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Abstract
Many critical IT infrastructures require non-disruptive operations.
However, the operating systems thereon are far from perfect that
patches and upgrades are frequently applied, in order to close vul-
nerabilities, add new features and enhance performance. To miti-
gate the loss of availability, such operating systems need to provide
features such as live update through which patches and upgrades
can be applied without having to stop and reboot the operating sys-
tem. Unfortunately, most current live updating approaches cannot
be easily applied to existing operating systems: some are tightly
bound to specific design approaches (e.g. object-oriented); others
can only be used under particular circumstances (e.g. quiescence
states).

In this paper, we propose using virtualization to provide the live
update capability. The proposed approach allows a broad range of
patches and upgrades to be applied at any time without the require-
ment of a quiescence state. Moreover, such approach shares good
portability for its OS-transparency and is suitable for inclusion in
general virtualization systems. We present a working prototype,
LUCOS, which supports live update capability on Linux running
on Xen virtual machine monitor. To demonstrate the applicability
of our approach, we use real-life kernel patches from Linux ker-
nel 2.6.10 to Linux kernel 2.6.11, and apply some of those kernel
patches on the fly. Performance measurements show that our im-
plementation incurs negligible performance overhead: a less than
1% performance degradation compared to a Xen-Linux. The time
to apply a patch is also very minimal.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]: Soft-
ware Management—Software maintenance; D.4.5 [Operating
Systems ]: Reliability
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1. Introduction
Patches and upgrades are a part of everyday life for a contemporary
operating system. Such patches and upgrades are frequently applied
in order to plug security holes, add new features and enhance
performance. Unfortunately, this process usually requires stopping
and restarting a running operating system, which could constitute
a major source of its loss of availability. However, for some long
running and mission-critical systems, any such disruption could be
expensive and intolerable [1]. They have to keep all tasks running
all the time, otherwise, risk dire consequences. Therefore, features
such as the live update capability [2] have become increasingly
important, because it could minimize the planned and unplanned
downtime in order to diminish the loss of availability.

Most modern operating systems are large and complex. To live
update such operating systems safely, several requirements are
identified in [3, 4, 5]. First, updatable units in an operating system
need to be easily defined. For an operating system using an object-
oriented approach such as K42, an object is a natural updatable
unit. Second, a quiescent state or a safe point [6] needs to be
detected or enforced before a dynamic patch could be applied.
Otherwise, the operating system may result in an inconsistent state.
This necessitates an efficient way to track the states of the operating
system, for example, using a reference counter to track the number
of threads executing in an updatable unit. Finally, an effective
approach is required to redirect invocations from the original unit
to the newly updated unit after a dynamic patch is applied.

However, most existing operating systems are not designed with
a live update capability in mind. First, they are usually implemented
using non-object-oriented approaches. Hence, function calls are of-
ten made directly rather than going through an indirection table,
making it difficult to redirect function calls. Moreover, they of-
ten lack well-defined boundaries among various components, pre-
venting component-level live updates. Second, they usually lack
the mechanism that supports safe points detection (e.g. reference
count). It makes a quiescent state detection either very time con-
suming or simply impractical. Furthermore, it is very rare for hot
spots in an operating system to enter a quiescent state in which live
updates can be safely applied. Examples include network modules
in a web server and a root file system module. A network mod-
ule is always busy receiving and sending packets, and a root file
system module cannot be unmounted while the operating system
is still running. Under such circumstances, emergency patches and
updates need to be indefinitely postponed, exposing the whole sys-
tem to possible attacks or corruption. Finally, even if such a safe
state could be reached and detected, due to the fact that the update
process is executing inside the operating system, it may trigger an
execution of the code in the patch program and result in a dead lock
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situation or an inconsistent state. For example, a live update to an
interrupt handler may trigger the interrupt and brings the operating
system into an undefined state.

Being aware of the above problems, we propose using virtu-
alization as a way to support live updates on existing operating
systems. We argue that system virtualization [7], recently a popu-
lar technique for many applications, provides the operating system
with a seamless capability to support live updates, thus reducing
downtime and improving availability.

By running the operating system on a high performance virtual
machine, it is convenient and natural for the virtual machine moni-
tor (VMM) to modify the state of the operating system without hav-
ing to stop and reboot the operating system. We apply live updates
at the function level rather than at the component level because it
is often impossible to unambiguously partition the whole system
into disjoint components. Given that a quiescent state may not even
exist in some functions, we eliminate this requirement and instead
allow live updates at any time. If a live update changes data, we
keep different versions of the data. It is the responsibility of VMM
to invoke the state transfer function that maintains the coherence of
different versions.

We have built a working prototype, named LUCOS, to provide
live update capability to Linux running on Xen [8], a popular open-
source VMM. According to our performance measurements, negli-
gible overhead is incurred in such an implementation. We show that
several real-life Linux kernel patches could be successfully applied
on the fly without the need for a reboot.

The rest of the paper is organized as follows: section 2 presents
a brief introduction on system virtualization and its application
to provide live update capability. Section 3 describes the overall
design of our framework. Section 4 focuses on the detailed design
and implementation issues. Section 5 presents some experimental
results for Linux on Xen. Section 6 discusses the related work. We
close this paper with a brief conclusion.

