileged, usually at PL3. PL1 and PL2 are
generally unutilized.

VBlades takes advantage of the unused levels by
employing the traditional VMM ring compression
technique. VBlades demotes a guest to privilege level
two (PL2), reserving both PL0 and PL1 for its own
operation. All unprivileged instructions, whether
executed by the guest or one of the guest’s processes,
execute normally and at full performance. Privileged
instructions executed by the guest result in the delivery
of a privileged operation fault, which is fielded by the
vBlades hypervisor.

One difficulty Itanium has with ring compression is that
a guest can easily determine the privilege level at which
it is executing, a problem commonly known as
privilege leakage. Several Itanium non-privileged
instructions allow the Current Privilege Level (CPL) to
be examined. A guest concerned about potential
security vulnerabilities might refuse to boot or run if it
determines that it is running virtualized. A similar
difficulty arises if a guest makes use of all four
privilege levels. Both of these issues can be avoided,
but only with significant performance impact and/or by
utilizing sophisticated instruction transformation
techniques. Fortunately, these issues rarely arise in
commercially available operating systems.

3.1.2 Emulation of Privileged Operations
When a privileged operation fault results from a guest
attempt to execute a privileged operation, the vBlades
hypervisor decodes and emulates the instruction. Rather
than faithfully emulate the precise semantics of the
instruction, vBlades usually will choose to apply its

own interpretation to virtualize the effects of the
instruction. For example, a guest may utilize Itanium’s
rsm psr.i instruction to turn off delivery of
interrupts. VBlades does not actually disable interrupts
but instead just records the guest’s intent and honors the
fact that any interrupts intended for that guest should
not be delivered until further notice.

A complication may arise in the process of emulating
an Itanium privileged instruction. Some architectures
provide a special register – often called the Instruction
Register (IR) – to record the currently executing
instruction. Itanium does not provide an IR so the
vBlades hypervisor must utilize other state information
to read the instruction from memory. However, all
current Itanium implementations support independent
translation buffers for instruction and data access. Since
the original fetch occurred as an instruction access and
the second read is a data access, the hypervisor must be
prepared to sustain a data translation fault. If this
occurs, the hypervisor must search the translation tables
to find the correct translation for the instruction.

3.1.3 Exceptions / Interrupts
Itanium defines a set of conditions that result in
exceptions and interrupts (collectively referred to as
interruptions) and also defines a privileged Interruption
Vector Address (IVA) register that defines the base of a
code table. Different types of interruptions are delivered
to different places in the IVA-based code table. Certain
state bits are disabled automatically on delivery of an
interruption. For example, interrupt delivery and
interrupt state collection are both turned off.

All of this virtualizes in a relatively straightforward
way: The vBlades hypervisor records the guest’s IVA
register and, for interruptions that need to be handled by
the guest, it adjusts state appropriately and delivers
control to the guest at the guest’s interruption handler.

One complication arises in certain situations involving
the Itanium register stack engine (RSE). The register
stack enables automatic register renaming in order to
accelerate handling of procedure call data, while the
RSE handles memory traffic between the register stack
and backing store memory. The RSE operates
concurrently with the processor and may attempt to
load or store data that results in a virtual addressing
fault. The normal Itanium interruption delivery
mechanism is used for these faults but a special bit is
set in the processor state to indicate that the fault
resulted from an RSE memory operation.
Simultaneously, another processor status bit is cleared
to disable RSE activity.

The complication occurs because the latter bit – the
RSE Current Frame Load Enable (RSE.CFLE) bit – is
not architecturally visible and cannot easily be
modified. According to the Itanium specification, this
bit is enabled only – and unconditionally – on execution
of any procedure return (br.ret) or return-from-
interruption (rfi). In a native operating system, the OS
interruption handler simply resolves the fault prior to
returning control to the faulting process. However, in
many cases the vBlades hypervisor must cede control to
the guest to resolve the fault. When this happens, RSE
activity is automatically enabled, resulting in immediate
recurrence of the fault.

