
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MCI-Java: A Modified Java Virtual Machine Approach to Multiple Code

Inheritance

Maria Cutumisu, Calvin Chan, Paul Lu and Duane Szafron

Department of Computing Science, University of Alberta

{meric, calvinc, paullu, duane}@cs.ualberta.ca

Abstract

Java has multiple inheritance of interfaces, but only single inheritance of code via classes. This situation results
in duplicated code in Java library classes and application code. We describe a generalization to the Java language
syntax and the Java Virtual Machine (JVM) to support multiple inheritance of code, called MCI-Java. Our approach
places multiply-inherited code in a new language construct called an implementation, which lies between an
interface and a class in the inheritance hierarchy. MCI-Java does not support multiply-inherited data, which can
cause modeling and performance problems. The MCI-Java extension is implemented by making minimal changes to
the Java syntax, small changes to a compiler (IBM Jikes), and modest localized changes to a JVM (SUN JDK 1.2.2).
The JVM changes result in no measurable performance overhead in real applications.

1 Introduction

Three distinct language concepts are used in object-
oriented programs: interface, code and data. The
motivation for separate language mechanisms to support
these concepts has been described previously [14]. The
goal of the research described in this paper is to
explicitly support each of these three mechanisms in an
extended Java language, to evaluate the utility of
concept separation, and to potentially increase demand
for separate language constructs in future languages.

Researchers and practitioners commonly use the
terms type and class to refer to six different notions:

• a real-world concept (concept)
• a programmatic interface (interface)
• the code for an interface (implementation)
• an internal machine data layout (representation)
• a factory for creation of instances (factory)
• a maintainer of the set of all instances (extent)

Unfortunately, most object-oriented programming
languages do not separate these notions. Each language
models the concept notion by providing language
constructs for various combinations of the other five
notions. Java uses interface for interface. However, it
combines the notions of i m p l e m e n t a t i o n,
representation and factory into a class construct.
Smalltalk and C++ have less separation. They use the
same class construct for interface, implementation,
representation and factory.

In this paper we will focus on general-purpose
programming languages, so we will not discuss the
extent notion, which is most often used in database
programming languages [15]. We also combine concept

with interface, to enforce encapsulation. Finally, we
combine r e p r e s e n t a t i o n and factory , since
representation layout is required for creation. This
reduces the programming language design space to
three dimensions:

• An interface defines the legal operations for a
group of objects (interface) that model a concept.

• An implementation associates generic code with the
operations of an interface (implementation)
without constraining the data layout.

• A represen ta t ion defines the data layout
(r e p r e s e n t a t i o n) of objects for an
implementation, provides data accessor methods
and a mechanism for object creation (factory).

We use the generic term type to refer to an interface, an
implementation or a representation.

I n h e r i t a n c e allows properties (interface,
implementation or representation) of a type to be used
in child types called its direct subtypes. By transitivity,
these properties are inherited by all subtypes. If type B is
a subtype of type A, then A is called a supertype of type
B. If a language restricts the number of direct supertypes
of any type to be one or less, the language has single

inheritance. If a type can have more than one direct
supertype, the language supports multiple inheritance.

Interface inheritance allows a subtype to inherit the
interface (operations) of its supertypes. The principle of
substitutability states that if a language expression
contains a reference to an object whose static type is A,
then an object whose type is A or any subtype can be
used. Interface inheritance relies only on substitutability
and does not imply code or data inheritance.

Table 1 Support for single/multiple inheritance and concept separation constructs in some existing languages.

Language interface implementation representation

Java multiple / interface single / class single / class
C++ multiple / class multiple / class multiple / class
Smalltalk single / class single / class single / class
Eiffel multiple / class multiple / class multiple / class
Cecil/BeCecil multiple / type multiple / object multiple / object
Emerald implicit multiple / abstract type none / object constructor none / object constructor
Sather multiple / abstract class multiple /class multiple / class
Lagoona multiple / category none / methods single / type
Theta multiple / type single / class single / class

Implementation (code) inheritance allows a type to
reuse the implementation (binding between an operation
and code) from its parent types. Code inheritance is
independent of data representation, since many
operations can be implemented by calling more basic
operations (e.g. accessors), without specifying a
representation, until the subtypes are defined. Java and
Smalltalk only have single code inheritance, but C++
has multiple code inheritance.

Representation (data) inheritance allows a type to
reuse the representation (data layout) of its parent types.
This inheritance is the least useful and causes
considerable confusion if multiple data inheritance is
allowed. Neither Java nor Smalltalk support multiple
data inheritance, but C++ does.

Table 1 shows the separation and inheritance
characteristics of several languages: Java, C++,
Smalltalk, Eiffel [17], Cecil [6] and its descendant
BeCecil [5], Emerald [20], Sather [22], Lagoona [12]
and Theta [9]. This list is not intended to be complete. A
more general and extensive review of type systems for
object-oriented languages has been compiled [15].
Although there is growing support for the separation of
interface from implementation/representation, the
concepts of implementation and representation are
rarely separated at present. We intend to change this.
The major research contributions of this paper are:

• The introduction of a new language construct called
an implementation into the Java programming
language. This construct completely separates the
two orthogonal concepts of implementation (code)
and representation (data).

• A new multi-super call mechanism that generalizes
current Java semantics, rather than using C++
multi-super semantics.

• The first implementation of multiple code
inheritance in Java, based on localized
modifications to the SUN JDK 1.2.2 JVM, along
with minor changes to the syntax of Java and to the
IBM Jikes 1.15 compiler. Existing programs still
work and suffer no performance penalties.

• A demonstration that multiple code inheritance
reduces duplicated and similar code, so program
construction and maintenance are simplified.

Our modified multiple code inheritance compiler
(mcijavac), modified JVM (mcijava), the code for the
scenarios in this paper, and the code for the java.io

example are available on-line as MCI-Java [16].

2 Motivation for Multiple Code

Inheritance in Java

In this Section we motivate the use of multiple code
inheritance using some classes from the java.io

library. Java currently supports multiple interface
inher i t ance . Cons ide r the Java c l a s s
R a n d o m A c c e s s F i l e (from j a v a . i o) that
implements the interfaces D a t a I n p u t and
DataOutput , as shown in Figure 11. Since Java
supports substitutability, any reference to a
DataInput or DataOutput can be bound to an
instance of RandomAccessFile.

Figure 1. The inheritance structure of some classes and

interfaces from the java.io library.

However, Java does not support multiple code
inheritance. Much of the code that is in
RandomAccessFile is identical or similar to code in

1 There are actually two other classes in java.io,
FilterInputStream and FilterOutputStream, that are not
included in Figure 1, Figure 2, or Figure 5. They have been omitted
for simplicity and clarity, since they do not affect the abstractions
described in this paper.

DataInputStream DataOutputStream

DataInput DataOutput

RandomAccessFile

OutputStreamInputStream

interface class
Implements / represents subclasses

Legend

DataInputStream and DataOutputStream.
Although it is possible to refactor this hierarchy to make
R a n d o m A c c e s s F i l e a subclass of either
DataInputStream or DataOutputStream, it is
not possible to make it a subclass of both, since Java
does not support multiple code inheritance.

This causes implementation and maintenance
problems. One common example is that duplicate code
appears in several classes. This makes programs larger
and harder to understand. In addition, code can be
copied incorrectly or changes may not be propagated to
all copies. There are many examples of code copying
errors in various contexts. For example, code is often
cloned (cut-and-pasted) in device drivers for operating
systems [7]. If a bug is found in the repeated code, a fix
must be applied to each clone. However, if the same
code is refactored into a single implementation in an
object-oriented inheritance hierarchy, then any bug fix
or new functionality would only have to be done once.

