
The Pauseless GC Algorithm
Cliff Click Gil Tene Michael Wolf

Azul Systems, Inc.
1600 Plymouth Street

Mountain View, CA 94043
{cliffc,gil,wolf}@azulsystems.com

ABSTRACT
Modern transactional response-time sensitive applications have
run into practical limits on the size of garbage collected heaps.
The heap can only grow until GC pauses exceed the response-
time limits. Sustainable, scalable concurrent collection has be-
come a feature worth paying for.

Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to run garbage collected virtual machines. The
custom CPU includes a read barrier instruction. The read barrier
enables a highly concurrent (no stop-the-world phases), parallel
and compacting GC algorithm. The Pauseless algorithm is de-
signed for uninterrupted application execution and consistent
mutator throughput in every GC phase.

Beyond the basic requirement of collecting faster than the allo-
cation rate, the Pauseless collector is never in a “rush” to
complete any GC phase. No phase places an undue burden on
the mutators nor do phases race to complete before the mutators
produce more work. Portions of the Pauseless algorithm also
feature a “self-healing” behavior which limits mutator overhead
and reduces mutator sensitivity to the current GC state.

We present the Pauseless GC algorithm, the supporting hardware
features that enable it, and data on the overhead, efficiency, and
pause times when running a sustained workload.

Categories and Subject Descriptors
D.3.4 [Processors] – Memory management, D.3.3 [Language
Constructs and Features] – Dynamic storage management,

General Terms
Languages, Performance, Design, Algorithms.

Keywords
Read barriers, memory management, garbage collection, concur-
rent GC, Java, custom hardware

1. INTRODUCTION
Many of today's enterprise applications are based on garbage col-
lected virtual machine environments such as Java and .NET.

Most have response time sensitive components – for example, a
person may be waiting for a web page to load, or a credit-card
swipe needs to complete. Stopping for an inopportune GC pause
can lead to unacceptable response times. For these applications
it is unacceptable for collectors to drive high average throughput
numbers at the expense of occasional poor response times.

These enterprise applications need a low-pause time collector
(pauses on the order of human reflexes, 10-100ms) that can
handle very large Java programs (heap sizes from 100MB to
100GB) and highly concurrent workloads (100s of concurrent
mutator threads). Such a collector needs to perform consistently
and predictably over long periods of time, rather than simply ex-
cel at short time-bursts of workload.

Many modern garbage collectors rely on write barriers imposed
on mutator heap writes, to keep track of references between dif-
ferent heap regions. This enables an efficient generational or
region-based GC and is widely used in many garbage-collected
languages including most production Java implementations.
Read barriers, on the other hand, are rarely used in production
systems despite a wealth of academic research because of the
high mutator cost they usually incur.

Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to run garbage collected virtual machines. The
custom CPU includes a read barrier instruction. The read barrier
enables a highly concurrent, parallel and compacting GC algo-
rithm. The Pauseless GC algorithm is simple, efficient (low
mutator overhead), and has no Stop-The-World pauses.

2. RELATED WORK
The idea of garbage collection has been around for a long time
[22][13][16][11]. We do not attempt to summarize all relevant
GC work and instead we refer the reader to several GC surveys
[30][31], and highlight a few papers.

GC pauses and their unpredictable impact on mutators was the
driving force behind the early work on concurrent collectors
[26][5]. The expectation of the time was that special GC hard-
ware would shortly be feasible and commonplace. This early
work required such extensive fine-grained synchronization that it
would only be feasible on dedicated hardware. GC hardware con-
tinues to be proposed to this day [23][29][24][18][20].

The idea of using common page-protection hardware to support
GC has also been around awhile [2]. Both Appel [2][3] and Ossia
[25] protect pages that may contain objects with non-forwarded
pointers (initially all pages). Accessing a protected page causes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
VEE’05, June 11–12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

46

an OS trap which the GC handles by forwarding all pointers on
that page, then clearing the page protection. Appel does the
forwarding in kernel-mode, Ossia maps the physical memory
with a second unprotected virtual address for use by GC. Our
Pauseless collector protects pages that contain objects being
moved, instead of protecting pages that contain pointers to
moved objects. This is a much smaller page set, and the pages
can be incrementally protected. Our read-barrier allows us to in-
tercept and correct individual stale references, and avoids block-
ing the mutator to fix up entire pages. We also support a special
GC protection mode to allow fast, non-kernel-mode trap han-
dlers that can access protected pages.

The idea of an incremental collector (via reference counting) is
not new either [15]. Incremental collection seeks to reduce
pause time by spreading the collection work out in time, finely
interleaving GC work with mutator work. Because reference
counting is expensive, and indeed all barriers (reference counting
typically involves a write barrier) impose some mutator cost
there is considerable research in reducing barrier costs [6][21][8]
[9]. Having the read-barrier implemented in hardware greatly re-
duces costs. In our case the typical cost is roughly that of a sin-
gle cycle ALU instruction.

Incremental and low-pause-time collectors are becoming very
popular again – partly because embedded devices have grown in
compute power to the point where it's feasible to run a garbage
collected language on them [19]. Metronome is an example of a
modern low-pause time collector for a uniprocessor embedded
system, and the pause times reported for Metronome are indeed
smaller than those reported here [4]. However, Metronome as
currently described is single-threaded and large business-class ap-
plications have enough mutators to overwhelm any single-
threaded collector. Pauseless is fully parallel and can add GC
worker threads at any time. Metronome requires an oracle to
predict the future GC needs of running applications; this oracle is
easily supplied in embedded systems with a fixed application set
(the engineer runs the finite application set and measures GC
consumption). Servers typically do not have a fixed application
set and GC requirements are highly unpredictable. Metronome
mutator utilization is around 50%. In contrast our mutator utili-
zation is closer to 98%, we use extra CPUs to do the collection
work. In exchange, Metronome provides hard real-time guaran-
tees while we provide only soft real-time guarantees.

Our read-barrier is used for Baker-style relocation [5][23], where
the loaded value is corrected before the mutator is allowed to use
it. We focus collection efforts on regions which are known to be
mostly dead, similar to Garbage-First [14]. Our mark phase uses
an incremental update style instead of Snapshot-At-The-Begin-
ning (SATB) style [30]. SATB requires a modestly expensive
write-barrier which first does a read (and generally a series of de-
pendent tests). The Pauseless collector does not require a write
barrier.