Several approaches were investigated to resolve this
rare but tricky problem. On the first design attempt, the
register stack was forced into a known stable state prior
to delivery of control to the guest for any interruption
using the Itanium cover instruction. However, certain
guest interruption handlers were unable in some non-
RSE fault cases to deal with a “pre-covered” register
stack. Next, we attempted to track the other RSE fault
indication bit (ISR.ri) to deliver the stack “pre-covered”
only when an RSE fault had occurred. Tracking this
state proved to be problematic. Finally, we settled on a
delayed approach that we call lazy cover. We allow the
fault to recur upon delivery to the guest and, when it
does, special code recognizes the recurrence. We then
cover the register stack and redeliver the fault. This
results in an extra vBlades-to-guest interruption
delivery but the situation happens so rarely that
performance is not an issue.

3.1.4 Privilege-sensitive Instructions
Privilege leakage is one example of a visible difference
that occurs as a result of guest privilege demotion.
Itanium has several other instructions that have
privilege-related issues:

• The previously mentioned cover instruction has a
side effect that saves important register stack
information in a privileged register. However, the
side effect only occurs under certain circumstances
that are restricted to PL0 execution.

• thash and ttag are unprivileged instructions
that surface information from privileged virtual
memory data structures.

• A bit in the processor status register – PSR.sp –
controls whether the performance data registers can
be read by non-privileged instructions. However, if
unprivileged access is denied, attempted reads do
not trap but instead simply return zero.

These instructions, which behave differently depending
on current privilege level, can be referred to as
privilege-sensitive instructions.

A common VMM technique for dealing with privilege-
sensitive instructions involves dynamic transformation
of the instruction stream. Because of the bundling of
Itanium’s explicitly parallel instructions, further
constrained by functional unit asymmetry and bundle
templates that limit the types of instructions the bundle
may contain, dynamic transformation on Itanium can be
difficult [19]. The vBlades design is capable of
incorporating a dynamic transformation mechanism but
static instruction replacement has proven sufficient for
vBlades purposes. We avoid complicated replacement
choices by directly replacing each privilege-sensitive
instruction with a similar privileged instruction.

The cover instruction has a single encoding with no
variations and can be replaced with a break.b
instruction. But thash and ttag, which each have
two register arguments, are more complicated and
require a brief discussion of register usage on Itanium.

Nearly all Itanium instructions that access registers
utilize a seven-bit register field, allowing usage of
Itanium’s 32 64-bit general-purpose registers and the 96
additional automatically renumbered registers on the
register stack. These register stack registers, numbered
32 to 127, are heavily used by the procedure calling
mechanism and normally contain procedure parameters
and local variables. At procedure entry, an Itanium
alloc instruction specifies the portion of the register
stack that is used by this procedure, starting at register
number 32. For example, a procedure may indicate that
only registers 32 through 40 will be used, in which case
registers 41 through 128 will not be available in the
current register stack. Interestingly, Itanium specifies
that while writes to numbered registers currently
unavailable in the register stack result in an illegal
operation trap, reads from those registers simply return
a zero – without resulting in an illegal operation trap.

VBlades takes advantage of this last point. While user-
level code may use registers numbered in the sixties or
higher, in system code such register usage is rare and in
low-level system code it is exceedingly rare. VBlades
steals the high 64 register numbers of the source
register for two privileged instructions and uses these
for the privileged instruction replacements for thash
and ttag as shown in Figure 1. This static translation
precludes the possibility of a guest using a register
numbered higher than 63 for any of these four
instructions, but that has yet not proven to be a
problem.

thash rx=ry → tpa rx=r(y+64), 0≤y<64

ttag rx=ry → tak rx=r(y+64), 0≤y<64

Figure 1 – Modified thash and ttag Instructions

3.2 Memory Virtualization
Studies have shown [20, 21] that memory loads and
stores make up a large percentage of an instruction
stream. Consequently, a machine’s virtual memory
architecture is designed to ensure that virtual memory
accesses proceed efficiently and securely. To maximize
performance, vBlades must stay out of the way of the
vast majority of the memory accesses of a guest and its
user processes, while retaining the capability to
intercede if a guest exceeds its bounds, maliciously or
otherwise.