Two alternative techniques for reducing code
duplication are mixins [1] and traits [21]. These
approaches are discussed in Section 9, where they are
contrasted with our multiple code inheritance technique.

2.1 Duplicate Method Promotion

The methods writeFloat(float) and
writeDouble(double) are examples of duplicate
methods that appear in both DataOutputStream and
RandomAccessFile. There are also four methods
that have identical code in DataInputStream and
RandomAccessFile.

Once these duplicate methods have been found, how
can code inheritance be used to share them? Figure 1
shows that we need a common ancestor type of
DataInputStream and RandomAccessFile to
store the four common read methods and a common
ancestor type of DataOutputStream and
RandomAccessFile to store the two common write
methods. To share code, this ancestor cannot be an
interface. It also cannot be a class, since we would need
multiple code inheritance of classes and Java does not
support it. In fact, it should be a multiple inheritance
implementation. Figure 2 shows the common code
factored into two implementations: InputCode and
OutputCode. In this approach, an implementation

provides common code for multiple classes.
The benefit of using implementations to promote

duplicate methods may seem questionable to re-use only
six methods. However, it is not only such duplicate
methods that can be promoted higher in the inheritance
hierarchy. Multiple code inheritance can also be used to
factor some non-duplicate methods, if they are
abstracted slightly. We have used three additional code
promotion techniques to factor non-duplicate methods.

Figure 2. Adding implementations to Java, for multiple

code inheritance.

2.2 Prefix Method Promotion

The first technique is called prefix method

p r o m o t i o n . It applies when a class dependent
computation is done at the start of the method and the
rest of the method is identical. Consider the
readByte() methods shown in Figure 3, from classes
DataInputStream and RandomAccessFile.
These methods differ only by a single line of code.

// This method is in DataInputStream

public final byte readByte() throws IOException

{

 int ch = this.in.read();

 if (ch < 0)

 throw new EOFException();

 return (byte)(ch);

}

// This method is in RandomAccessFile

public final byte readByte() throws IOException

{

 int ch = this.read();

 if (ch < 0)

 throw new EOFException();

 return (byte)(ch);

}

// This method replaces the previous two, and

// is in InputCode

public final byte readByte() throws IOException

{

Source in = this.source();

 int ch = in.read();

 if (ch < 0)

 throw new EOFException();

 return (byte)(ch);

}

Figure 3. An example of using the prefix technique to

promote methods.

Figure 3 shows a single common method promoted
to an implementat ion called InputCode, which
replaces both. This abstraction requires the creation of a
new interface, Source , that contains one abstract
method, read() . It also requires a method called
source() to be declared in InputCode. A default

DataInputStream DataOutputStream

DataInput DataOutput

RandomAccessFile

InputCode OutputCodeInputStream OutputStream

interface class

Implements

implementation

Represents Subclasses

Legend

method with code, return this, is created in
InputCode and it is inherited by class
RandomAccessFile. The implementation of this
method is overridden in class DataInputStream
with the code, return this.in. This prefix
technique can be used to promote seven other methods
in the same two classes.

2.3 Super-Suffix Method Promotion

The second technique is called super-suffix method

promotion. It can be used to move similar methods from
DataOutputStream and RandomAccessFile to
the common implementation, OutputCode. Consider
methods for writeChar(int) that appear in classes
DataOutputStream and RandomAccessFile, as
shown in Figure 4.

// The original method in DataOutputStream

public final void writeChar(int v) throws

IOException {

this.out.write((v >>> 8) & 0xFF);

 this.out.write((v >>> 0) & 0xFF);

incCount(2);

}

// The original method in RandomAccessFile

public final void writeChar(int v) throws

IOException {

this.write((v >>> 8) & 0xFF);

 this.write((v >>> 0) & 0xFF);

}

// The method in OutputCode that replaces the

// one in RandomAccessFile and does most of the

// computation for the one in DataOutputStream

public final void writeChar(int v) throws

IOException {

 Sink out = this.sink();

out.write((v >>> 8) & 0xFF);

 out.write((v >>> 0) & 0xFF);

}

// The new method in DataOutputStream

public final void writeChar(int v) throws

IOException {

 super(OutputCode).writeChar(v);

 incCount(2);

}

Figure 4. Examples of super-suffix methods that can be

reused in different classes.

To replace these methods by a common method, we
substitute each first line by a common abstracted line,
analogous to the previous example. This abstraction
requires the creation of a new interface, Sink, that
contains one abstract method, write(int). It also
requires a method called sink() to be declared in
OutputCode.

However, there is another problem that must be
solved before we can promote writeChar(int).

This method has an extra line of code in class
DataOutputStream, which does not appear in class
RandomAccessFile. Fortunately, we can promote
all lines except for this suffix line into a common
method in OutputCode . This eliminates
writeChar(int) from RandomAccessFile.
However, in DataOuputStream we need to include
the missing last line using a classic refinement
technique that makes the super call shown in Figure 4.

Note that super(OutputCode) is not standard
Java. It calls a method in the superimplementation,
OutputCode , instead of calling a method in a
superclass. In general, since there may be multiple
immediate superimplementations, the super call must be
qualified by one of them. This is one of the standard
approaches to solving the super ambiguity problem of
multiple inheritance and it will be discussed later in this
paper. We can use this super-suffix technique to
promote a total of six similar methods that appear in
DataOuputStream and RandomAccessFile.

2.4 Static Method Promotion

The third technique for promoting non-duplicate
methods is called static method promotion. For
e x a m p l e , b o t h DataInputStream and
RandomAccessFile implement readUTF(). The
class implementers must have realized that the two
implementations were identical, so rather than repeating
the code, they created a static method called
readUTF(DataInput) and moved the common
code to th is s ta t ic method in c lass
DataInputStream. Then they provided short one
line implementations of r e a d U T F () i n
DataInputStream and RandomAccessFile that
call the static method. Now that we have provided a
common code repository (InputCode) that both
DataInputStream and RandomAccessFile
inherit from, we can eliminate the static method by
moving its code to InputCode and eliminate the short
methods that call this common code, since both classes
now share this common instance method. This is an
example where we did not actually remove repeated
code. Instead, we replaced one code sharing abstraction
(static sharing), that can cause maintenance problems,
by a better code sharing mechanism (inheritance).

We conducted an experiment to determine how
much code from the stream classes of the java.io
libraries could be promoted, if Java supported multiple
code inheritance. Table 2 and Table 3 show a summary
of the method promotion and lines of code promotion
respectively for each of our code promotion techniques.

Table 2 Method decrease in the Java stream classes using multiple code inheritance. The number marked with a *

indicates that all lines of code (except for one line) in the method were promoted, so a single line method remained.

Class duplicate prefix super-suffix static
elimination

total
promoted

method decrease

DataInputStream 4 of 19 8 of 19 0 of 19 1+1* 14 of 19 74%
DataOutputStream 2 of 17 0 of 17 6* of 17 0 8 of 17 47%
RandomAccessFile 6 of 45 8 of 45 6 of 45 1 21 of 45 47%

Table 3 Executable code line decrease in the Java stream classes using multiple code inheritance. All extra lines of

executable code from the extra classes, Source and Sink, are also included in the third column.

Class initial
lines

extra lines for prefix,
super-suffix and static
elimination

net lines after all code
promotion techniques

line decrease

DataInputStream 127 2 42 67%
DataOutputStream 84 7 67 20%
RandomAccessFile 158 0 93 41%

For example, from Table 2 we see that there are 19
methods in class DataInputStream. Of these 19
methods, 4 were promoted since there are duplicate
methods in class RandomAccessFile. An additional
8 methods out of 19 were promoted using the prefix
technique illustrated in Figure 3.