2. Live Update Using Virtualization
2.1 System Virtualization

In the past few years, virtualization on PC-hardware has been ex-
tensively studied, and many systems and innovations have emerged.
In general, two trends seem to have dominated the development of
system virtualization [9]: full system virtualization, where a virtual
machine is deployed as a complete replica of the underlying hard-
ware; and para-virtualization, where the operating system is mod-
ified to support virtualization with a lower performance penalty.
Examples of full system virtualization include VMware [10] and
Virtual server [11], while Denali [12, 13], User Mode Linux [14],
and Xen [8] are some of the typical para-virtualization systems.

Due to the unfriendliness of the IA-32 architecture to virtu-
alization 1, full system virtualization could cause significant per-
formance penalty. Therefore, some research groups advocate the
use of para-virtualization by allowing the virtual machine to be
close, but not identical, to the underlying hardware. Through ex-
posing some hardware interface to the operating system, para-
virtualization significantly reduces the performance penalty, though
some modification to the operating system is required.

The Denali isolation kernel allows untrusted services to run
in isolated domains. Operating systems must first be ported to
the Denali architecture, which is a modified version of x86 with
an enhanced virtualizability and scalability. Xen is an x86 VMM
developed at the University of Cambridge Computer Laboratory. It
is released under the GNU General Public License. A broad range

1 Intel and AMD have announced their plan of hardware enhancement to
ease the implementation of full system virtualization, namely Vanderpool
and Pacifica, and their commercial products are recently available.

of operating systems have been or will be ported to run on Xen.
They include Linux, Windows XP, FreeBSD, NetBSD and Plan 9.

2.2 Applying Virtualization to Live Update

”Any problem in computer science can be solved with another level of
indirection.” David Wheeler in Butler Lampson’s 1992 ACM Turing Award
speech.
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Virtual Machine I

Operating System

Application I

Application II

Application III

Virtual Machine II

Operating System
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Application II

Application III

Figure 1. General structure of virtualization.

As depicted in Figure 1, virtualization provides an additional
layer between the running operating system and the underlying
hardware. The software layer, which is referred to as the virtual
machine monitor (VMM), manages the hardware resources and
exporting them to the operating systems running on them. As a
result, the VMM is in full control of the state and the execution of
the operating systems. Thus, it is convenient for the VMM to track
and change any state of the operating systems without the need for
a reboot.

A live update request is trapped to the VMM that carries out the
process of live updates. This method offers several special benefits.
First, because any trap from the operating system to the VMM is
synchronized and blocked, the operating system is totally inactive
during the live update until the trap has completed. This feature
ensures the atomicity of a live update.

Second, using the VMM to perform live updates can easily elim-
inate the requirement of a quiescent state and allow patches to be
applied at any time. When there is any change to the data struc-
tures in the operating system, we allow the co-existence of both
old and new versions. Both versions of the data structures will be
write protected by the VMM. If any attempt is made to change
either version, a write protection will cause an execution transfer
from the operating system to the VMM. A data transfer function is
then called in the VMM to ensure the coherence between the old
and new versions. When all threads referring the old versions of
the data structures have left the old versions of functions, the syn-
chronization can be safely terminated since the kernel is completely
using the updated functions and data structures afterwards.

Finally, since the program that applies live update is executed in
the VMM, it will not bring unnecessary state change to the trapped
operating system. Therefore, it’s natural to guarantee the consis-
tence of the operating system when a live update is in progress.
In contrast, live updates purely by an operating system itself may
cause unexpected changes and bring the system into an unknown
state. As an illustration, for patches that update the data structures
used in interrupt handlers, write protections in the interrupt han-
dlers will incur double faults and hang the operating system.

3. The Framework of LUCOS
This section presents the general framework of LUCOS. Specifics
regarding its implementation are detailed in section 4. We begin
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with the high-level design issues that have driven our work, fol-
lowed by a classification of live updates to operating systems. The
final part of this section gives an overview on the architecture of
LUCOS.

3.1 Design Issues

To support live updates to a running operating system, LOCUS
follows several design principles:

• OS-Transparency and OS-Neutral: To avoid disrupting ser-
vices on a running operating system, any change to the operat-
ing system should not necessitate an operating system reboot.
Fortunately, most existing operating systems provide some
means to extend their functionalities on the fly (e.g., Linux
loader kernel module), eliminating the need for reboots. LU-
COS takes advantage of this capability through making both
the update manager in the target operating system and the dy-
namic patches in the form of loadable kernel modules, so no
modification to the operating system kernels is required. Fur-
ther, the support for live updates in the VMM is OS-neutral, al-
lowing good portability and easy inclusion in a general-purpose
VMM.

• Flexibility: LUCOS allows live updating an operating system
at the granularity of functions. It also permits updates to both
code and data structures, even dynamically adding and remov-
ing single instance or multiple instances of data structures. Fur-
thermore, demanding a quiescent state is no longer imperative.
Updates are allowed to be performed at any time, even when
the code to be updated is still active.

• Safety and Maintainability: Any update to the operating sys-
tem should be transactional to avoid corrupting the whole sys-
tem. If an error occurs during the update process, the system
should be able to roll back any change already made on it. LU-
COS also allows any previously committed updates to be rolled
back.

• Correctness: For simplicity, LUCOS neither verifies nor vali-
dates the input patch files, but assume its trustability and cor-
rectness. The construction of a patch program is decoupled
from the generation of the corresponding patch files, leaving the
verification of the program to developers and testers. However,
LUCOS allows rolling back problematic patches or patching
the same update units more than once.