3.2.1 Address Spaces
As with most modern architectures, Itanium provides
the capability to isolate the address space of different
processes. To do so, it provides eight privileged region
registers that participate in each virtual address
translation. The range of values that can be contained in
a region register is implementation-dependent and must
be obtained through a call to the Itanium-architected
Processor Abstraction Layer (PAL) firmware, which
returns the number of bits in the region register. Setting
a region register to a value outside of this range results
in a fault.

VBlades intercepts the guest’s PAL call and always
returns the architectural minimum, thus limiting each
guest to 218 address spaces. Since setting a region
register is a privileged operation, vBlades can intercede
to reserve some values for its own purposes and
partition the set of address spaces among the guests,
securely restricting the virtual addressing capabilities of
each guest.

3.2.2 Metaphysical Memory
In some situations, an operating system may choose to
override the protections afforded by the machine’s
virtual addressing mechanism in order to directly access
real machine memory. Itanium controls whether
accesses are virtual or physical with bits in the
privileged Processor Status Register (PSR). Once in
physical mode, an Itanium native operating system can
access any memory address, read or write device
control or data registers or, by accessing a non-existent
physical address, cause a machine check and crash the
system.

In order to enforce security, vBlades cannot allow a
guest to access physical memory directly. To prevent

this, vBlades inserts an extra layer of indirection
between a virtual address and its corresponding
physical address. Although the concept of an
intermediate layer is not unusual in VMM
implementation, nomenclature is confusing and not
standardized; to clearly differentiate it from real
machine physical memory, we refer to this layer as
metaphysical addressing1. VBlades intercepts attempts
by the guest to transition from virtual mode to physical
mode and instead places the guest in metaphysical
mode by adjusting region registers so that virtual
addresses translate to a reserved per-guest address
space.

Once in this mode, the guest believes that it is directly
accessing physical memory but the physical addresses it
is using are actually virtual addresses that vBlades
controls and monitors. When a guest access to a
metaphysical address results in a virtual addressing
fault, vBlades first validates the address to ensure
isolation, and then resolves the fault invisibly to the
domain by providing the appropriate mapping. Note
that since this mechanism utilizes all of the machine's
translation hardware, performance is preserved for
guests that frequently access physical memory.

Rather than use an extra level of addressing indirection,
some VMMs simply partition physical memory among
the guests. This limits either the number of guests or the
amount of physical memory assigned to each. A
valuable side effect of the vBlades approach is that it
can utilize the indirection to provide additional features.
Just as a native operating system utilizes virtual
memory and disk paging to create the illusion for each
of its processes that more memory exists than is
actually available, vBlades can oversubscribe physical
memory for its guests. It can demand load or swap out
lightly utilized memory, share read-only memory
segments between similar guests and adjust access to
physical memory as needed to maintain a specified
quality-of-service level.

3.3 Timer Virtualization
A native Itanium operating system marks the passing of
time through the use of a free-running Interval Time
Counter (ITC) and an Interval Time Match (ITM)
register. The period of the ITC is obtained through a
call to the PAL firmware. The operating system triggers

1 Merriam-Webster defines metaphysical as: “of or relating
to…a reality beyond what is perceptible to the senses.” Since
metaphysical memory represents physical memory in a way
that is not perceptible to a guest, we believe this usage is
appropriate, though admittedly light-hearted.

timer interruptions by setting a value in the privileged
ITM register. When the value of the ITC matches the
value in the ITM, an interrupt is generated. On Itanium,
firmware may take control of the machine for an
indefinite period of time, during which interrupt
delivery is disabled and the operating system is
effectively sleeping. An Itanium operating system must
be resilient to such blank periods. When the operating
system finally sees the interrupt, the value in the ITC
may greatly exceed the value in the ITM – perhaps by
as much as one or more quanta. The timer interrupt
service routine must be capable of recognizing this
situation and recovering appropriately.