Concurrent GCs are available in most modern production JVMs;
BEA's JRockit [7], SUN's HotSpot [28] and IBM's production
JVM [27] all have concurrent collectors and we tested with the
latest available versions of Java 1.4 from each vendor. How-

ever, in all cases these collectors are not the defaults. They ap-
pear to not be as stable as the parallel collectors and they some-
times put high overheads on mutator threads. For some of these
collectors, worse-case transaction times were no better than the
default collectors.

3. HARDWARE SUPPORT
3.1 Background
Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to run garbage collected virtual machines such as
Java; the JVM is based on SUN's HotSpot [28]. We describe ac-
tual production hardware, which had real costs to design, develop
and debug. Thus we were strongly motivated to design simple
and cost-effective hardware. In the end, the custom GC hard-
ware we built was quite minor.

The basic CPU core is a 64-bit RISC optimized to run modern
managed languages like Java. It makes an excellent JIT target
but does not directly execute Java bytecodes. Each chip contains
24 CPUs, and up to 16 such chips can be made cache-coherent;
the maximum sized system has 384 CPU cores and 256G of
memory in a flat, symmetric memory space. The box runs a
custom OS and can run as many JVMs as memory allows. A sin-
gle JVM can dynamically scale to use all CPUs and all available
memory.

The hardware supports a number of fast user-mode trap handlers.
These trap handlers can be entered and left in a handful of clock
cycles (4-10, depending) and are frequently used by the GC algo-
rithm; fast traps are key. The hardware also supports a fast co-
operative preemption mechanism via interrupts that are taken
only on user-selected instructions.

3.2 OS-level Support
The hardware TLB supports an additional privilege level, the
GC-mode, between the usual user- and kernel-modes. Usage of
this GC-mode is explained in the GC algorithm section. Several
of the fast user-mode traps start the trap handler in GC-mode in-
stead of user-mode. The TLB also supports 1 megabyte pages;
the 1M page thus becomes the standard unit of work for the
Pauseless GC algorithm and appears frequently below.

The TLB is managed by the OS in the usual ways, with normal
kernel-level TLB trap handlers being invoked when normal loads
and stores fail an address translation. Setting the GC privilege
mode bit is done by the JVM via calls into the OS. TLB viola-
tions on GC-protected pages generate fast user-level traps in-
stead of OS level exceptions.

HotSpot supports a notion of GC safepoints, code locations
where we have precise knowledge about register and stack loca-
tions [1]. The hardware supports a fast cooperative preemption
mechanism via interrupts that are taken only on user-selected
instructions, allowing us to rapidly stop individual threads only at
safepoints. Variants of some common instructions (e.g., back-
wards branches, function entries) are flagged as safepoints and
will check for a pending per-CPU safepoint interrupt. If a safe-
point interrupt is pending the CPU will take an exception and
the OS will call into a user-mode safepoint-trap handler. The
running thread, being at a known safepoint, will then save its

47

state in some convenient format and call the OS to yield. When
the OS wants to preempt a normal Java thread, it sets this bit
and briefly waits for the thread to yield. If the thread doesn't re-
port back in a timely fashion it gets preempted as normal.

The result of this behavior is that nearly all stopped threads are
at GC safepoints already. Achieving a global safepoint, a Stop-
The-World (STW) pause, is much faster than patch-and-roll-for-
ward schemes [1] and is without the runtime cost normally asso-
ciated with software polling schemes. While the algorithm we
present has no STW pauses, our current implementation does.
Hence it's still useful to have a fast stopping mechanism.

We also make use of Checkpoints, points where we cannot pro-
ceed until all mutator threads have performed some action. In a
Checkpoint each mutator reaches a GC safepoint, does a small
amount of GC-related work and then carries on. Blocked threads
are already at GC safepoints; GC threads perform the action on
their behalf. In a STW pause, all mutators must reach a GC safe-
point before any of them can proceed; the pause time is gov-
erned by the slowest thread. In a Checkpoint, running threads
are never idled and the GC work is spread out in time. The same
hardware and OS support is used for both STW pauses and
Checkpoints.

3.3 Hardware Read Barrier
In addition to the standard RISC load/store instruction set, the
CPUs have a few custom instructions to aid in object allocation
and collection. In this paper we focus on the hardware read
barrier. It is instructive to note that this barrier strongly resem-
ble those from 20 years ago [23].

The read barrier performs a number of checks and is used in dif-
ferent ways during different GC phases. Its behavior is described
briefly here, and then again in greater depth in the context of
the GC algorithm in the next section. The read barrier is issued
after a load instruction and executes in 1 clock. There is a stan-
dard load-use penalty which the compiler attempts to schedule
around.

The read barrier “looks like” a standard load instruction, in that
it has a base register, an offset and a value register. The base and
offset are not used by the barrier checks but are presented to the
trap handler and are used in “self healing”. The value in the
value register is assumed to be a freshly loaded ref, a heap
pointer, and is cycled through the TLB just like a base address
would be. If the ref refers to a GC-protected page a fast user-
mode trap handler is invoked, hereafter called the GC-trap. The
read barrier ignores null refs. Unlike a Brooks-style [10] indirec-
tion barrier there is no null check, no memory access, no load-
use penalty, no extra word in the object header and no cache
footprint. This behavior is used during the concurrent Relocate
phase.

We also steal 1 address bit from the 64-bit address space; the
hardware ignores this bit (masks it off). This bit is called the
Not-Marked-Through (NMT) bit and is used during the concur-
rent Marking phase. The hardware maintains a desired value for
this bit and will trap to the NMT-trap if the ref has the wrong
flavor. Null refs are ignored here as well.

Note that the read barrier behavior can be emulated on standard
hardware at some cost. The GC protection check can be emu-
lated with standard page protection and the read barrier emulated
with a dead load instruction. The NMT check can be emulated by
double-mapping memory and changing page protections to re-
flect the expected NMT bit value. However, using the TLB to
check ref privileges means that a failure will trigger a kernel-
level TLB trap instead of a fast user-mode trap. Turning this
into a user-mode trap will generally have some substantial cost
and may require altering the OS. Our read barrier instruction will
not trap on a null ref, and null refs are quite common. Emulat-
ing this on standard hardware will require a conditional test in the
barrier code or mapping page 0. This in turn precludes using
normal memory operations from doubling as null-pointer
checks, a common optimization in modern JVMs.