To render our implementation simple and practical, several de-
sign decisions are made as follows:

• Patches to Data Structures: To ensure the correctness of the
system, it is required that if any change is made to a data
structure, any code that manipulates any instance of the data
structure should also be updated accordingly.

• Patches to Function Prototypes: Since LUCOS mainly changes
callee functions and keeps caller functions intact, it’s difficult
to deal with the case where the function prototype is changed.
This problem is solved by requiring that if there is any change
to a function’s prototype, its callers are recursively chosen as
the candidates for live updates. This requirement holds even
when patching inlined functions since they have no function
body in the binary code.

• Patches to Initialization Code and Data: There is usually a
large number of initialization code and data in the operating
system. They are executed only once during the booting pro-
cess. Their memory space is freed after the startup phase of the
operating system. It is difficult to support live updates to such
code and data directly because it is impossible to update those
data retroactively. However, such updates usually need to take

effective only when the operating system is restarted next time.
There is no need to update such code and data immediately to
the running operating system. If it is necessary to do so, the ef-
fect of such updates can be achieved by providing suitable state
transfer functions that appropriately modify the state committed
by the initialization code and data.

• Patches to Scope Information: The scope information (e.g.
static, export) of a function restricts the function’s accesses to
some specific scope. Such a patch generally has no effect on
the runtime behavior of the operating system kernel. However,
some may affect the access control rules of the kernel. For
instance, the EXPORT SYMBOL macro in Linux will make
a symbol available for use in kernel modules. Therefore, we
only focus on patches that explicitly affect the access control
rules of the kernel. For patches that change the access rules,
they are applied by executing proper state transfer functions.
For example, exporting a symbol can be done by adding the
symbol into the runtime symbol table of the kernel.

3.2 A Classification of Live Updates

Generally speaking, there could be two types of patches to the op-
erating system: updates affecting only code, and updates affecting
both code and data. Because any change to the data structures re-
quires corresponding changes to the code manipulating them, the
type of live updates that change only data is not allowed in our
system. To facilitate the implementation, a refined classification is
made based on the semantic equivalence of a patch program.

Semantic Equivalence: For patches that affect only code, it
should be noticed that if the semantic of the patch code is changed
when modifying global variables, it should be classified as the
second type. As illustrated in the following code fragment, the
semantic of the function foo is changed since it fixes the deadlock of
demo lock by unlocking the demo lock when the condition doesn’t
hold. However, the requesting threads to the function foo could
be deadlocked even after the patch has been applied. Therefore, a
callback function that unlocks the demo lock should be called each
time a thread leaves the function foo.

spinlock_t demo_lock = SPIN_LOCK_UNLOCKED;
void foo(void){...;

spin_lock(&demo_lock);
... ;
if(condition){return;}
...;
spin_unlock(&demo_lock);

}

Example code 1: a buggy function with
a potential for deadlocks.

spinlock_t demo_lock = SPIN_LOCK_UNLOCKED;
void foo_patch(void){

...;
spin_lock(&demo_lock);
...;
if(condition){

spin_unlock(&demo_lock);
return;

}
...;
spin_unlock(&demo_lock);

}

Example code 2: a patch function to fix
the deadlock problem.
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void state_transfer(void){
if(spin_is_locked(&demo_lock))

spin_unlock(&demo_lock);
}

Example code 3: a callback function
to recover from a deadlocked situation.

Our final classification of live updates is shown as follows:

• Only code is modified, while existing data structures remain
unchanged during the update. The patch code may introduce
new local or global variables and data structures, but should
maintain the semantic equivalence with the original code.

• Updates that affect both code and data structures in an operat-
ing system. The patched data structures can be global, single-
instance data, or multiple-instance data. For the later case, as
operating systems usually organize all instances of a data struc-
ture in some ways, e.g. linking them as a list, locating them can
be achieved by iterating all instances.

3.3 Architecture of LUCOS

From a hierarchical viewpoint, LUCOS consists of three major
components (see Figure 2). Our design follows a layered approach.
The control logic for users is separated from the update logic in the
operating system and the VMM, resulting in a clear interface and
good portability.

3.3.1 Control Interface

To make the live update system easy to use, a user-friendly control
interface is indispensable. It should be easy for users to apply live
updates and to rollback existing patches. The users should also have
some way of knowing which patches have already been applied.
The control interface lies on top of the operating system in the
form of a user application. However, only authorized users (e.g.
administrators) are allowed to use it. It has three options available.

• query: show detailed information of applied patches.

• patch: apply a new patch.

• rollback: rollback a committed patch.

3.3.2 Update Manager

Since we may need to apply or to rollback patches frequently, it
is desirable to manage all these operations in a uniform way and
to avoid possible errors in the process. For example, rolling back a
non-existent patch should be caught and disallowed, or it may cor-
rupt the operating system. Moreover, there may be cases in which
a user patches the same function more than once, so different ver-
sions of the patch to the same function must be properly managed.
Finally, to allow a patch that involves multiple functions, there
should be a mechanism to allow all functions within the patch be
grouped and committed together.

The update manager serves as an agent or a proxy between the
control interface and the update server. It is in the form of a loadable
kernel module in the operating system. It provides the following
services:

• receive patch commands from the control interface and verify
their legitimacy.