VBlades takes advantage of this to avoid virtualization
of time. A guest may be out of context for an extended
period while other guests or vBlades are running and
must be capable of recovering from this situation.
However, even if a guest recovers it is not clear what
the impact will be on its processes, for example, when
accounting for resource usage. We have considered a
software interrupt to notify a guest that it has been
sleeping, but have not yet implemented it or seen a
requirement for it. It remains to be seen if this will be
required to serve the needs of some guests or if a virtual
time mechanism (such as the one proposed by Xen) will
need to be architected and implemented.

4 Paravirtualizing Itanium
As others have observed, paravirtualization can serve a
number of objectives. In Denali, an abstract interface
different from the underlying x86 hardware is
convenient for supporting thousands of underutilized
virtual machines. For Xen, knowledge of the underlying
API allows more efficient access of x86 page tables
while isolating potentially malicious guests. Since other
purely virtual mechanisms could suffice, we posit that
every use of paravirtualization is a way to improve
performance.

Paravirtualization of Itanium is no different. The first
vBlades design required a complete guest port based on
the assumption that any virtualization would result in
unacceptable performance degradation. All privileged
operations required a VAL call and no privileged
operation trapping was supported. As measurement and
monitoring capabilities were added, we were able to
quantify the frequency of privileged requests. We found
that the vast majority of VAL calls were due to
interrupt enable/disable requests, TLB miss processing
and system calls. In a second tier were calls for timer
handling, external interrupt handling and context
switches. This led us to focus tuning efforts on
improving the highest frequency operations.

4.1 The Privileged State Communication
Block (PSCB)

On every Itanium interruption, certain privileged
registers provide information to assist the operating
system in resolving and recovering from the
interruption. For example, on all interruptions the last
value of the instruction pointer and the processor status
register are preserved so that execution can be resumed
(with an rfi instruction), if appropriate, when
interruption processing is complete. Some other
examples: On a TLB miss, the faulting address is
provided; on a “break” fault (commonly used for
system service calls) the instruction contains an
immediate value that is provided to the interruption
handler.

When a native operating system processes an
interruption, several of these privileged registers are
read and/or written and each register access requires
execution of a privileged instruction. To avoid this,
vBlades defines the Privileged State Communication
Block (PSCB), a shared-memory area used to record
the information contained in these privileged registers
and enable communication of the information to and
from guest interruption handlers.

In many cases, the PSCB contains an exact match of the
privileged register that would be seen by a native
operating system. For example, the Interruption Status
Register (ISR) is delivered unchanged. In other cases,
the register is “virtually” identical; that is, it has been
adjusted by vBlades according to virtualization
constraints. An example of this is the “current privilege
level” bit in the virtual interrupt processor status
register (IPSR) which is set at interrupt delivery to zero
to reduce privilege leakage.

4.2 Some Serialization Required
Because Itanium is an explicitly parallel architecture,
some processor state modification instructions require a
non-privileged serialization (srlz.i or srlz.d)
instruction to be executed to ensure the effects of the
state modification take place before a subsequent
instruction that depends on those effects. For example,
writes to the previously mentioned Itanium ITM
register may not result in a timer interrupt until a
srlz.i instruction is executed. For certain PSCB
fields, and under certain circumstances, the vBlades
VAL requires a similar mechanism.

For example, the “interrupt delivery enabled” field is
the virtual equivalent of the hardware psr.i bit. If a
guest wishes to disable interrupts, it clears this field and
interrupts are pended – noted but not delivered to the
guest – until further notice. If the guest wishes to enable

interrupts, it sets the field to a non-zero value.
However, vBlades only checks this for subsequent
interrupts; if any interrupts are pending at the time the
guest enables interrupts, delivery is delayed unless the
guest invokes a VAL synchronization service call, as
shown in Figure 2. In order to expedite this check,
another PSCB field specifies whether any interrupts are
pending. If interrupt arrival frequency is substantially
lower than interrupt disable/enable frequency, this
model can substantially reduce the need for VAL calls.