Finally, one method was eliminated using static
elimination. The instance method was promoted to
InputCode and one static method was reduced from
40 lines to 1 line. Table 2 shows that the super-suffix
technique resulted in 6 promoted methods out of 45 in
class RandomAccessFile. The corresponding 6
methods in DataOutputStream (marked by an
asterisk in Table 2) were not completely promoted. A
shorter method was retained to make the suffix super
call and to execute one or more additional lines of code.

For the line counts, we only counted executable
lines and declarations, not comments or method
signatures. However, more important than the size of
the reductions is the lower cost of understanding and
maintaining the abstracted code. Note that even though
most of the method bodies of six methods move up from
DataOutputStream to OutputCode , small
methods remain that make super calls to these promoted
common “prefix” methods. In Table 3, the third column
indicates the lines that were added for an abstraction
(Sink out = this.sink();) or a multi-super
call (super(OutputCode).writeChar(v);).
All executable lines of code in implementat ions
InputCode and OutputCode are included in
column 4 of Table 3.

Note that this abstraction required the creation of
another new interface, Source, which is analogous to
the interface, Sink, which was described earlier. The
resulting inheritance hierarchy for the Stream classes is
shown in Figure 5.

Figure 5. The revised Stream hierarchy to support

multiple code inheritance.

The new interfaces Source and Sink only contain
declarations of the read() and write() methods, so
they contain no lines of executable code. They only
exist so that they can be used as the static type of the
variables i n and o u t in the imp lemen ta t i ons
InputCode and OutputCode.

Table 2 and Table 3 show that the use of multiple
inheritance in Java can result in a significant reduction
in the number of duplicate lines of code in library
classes. This reduction can result in fewer errors during
library maintenance and library extension and can
therefore reduce maintenance costs [4].

3 Supporting Implementations in Java

Since Java has no concept of an implementation, we
have three choices as to how to introduce it into Java: as
a class (probably abstract), as an interface, or as a new
language feature. We actually need to make this
decision twice: once at the source code level and once at
the JVM level. It is not necessary for the choices at
these two levels to be the same.

DataInputStream DataOutputStream

DataInput DataOutput

RandomAccessFile

InputCode OutputCodeInputStream OutputStream

SinkSource

interface class

Implements

implementation

Represents Subclasses

Legend

At the source code level, an abstract class seems to
be an obvious choice to represent an implementation.
However, Section 2 clearly indicates the utility of
multiple code inheritance. If implementations were
represented by classes (abstract or concrete), we would
need to modify Java to support multiple inheritance of
classes. This would have the undesirable side-effect of
providing multiple data inheritance, since classes (even
abstract classes) are also used for data. Interfaces have
the multiple inheritance we want but, if we use
interfaces to represent implementations at the source
code level, we would lose the use of interfaces for their
original intent – specifications with no code.

Our solution is to introduce a new language
construct, called an implementation at the source code
level. However, at the JVM level, we decided to make
use of the fact that interfaces already support multiple
inheritance. Therefore, we did not introduce a new
language concept at the JVM level. Instead, we
generalized interfaces to allow them to contain code.

To implement our solution, we made independent
localized changes to the compiler and to the Java
Virtual Machine (JVM). Our compiler (mcijavac)
compiles each implementation to an interface that
contains code in the .class file. Our modified JVM
(mcijava) supports execution of code in interfaces and
multiple code inheritance. In addition, the JVM
modifications to support multiple code inheritance are
executed at load-time and the changes that affect multi-
super are call-site resolution changes. Therefore, the
performance of our modified JVM is indistinguishable
from the original JVM. In fact, the SUN JDK 1.2.2 JVM
uses an assembly-language module for fast dispatch and
no changes were made to this module so the fast
dispatch was preserved.

Our approach decouples language syntax changes
from the JVM support required for code in interfaces
and multiple code inheritance. For example, someone
could propose a different language construct and syntax
at the source code level and make different compiler
modifications. In fact, our first implementation used a
source-to-source translation approach with standard
Java syntax and special comments to annotate interfaces
that should be treated as implementations [8].

As long as a compiler or translator produces code in
interfaces, our modified JVM can be used to execute the
code. Similarly, someone can provide an alternate JVM
that supports code in interfaces and use our language
syntax and compiler to support implementations.

Although implementations support multiple code
inheritance, they do not support multiple data
inheritance, since they cannot contain data declarations.
Multiple data inheritance causes many complications in
C++. For example, if multiple inheritance is used in
C++, an offset for the this pointer must be computed

at dispatch time [11]. This is not necessary for multiple
code inheritance. At first glance, it may appear that the
opportunities for multiple code inheritance without
multiple data inheritance are few. However, examples
such as the one in Section 2 exist in the standard Java
libraries and many application programs.

4 The Semantics of Implementations

To support implementat ions , we made two
fundamental changes to the language semantics: the first
to support multiple code inheritance and the second to
support multi-super calls.

4.1 Semantics of Multiple Code Inheritance

The twenty-two scenarios and sub-scenarios in
Figure 6 represent the common situations for inheriting
code from implementations, including multiple code
inheritance (note the Legend at the top of the Figure).
The circled numbers and the letter can be ignored for
now, since they are related to JVM modifications that
are discussed in Section 8. Other more complex
scenarios can be composed from these scenarios. When
the method alpha() is shown in a class or
implementation, the scenario also holds if that method is
inherited from a parent type. For example, in scenario 5,
the alpha() method in class A may actually be
inherited from a parent class or implementation. The
semantics are consistent, regardless of whether a
method is declared explicitly in a type or inherited from
a supertype.

Some scenarios have two sub-scenarios that differ
only in the order of supertypes, such as scenario 7a and
scenario 7b. Syntactically, this is accomplished by
varying the lexical order of the implementations. We
have defined a semantics that is symmetric with respect
to order, so the results are the same for both scenarios.
In some languages with multiple code inheritance, such
as CLOS [3], the order is significant. In our semantics,
the order is not significant. However, the order-
dependent sub-scenarios are included in Figure 6 so that
the interested reader can trace the JVM modifications
described in Section 8 to confirm that our algorithm
produces symmetric inheritance semantics.

Note that when a method alpha() appears in a
superclass, that superclass may actually represent the
class Object. For example, scenario 5 can be used to
illustrate the situation where class A represents the
Object class and the alpha() method represents the
toString() method.

For the scenarios in Figure 6, consider a call-site
where the static type of the receiver is any type
(implementation or class) shown in the scenario, the
dynamic type of the receiver is class C, and the method
signature is alpha().

Figure 6. Inheritance scenarios for multiple code inheritance. The circles are explained in Section 8.

Scenario 0 mirrors the traditional case, where an
abstract method (no code) in an interface or class is
inherited in class C. Since our scenarios assume that the
receiver is an instance of class C, some of the scenarios
actually produce compiler errors. Such scenarios are
marked with an asterisk (*) in the lower right corner.
For example, scenario 0 would produce a compiler
error, since it would force class C to be abstract and
generate an error when the code tries to create an

instance of class C. However, it is important to support
such scenarios in the JVM with the correct semantics,
since these scenarios can occur at runtime, if classes are
recompiled in a specific order.