• negotiate with the update server to process live update requests.

• manage the committed patches and coordinate different ver-
sions of the patches to the same function.

A live update command is sent to the update server in the form
of a hypercall [8]. A hypercall is a synchronous software trap

that carries out the control transfer from the operating system to
the VMM on which it runs. It is analogous to a system call in
the conventional operating system. The synchronous nature of the
hypercall ensures that the operating system is inactive in its entirety
during the live update process in VMM.

3.3.3 Update Server

The update server lies in the VMM and carries out the real job
of live updating code and data. It receives all of the necessary
information from the update manager. The function of the update
server includes redirecting function calls, setting up necessary data
structures to maintain the coherence among different versions of
the data, invoking the state transfer functions.

The update server is composed of several hypercall handlers that
service the corresponding live update requests. The update server
is responsible for guaranteeing the coherence between the original
and the new data if the live update changes the data structures.
Upon receiving a notification that either version of the data has been
modified, the update server invokes the corresponding state transfer
function supplied by the update manager to maintain coherence.

4. Detailed Design and Implementation
We have implemented a working prototype on Linux 2.6.10 run-
ning on Xen-2.0.5. The hardware platform is the Intel x86 archi-
tecture (a ”P6” or newer processor). We chose Linux and Xen be-
cause of their broad acceptance and the availability of their open-
source code. Xen supports or is to support a broad range of op-
erating systems that include Windows XP, FreeBSD, NetBSD and
plan9. Linux also has a good support of kernel extensions in the
form of loadable kernel modules.

The following subsections discuss the detailed design and the
implementation of LUCOS. First, we describe how to define and to
generate patch files for live updates. Then, we present in detail how
to perform and to rollback a live update. Finally, we discuss some
open issues related to the implementation.

4.1 Patch Construction

The source code of the patches used in our experiments is obtained
from real-life Linux kernel modifications made by kernel develop-
ers. Linux kernel developers have announced numerous patches to
fix security holes, add new features and enhance performance. They
are in the form of static patches, which are generated by differing
the old version of Linux with the updated version.

Applying a live update to a Linux kernel generally involves four
steps: (1) analyze the static patch, (2) write a source file for the
live update patch, (3) generate an executable binary for the patch
file, (4) inject the binary patch file and apply the live update. Here,
we focus on defining a simple and powerful input file format and
giving some guidelines to write a LUCOS patch. Also, we supply
some helper functions to ease the construction of LUCOS patches.

4.1.1 LUCOS Patch Files

Linux allows a dynamic injection of kernel code in the form of
a loadable kernel module, which defines the basic format for the
patch files. To make our system powerful enough to handle various
complex kernel patches, some additional functions and fields are
added to the patch files.

A kernel patch file usually consists of updates on several func-
tions and data structures. As LUCOS allows co-existence of both
the old and new versions of the data structures, data transformation
functions are needed to maintain their coherence. In some cases,
a one-to-one correspondence between the data structures is not
enough for complex patches. For example, adding new fields or
merging data structures may require a multiple-to-one conversion,
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Figure 2. Architecture of LUCOS

while splitting a structure may need a one-to-multiple conversion.
Being aware of these cases, LUCOS supports a state transforma-
tion between the old and the new data structures on a multiple-to-
multiple basis. Therefore, for each data structure, a state transfer
function should be provided to maintain the consistence between
itself and other related data structures.

For some bug-fixing patches, simply replacing the buggy code
may not solve the whole problem. For the example code in Section
3.2, some additional transfer function needs to be called to fix the
deadlock condition. Therefore, LUCOS allows a patch to register
some callback functions to be called after some specific situations.
For example, after a thread leaves a function, and after all threads
leave the patched functions.

Finally, a valid LUCOS patch file contains all or parts of the
items listed below. It should be noted that the items marked with a
star are optional. Hence, a broad range of kernel patches could be
accepted, and patch developers will have more flexibility to tailor
their patches.

• New declarations of data structures, including single-instance
and multiple-instance data structures and the functions that
manipulate them. These code and data will be used by Linux
kernel after applying the patch.

• *Callback functions that will be called after some specific
events happen during the patch process. LUCOS currently sup-
ports three types of callbacks: (1) function callbacks, which will
be invoked each time a thread leaves a function being patched;
(2) thread callbacks, which will be called when all threads have
left a function being patched; (3) data callbacks, which will be
invoked when all threads using a data structure have left all the
functions that manipulate the instance of the data structure.

• *Patch startup and patch cleanup functions. Patch startup func-
tions are responsible for some initialization needed to set up
the environment for live updates, for example, initializing the
added data structures and registering new resources to the ker-
nel. Also, the patch startup functions will locate all instances of
data structures if the patch updates data structures. On the other
hand, patch cleanup functions carry out some cleanup work
to complete the live update. Examples include freeing unused
data structures and un-registering the old resources. To support
rolling back a committed patch, the patch startup and cleanup
functions should be designed with the ability to be reused for
the rollback process. An argument to such a function indicates
whether it is executed by a rollback process or not.

• *State transfer functions that will be utilized to maintain the
consistency of the old and the new data. Instead of a one-to-
one correspondence, the state transfer functions could have a
multiple-to-multiple correspondence. Therefore, writing to one
instance of a data structures may trigger updates of multiple
instances of multiple data structures.