Figure 2 – Enabling Interrupts with
Paravirtualization

4.3 Batching
In many cases, replacing emulation of a single
privileged operation with a single VAL service call
provides negligible savings. However, if a group of
privileged operations can be replaced by a single VAL
service call, significant performance improvements can
result. For example, when a guest is performing a task
switch it will usually update several (or all) of the
region registers with address space values appropriate
for the new task. Rather than making a VAL call for
each individual region register, one VAL service allows
all eight to be updated with a single call.

4.4 Transparent Paravirtualization
The performance advantages of paravirtualization are
evident. As previously noted, there are disadvantages to
requiring a separate binary for running native vs.
running as a guest on a virtual machine. If an operating

system can determine whether or not it is running
virtualized, it can make optimal execution choices at
runtime and the same binary can be used. We call this
transparent paravirtualization.

Figure 3 – Enabling Interrupts using
Transparent Paravirtualization

VBlades utilizes a reserved bit in a privileged
configuration register to let the operating system know
whether or not it is running virtualized. According to
the Itanium architecture definition, reserved bits in the
configuration register are always set to zero. When the
vBlades hypervisor executes the privileged instruction
that returns this register, it sets one of the reserved bits
to one. Thus, an operating system can execute this
instruction early in the startup process and conditionally
set a global variable to record whether or not it is
running as a vBlades guest. Once this variable is set,
subsequent transparent code can test the variable and
react accordingly as illustrated in Figure 3.

In a transparently paravirtualized operating system, this
conditional test may occur with relatively high
frequency; indeed, every piece of paravirtualized code
requires the test. When running as a guest, the
incremental cost of the additional test is small relative
to virtualization overhead. We conjectured that the cost

NO

YES

NO

YES

Done

Interrupts
enabled?

Enable Interrupts

Interrupts
pending?

VAL_CALL(
VAL_SYNC_PSR_I)

Enable
Interrupts

NO

YES

NO

YES

YES

NO

Done

Running
on VAL?

Interrupts
enabled?

Enable Interrupts

Interrupts
pending?

VAL_CALL(
VAL_SYNC_PSR_I)

ssm psr.i

Enable
Interrupts

when running native would also be small. First, in a
fully paravirtualized guest, the number of tests is at
most one per privileged instruction. Second, the
frequency of privileged instructions in all but the most
system-centric micro-benchmarks is at least two to
three orders of magnitude lower than unprivileged
instructions. Third, a well-defined paravirtualization
interface eliminates many privileged instructions.
Finally, high frequency access to the conditional test
variable ensures its presence in cache memory,
guaranteeing a low cycle count for the conditional test.

To test our conjecture, we ran a simple but non-trivial
benchmark: Linux compiling itself. The difference was
indeed negligible, with the magnitude dwarfed by the
natural variability in the benchmark results; we expect a
more comprehensive set of benchmarks to show that
degradation is less than 0.1%. If true, this would show
that the performance impact of transparent
virtualization on a native operating system is, as its
name would imply, transparent.

4.5 Optimized Paravirtualization
One of our design principles requires limiting changes
to the guest, yet we wish to minimize the performance
degradation of the paravirtualized guest. This is clearly
an iterative and subjective process: Some guests may
have stringent requirements on code change, while
others may be much more focused on performance. We
refer to the process as optimized paravirtualization.

To measure the degree of change to the guest, we
define the set of changes necessary to implement
paravirtualization as the porting footprint. Changes to
the guest fall into two categories: invasive changes and
supporting changes. Invasive changes are those that
affect one or more existing source or build files.
Supporting changes are newly added source or build
files that provide VAL support code necessary for
interfacing to the vBlades VAL but do not affect
existing code; these are generally linked in as a library.
We believe that invasive changes have, by far, the most
significant impact on operating system maintenance.
Consequently we restrict our definition of porting
footprint to include only invasive changes.