4. THE PAUSELESS GC ALGORITHM
The Pauseless GC Algorithm is divided into three main phases:
Mark, Relocate and Remap. Each phase is fully parallel and con-
current. Mark bits go stale; objects die over time and the mark
bits do not reflect the changes. The Mark phase is responsible
for periodically refreshing the mark bits. The Relocate phase
uses the most recently available mark bits to find pages with lit-
tle live data, to relocate and compact those pages and to free the
backing physical memory. The Remap phase updates every re-
located pointer in the heap.

There is no “rush” to finish any given phase. No phase
places a substantial burden on the mutators that needs to be re-
lieved by ending the phase quickly. There is no “race” to finish
some phase before collection can begin again – Relocation runs
continuously and can immediately free memory at any point.
Since all phases are parallel, GC can keep up with any number of
mutator threads simply by adding more GC threads. Unlike
other incremental update algorithms, there is no re-Mark or fi-
nal-Mark phase; the concurrent Mark phase will complete in a
single pass despite the mutators busily modifying the heap. GC
threads do compete with mutator threads for CPU time. On
Azul's hardware there are generally spare CPUs available to do
GC work. However, “at the limit” some fraction of CPUs will be
doing GC and will not be available to the mutators.

Each of the phases involves a “self-healing” aspect , where
the mutators immediately correct the cause of each read barrier
trap by updating the ref in memory. This assures the same ref
will not trigger another trap. The work involved varies by trap
type and is detailed below. Once the mutators' working sets have
been handled they can execute at full speed with no more traps.
During certain phase shifts mutators suffer through a “trap
storm”, a high volume of traps that amount to a pause smeared
out in time. We measured the trap storms using Minimum Muta-
tor Utilization, and they cost around 20ms spread out over a few
hundred milliseconds.

The algorithm we present has no Stop-The-World (STW) pauses,
no places where all threads must be simultaneously stopped.
However, for ease of engineering into the existing HotSpot JVM
our implementation includes some STWs. We feel these STWs
can be readily engineered to have pause times below standard OS
context- switch times, where a GC pause will be indistinguishable

48

from being context switched by the OS. We will mention where
the implementation differs from theory as the phases are de-
scribed.

4.1 Mark Phase
The Mark phase is a parallel and concurrent incremental update
(not SATB) marking algorithm [17], augmented with the read
barrier. The Mark phase is responsible for marking all live ob-
jects, tagging live objects in some fashion to distinguish them
from dead objects. In addition, each ref has it's NMT bit set to
the expected value. The Mark phase also gathers per-1M-page
liveness totals. These totals give a conservative estimate of live
data on a page (hence a guaranteed amount of reclaimable space)
and are used in the Relocate phase.

The basic idea is straightforward: the Marker starts from some
root set (generally static global variables and mutator stack con-
tents) and begins marking reachable objects. After marking an
object (and setting the NMT bit), the Marker then marks-
through the object – recursively marking all refs it finds inside
the marked object. Extensions to make this algorithm parallel
have been previously published [17]. Making marking fully con-
current is a little harder and the issues are described further be-
low.

4.2 Relocate Phase
The Relocate phase is where objects are relocated and pages are
reclaimed. A page with mostly dead objects is made wholly un-
used by relocating the remaining live objects to other pages.
The Relocate phase starts by selecting a set of pages that are
above a given threshold of sparseness. Each page in this set is
protected from mutator access, and then live objects are copied
out. Forwarding information tracking the location of relocated
objects is maintained outside the page.

If a mutator loads a reference to a protected page, the read-bar-
rier instruction will trigger a GC-trap. The mutator is never al-
lowed to use the protected-page reference in a language-visible
way. The GC-trap handler is responsible for changing the stale
protected-page reference to the correctly forwarded reference.

After the page contents have been relocated, the Relocate phase
frees the physical memory; it's contents are never needed again.
The physical memory is recycled by the OS and can immediately
be used for new allocations. Virtual memory cannot be freed
until no more stale references to that page remain in the heap,
and that is the job of the Remap phase.

As hinted at in Figure 1, a Relocate phase runs constantly freeing
memory to keep pace with the mutators' allocations. Sometimes
it runs alone and sometimes concurrent with the next Mark
phase.

4.3 Remap Phase
During the Remap phase, GC threads traverse the object graph
executing a read barrier against every ref in the heap. If the ref
refers to a protected page it is stale and needs to be forwarded,
just as if a mutator trapped on the ref. Once the Remap phase
completes no live heap ref can refer to pages protected by the
previous Relocate phase. At this point the virtual memory for
those pages is freed.

Since both the Remap and Mark phases need to touch all live ob-
jects, we fold them together. The Remap phase for the current
GC cycle is run concurrently with the Mark phase for the next
GC cycle, as shown in Figure 1.

The Remap phase is also running concurrently with the 2nd half
of the Relocate phase. The Relocate phase is creating new stale
pointers that can only be fixed by a complete run of the Remap
phase, so stale pointers created during the 2nd half of this Relo-
cate phase are only cleaned out at the end of the next Remap
phase. The next few sections will discuss each phase in more
depth.

5. MARK PHASE
The Mark phase begins by initializing any internal data struc-
tures (e.g., marking worklists) and clearing this phase's mark-bits.
Each object has two mark-bits, one indicating whether the ref is
reachable (hence live) in this GC cycle, and one for it's state in
the prior cycle.1

The Mark phase then marks all global refs, scans each threads'
root-set, and flips the per-thread expected NMT value. The
root-set generally includes all refs in CPU registers and on the
threads' stacks. Running threads cooperate by marking their own
root-set. Blocked (or stalled) threads get marked in parallel by
Mark-phase threads. This is a Checkpoint; each thread can im-
mediately proceed after it's root set has been marked (and ex-
pected-NMT flipped) but the Mark phase cannot proceed until
all threads have crossed the Checkpoint.

After the root-sets are all marked we proceed with a parallel and
concurrent marking phase [17]. Live refs are pulled from the
worklists, their target objects marked live and their internal refs
are recursively worked on. Note that the markers ignore the
NMT bit, it is only used by the mutators. When an object is
marked live, its size is added to the amount of live data in it's 1M
page (only large objects are allowed to span a page boundary and
they are handled separately, so the live data calculation is exact).
This phase continues until the worklists run dry and all live ob-
jects have been marked.