• The module init function and the module exit function are sim-
ilar to their counterpart in general Linux kernel modules. To
prevent malicious or erroneous removal of a kernel module, a
function call to the update manager is added to the module exit
function to prevent arbitrary removal of the patched module.

To facilitate the construction of LUCOS patch files, we have
provided a set of helper functions. These functions could be
easily used by the patch developers to write initialization and
finalization code, startup and cleanup functions, and insertion
and deletion of callback and state transfer functions. Although
it’s generally impossible to completely automate the process of
patch construction for a powerful dynamic update system, we
plan to automate the tedious work by generating templates for
the LUCOS patch files.

4.1.2 Generating LUCOS Patches

Figure 3 shows the work flow of constructing a LUCOS patch.
After a patch file is ready, the standard module compilation proce-

Static Patch
File

LUCOS Patch
File

Linux Kernel
Module File

LUCOS Module
File

Programmer

Compilation

Pre-Load

Figure 3. Work flow to construct a LUCOS patch

dure is initiated to generate the patch module. However, to prevent
an arbitrary access to the kernel function and data, Linux exposes
only a limited set of kernel data and functions to kernel modules.
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Therefore, inserting a module that patches non-exposed functions
and data will not be permitted by the kernel. LUCOS solves this
problem by using a linker to pre-load the patch modules before in-
serting them into kernel. The linker scans the System.map file that
contains all kernel symbols and relocates the non-exposed symbols
in the patch module.

4.2 Performing Live Updates

Performing a live update involves three steps: (1) set up a patch;
(2) apply the patch according to its type; (3) terminate the patch
process. The following subsections detail the three steps.

4.2.1 Patch Setup

On receiving a live update request from the control interface, the
update manager validates the request and gathers necessary infor-
mation about the patch.

Binary rewriting is used to redirect a function call from the orig-
inal function to the patched function. However, the variable-size in-
structions of the x86 architecture complicate the process of binary
rewriting. According to x86’s calling convention and register us-
age convention, the prologue of a function consists of instructions
that save the callee-saved registers and adjust the stack size. Usu-
ally, each of these instructions is short and occupies no more than
5 bytes, e.g., the binary code of ”pushl %ebx” is 0x53 and occupies
only one byte. On the other hand, the length of a jmp instruction,
which is used to redirect a call from the original function to the
patched function, is 5 bytes. Therefore, it is necessary to make sure
that no thread context or interrupt context is currently executing in
the first 5 bytes of the function to be patched. This is accomplished
by iterating all kernel threads of the operating system, and make
sure that none of them is executing between the starting address of
the function to be patched and 5 bytes beyond that address. Fortu-
nately, this situation rarely occurs since the prologue instructions
in a function are usually some short-term instructions (e.g. push,
move and add), which is unlikely to be blocked.

Before applying patches to both code and data, we need to count
the number of threads or interrupt contexts executing in the code
to be patched. This is achieved by iterating the kernel stacks of
all kernel threads. If no thread or interrupt context is executing in
the code, then the patch process can be simplified. In this case,
after invoking the state transfer function to transfer the state from
the old data to the new data, the remaining live update procedure
can be simplified to become a live update to code only. Otherwise,
VMM is responsible for maintaining the coherence between the
two versions of the data.

If a patch module provides the startup function, then it will
be invoked in this phase and perform some initialization work to
prepare for the patch. After all of the startup work is done, the
update manager issues a hypercall to inform the update server to
apply the patch.

4.2.2 Applying Patches

We do not rely on a quiescence state before a live update because
hot spots in an operating system rarely enter a quiescent state. It
will be very difficult to live update them if we have to wait for them
to enter a quiescence state. As a result, LUCOS allows coexistence
of both the old and the new versions of a data structure to be
patched. Hence, some coherence mechanism is required to ensure
their consistency. It seems that the easiest way to accomplish this
is to write protect both versions of the data. When there is a write
operation to either of them, it will be trapped to the update server
where proper action could be taken for data synchronization. Traps
and fine-grained protection mechanisms are required to implement
efficient data synchronization.

Pentium provides two protection mechanisms known as seg-
mentation and paging. Although the segmentation mechanism al-
lows variable-length segments, it is difficult to change the seg-
ment selectors of the application programs on the fly. It makes a
fine-grained data synchronization impractical. Page-based protec-
tion mechanism is thus used to implement the data synchronization.

The VMM will first write protect the original data and the newly
introduced data when a live update begins. When a write access
to either version of the data takes place, the access is trapped to
the VMM. The VMM will then ”unprotect” the page for the write
access and set the single-step flag in x86. The write access to the
page will become valid and could take place. A single-step debug
exception returns control to the VMM after the write access, and the
VMM invokes the state transfer function to ensure the consistency
of the two versions of the data. When the debug exception returns,
the operating system could resume its normal execution.

The details on how to live update the two types of patches are
described as follows.

Live update to code only: This is the simplest case. Figure 4

  Linux

orig_func_vaddr

    jmp  patch_func_vaddr

(1) write (2) jump

original
function
code

patch
function
code

patch_func_vaddr

Live update to code only:
  (1)  Update Server replaces the head of the original function with a jump instruction to the patch function address
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Figure 4. Live update to code only.

shows the steps to live update code only. On receiving an update
request from the update manager, the update server replaces the
first 5 bytes of the original function with a relative jump to the
address of the new function.