To support data-driven performance decisions, vBlades
is highly instrumented. It records and tabulates all VAL
calls, privileged operations, exception deliveries, etc.
This level of detail is not only crucial for porting but
can also provide an interesting perspective on the
operation of the original pre-ported guest.

The vast majority of application and guest instructions
executed in any benchmark are unprivileged, execute at
full speed and are thus irrelevant to a comparison. Since

the guest is executing unprivileged, all privileged
instructions must either be emulated by the vBlades
hypervisor or replaced and paravirtualized through
VAL calls. We will refer to these collectively as ring
crossings.2 Obviously, each ring crossing is slower than
the native privileged instruction it replaces – perhaps by
two to three orders of magnitude. Consequently,
reducing the total number of ring crossings improves
performance. Further, a VAL call is somewhat less
costly than hypervisor emulation since the hypervisor
must fetch and decode the privileged instruction. Thus,
replacing an emulated privileged instruction with an
equivalent VAL call also improves performance.

With this in mind, we present ring-crossing results from
the previously introduced benchmark (Linux compiling
itself) at different stages of optimized paravirtualization
of Linux 2.4.20. Prior to the execution of the
benchmark, all vBlades counters are zeroed; thus
privileged instructions and VAL calls necessary to
initialize the system are ignored. The ring crossing
results of the different stages are graphically
represented in Figure 4. On the second y-axis we show
the cumulative porting footprint measured in lines of
code.

In stage 0, only a minimal set of changes is introduced
into Linux to allow it to run as a vBlades guest. There
are approximately 474 million ring crossings, all of
them due to privileged instructions. These changes have
a porting footprint of 46 lines.

In stage 1, we replace Linux interrupt enable/disable
code with the VAL call mechanism described in
Section 4.2. Because of the highly organized nature of
the Linux source code, the vast majority of code that
enables or disables interrupts uses preprocessor macros
defined in a single include file; these macros utilize the
Itanium rsm and ssm instructions. We redefine these
macros using a patch that has a porting footprint of only
four lines. With this minor change, almost 111 million
(23%) of the privileged operations are eliminated and
replaced with less than one million VAL calls, reducing
ring crossings to 363 million.

In stage 2, we introduce a vBlades-specific Interruption
Vector Table (IVT). In Itanium, the IVT is the entry
point for all interruption handlers, including
synchronous exceptions such as TLB faults as well as
timer and external device interrupts. Since Itanium

2 Technically, there are at least two ring crossings for each
hypervisor or PAL call but we omit this detail for the purpose
of clarity. Only the units of measurement are affected, not the
impact on performance.

interruption handlers obtain and manipulate state by
reading and writing privileged registers, the IVT
contains many privileged instructions. As previously
described, these can be replaced with normal loads and
stores to the PSCB.

Figure 4 – Ring Crossings vs. Porting Footprint

Linux running on Itanium must indicate the location of
the IVT by storing the address in privileged cr.iva
register exactly once early in architecture dependent
startup code, prior to the possibility of any interruption.
Replacing the original Linux IVT with a VAL-aware
IVT could be as simple as conditionally assigning a
different location to cr.iva. However, the VAL
sensing code also must execute prior to any
interruption. So instead we allow the original code to
set cr.iva to point to the original Linux IVT, then
reset it in the VAL sensing code to point to the VAL-
aware IVT. As a result, there is no additional porting
footprint for this change. The resultant reduction in ring
crossings, however, is significant – now down to 274
million.