For example, scenario 0 can occur if implementation
A is compiled with a non-abstract alpha() method,
then class C is compiled and then implementation A is
recompiled after changing alpha() to be abstract. If
class C is not recompiled (legal in Java), then the JVM

A

C

Scenario 0

alpha()

1

A

C

Scenario 1

alpha()

1

A

C

Scenario 2

B

alpha()

1

B

C

Scenario 4

A

alpha()

alpha()

0

1

A

C

alpha()

Scenario 7a

Balpha()

1 1

Scenario 8a

A

C

B

alpha()

alpha()

1

1

Scenario 17

A

C

D

alpha()

B

1

B

C

alpha()

Scenario 7b

A alpha()

1 0

Scenario 8b

A

C

B

alpha()

alpha()

1

0

Scenario 12b

B

C

A alpha()

alpha()

1

1

Scenario 15b

alpha()

B

C

D

alpha()

A

1

1

B

C

Scenario 3

A

alpha()

alpha()

1

0

Scenario 12a

B

C

Aalpha()

alpha()

1

0

Scenario 14

alpha()D

B

C

A

alpha()

2

0

Scenario 15a

alpha()

B

C

D

alpha()

A

1

0

Scenario 16

B

A

C

D

alpha()

0

alpha() A

C

alpha()

Scenario 10

B

1 3

B

C

Aalpha()

Scenario 5

alpha()

0

A

C

B alpha()

Scenario 6

alpha()

2

alpha() A

C

alpha()

Scenario 9

B

3

Scenario 11

B

C

Aalpha()

alpha()

0

Scenario 13

alpha() A

B

C

D

alpha()

0

* *

* *

classimplementation
Inherits = extends, subclasses or utilizes

concrete method abstract method
Legend

must throw an exception indicating that the code tried to
execute an abstract method.

For scenarios 1 through 3, the code from
implementation A is dispatched. The semantics mirror
the single code inheritance semantics used by classes.
Scenario 4 is an example of code inheritance
suspension, where an abstract method in implementation

A blocks class C from inheriting the code from
implementation B. Scenario 4 mirrors the semantics for
code inheritance from classes.

In scenarios 5 through 8, class C inherits code from a
class or implementation along one inheritance path and
an abstract method (no code) along a second path. In
this case we define the code inheritance semantics for
class C to inherit the code (in particular from A). Notice
that scenario 5 directly mirrors the classic case where a
class inherits code for a method from a superclass and
implements an interface containing an abstract method
with identical signature. Scenarios 8a and 8b illustrate
an important principle of code inheritance suspension –
an abstract method in a type can only suspend code
inheritance along a path from a parent type through that
type; it cannot suspend code inheritance along all paths

from its parent type.
In each of scenarios 9 and 10, a multiple code

inheritance ambiguity exists between two different
implementations of alpha() in two parent types of
class C. Therefore, the programmer is required to supply
a local implementation of method alpha() in class C
to clear this ambiguity. If the method in one of the
parent types is desired, a method that makes a single
super call to the appropriate parent can be used. Again,
the order of inheritance is ignored and there is no
preference for inheritance from a superclass over
inheritance from a superimplementation.

Scenarios 11 through 15 are quite interesting cases.
Two different multiple inheritance semantics could be
defined for our language extension [19]. Strong multiple

code inheritance semantics requires these scenarios to
be inheritance ambiguities, since for each scenario, class
C can inherit different code along different code
inheritance paths. However, relaxed multiple code

inheritance semantics states that if two types serve as
potentially ambiguous code sources and are related by
an inheritance relationship, the code in the child type
overrides the code in the parent type. The code in the
child type is called the most specific method. With these
semantics, the inherited code in class C is the code
provided by type A, for scenarios 11 through 15. We
have implemented relaxed multiple code inheritance
semantics in our compiler and JVM. It would be simple
to implement strong semantics instead. In this case, a
further decision would be required to resolve scenarios
16 and 17, since they inherit the same code along

multiple paths. However, since we used the relaxed
definition of multiple code inheritance semantics, these
are not ambiguous scenarios and the code from
implementation A is inherited by class C.

4.2 Semantics of Multi-super Calls

Even if a method is overridden, it is often desirable
to invoke the original method in a supertype. However,
due to multiple code inheritance, we have to choose
among multiple supertypes in a super call. We saw an
example of this in Figure 4. The method
writeChar(int) in class DataOutputStream

needed to call the overridden method code from its
superimplementation OutputCode, as opposed to
calling the method in its superclass, OutputStream.
We call this generalization a multi-super call. We refer
to a super call to a superclass as a classic super call to
differentiate it from a multi-super call.

In C++, each multi-super call is a direct jump to a
particular superclass that is specified lexically and it is
resolved at compile-time (e.g. A::alpha()). If
subsequent changes to the code result in a new class
being inserted between the class that contains the call-
site and the target class of the multi-super call, then any
code in the intervening classes is ignored. This can
result in a logic error if one or more of the inserted
classes adds a method that performs some additional
computations that are desired.

In the spirit of Java, we have defined a more
dynamic semantics for multi-super than the static
semantics defined for C++. For example, Java does not
force the recompilation of sub-classes when a super-
class is recompiled. Our modified Java compiler ensures
that only a direct parent supertype can be used in the
multi-super call. These multi-super semantics are
consistent with Java’s classic super mechanism, where
the lookup always starts from the closest superclass and
searches upwards for appropriate method code. If a new
superclass is added, the call-site code does not need to
be changed to take advantage of any “value-added”
code that is inserted in new intervening classes.

Figure 7 shows the basic inheritance scenarios that
define the semantics of multi-super. In each scenario,
assume that a class or implementation (not shown in the
scenario) is a direct subtype of implementation C and
makes a multi-super call to implementation C. The
scenarios in Figure 7 can be derived from the scenarios
of Figure 6 by changing class C into implementation C.
However, several of the scenarios have been excluded
after this transformation, since it is impossible to have a
class that is a supertype of an implementa t ion .
Therefore, scenarios 5, 6, 9, 11, 13, 14 and 16 from
Figure 6 are excluded.

Figure 7. Inheritance scenarios for multi-super.

In addition, scenario 10 cannot occur, since an
ambiguous method exception would be generated when
implementa t ion C was loaded. In other words,
ambiguous super calls can never happen. In each
scenario of Figure 7, the code for method alpha() in
implementation A is executed. Of course, if this
alpha() is abstract, then an exception is thrown. As in
Figure 6, any scenario marked with an asterisk will not
compile without an error, so a series of recompilations
is necessary to generate the scenario at runtime.

Note that Figure 7 does not contain any scenarios
where a classic super call is made to a superclass, even
though the code in this superclass may actually be
inherited from an implementation. In fact, there are
many such scenarios, since each scenario in Figure 7
could have C as a class instead of an implementation. In
all of these cases, the same semantics hold as if C is an
implementation.

4.3 Classic Super Calls in Implementations

It does not make sense to have a classic super call in
an implementation, since an implementation cannot
have a superclass. However, if the same method appears
in two classes that share a superimplementation and if
that method contains a classic super call, promotion of

this method to the superimplementation would result in
a classic super call in this superimplementation. For
example, assume that there is a common method in
DataInputStream and RandomAccessFile of
Figure 5, and that this common method contains a
classic super call. The super call should invoke code in
InputStream if the common method is invoked on
an instance of DataInputStream and should invoke
code in the Object if the common code is invoked on
an instance of RandomAccessFile. However, it is
illegal to put a classic super call in an implementation,
since an implementation cannot have a superclass. There
are three solutions to this problem in MCI-Java.

If the programmer wants to promote a method to an
implementation that contains a classic super call, the
classic super call should be replaced by a call to a new
method. For example, a call super.alpha() should
be replaced by a call, this.superalpha(). The
new method should be implemented in each of the
subclasses to contain a single line classic super call to
the original method. For example, the single line in
superalpha() would be super.alpha().