Live update to code with data changes:
Figure 5 shows the steps in live updating reentrance code with

data changes:

1. The update server replaces the prologue of the original function
with a jmp instruction to the patched function. It then write
protects the pages that contain the original and the new data.

2. Any update to the original or the new data will trigger a page
fault to the update server.

3. The page fault handler notifies the update server if the fault
is for a write protection, and the faulting address is within
the protected page. The update server then restores the write-
protected page to commit the effect of the faulting instruction.
It also sets the single-step flag to allow the update server to
regain control later. A single-step debug exception is triggered
after the faulting instruction commits. The update server regains
control and checks whether the faulting instruction accesses
either version of the data. If so, the state transfer function is
called to ensure the coherence between them. After that, the
update server returns control to the operating system. It resumes
the execution with the single-step flag cleared.

4. When the original data structure is no longer active, the update
server restores the read/write flags of the pages that contain the
original and the new data.
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Figure 5. Live update to code with data changes.

Due to the fact that the CPU does not automatically maintain
the coherence between the memory (including the cache) and the
general purpose registers, updates to one memory location will
not be visible to the corresponding loaded registers in time. In
LUCOS, as the old and new versions data are logically viewed as
one uniform entity by the kernel and protected from simultaneously
accesses using some synchronization techniques(such as locks),
such delay of loading will not happen. However, misuses of locks
may prevent the old or new versions of data from receiving up-to-
date values even if the state transfer function has been invoked. For
instance, for a patch updating a global variable and the spinlock
protecting the variable, the patch should provide a state transfer
function to maintain the coherence between the two spinlocks, or
the global variable will end up with inconsistency.

4.2.3 Patch Termination

Depending on the type of live updates, it needs different mecha-
nisms to decide whether a patch process has completed or not. For
live updates to code only, the patch process is completed and could
be terminated as soon as the function redirection is done. However,
for live updates to both code and data, deciding whether it is safe to
terminate a live update process poses a special challenge. To safely
terminate the patch process, we use a technique called stack inspec-
tion[15], to exam all kernel stacks and see whether there are threads
still executing in the original functions.

In the patch setup stage, the update server iterates each kernel
thread and determines if the thread executes within the function
to be patched by inspecting the call trace of the thread stack, and
adding it to a thread list if it does. Then, the update server replaces
the return address of the original function with the address of a stub
function. The stub function will remove the executing thread from
the thread list, invoke the function callbacks, and return to the caller
of the original function. On removing a thread from the thread list,
the update server invokes the thread callbacks and checks whether
the thread list becomes empty or not. If it is empty, the original
function is no longer active. When all functions manipulating a
data structure become inactive, the update server invokes the data
callbacks and marks the data structure as unused. When all data
structures being patched become inactive, the live update process is

safe to be terminated. The update server will perform some cleanup
work such as restoring the write-protected pages.

When the update server returns to the update manager with
a patch-finished flag, the update manager knows that the whole
update process has completed. It then performs some cleanup work
and calls the patch cleanup function in the patch module to reclaim
unused resources.

The stack inspection may suffer some scalability problems.
However, in practice, it’s quite unusual to apply live updates when
the system is under extremely heavy workload.

4.3 Patch Rollback

The ability to rollback a committed patch gives system administra-
tors significant flexibility to manage their operating systems. Al-
though LUCOS assumes the correctness of the patches and leaves
the verification to kernel developers and testers, LUCOS does sup-
port rolling back buggy patches.

From LUCOS’s viewpoint, rollbacks are a special type of
patches: using the original code and data to patch the committed
ones. The original patch startup function and the cleanup function
are reused with their arguments set to indicate their invocation in
a rollback process. After restoring the first 5 bytes in the original
function with their saved value, a function call to the patched func-
tion will be redirected back to the original function. If the patch to
a rollback affects data, the corresponding state transfer function is
reused to maintain the consistency during the patch process.

However, supporting rollbacks may incur some performance
and resource overhead. For instance, the code of the original func-
tion needs to be kept in memory for possible rollbacks. This pre-
vents some possible optimizations such as copying the code and
data of a patched function to the space of the original function,
which may improve its locality. The supplement functions such as
patch startup functions, patch cleanup functions, state transfer func-
tions and their related data structures, have to be kept in memory
as well. For safety and security reasons, such overhead seems quite
necessary. Perhaps, it is better to give administrators the flexibil-
ity of choosing the most suitable rollback strategy tailored to their
needs.

4.4 Discussion and Further Work

4.4.1 State Synchronization

The shortcoming of the page-based protection mechanism in im-
plementing data synchronization lies in its coarse granularity. Some
novel architectures[16] support efficient fine-grained memory pro-
tection. They allow arbitrary permission control at the granularity
of individual words. This feature greatly simplifies data synchro-
nization. In an architecture that supports word-level memory pro-
tection, data synchronization will be more efficient and easier to
implement.

4.4.2 Automated Patch Construction

Our current approach to generate dynamic patches is manually
reading the static patches from kernel developers, deciding the data
structures to be tainted, and write dynamic patch files from scratch.
This approach requires some tedious engineering effort. For a pow-
erful live update systems, it’s generally impossible to completely
automate the process of patch generation. Our future work will tar-
get at automating the majority of the work on transformation from
static patches to LUCOS patches, leaving minimal work to the de-
velopers, such as providing callbacks and state transfer functions.