New objects created by concurrent mutators are allocated in
pages which will not be relocated in this GC cycle, hence the
state of their live bits is not consulted by the Relocate phase.
All refs being stored into new objects (or any object for that
matter) have either already been marked or are queued in the
Mark phase's worklists. Hence the initial state of the live bit for
new objects doesn't matter for the Mark phase.

5.1 The NMT Bit
One of the difficulties in making an incremental update marker
is that mutators can “hide” live objects from the marking

1We use bitmaps for the marks, they're cheap to clear and scan.

Figure 1: The Complete GC Cycle

Mark

Remap
RelocateMark

Relocate

49

threads. A mutator can read an unmarked ref into a register,
then clear it from memory. The object remains live (because its
ref is in a register) but not visible to the marking threads (be-
cause they are past the mutator stack-scan step). The unmarked
ref can also be stored down into an already marked region of the
heap. This problem is typically solved by requiring another
STW pause at the end of marking. During this second STW the
marking threads revisit the root-set and modified portions of the
heap and must mark any new refs discovered. Some GC algo-
rithms have used a SATB invariant to avoid the extra STW
pause. The cost of SATB is a somewhat more expensive write-
barrier; the barrier needs to read and test the overwritten value.

Instead of a STW pause or write-barrier we use a read barrier and
require the mutators do a little GC work when they load a poten-
tially unmarked ref by taking an NMT-trap. We get the trap-
ping behavior by relying on the read-barrier and the Not-
Marked-Through bit: a bit we steal from each ref. Refs are 64-
bit entities in our system representing a vast address space. The
hardware implements a smaller virtual address space; the unused
bits are ignored for addressing purposes. The read-barrier logic
maintains the notion of a desired value for the NMT bit and will
trap if it is set wrong. Correctly set NMT bits cost no more
than the read-barrier cost itself. The invariant is that refs with a
correct NMT have definitely been communicated to the Mark-
ing threads (even if they haven't yet been marked through).
Refs with incorrect NMT bits may have been marked through,
but the mutator has no way to tell. It informs the marking
threads in any case.

If a mutator thread loads and read-barriers a ref with the NMT
bit set wrong, it has found a potentially unvisited ref. The muta-
tor jumps to the NMT-trap handler. In the NMT-trap handler
the loaded value has it's NMT bit set correctly. The ref is re-
corded with the Mark phase logic.2 Then the corrected ref is
stored back into memory. Since the ref is changed in memory,
that particular ref will not cause a trap in the future.

This “self-healing” idea is key: without it a phase-change would
cause all the mutators to take continuous NMT traps until the
Marker threads can get around to flipping the NMT bits in the
mutators' working sets. Instead, each mutator flips its own
working set as it runs. After a short period of high-intensity
trapping (a “trap storm”) the working set is converted and the
mutator proceeds at its normal pace. During the steady-state
portion of the Mark phase, mutators take only rare traps as
their working set slowly migrates.

Changing the ref in memory amounts to a store, even if the
stored value is Java-language-equivalent to the original value.
The store is transparent to the Java semantics of the running
thread, but the store is visible to other threads: without some
care it might stomp over another thread's store effectively re-
versing it. Instead of unconditionally storing, the trap handler
uses a compare-and-swap (CAS) instruction to only update the
memory if it hasn't changed since the trap. If the CAS fails the
handler returns the value currently in memory (not the value
originally loaded) and the read barrier is repeated.

2 Actually, they are batched for efficiency.

5.2 The NMT Bit and The Initial Stack-Scan
Refs in mutators' root-set have already passed any chance for
running a read-barrier. Hence the initial root-set stack-scan also
flips the NMT bits in the root-set. Since the flipping is done
with a Checkpoint instead of a STW pause, for a brief time dif-
ferent threads will have different settings for the NMT desired
value. It is possible for two threads to throb, to constantly com-
pete over a single ref's desired value NMT value via trapping and
updating in memory. This situation can only last a short period
of time, until the unflipped thread passes the next GC safepoint
where it will trap, flip its stack, and cross the Checkpoint.

Note that it is not possible for a single thread to hold the same
ref twice in its root-set with different NMT settings. Hence we
do not suffer from the pointer-equality problem; if two refs
compare as bitwise not-equal, then they are truly unequal.

5.3 Finishing Marking
When the marking threads run out of work, Marking is nearly
done. The marking threads need to close the narrow race where
a mutator may have loaded an unmarked ref (hence has the
wrong NMT bit) but not yet executed the read-barrier. Read-bar-
riers never span a GC safepoint, so it suffices to require the mu-
tators cross a GC safepoint without trapping. The Marking pass
requests a Checkpoint, but requires no other mutator work. Any
refs discovered before the Checkpoint ends will be concurrently
marked as normal. When all mutators complete the Checkpoint
with none of them reporting any new refs, the Mark phase is
complete. If new refs are reported the Marker threads will ex-
haust them and the Checkpoint will repeat. Since no refs can be
created with the “wrong” NMT-bit value the process will eventu-
ally complete.

6. RELOCATE AND REMAP PHASES
The Relocate phase is where objects get relocated and com-
pacted, and unused pages get freed. Recall that the Mark phase
computed the amount of live data per 1M page. A page with
zero live data can obviously be reclaimed. A page with only a
little live data can be made wholly unused by relocating the live
objects out to other pages.

As hinted at in Figure 1, a Relocate phase is constantly running,
continuously freeing memory at a pace to stay ahead of the mu-
tators. Relocation uses the current GC-cycle's mark bits. A cy-
cle's Relocate phase will overlap with the next cycle's mark
phase. When the next cycle's Mark phase starts it uses a new set
of marking bits, leaving the current cycle's mark bits untouched.

The Relocate phase starts by finding unused or mostly unused
pages. In theory full or mostly full pages can be relocated as well
but there's little to be gained. Figure 2 shows a series of 1M heap
pages; live object space is shown textured. There is a ref coming
from a fully live page into a nearly empty page. We want to re-
locate the few remaining objects in the “Mostly Dead” page and
compact them into a “New, Free” page, then reclaim the
“Mostly Dead” page.

Next the Relocate phase builds side arrays to hold forwarding
pointers. The forwarding pointers cannot be kept in the old
copy of the objects because we will reclaim the physical storage
immediately after copying and long before all refs are remapped.

50

The side array data isn't large because we relocate sparse pages.
We implement it as a straightforward hash table. Figure 3 shows
the side array.