A second solution is to modify MCI-Java so that
including a classic super call in an implementation is
legal and the semantics are defined as follows. At

A

Scenario 0

alpha()

*

C

A

Scenario 1

alpha()

C

A

Scenario 2

B

alpha()

C

B

Scenario 3

A

alpha()

alpha()

C

B

Scenario 4

A

alpha()

alpha()

*C

A alpha()

Scenario 7a

Balpha()

C

Balpha()

Scenario 7b

A alpha()

C

Scenario 8a

A

B

alpha()

alpha()

C

Scenario 8b

A

B

alpha()

alpha()

C

Scenario 12a

B

Aalpha()

alpha()

C

Scenario 12b

B

A alpha()

alpha()

C

Scenario 15a

alpha()

B

D

alpha()

A

C

Scenario 15b

alpha()

B

D

alpha()

A

C

Scenario 17

A

D

alpha()

B

C

alpha() A alpha()

Scenario 10

B

C

*

classimplementation
Inherits = extends, subclasses or utilizes

concrete method abstract method
Legend

runtime, when a classic super call is made in an
implementation (for example, InputCode), the JVM
looks down the calling stack to the first stack frame that
is a class, rather than an implementation (for example,
DataInputStream) and then starts looking for code
in the superclass of this class (for example,
InputStream).

The third solution defines the same semantics as the
second, but uses a different approach. Each
implementation that contains a method with a classic
super call is marked as it is loaded. When a class is
loaded that inherits from such a marked implementation,
the method is treated as though the method was local to
the class, instead of being inherited from the
implementation. As indicated in Section 9, copying a
code pointer (but not the code) is equivalent to the
approach taken for all methods (not just methods that
contain a super call) in traits [21].

In MCI-Java, an implementation cannot have a
superclass, so allowing a classic super call would be a
poor choice. Therefore, we use the first solution.

5 Syntax and Compiler Changes

We made three minor syntax changes to the
language to support the implementation language
construct. First , we added the keyword
implementation to mark an implementation. For
example, the first line of the OutputCode

implementation shown in Figure 5 is:

public implementation OutputCode implements

 DataOutput, Sink {

Second, we added the keyword utilizes to mark
a class that inherits from an implementation. For
example, the first line of the RandomAccessFile
class shown in Figure 5 is:

public class RandomAccessFile utilizes

 InputCode, OutputCode {

and the first line of the DataOutputStream class
shown in Figure 5 is:

class DataOutputStream extends

 OutputStream utilizes OutputCode {

Third, we modified the syntax of the super method
call to implement the multi-super call. We specify one
of many potential implementations that can contain code
or inherit code from other implementations, as an
argument. For example, Figure 4 shows a multi-super
call from the method writeChar(int) in class
DataOutputStream to the superimplementation of
this method in implementation OutputCode.

If no code for a method is contained in a referenced
superimplementation and it has not inherited code from
one of its superimplementations, then the compiler
generates an error, similar to the case of finding no code
in a superclass for a normal super call.

Note that each class still has a unique superclass, so
the syntax for a normal super call is unchanged. For
example, for any method in the class
DataOuputStream, the call super.alpha()
would still call an implementation of alpha() in the
superclass of DataOutputStream , which is
OutputStream.

To accommodate these three syntax changes, and to
report ambiguous method declarations, as described in
Section 4, we modified the open-source IBM Jikes
compiler, version 1.15 [13]. There were originally 243
C++ classes in the compiler. We modified 17 methods
in 10 of these classes and added an additional 41
methods to them. We also added 2 classes used in
building abstract syntax trees. Each of these added
classes consisted of 1 constructor, 1 destructor and 3
accessor functions.

All of the changes were straightforward. However,
one of the changes was especially interesting: when
compiling a message expression whose receiver is the
pseudo-variable, this, the standard compiler always
generates an invokevirtual instruction. However, if such
a message expression appears in an implementation, it
must generate an invokeinterface instruction instead.

6 Correctness and Performance

Experiments

This Section provides an overview of tests and
experiments conducted during the process of verifying
our modifications to the Jikes compiler and SUN JVM
JDK 1.2.2. The first goal of our validation was to show
that our multiple code inheritance implementation
preserves the semantics and performance of existing
single inheritance code. The second goal was to show
that both our basic multiple code inheritance and the
multi-super call mechanism execute correctly in
multiple inheritance programs.

We first compiled and ran three large existing Java
programs (javac, jasper and javap) using our modified
compiler and JVM. In all three of these tests, we
obtained correct results and there was no measurable
change in the execution times, between the original and
modified JVMs [8].

We then conducted tests to verify the correctness of
our JVM and compiler modifications for multiple
inheritance programs. We constructed test programs for
each scenario described in Section 4 and they produced
the desired results. The scenarios shown in Figure 6 test
all paths through the modified class loader code shown

in Figure 8. The scenarios in Figure 7 test all paths
through the modified multi-super resolution code.

Finally, we conducted an experiment to evaluate the
runtime performance of the refactored I/O classes
described in Section 2 that used multiple inheritance,
compared to the I/O classes from the standard library.
These refactored library classes exercise all of the
modifications that we made to support multiple code
inheritance, including the use of the pseudo-variable
t h i s in an implementation. The test program ran
without errors and with unmeasurable time penalties for
multiple code inheritance. We used two different
configurations. The first used an AMD Athlon XP
2400+ running Red Hat linux version 7.2. The second
used a SUN Ultra-60 running Solaris version 9.

This test program starts by creating an instance of
RandomAccessFile and writing a series of double
precision values, int values, char values and strings to it.
This exercises methods specified in the interface
D a t a O u t p u t whose code appears in the
implementation OutputCode . The data file is then
closed and reopened as an instance of
DataInputStream. All of the data is read, using
methods specified in the interface DataInput, whose
code appears in the implementation InputCode, with
help from a few methods that remain in
DataInputStream. As the data is read, it is written
to a second file using an instance of
DataOuputStream. These writes exercise methods
specified in DataOutput and implemented in
OuputCode. Finally, this file is read using an instance
of RandomAccessFile , exercising methods
specified in DataInput and implemented in
InputCode.

7 Dispatch in the Unmodified JVM

To implement multiple code inheritance, we
modified SUN's JVM 1.2.2 [23] to execute code in
interfaces. We know of no elegant way to implement
multiple code inheritance in Java without JVM
modifications. Although the approach of using inner
classes [18] is interesting, its use of delegation
inheritance along the interface chains is not very
appealing from the language consistency perspective.
Inner classes make interface inheritance second class.
We have previous success in modifying JVM dispatch
to support multi-method dispatch [10]. Our changes to
support multiple code inheritance are concise and
localized and should transfer to other JVMs.

In this Section we briefly review how a method call-
site is dispatched in the unmodified SUN JVM and the
standard data structures that are used. A more complete
description of these data structures has appeared [8].

At compile-time, a call-site is translated to a JVM
instruction whose bytecodes depend on the static type of
the receiver object. If the static type is a class, then the
generated opcode is invokevirtual. If the static type is an
interface, then the opcode is invokeinterface. In either
case, a method reference is also stored as an instruction
operand – an index into the constant pool. The method
reference contains the signature of the method and the
static type of the receiver object.

In the SUN JVM, the dispatch of invokevirtual uses
three data structures: method block (MB), method table

(MT) and virtual method table (VMT). The dispatch
process for invokeinterface requires one additional data
structure, interface method table (IMT).