Every entry into the Linux kernel must have a
corresponding exit, and just as the IVT reads numerous
privileged registers, many of these same privileged
registers must be written when returning to interrupted
user code. In stage 3, we replace the central Linux
kernel exit code with a VAL-aware version, a change
that requires a porting footprint of 19 lines and see a
dramatic improvement in the number of privileged
operations, which has been reduced to 48 million. We
also see the first significant increase in VAL calls – a
total of 32 million, visible on the bar chart as the

crosshatched portion of the bar. One VAL_RESUME
call, the equivalent of the Itanium rfi instruction, is
made for each kernel exit. The total number of ring
crossings is now 80 million.

In stage 4, we examine the benefit of the region register
updates seen previously as an example of batching.
When performing a task switch, Linux/ia64 changes
five region registers using five consecutive privileged
instructions. We replace all five privileged instructions
with a single VAL call, using a patch that has a porting
footprint of five lines. The benefits of this stage, though
significant, are not as remarkable as the previous stages.
We have replaced about 3.8 million privileged
operations with about 0.7 million VAL calls, a net
reduction of over 3 million ring crossings.

Ring Crossings vs. Porting
Footprint

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4

Optimization Stage

R
in

g
C

ro
ss

in
gs

 x
 1

06

0

10

20

30

40

50

60

70

80

Po
rt

in
g

Fo
ot

pr
in

t (
LO

C
)

In some cases, a large reduction in ring crossings that
yields significant performance improvements can be
obtained with a very small porting footprint. In other
cases, changes with a larger porting footprint may result
in a negligible performance change. Through careful
experimentation and measurement a suitable balance
can be achieved.

We redirected the vBlades project prior to completion
of extensive application benchmarking and without
ports of guests other than Linux. In an earlier prototype,
a small suite of benchmarks was used to compare
performance of Linux running fully paravirtualized
against native Linux. While this prototype made
simplifying assumptions regarding I/O, the observed
performance degradation was approximately 1-2%,
comparable to the paravirtualized x86 measurements
published by the Xen team.

5 Conclusions
We have described virtualization and paravirtualization
issues for the Itanium processor family. Combining
these techniques using optimized paravirtualization
allows a balance to be reached between maximizing
performance and minimizing the porting footprint (and
maintenance impact) for the guest operating system; we
believe that, with a small porting footprint, performance
can approach native operation. Finally, we have
introduced transparent paravirtualization, which enables
a single operating system image to run either on a
native system or a VMM, improving maintainability at
essentially no cost.

6 Acknowledgments
The other members of the vBlades team are: Rob
Gardner, Chris Hyser, Bret McKee, Christopher Worley
and Mike Wray. This work evolved from the HP Labs
Secure Platform Architecture project that also included

Bill Worley and John Worley. Christophe de Dinechin,
Todd Kjos, Jonathan Ross and Jean-Marc Chevrot
suggested some Itanium virtualization techniques.
David Mosberger and Stéphane Eranian’s text [22]
provides an excellent overview of Itanium, Linux and
the port of Linux to Itanium; it was exceptionally useful
in the Linux/IA-64 port to vBlades.

7 References

[1] Robert P. Goldberg, “Architecture of Virtual
Machines,” AFIPS Conference Proceedings, 1973
NCC, AFIPS Press, Montvale, NJ.

[2] Carl J. Young, “Extended Architecture and
Hypervisor Performance,” Proceedings ACM
SIGARCH-SIGOPS Workshop on Virtual Computer
Systems, Cambridge, MA, 1973.

[3] Robert P. Goldberg, “Survey of Virtual Machine
Research,” IEEE Computer, pp. 34-45, June, 1974.

[4] Gerald J. Popek and Robert P. Goldberg, “Formal
Requirements for Virtualizable Third Generation
Architectures,” Communications of the ACM, 17(7), pp.
412-421, July 1974.

[5] Gerald J. Popek and Charles S. Kline, “A Verifiable
Protection System,” Proceedings of the International
Conference on Reliable Software, pp. 294-304, Los
Angeles, CA, 1975.

[6] Thomas C. Bressoud and Fred B. Schneider,
“Hypervisor-based Fault Tolerance,” ACM
Transactions on Computer Systems, 14(1), pp. 80-107,
1996.