The Relocate phase then GC-protects the “Mostly Dead” page,
shown in gray, from the mutators. Objects in this page are now
considered stale; no more modifications of these objects are al-
lowed. If a mutator loads a ref into the protected page, it's read-
barrier will now take a GC-trap.

Next the live objects are copied out and the forwarding table is
modified to reflect the objects' new locations as shown in Figure
4. Copying is done concurrently with the mutators; the read-
barrier keeps the mutators from seeing a stale object before it
has finished moving. Live objects are found using the most re-
cent mark-bits available and sweeping the page.

Once copying has completed, the physical memory behind the
page is freed. Virtual memory cannot be reclaimed until there
are no more stale refs pointing into the freed page. Stale refs are
left in the heap to be lazily discovered by running mutators using
the read-barrier, and will be completely updated in the next Re-
map phase. Freed physical memory is immediately recycled by
the OS and may be handed out to this or another process. After
freeing memory, the GC threads are idled until the next need to

relocate and free memory, or until the next Mark and Remap
phase begins.

6.1 Read-Barrier Trap Handling
If a mutator's read-barrier GC-traps, then the mutator has loaded
a stale ref. The GC-trap handler looks up the forwarding pointer
from the side arrays and places the correct value both in the reg-
ister and in memory, as shown in Figure 5. Similarly to the
NMT trap handler's “self-healing” behavior, updating the ref in
memory is crucial to performance: it keeps the same stale ref
from trapping again. As before, the memory update is done with
a CAS to avoid stomping a racing store from another thread.

It is also possible that the needed object has not yet been copied.
In this case the mutator will do the copy on behalf of the GC
thread – since the mutator is otherwise blocked from forward
progress. The mutator can read the GC-protected page because
the trap handler runs in the elevated GC-protection mode. If the
mutator must copy a large object, it may be stalled for a long
time. This normally isn't an issue: pages with a lot of live data
are not relocated and a ½-page sized object (512K) can be copied
in about 1ms.

6.2 Other Relocate Phase Actions
At the time we protected pages, running mutators might have
stale refs in their root-set. These are already past their read-bar-
rier and thus won't get directly caught. The mutators scrub any
existing stale refs from their root-set with a Checkpoint. Relo-
cation can start when the Checkpoint completes.

The cost to modify the TLB protections (a kernel call and a sys-
tem-wide TLB shoot-down) and scrubbing the mutators' stacks is
the same for one page as it is for many. We batch up these op-
erations to lower costs, and typically protect (and relocate and
free) a few gigabytes at a time.

Notice that there is no “rush” to finish the Relocation phase; we
need only relocate and free pages at a pace to keep ahead of the
mutators. Also notice it is unlikely that a mutator stalls on an
unmoved stale object. Relocated pages contain only a few older
objects, most likely they have moved out of the mutator's work-
ing set. Virtual memory is not freed immediately, but we have
lots of that. The final step of scrubbing all stale refs and re-
claiming virtual memory is the job of the Remap phase.

6.3 The Remap Phase
The Remap phase updates all stale refs with their proper for-
warded pointers. It must visit every ref in the heap to find all
the stale ones. As mentioned before it runs in lockstep with the
next GC cycle's Mark phase; the one piece of visitor logic does
both the stale ref check and NMT check.

At the end of the Remap phase, all pages that were protected be-
fore the start of the Remap phase have now been completely
scrubbed. No more stale refs to those pages remain so those vir-
tual memory pages can now be reclaimed. We also free the side
arrays at this time, and a GC cycle is complete.

7. REALITY CHECK
Our implementation is a rapidly moving work-in-progress. As of
this writing it suffers from a few STW pauses not required by the
Pauseless GC algorithm. Over time we hope to remove these

Figure 5: Updating stale refs

Heap, 1M Pages

DeadDead Mostly
Live

Live New,
Free

Free

Forwarding
pointers

Figure 4: Copying live data out

FreeNew,
Free

LiveDead

Heap, 1M Pages

Forwarding
pointers

Dead Mostly
Live

Figure 3: Side Arrays and TLB Protection

FreeNew,
Free

LiveMostly
Live

Dead

Heap, 1M Pages

Forwarding
pointers

Mostly
Dead

Figure 2: Finding sparsely populated pages

FreeNew,
Free

LiveMostly
Dead

Dead

Heap, 1M Pages

Mostly
Live

51

STWs or engineer their maximum time below an OS time-slice
quanta. We have proposed solutions for each one, and report
pauses experienced by the current implementation on the 8-
warehouse 20-minute pseudo-JBB run described in Section 8.

7.1 At the Mark Phase Start
At the start of the Mark phase we stop all threads to flip the de-
sired NMT state. We could flip the NMT bits via a Checkpoint;
the cost would be some amount of NMT-bit throbbing (repeated
NMT traps) on shared objects until all threads flip. Also, global
shared resources (e.g., the SystemDictionary, JNI handles, locked
objects) are marked in this STW. Engineering these to use a
Checkpoint is straightforward.

The worse pause reported was 21ms and the average was 16ms.

7.2 At the Mark Phase End
At the end of the Mark phase we stop all threads and do (in par-
allel but not concurrent) soft ref processing, weak ref processing,
and finalization. Java's soft and weak refs present a race between
the collector nullifying a ref and the mutator “strengthening”
the ref. We could process the refs concurrently by having the
collector CAS down a null only when the ref remains not-
marked-through. The NMT-trap handler already has the proper
CAS'ing behavior – both the collector and the mutator race to
CAS down a new value. If the mutator wins the ref is strength-
ened (and the collector knows it), and if the collector wins the
ref is nullified (and the mutator only sees the null).

There are a number of other items handled at this STW that
could be engineered to be concurrent, including class unloading
and code-cache unloading. Again engineering these will be
straightforward but tedious.

The worse pause reported was 16ms and the average was 7ms.

7.3 At the Relocation Phase Start
The mutators' root-sets need scrubbing when GC-protecting a
page. There are two problems here: the TLB shoot-down isn't
atomic and there are stale refs in the root-set. Since the TLB
shoot-down is not atomic, for a brief period some mutators can
be protected and not others. Unprotected mutators would con-
tinue to read and write the object directly, so protected mutators
need to as well. However, reading and writing the protected ob-
ject forces a GC-protection trap. Our current implementation
stops all threads and performs a bulk TLB shoot-down and muta-
tor root-set scrubbing under STW. This can be engineered to be
concurrent and incremental in a straightforward manner.