At runtime, the compiled code for each method is
referenced using a method block (MB) that contains
complete information for the method, including its
signature, a pointer to its bytecodes and an offset that is
used during dispatch. For interfaces, the bytecode
pointer is null, since in standard Java there can be no
code in interfaces. In the SUN JVM 1.2.2 distribution,
method dispatch consists of the following three steps:

S1. Method resolution: generates a resolution method

block .
S2. Method quicking (or pre-execution): replaces the

opcode with one of its quick counterparts and
computes a reference to an execution method block.

S3. Method execution: executes the quicked bytecode
using the referenced execution method block.

A method table (MT) is an array of MBs that are
declared (not inherited) in a class or interface. To
resolve an invokevirtual instruction (S1), the JVM uses
the bytecode’s method reference to obtain the static
class and a method signature. It then searches the MT of
this static class for an MB whose signature matches. If
no match is found, it searches the MTs along the
superclass chain. The compiler guarantees that a match
is found and the match is the resolution MB.

The resolved MB will not necessarily be executed.
However, it will contain an offset that can be used as an
index into another data structure called the virtual

method table (VMT), which contains a pointer to the
execution MB. A reference to this execution MB is used
in the quick bytecodes that are generated in step 2 (S2)
of the method dispatch process. We make no
modifications to steps S2 or S3.

When a class is loaded, the loader constructs an MT
and VMT for the class. It constructs a VMT by first
copying the VMT of its superclass and then extending
the VMT for any new methods that have been declared
in the class, whose signatures are different from the
signatures of inherited methods. During class loading,
the loader may discover that the class needs a VMT slot
for an abstract method for which it does not declare any

code or inherit any code. In this case, the loader extends
the VMT by providing a slot for this method, allocates
an MB in another table called the Miranda Method

Table (MMT) and sets the VMT slot for the method to
point to this new MB. At the end of this process, every
method that can be invoked on an instance of the loaded
class has a unique VMT table entry that points to an
MB. We refer to a VMT entry that points to an MB in
the class’s MT or MMT as a local VMT entry. It is also
possible that a VMT entry points to an MB in the MT or
MMT of a superclass. Such an entry is called a non-

local VMT entry. This distinction is critical to support
code in interfaces.

Resolution of invokeinterface (S1) is similar to
resolution of invokevirtual, except the method reference
uses an interface instead of a class. Resolution starts at
the interface method table (IMT) of the interface.

The IMT provides an extra level of indirection that
solves the problem of inconsistent indexing of interface
methods between classes. This extra level of indirection
is analogous to the way C++ implements multiple
inheritance using multiple virtual function tables.

An IMT has one entry for each interface that is
extended or implemented (directly or indirectly) by its
class or interface. This entry contains a pointer to the
interface and a pointer to an array of VMT offsets,
where there is one array entry for each method declared
in the interface.

During resolution, the JVM starts with the zero’th
entry of the interface's IMT, which contains a pointer to
the interface itself. The MT of this interface is searched
for a matching method. If one is not found, the MTs of
subsequent interfaces in the IMT are searched. The
compiler guarantees a signature match.

As with the invokevirtual bytecode, the resolution
MB may not be the execution MB. In the
invokeinterface case, the resolution MB contains a local
MT offset instead of a VMT index. To use this offset,
the JVM first finds the IMT entry for the static interface
type of the receiver object. This entry contains an array
of VMT indexes. The offset from the resolution MB
selects the array element that contains the appropriate
index into the VMT of the receiver’s class. This VMT
entry is the execution MB and a reference to it is used in
the quick bytecodes that are generated in step 2 (S2) of
the dispatch process. A good description of alternate
approaches to implementing invokeinterface , including
class object search, itable search, indexed itables and the
alternate IMT scheme used in the Jikes RVM (formerly
Jalapeño) has appeared [2].

8 JVM Modifications for Multiple Code

Inheritance

In this Section we describe the localized changes we
made to the SUN JVM to support multiple code
inheritance. Recall that at the source code level, we
support multiple code inheritance by placing code into a
new construct called an implementation. However, our
compiler produces a .class file that represents each
implementation by an interface with method code.
Therefore, our changes to the JVM are based on
supporting code in interface .class files.

8.1 Code in Interfaces

Since code from interfaces has to be reachable from
the class pointer of the receiver object, we modify the
IMT construction for a class to copy the code from the
interfaces to a data structure accessible from the class.
Since this change only affects JVM class loading code
and does not change any code that is executed at a call-
site, its runtime overhead is small.

In the current JVM, when constructing the IMT of
the loaded class, the JVM iterates over each
superinterface of the class. For each interface, the JVM
iterates over each declared method. Besides the normal
actions taken in the classic JVM, for each method in an
interface, our modified JVM takes some additional
actions. The algorithm that implements these extra
actions is shown in Figure 8. Each scenario from Figure
6 is marked in the algorithm to show where it is
handled. Each method in Figure 6 has a circled number
that shows which action from Figure 8 is taken when its
MB is processed. The circled indicates that no action
is taken, since that method is in a class instead of an
interface. In the algorithm, the symbol < is used to
indicate a proper subtype and >= indicates a supertype.

Creating a new MB on the C-heap is necessary when
a class inherits code from an interface that overrides
code in a non-local MB. The alternative of changing the
code pointer for a non-local MB can result in the wrong
code being executed. For example, consider scenario 14
from Figure 6. At the time when class C is being loaded,
its VMT entry for alpha() points to a non-local MB
in the MMT of class D. While building the IMT in class
C , the JVM encounters the method alpha() in
interface A. If it copied the MB for alpha() from
interface A to the MB for alpha() in class C (stored in
the MMT of class D), dispatch would work properly for
any alpha() message sent to an instance of class C.
However, consider the message alpha() sent to an
instance of class D. Its VMT entry for alpha() points
to the modified MB in its MMT, which points to the
code in interface A (instead of the code from interface
B).

Let c be the class being loaded.

Let imb = the MB of the method being processed.

Let mb = the current MB pointed to by the VMT

entry of c with the same signature as the

method being processed.

if (mb.codepointer == null)

if(mb is not local(c))

Action 2 //scenarios: 6A

else if (imb.type > mb.type) and there is no

path from c.type to imb.type that does

not go through mb.type

Action 0 // scenarios: 4B

else

Action 1 // scenarios: 0, 1, 2A, 3A,4A,

 // 7aB, 7aA, 7bA, 8aB, 8aA, 8bA,

 // 10B, 12aA, 12bB, 15aA, 15bB

 // 17A

else // mb.codepointer != null

if (imb.codepointer == null)

Action 0 // scenarios: 5B, 7bB, 8bB

else

if (imb.type < mb.type)

if (mb is local(C))

Action 1 // scenarios:

 // 12bA, 15bA

else

Action2 // scenarios: 14A

else if (imb.type >= mb.type)

Action0 // scenarios 3B, 11B, 12aB,

 // 13B, 14B, 15aB, 16A,

else // imb.type unrelated to mb.type

Action 3 // scenarios: 9A,10A

Action 0: do nothing.

Action 1: imb is copied onto mb, but the offset

of mb (index back to the VMT) is retained.

Action 2: Create a new MB on the JVM C-heap,

copy imb to the new MB, change the current VMT

entry (the index of this entry is in the offset

of mb) to point to the new MB and change the

offset of the new MB to this VMT index.

Action 3: Throw an ambiguous method exception.

Figure 8. The JVM modifications to support code in

interfaces.

It is important to note that resolution and dispatch of
invokevirtual and invokeinterface bytecodes proceed in
exactly the same way as with the unmodified JVM, but
the change in the class loading code allows the code in
the interface to be found and executed. With the design
choices we made, no other JVM changes were required
to support code in interfaces. That is, we modified the
IMT construction algorithm for a class to:

1. detect and report potential ambiguities, and
2. copy the code from interfaces to classes.