4.4.3 Virtualization Issues

Our framework does not compromise the OS transparency. How-
ever, because current version of Xen is a para-virtualized VMM,
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the target operating system is a slightly modified version of Linux.
Xen-3.0 is reported to support full system virtualization using a
novel hardware feature called Vanderpool [17]. Our future work
will include porting LUCOS to Xen-3.0.

4.4.4 Safety and Security in Live Update

It is essential that a live update should not taint or corrupt the
running kernel. We currently assume that the patches are well tested
and bug-free, and allow rolling back an existing patch if it is found
to be buggy. However, if the kernel collapses when executing the
buggy patched function, there will be no chance for a rollback.

One possible solution to this problem is to add an additional
protection domain to Linux, similar to the approach in [18, 19].
A validation phase will be added to the live update process. The
applied patch will be executed in the protection domain until it is
proved to be correct. Even if the applied patch is malicious, the fault
in the patch will not corrupt the entire kernel. If a patch is found
to be buggy or malicious, the update manager could automatically
rollback the patch and inform the administrator to fix the bug. When
the applied patches are proved to be bug-free, the update manager
could be informed to commit these patches by moving them from
the protection domain to the kernel space. One downside of this
approach is that kernel will suffer performance degradation during
the validation phase. However, this tradeoff might be worthwhile
since the kernel can survive a potential corruption.

5. Experimental Results
5.1 Experiences in Applying Live Updates

We used several typical patches selected from Linux kernel devel-
opers to measure the performance overhead imposed by LUCOS.
Four of them were selected from patches that upgrade the Linux
kernel from 2.6.10 to 2.6.11. As our implementation was specific
to Xen, we also selected a patch from an upgrade of Xen-Linux.

1. Fixing the page reading bug: This is a simple case that only
affects code, which fixes a page reading bug. As stated in the log of
the patch2, a concurrent read while invalidating pages could cause
a read error because the invalidation could make the page out of
date at the wrong time. It was solved by dynamically patching two
functions which added an explicit check to see whether the page
was invalidated. In this patch, as no global variable was involved,
no state transfer was required. After the buggy functions have been
replaced by the new functions, the bug was fixed.

2. Removal of livelock avoidance: As described in the patch
file3, It is generally believed that a seek after a read in a definite loop
could result in a livelock for the kjournald kernel thread. The live-
lock avoidance code in kjournald may cause long latencies under
some circumstances. However, with the dual list write-out arrange-
ment in kjournald, this livelock will never occur. This problem was
solved by removing the livelock avoidance code. As such a patch
requires modifications to the code only, applying it is rather easy.

3. Upgrading the process scheduler: In Linux kernel 2.6.10,
each task structure maintains a variable, named interactive credit. It
gives an interactive task more priority bonus when it is scheduled.
However, as it is stated in the patch logs4, this mechanism did
not consider tasks that have periods of being fully cpu-bound,
and then put to sleep while waiting on pipes or signals. It could
lead to a disproportionate share of cpu time for such tasks. We

2 http://www.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.10/2.6.10-
mm1/broken-out/readpage-vs-invalidate-fix.patch
3 http://www.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.10/2.6.10-
mm1/broken-out/jbd-remove-livelock-avoidance.patch
4 http://www.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.10/2.6.10-
mm1/broken-out/sched-remove interactive credit.patch

fixed it by patching the main schedule function and two other
relevant ones. As no variable is added to the task structure, no state
synchronization is needed. We simply discarded the interactive
credit. However, at the patch startup time, all interactive credits in
each task should be re-calculated to give them the priority bonuses.

4. Reconstruction of the IRQ descriptors: Interrupt service
routines are organized as an array containing various information
about the interrupts. It includes the interrupt status, the hardware
they serve and all actions of each interrupt. As the hardware de-
vices evolve, device driver developers require additional space to
store private data for the interrupt handlers. The patch is to dynami-
cally replace the original IRQ descriptor array with a new array that
has an extra void pointer. All of the functions that manipulate the
original array are replaced with the new patched functions. While
there are threads executing in the original functions, data synchro-
nization is performed between the original array and its new coun-
terpart. After the last thread have left the original functions, all orig-
inal functions are no longer active and data synchronization can be
stopped. At that point, the whole live update process is finished.

5. Upgrading backend block device drivers in Xen-Linux:
Xen hosts multiple operating systems concurrently. One privileged
Xen-Linux can access a block device directly and provide services
for other operating systems. Blockback is designed to support such
a functionality. An array is provided for buffering all of the incom-
ing disk requests that are waiting for the service of the dispatcher.
In Xen-Linux 2.6.11, a new member is added to the structure of
the pending requests to improve disk I/O performance. To apply
such a patch, we first created a new array for the pending requests
with the new structure in the patch. Then we replaced the function
that manipulated the original array. After all threads have exited the
function, the original array can be safely discarded.

5.2 Performance Evaluation

To measure the overall performance overhead of LUCOS, we com-
pare Xen-Linux in LUCOS against native Linux and the original
Xen-Linux, which is a variant of Linux ported to run on Xen VMM.