We could use a Checkpoint to update the TLBs and scrub the
root-sets. To maintain concurrency until all threads have passed
the relocation Checkpoint, the read barrier's TLB trap handler is
modified to wait for the Checkpoint to complete before pro-
ceeding with relocation or remapping and propagating a cor-
rected ref in the mutator. Mutator threads that actually access
refs in protected pages will then “bunch up” at the Checkpoint
with other threads continuing concurrent execution past the
Checkpoint. This effect is mitigated by the fact that we prefer-
entially relocate sparse pages.

The worse pause reported was 19ms and the average was 5ms.

7.4 Relocate doesn't run during Mark/Remap
Right now we have not implemented a second set of mark bits to
allow the Relocate phase to run concurrently with the next
Mark/Remap phase [14]. This means we cannot free memory
during the Mark/Remap phase. We have heuristics which predict
how many pages the mutator will need during marking and we
free that many (plus some pad) before marking begins. If we
predict low, as can happen if the mutators suddenly “accelerate”,
the mutators will block until marking is complete. Engineering
the overlapped Relocate/Mark phases will be straightforward.
Additionally, we currently do not add threads dynamically in re-
sponse to mutator acceleration. Each phase completes with a
number of threads decided on at the phase start.

8. EXPERIMENTS
8.1 Methodology
The Pauseless algorithm is intended to lower pause times in large
transaction-oriented programs running business logic. There are
a limited number of representative Java benchmarks for this
class of program. The most realistic and widely accepted is
SpecJApp-Server '02 and '04. This benchmark is extremely dif-
ficult to setup, tune, or get reliable numbers out of. It is also
very hard to normalize across different hardware. The much
more simplistic SpecJBB benchmark has very well-structured
(and unrealistic!) object lifetimes and is ideally suited for a gen-
erational collector.

In an effort to have both a reliable, understandable benchmark
and one that is more representative of transactional programs,
we added a large object cache to the standard SpecJBB bench-
mark. This cache represents, e.g., a Java bean cache, or an
HTML request cache. For each transaction, 400 bytes were
added to the cache and the oldest cached object was freed. This
level of extra objects is enough to easily defeat targeted tuning
of generational collectors to JBB.

We also removed the forced System.gc() between runs and in-
creased the JBB run times from 2 minutes to 20 minutes.3 In the
standard benchmark it's common to never need a full collection
during the timed portion of the run. In practice, these large busi-
ness applications must run in a steady-state mode without an un-
timed window every 2 minutes for a System.gc().

All runs were done with 8 warehouses, i.e. 8 concurrent threads
doing benchmark work. We added “-Xmx1536m”, allowing a
maximum heap size of 1.5G, which is about twice the average
size of the live data. We added “-server” to the SUN JVMs. For
the concurrent GC timing runs, we added whatever flag was ap-
propriate to trigger using the concurrent collector for that JVM.
For the IBM JVM, it was “-Xgcpolicy:optavgpause”. For the
BEA JVM, it was “-Xgcprio:pausetime”. For the SUN JVM, it
was “-XX:+UseConcMarkSweepGC -XX:+UseParNewGC”. For
the Azul JVM, concurrent collection is the default and no flags
are needed. For the non-concurrent GC timing runs we used the
best parallel (throughput-oriented) collector available. This is
the default for the IBM and BEA JVMs, for the SUN JVM we
added “-XX:+UseParallelGC”. We used no other flags.
3 Except for IBM's concurrent collector which was unable to run

the full 20 minutes; we used a 10 minute run for it.

52

We ran the IBM and SUN JVMs on a 2-way 3.2Ghz hyper-
threaded Xeon with 2G of physical memory, running a Red Hat
Linux 2.6 kernel. Unfortunately, the BEA JVM didn't run on
this version of Linux so it was run on a 1-way 2.4Ghz hyper-
threaded P4 with 512M of physical memory running Windows
2000. The BEA JVM heap was limited to 425M to avoid pag-
ing. The simulated object cache added about 40M of long-lived
live data per warehouse; 425M isn't a large enough heap to run
with 8 warehouses. We limited the BEA JVM to 3 warehouses,
keeping the proportion of heap devoted to long-lived data about
the same. We also ran the SUN JVM in 64-bit mode on a 2-way
1.2Ghz US3 with 4G of physical memory running Solaris 9. We
attempted to run on an older 24-CPU Sparc (450Mhz US2).
Here we hoped the Sparc would use the spare CPUs to good ef-
fect. However, the single-threaded concurrent collector could
not keep up with the mutators and the benchmark suffered nu-
merous 12-second full-GC pauses. On the 2-CPU Sparc, a single
concurrent collector thread could use up to half the total CPU
resources in order to keep up. We report the superior 2-CPU
Sparc scores, although we would like to have reported scores
from another high-CPU count machine. The Azul JVM is a 64-
bit JVM running on a 16-chip (384-CPU) Azul appliance with
128G of physical memory. As before, we limited heap size to
1.5G. Only 8 CPUs are used to run the actual benchmark, with a
handful more running the Pauseless collection and doing back-
ground JIT compiles.

We decided to NOT report SpecJBB score, which is reported in
units of transactions/second, both because our run is not Spec-
compliant and because of the wide variation in hardware and JIT
quality. Even on the same hardware, the JITs from different
vendors produce code of substantially different quality. For the
same 20 minute run, we saw JVMs execute between 15 million
and 30 million transactions. While transaction throughput is an
important metric, this paper is focused on removing the biggest
reason for transaction time variability. We report transaction
times instead.

8.2 Transaction Times
We measured both transaction times and GC pause times re-
ported with “-verbose:gc”. We feel that transaction times repre-
sent a more realistic measure than direct GC pauses as they more
closely correspond to “user wait time”.

Transaction times were gathered into buckets by duration, build-
ing a histogram. Duration was measured with Java's current-
TimeMillis() and so is limited to millisecond resolution. Most
transactions take 0 or 1 milliseconds, so we did not gather accu-
rate times for these fast transactions. However, we are more in-
terested in the slow transactions. All the collectors except
Pauseless had a significant fraction of transactions take 100-
300ms (100 times slower than the fast transactions), with spikes
to 1-4 seconds. We kept per-millisecond buckets from 0ms to
31ms. After that we grew the buckets by powers-of-2 with
halves: 32-47ms, 48-63ms, 64-95ms, 96-127ms, and so on up to
16sec. This allowed us to compute the bucket index with a few
shifts. Buckets were replicated per thread to avoid coherency
costs then totaled together at the end of the run.