8.2 Multi-super Calls

To support multi-super calls, we changed the
resolution code that is executed the first time a multi-
super call-site is encountered. There are no changes to
the dispatch code, so any multi-super call-site that is
executed more than once uses the standard JVM code

for subsequent executions. For example, the JVM
actually has an assembly language module that does
dispatch (instead of using C code). No change to this
assembly language dispatch module is required to
support our multi-super extension.

A super call is compiled into an invokespecial
bytecode, where the method reference contains a target
interface instead of a class. The JVM can recognize a
multi-super call, since it is the only case where the
compiler generates an invokespecial bytecode and the
method reference is an interface instead of a class.

Our modified JVM uses a custom resolution
algorithm to find a resolution MB. The algorithm
traverses all of the interfaces in the IMT of the target
interface. It finds all MBs whose signature matches the
signature in the method reference. It then computes the
most-specific MB as the resolution MB. Our JVM then
finishes by performing the same bytecode quicking
operation as the unmodified JVM, where the call-site is
replaced by an invokenonvirtualquick bytecode. No
change is made to the way this quicked bytecode is
executed (in the assembly language module).

Since resolution happens only once at each call-site,
the overhead of our change is insignificant in the
running time of a program, as supported by the
performance experiment described in Section 6.

9 Related Work

In Section 1, we surveyed the related work in
multiple inheritance on a per-language-basis.
Researchers, including our group, have prototyped a
variety of new approaches to multiple inheritance
without the new features ever being a standard part of a
language. In terms of programming language concepts,
the most-closely related work to MCI-Java’s
implementations are mixins [1] and traits [21].

The main differences between the three approaches
are (1) the base programming language used to
prototype the feature, (2) compiler support, (3) the
semantics of the inheritance, and (4) the semantics of
dynamic code handling (e.g., compile-time versus load-
time versus runtime). The most important differences
are related to semantics, but the details of the base
language and compilation are also significant. For
example, since MCI-Java is implemented within a full-
fledged Java VM, our work has had to solve a number
of practical issues related to dynamic code, where the
source code for the classes is not available to the VM.
In contrast, traits have been prototyped within
Smalltalk, which allows for all affected code to be
recompiled when necessary.

The traits paper itself has an excellent overview of
mixins , including a good description of how they
address multiple inheritance [21]. Mixins have been
investigated using Java as well, but mixins provide

compositional inheritance semantics, as opposed to
MCI-Java’s hierarchical inheritance semantics.
Consequently, mixins have three main problems:
ordering, dispersal of glue code, and fragile hierarchies.
In the interests of space, we do not repeat all of the
observations made in the traits paper here. However, to
summarize: in MCI-Java, inheritance is symmetric so
ordering does not apply. There is no glue code in MCI-
Java, so this is not a problem. MCI-Java solves most
(but not all) of the problems with fragile hierarchies.
However, MCI-Java always finds the appropriate
method to use at runtime by not copying any method
pointers at compile-time. In addition, all errors due to
hierarchy changes that can be determined at load-time
are reported at load-time and errors that cannot be
determined at load-time are handled as exceptions at
runtime. There are no unexpected executions with MCI-
Java.

We now focus on comparing MCI-Java’s
implementations with traits. Our work with MCI-Java
has evolved over a couple of years to include compiler
support for implementations, more localized changes to
the Java VM, and better handling of dynamic code
loading. For example, an earlier version of MCI-Java,
reported in Cutumisu’s Master’s thesis (2002) [8], used
scripts to handle Java source language changes instead
of a modified Java compiler. In spirit, the goals of traits
are closely aligned with our language goals, since in
addition to solving the code reuse problem, traits also
provides a separate language component for code that is
independent of language features for interface and
representation.

There are many similarities between an
implementation and a trait. Each is a collection of
methods (code). Each can be used by a client class to
augment its natively-defined (locally-defined) methods.
Each can invoke methods that are abstract until they are
natively defined in a client class that uses it. Each
contains no representation information (instance
variables). A class can use more than one
implementation or trait, which can lead to inheritance
conflicts. The semantics of inheritance conflicts and the
resolution mechanisms are different in traits and MCI-
Java and they will be discussed later. There are also
many differences between an implementation and a
trait. However, since there is not enough space to cover
all of the differences, we will focus only on the
fundamental distinctions.

The most fundamental difference between an
implementation and a trait is that when a client class
that uses a trait is compiled, the non-overridden
methods from the trait are flattened into the client class.
This means that the methods can be viewed as if they
were defined natively in the client class. This does not
mean that the code is copied to the client class, since the

main goal is to allow the code to be shared by different
client classes. Sharing is accomplished by extending the
Smalltalk method dictionary (similar to a symbolic
virtual method table) for each client class that uses a
trait by one entry for each of the non-overridden
methods. However, the entries in all method dictionaries
that use a trait point to common code stored in the trait
itself, where the trait is a “hidden class”.

The extension of the method dictionary occurs when
the client class is compiled and this is the source of
many of the most important differences between
implementations and traits. In Smalltalk, if a superclass
or a trait used by a client class is recompiled, the client
class is automatically recompiled. This can be done,
since all of the classes and traits are in the same
Smalltalk image. In Java, if a superclass or an
implementation used by a client class is recompiled, the
client class is not automatically recompiled. In Java, a
class decides at load-time (not compile-time) which
methods it will put in its method table. As a simple
example, consider scenario 2 from Figure 6. Assume A
and B are both implementations and scenario 2 applies
when class C is compiled. However, assume that before
runtime, implementation B is recompiled so that it
contains a method for alpha(). Even though class C
is not recompiled, the correct code in implementation B
is executed, since the method table for class C does not
contain any methods (or pointers to methods) that were
copied to it when it was compiled.

This example also applies if B and C are classes. In
fact, implementations were designed to behave as
classes in this respect and mirror the semantics of Java.
This is just one example of why changing method tables
at compile-time (i.e., flattening) and hiding the code
source at runtime is problematic in Java.
Implementations survive at runtime as first-class
language features, not as hidden entities that serve only
as repositories for shared code. Again, this is the most
fundamental distinction between t ra i t s and
implementations.

More generally, the traits paper [21] has an
excellent description of the three major problems with
multiple inheritance: “conflicting features”, “accessing
overridden features” and “factoring out generic
wrappers”. Fortunately, MCI-Java has solved all three
of the problems.

As indicated in the traits paper, the “conflicting
features” problem is not really a problem if data is not
multiply-inherited and multiple-data inheritance is
disallowed in MCI-Java. One difference between traits
and MCI-Java is the conflict resolution semantics. MCI-
Java and traits both solve the “diamond” problem
(scenario 17 of Figure 6) by declaring no conflict.
However, MCI-Java adopts a more relaxed definition of

inheritance conflict [19] than traits. Consequently,
scenarios 12a, 12b, 14, 15a and 15b, which are not
inheritance conflicts in MCI-Java, would be inheritance
conflicts with traits, if the implementations were
replaced by traits and no glue was used. The conflict
resolution can also result in different methods being
selected by MCI-Java and traits. If the implementations

in scenarios 11 and 13 were replaced by traits, there
would still be no inheritance conflicts, but traits would
select the method in B instead of A for each case. This is
because methods from traits take precedence over
methods from superclasses, whereas in MCI-Java,
inheritance from superclasses and inheritance from
superimplementations are treated the same.