All the experiments were conducted on a system equipped with
a 3.0GHz Pentium IV with 1GB RAM, a Intel Pro 100/1000 Eth-
ernet NIC in a 100M LAN, and a single 250GB 7200 RPM SATA
disk. The version of Linux and Xen-Linux is 2.6.10 and the ver-
sion of Xen VMM is 2.0.5. The Fedora Core 2 distribution was
used throughout. It is installed on ext3 file system. We configured
900,000KB of memory for each variant of Linux.

5.2.1 Relative Performance

A set of benchmarks were used to evaluate LUCOS’s performance.
As LUCOS is implemented on Xen, we tested four benchmarks that
were also tested on Xen [8] as well: SPEC CPU 2000 [20] mea-
sures the performance of CPU-intensive workloads. Open Source
Database Benchmark suite(OSDB) [21] tests the performance of
PostgreSQL database, with the tests for both Information Retrieval
(IR) and Online Transaction Processing(OLTP) workloads; Linux
build measures the overall time to built a Linux Kernel 2.6.10 with
gcc-3.3.3. For the experiment setup, we used OSDB-x0.15-1 in
conjuction with PostgreSQL 7.3.6. All benchmarks were with their
default configurations.

As depicted in Figure 6, the performance results between Xen-
Linux and Xen-Linux of LUCOS are very similar, and LUCOS
incurs a less than 1% performance lost. This reflects the fact that
LUCOS is composed of a set of passive modules in Xen and Linux.
Although there is some performance gap between LUCOS-Xen-
Linux and Native Linux, we believe the overhead is acceptable to
support live update features.
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Figure 6. Relative Performance of Native Linux, Xen-Linux and LUCOS-Xen-Linux.

Table 1. Time to apply and rollback live updates.
No. #Funcs apply Time(in ns) rollback time (in ns)
1 2 21,426 19,663
2 1 14,916 13,113
3 3 23,715 22,041
4 13 215,921 217,479
5 1 42,900 36,330

5.2.2 Time Consumed to Apply and Rollback Live Updates

The time to apply and rollback a patch was measured by reading
the hardware cycle counter at both the beginning and the end of
each live update. The time presented is the median of five trials.
To better simulate the real-life patching scenario, the live update
process were performed when the systems was running the OSDB
online transaction processing simultaneously. Table 1 shows the
corresponding time to apply and rollback patches mentioned in
section 5.1. As depicted in the table, the time spent on applying a
live update is relative short, even for live updates that require state
synchronization between data.

For patches that only affect code, the time to do a live update
is rather short as no state transfer is required in the live updating
process. For patches that affect data structures, it tends to be more
time-consuming. Actually, the time to apply such a patch is closely
related to the time when all threads leave the original functions.

6. Related works
Our work differs from previous research effort in several aspects.
LUCOS employs system virtualization to live update a running
operating system. It eliminates the need for a quiescence state and
allows live updating a running operating system on-demand.

K42 [3, 5, 4] is an object-oriented operating system. It provides
live update capability by exploring techniques such as quiescence
detection, state transfer, factory mechanisms, and state tracking.
However, it is tightly bound to the object-oriented approach. Most
non-object-oriented operating systems cannot benefit from these
features. Furthermore, it requires that the components be in a qui-
escence state before they could be live updated.

Dynamic Kernel Modifier or DKM [22] allows modifying the
execution of kernel functions in a user mode without the need of re-
compiling and modifying the kernel source. It is designed to enable
rapid development and performance tuning for the Linux kernel.
DKM supports many schemes to modify the kernel. They include
inserting trace points, nullifying functions, and replacing functions.
However, it does not support changes to the data structures. There-
fore, live updating Linux kernel is not supported.

Dynamic software updating [23, 24, 25] provides application
software with the ability to be upgraded without service disruption.
However, these techniques cannot be easily applied to existing
operating systems due to their complexity.

Linux kernel module [26] allows some specific parts of the
kernel code and data (usually kernel module) to be updated on the
fly, but with some strict constraints. Live updating is allowed only
when the entire kernel is inactive, or when no other parts of the
kernel threads are in the context of the code.

Read-Copy Update (RCU) [27] is a concurrent mechanism opti-
mized for read/write locks. Readers can avoid acquiring any locks,
while writers update their own private copies. All updates are com-
mitted in a quiescent state where all active operations have com-
pleted. Nevertheless, RCU has several limitations in providing live
updating features to operating systems: it is a per data structure
option; as the write operation is rather time consuming, it is only
suitable for multiple-reads-few-writes cases.

Devirtualizable Virtual Machine [28] supports general, single-
node, online maintenance by running enterprise applications that
are serving requests on one virtual machine, while upgrading the
OS, reconfiguring software, or updating applications on a second
virtual machine simultaneously. Application migration tools are
used to transfer state from the production VM to the upgraded VM,
which will then replace the production VM. This approach is a
good substitute for cluster-style maintenance. However, it requires
two virtual machines to be active on the same machine simultane-
ously. It also needs special tools to migrate applications from one
to another.

7. Conclusion
We propose using virtualization to live update a running operating
system on demand, without the requirement of a quiescence state.
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The prototype we have implemented, named LUCOS, is able to
live update the Linux without disrupting its services and with mini-
mal overhead during the normal execution. We demonstrate this ap-
proach by applying several real-life Linux kernel patches on the fly.
Performance measurements showed that our implementation incurs
negligible performance overhead compared to a Xen-Linux.
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