A transaction that reports as taking 0ms clearly takes some fi-
nite time. The 0ms bucket's average transaction time is assumed
to be 0.33ms, and the 1ms bucket's average transaction time is
assumed to be 1.33ms. This is the largest source of measurement
error we have. Almost no transactions landed in the 3ms to
30ms buckets, so a measurement error of up to 1ms in those
buckets will not alter the data in any substantial way.

For all other buckets we simply totaled time for that bucket. We
summed the total transaction times (time per bucket by transac-
tions in the bucket), and report the percentage of total transac-
tion time spent on transactions of each duration.

Figure 6 shows how many transactions the various JVMs kept in
the 0ms and 1ms range (0ms is the low bar, 1ms is the middle
bar). The Pauseless algorithm keeps 87% (99.5%) of total
transaction time spent in transactions of 1ms (2ms) or less; the
other JVMs vary between 80% down to 50%. The concurrent
version from each vendor faired slightly worse than the parallel
collectors, showing a slightly higher percentage of total time
spent in slow transactions.

Figure 7 shows cumulative transaction times (not wall-clock
time, which was 20 minutes) vs. transaction duration. Times are
cumulative, reaching 1.00 (100% of total transaction time) at
the top edge. Transaction duration runs across the bottom in a
log scale. Lines that approach 1.00 quicker are better, repre-
senting a greater percentage of processing time spent in fast
transactions.

We can see a couple of trends in this chart. Pauseless again does
quite well, with essential 100% of time spent in fast transactions
and a worst-case transaction time of 26 milliseconds. The other
JVMs are roughly grouped into pairs with the parallel throughput
collector line being slightly higher than the concurrent collector
line for most of the chart. The lines cross as we near 100% of
time and the slowest transactions; the concurrent collectors gen-
erally have smaller worst-cast times than the throughput collec-
tors.

Table 1 shows the worse-case transaction times. The Pauseless
algorithm's worse-case transaction time of 26ms is over 45 times
better than the next JVM, BEA's parallel collector. Average
transaction times are remarkable similar given the wide variation
in hardware used.

Table 1: Worst-case and average times, in ms

Azul
txu
con

IBM
x86
con

SUN
x86
con

SUN
sun
con

BEA
x86
con

IBM
x86
par

SUN
x86
par

SUN
sun
par

BEA
x86
par

Trans 26 1245 1277 1674 1281 1419 3195 5376 1172

Pause 21 526 210 544 230 734 2217 3953 562

Ratio 1.24 2.37 6.08 3.08 5.57 1.93 1.43 1.36 2.09

Avg
Trans 0.65 0.60 0.71 0.93 0.53 0.57 0.71 0.82 0.52

Pause 9.4 137 63 71 70 414 317 704 348

53

Figure 7: Cumulative transaction times vs. duration (ms)

0.1 1 10 100 1000
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AZL txu con
SUN sun par
SUN sun con

0.1 1 10 100 1000
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AZL txu con
SUN x86 par
SUN x86 con

0.1 1 10 100 1000
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AZL txu con
BEA x86 par
BEA x86 con

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

AZL txu con
IBM x86 par
IBM x86 con

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

AZL txu con
SUN x86 par
SUN x86 con

Figure 8: Reported pause times vs. duration (ms)

1 10 100 1000
0

0.2

0.4

0.6

0.8

1
AZL txu con
SUN sun par
SUN sun con

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

AZL txu con
BEA x86 par
BEA x86 con

0.1 1 10 100 1000
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AZL txu con
IBM x86 par
IBM x86 con

Figure 6: Short transaction times (0,1,2 ms) as a % of total

AZL
txu
con

IBM
x86
par

IBM
x86
con

SUN
x86
par

SUN
x86
con

SUN
sun
par

SUN
sun
con

BEA
x86
par

BEA
x86
con

0%

20%

40%

60%

80%

100%

3+ ms
2 ms
1 ms
0 ms

54

8.3Reported Pause Times
We collected GC pause times reported with “-verbose:gc”. We
summed all reported times and present a histogram of cumula-
tive pause times vs. pause duration. Figure 8 shows the reported
pauses. Most of the concurrent collectors consistently report
pause times in the 40-50ms range; IBM's concurrent collector
has 150ms as it's common (mode) pause time. As expected, the
parallel collectors all do worse with the bulk of time spent in
pauses ranging from 150ms to several seconds.

Table 1 also shows the ratio of worst-case transaction time and
worst-case reported pause times. Note that JBB transactions are
highly regular, doing a fixed amount of work per transaction.
Changes in transaction time can be directly attributed to GC.4
Several of the worse-case transactions are a full second longer
than the worse-case pauses. We have some guesses as to why
this is so:

It is possible that the concurrent collectors did not keep up with
the allocation rate, stalling mutators until they caught up. Un-
fortunately, this information was not obvious from the “-ver-
bose:gc” output. Also, during some phases of some concurrent
GCs, the mutators pay a heavy cost while making forward prog-
ress. This amounts to an unreported pause smeared out in time.
Sometimes the GC pauses come in rapid succession so that the
same transaction will get paused several times. Perhaps the un-
derlying OS timesliced the 8 mutator threads very poorly across
the 4 hyper-threaded CPUs.

In any case, reported pause times can be highly mislead-
ing . The concurrent collectors other than Pauseless under-re-
port their effects by 2x to 6x! The parallel collectors also un-
der-report, but only by 30% to 100%. Based on this data, we en-
courage the GC research community to test the end-to-end ef-
fects of GC algorithms carefully.

We also attempted to gather Minimum Mutator Utilization fig-
ures [12], especially to track the “trap storm” effects. MMU re-
ports the smallest amount of time available to the mutators in a
continuous rolling interval. Since our largest pause was over
20ms there exists a 20ms interval where the mutators make no
progress, so MMU@20ms is 0. Preliminary figures are in Table
2, and represent MMU figures for the entire 20 minute run worst
case across all threads. Looking at the MMU@50ms figure, we
see about 40ms of pause out of 50ms. We know that about
20ms of that is reported as an STW pause, so we assume the re-
maining 20ms is due to the trap storm.