It is also correctly pointed out in the traits paper that
explicitly naming an arbitrary superclass in the source
code (as done in C++) makes the code fragile with
respect to changes in the architecture of the class
hierarchy. That is why MCI-Java requires every explicit
multi-super call to be made to a direct
superimplementation and inheritance is then used to
find the appropriate method. For example, in scenario
17, the programmer must decide whether a super call in
implementation (or class) C should be along the B

inheritance chain or D inheritance chain, rather than
explicitly specifying implementation A . If the
inheritance hierarchy is changed above the direct
superclasses, the original intent to inherit along the B or
D inheritance chain will survive. Note that radical
changes to the inheritance hierarchy above the
immediate superclasses can be made in Java without
recompiling type C and no unexpected consequences
will arise. However, the only way to change the
inheritance relationships between type C and its
immediate superimplementations is to recompile type C.
In this case, if the original super call is made invalid due
to a direct superimplementation being removed, the
compiler will generate an error, so no unexpected
consequences will arise.

The traits paper also has a pertinent example of the
third problem with multiple inheritance: factoring out
generic wrappers. However, once again, this problem
has been solved in MCI-Java. The problem can be
reduced to solving the problem of what to do with
classic super calls that get promoted to implementations

as described in Section 0.
In summary, MCI-Java addresses almost all of the

weaknesses attributed to mixins and, more generally,
various aspects of multiple inheritance [21]. Although
there are many similarities between MCI-Java and
traits, the fundamental difference is the choice, for
traits, of inheritance semantics based on flattening. The
compile-time-based technique of flattening is difficult to
support in Java, given the dynamic semantics of the VM

and the inaccessibility of source code at load-time and
runtime. The dynamic aspects of Java led to many
scenarios and implementation problems (e.g., Sections 4
and 8) that we solved for MCI-Java, which are not
issues for traits under Smalltalk.

10 Conclusions

We have shown why multiple code inheritance is
desirable in Java. We have defined a mechanism, called
implementat ions , which supports multiple code
inheritance and a super call mechanism that allows
programmers to specify an inheritance path to the
desired superimplementation. We have defined simple
syntactic Java language extensions and constructed a
modified Jikes compiler (mcijavac) to support these
extensions. We have constructed a modified JVM
(mcijava) to support multiple code inheritance. Our
modifications are small and localized. The changes
consist of:

1. Class loader changes to support code in interfaces.
2. Method block resolution changes to support multi-

super.
Our JVM modifications do not affect the running time
of standard Java programs and they add negligible
overhead to programs that use multiple inheritance.

11 Acknowledgement

This research was supported by grants from the Natural
Sciences and Engineering Research Council (NSERC)
of Canada. We would like to thank the referees and the
programming committee for several helpful suggestions
that improved the manuscript. Finally, we would like to
thank the shepherd for this paper, Michal Cierniak, for
his help.

References

[1] D. Ancona, G. Lagorio and E. Zucca, Jam – A
Smooth Extension of Java with Mixins, 14th

European Conference on Object-Oriented

Programming (ECOOP), Cannes France, pp 145-
178, June 2000.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove and D.
Lieber, Efficient Implementation of Java
Interfaces: InvokeInterface Considered Harmless,
16th ACM Conference on Object-Oriented

Programming, Systems, Languages, and

Applications OOPSLA, Tampa U.S.A., pp
108–124, October 2001.

[3] B. Bobrow, D. DeMichiel, R. Gabriel, S. Keene,
G. Kiczales, D. Moon, Common Lisp Object
System Specification, X3J13 Document 88-002R,
June 1988.

[4] E.L. Burd, M. Munro, Investigating the
Maintenance Implications of the Replication of
Code, Proceedings of the International Conference

on Software Maintenance (ICSM), Bari Italy, pp
322 – 329, October 1997.

[5] C. Chambers and G. T. Leavens. BeCecil, A Core
Object-Oriented Language With Block Structure
and Multimethods: Semantics and Typing, Fourth

International Workshop on Foundations of Object-

Oriented Languages (FOOL), Paris France,
January 1997.

[6] C. Chambers and G. T. Leavens, Typechecking
and Modules for Multimethods. A C M

Transactions on Programming Languages and

Systems, 17(6), pp 805–843, November 1995.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D.
Engler, An Empirical Study of Operating Systems
Errors. 18th ACM Symposium on Operating

System Principles (SOSP) , Banff Canada, pp
73–88, October 2001.

[8] M. Cutumisu, Multiple Code Inheritance in Java,
M.Sc. Thesis, University of Alberta,
http://www.cs.ualberta.ca/~systems/mci/thesis.pdf,
December 2002.

[9] M. Day, R. Gruber, B. Liskov, and A. C. Myers,
Subtypes vs Where Clauses: Constraining
Parametric Polymorphism, 10th ACM Conference

on Object-Oriented Programming, Systems,

Languages, and Applications OOPSLA, Austin
U.S.A., pp 156–168, October 1995.

[10] C. Dutchyn, P. Lu, D. Szafron, S. Bromling and
W. Holst, Multi-Dispatch in the Java Virtual
Machine: Design and Implementation,
Proceedings of 6th Usenix Conference on Object-

Oriented Technologies and Systems (COOTS), San
Antonio U.S.A., pp 77-92, January 2001.

[11] M. Ellis and B. Stroustrup, The Annotated C++

Reference Manual, Addison Wesley, New Jersey,
1990.

[12] M. Franz, The Programming Language Lagoona
— A Fresh Look at Object-Orientation, Software

— Concepts and Tools, 18, pp 14–26, 1997.

[13] IBM Research Jikes Compiler Project
http://www.ibm.com/developerworks/opensource/j
ikes/

[14] Y. Leontiev, M. T. Özsu, and D. Szafron, On
Separation between Interface, Implementation and
Representation in Object DBMSs, 2 6 t h

Technology of Object-Oriented Languages and

Systems Conference (TOOLS USA), Santa Barbara
U.S.A., pp 155 – 167 August 1998.

 [15] Y. Leontiev, T. M. Özsu and D. Szafron, On Type
Systems for Database Programming Languages.
ACM Computing Surveys, 34(4) pp 409 – 449
December 2002.

[16] MCI-Java.
http://www.cs.ualberta.ca/~systems/mci.

[17] B. Meyer, Object-Oriented Software Construction,
Second Edition, Prentice-Hall, 1997.

[18] M. Mohnen, Interfaces with Skeletal
Implementations in Java, 14th European

Conference on Object-Oriented Programming

(ECOOP 2000) - Poster Session, June 12th - 16th
2000, Cannes, France, http://www-i2.informatik.
rwth-aachen.de/~mohnen/PUBLICATIONS/
ecoop00poster.html has a link to an unpublished
full paper.

[19] C. Pang, W. Holst, Y. Leontiev and D. Szafron,
Multi-Method Dispatch Using Multiple Row
Displacement, 13th European Conference on

Object-Oriented Programming (ECOOP), Lisbon
Portugal, 304-328, June 1999.

[20] R. K. Raj, E. Tempero, H. M. Levy, A. P. Black,
N. C. Hutchinson, and E. Jul, Emerald: A General-
Purpose Programming Language. Sof tware

Practice and Experience, 21(1), pp 91–118,
January 1991.

[21] N. Schärli, S. Ducasse, O. Nierstrasz and A. Black,
Traits: Composable Units of Behavior, 17th

European Conference on Object-Oriented

Programming (ECOOP), Darmstadt Germany, pp
248-274, July 2003.

[22] D. Stoutamire, and S. Omohundro, The Sather 1.1
specification. Tech. Rep. TR-96-012, International
Computer Science Institute, Berkeley, August
1996.

[23] Sun Microsystems Inc. Java[tm] 2 Platform.
http://www.sun.com/software/communitysource/ja
va2/download.html.