[7] Gerald J. Popek and Charles S. Kline, “A Verifiable
Protection System,” Proceedings of the International
Conference on Reliable Software, pp. 294-304, Los
Angeles, CA, May, 1975.

[8] James E. Smith, “An Overview of Virtual Machine
Architectures,”
http://www.ece.wisc.edu/~jes/902/papers/intro.pdf,
October 2001.

[9] Hewlett-Packard Company, “HP Integrity
Superdome Technical White Paper”, available from
http://www.hp.com/, 2003.

[10] R. Figueiredo, P. Dinda and J. Fortes, “A Case for
Grid Computing on Virtual Machines”, Proceedings of
the 23rd International Conference on Distributed
Computing Systems (ICDCS 2003), May 2003.

[11] John S. Robin and Cynthia E. Irvine, “Analysis of
the Intel Pentium's Ability to Support a Secure Virtual

Machine Monitor”, Proceedings of the Ninth USENIX
Security Symposium, August 2000.

[12] Carl A. Waldspurger, “Memory Resource
Management in VMware ESX Server,” Proceedings of
the 5th Symposum on Operating System Design and
Implementation (OSDI 2002), December 2002.

[13] Intel Corporation, Intel IA-64 Architecture
Software Developer’s Manual, Volume 2: IA-64 System
Architecture, 2000.

[14] Ganesh Venkitachalam and Beng-Hong Lim,
“Virtualizing I/O Devices on VMware Workstation's
Hosted Virtual Machine Monitor,” Proceedings of the
2001 USENIX Annual Technical Conference, Boston,
Massachusetts, June 2001.

[15] Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble, “Denali: Lightweight Virtual Machines for
Distributed and Networked Applications,” Technical
Report 02-02-01, University of Washington, 2002.

[16] Andrew Whitaker, Marianne Shaw and Steven D.
Gribble, “Denali: A Scalable Isolation Kernel,”
Proceedings of the Tenth ACM SIGOPS European
Workshop, St. Emilion, France, 2002.

[17] Andrew Whitaker, Marianne Shaw and Steven D.
Gribble, “Scale and Performance in the Denali Isolation
Kernel,” Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI),
2002.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebarger, Ian
Pratt and Andrew Warfield, “Xen and the Art of
Virtualization,” Proceedings of the 2003 Symposium on
Operating Systems Principles, October 2003.

[19] Christophe de Dinechin, Todd Kjos, Jonathan Ross
and Jean-Marc Chevrot, Hewlett-Packard Company,
internal communication.

[20] Joseph A. Lukes, “HP Precision Architecture
Performance Analysis,” Hewlett-Packard Journal, vol.
37, pp. 30-39, August 1986.

[21] John Hennessy, Norman Jouppi, Forrest Baskett,
Thomas Gross and John Gill, “Hardware/Software
Tradeoffs for Increased Performance,” Proceedings of
the First International Symposium on Architectural
Support for Programming Languages and Operating
Systems, pp. 2-11, Palo Alto, CA. March, 1982.

[22] David Mosberger and Stéphane Eranian, IA-64
Linux Kernel: Design and Implementation, Copyright
2002, Prentice Hall Professional Technical Reference.

http://www.ece.wisc.edu/~jes/902/papers/intro.pdf
http://www.hp.com/

	Introduction
	vBlades Approach and Overview
	Virtualizing the Itanium Processor
	CPU Virtualization
	Ring Compression
	Emulation of Privileged Operations
	Exceptions / Interrupts
	Privilege-sensitive Instructions

	Memory Virtualization
	Address Spaces
	Metaphysical Memory

	Timer Virtualization

	Paravirtualizing Itanium
	The Privileged State Communication Block (PSCB)
	Some Serialization Required
	Batching
	Transparent Paravirtualization
	Optimized Paravirtualization

	Conclusions
	Acknowledgments
	References