Table 2: Minimum Mutator Utilization

MMU
@20ms

MMU@
50ms

MMU@
100ms

MMU@
200ms

MMU@
500ms

MMU@
1000ms

MMU@
2000ms

0% 21% 40% 52% 67% 77% 84%

4 We tested; all transactions are fast until the heap runs out. For
the 64-bit JVMs we were able to test with a 64G heap.

9.Conclusions
Azul Systems has taken the rare opportunity to produce custom
hardware for running a garbage collected language in a shipping
product. This custom hardware enables a very potent garbage
collection algorithm. Even though the individual Azul CPUs are
slower than the high-clocking X86 P4's compared against,
worse-case transaction times are over 45 times better and aver-
age transaction times are comparable.

Azul's Pauseless GC algorithm is a fully parallel and concurrent
algorithm engineered for large multi-processor systems. It does
not need any Stop-The-World pauses, no places where all muta-
tor threads must be simultaneously stopped. Dead object space
can be reclaimed at any point during a GC cycle; there are no
phases where the GC algorithm has to “race” to finish some
phase before the mutators run out of free space. Also there are
no phases where the mutators pay a continuous high cost while
running. There are brief “trap storms” at some phase shifts, but
due to the “self-healing” property of the algorithm these storms
appear to be low cost.

Azul's custom hardware includes a read-barrier, an instruction
executed against every ref loaded from the heap. The read-bar-
rier allows global GC invariants to be cheaply maintained. It
checks for loading of potentially unmarked objects, preventing
the spread of unmarked objects into previously marked regions
of the heap. This allows the concurrent incremental update
Mark phase to terminate cleanly without needing a final STW
pause. The read-barrier also checks for loading stale refs to relo-
cated objects and it does it cheaper than a Brooks' style indirec-
tion barrier.

Section 7, Reality Check, includes ongoing and future work. An-
other obvious and desirable feature is a generational variation of
Pauseless. As presented, Pauseless is a single-generation algo-
rithm. The entire heap is scanned in each Mark/Remap cycle.
Because the algorithm is parallel and concurrent, and we have
plentiful CPUs the cost is fairly well hidden. On a fully loaded
system the GC threads will steal cycles from mutator threads, so
we'd like the GC to be as efficient as possible. A generational
version will only need to scan the young generation most of the
time. The necessary hardware barriers already exists.

On a final note, we were quite surprised at the difference between
reported pause times and the “user experience” delays seen by
the transactions. We strongly encourage GC researchers and the
production JVM providers to pay close attention to full GC algo-
rithm costs, not just those costs that can easily have a timer-
start/timer-stop wrapped around them.

55

10. REFERENCES
[1] Agesen, O. GC Points in a Threaded Environment. SMLI
TR-98-70. Sun Microsystems, Palo Alto, CA. December 1998.

[2] Appel, A., Ellis, J., Li, K., Real-time concurrent collection
on stock multiprocessors. In 1988 Conference on Program-
ming Language Design and Implementation (PLDI), June 1988.

[3] Appel, A., Li, K., Virtual Memory Primitives for User Pro-
grams. In 1991 Conference on Architectural Support for Pro-
gramming Languages and Operating System, April 1991.

[4] Bacon, D., Cheng, P., Rajan, V. The Metronome: A simpler
approach to garbage collection in real-time systems. In Pro-
ceedings of the OTM Workshops: Workshop on Java Technolo-
gies for Real-Time and Embedded Systems, Catania, Sicily, Nov.
2003.

[5] Baker, H., List processing in real time on a serial computer,
Communications of the ACM, Vol. 21, 4, (April 1978),.280-294

[6] Barth, J. Shifting garbage collection overhead to compile
time. Communications of the ACM, Vol. 20, 7 (July 1977), 513-
518

[7] BEA Systems. 2003. BEA JRockit: Java for the Enterprise.
White paper. BEA Systems, San Jose, CA.

[8] Blackburn, S., McKinley, K., In or Out? Putting Write Barri-
ers in Their Place. In Proceedings of the 2002 International
Symposium on Memory Management, Berlin, Germany, 2002.

[9] Blackburn, S., Hosking, A., Barriers: Friend or Foe? In Pro-
ceedings of the 2004 International Symposium on Memory
Management, Vancouver, Canada, 2004.

[10] Brooks, R. Trading data space for reduced time and code
space in real-time garbage collection on stock hardware. In
1984 ACM Symposium on Lisp and Functional Programming .
(Aug. 1984) 256-262

[11] Cheney, C. A Nonrecursive List Compacting Algorithm.
Communications of the ACM, Vol. 13, 11 (Nov. 1970), 677-678

[12] Cheng, P., Blelloch, G., A parallel, real-Time garbage col-
lection. In Conference on Programming Languages Design
and Implementation (PLDI '01). Snowbird, Utah, June 2001

[13] Collins, G., A method for overlapping and erasure of lists.
Communications of the ACM, Vol. 3, 12 (Nov. 1960), 655-657

[14] Detlefs, D., Flood, C., Heller, S., Printezis, T. Garbage-first
garbage collection. In Proceedings of the 2004 International
Symposium on Memory Management, Vancouver, Canada, 2004

[15] Deutcsh, P., Bobrow, D. An Efficient, Incremental, Auto-
matic Garbage Collector. Communications of the ACM, Vol. 19,
9 (Sept. 1976), 522-527

[16] Fenichel, R., Yochelson, J. A LISP Garbage-Collector for
Virtual Memory Systems. Communications of the ACM, Vol.
12, 11 (Nov. 1969), 611-612.

[17] Flood, C., Detlefs, D., Shavit, N., Zhang, C. Parallel Gar-
bage Collection for Shared Memory Multiprocessors. In 2001

USENIX Java Virtual Machine Research and Technology Sym-
posium (JVM ’01). Monterey, CA, April 2001

[18] Goa, H., Nilsen, K. The real-time behavior of dynamic
memory management in C++. In Proceedings of the Real-Time
Technology and Applications Symposium . Chicago, IL, 1995

[19] Gosling, J., Bollela, G. The Real-Time Specification for
Java. Addison-Wesley, Boston MA, 2000.

[20] Heil, T., Smith, J. Concurrent garbage collection using
hardware-assisted profiling. In Proceedings of the 2nd Interna-
tional Symposium on Memory Management, Minneapolis, MN,
2000

[21] Hosking, A., Moss, E., Stefanovic, D., A comparative per-
formance evaluation of write barrier implementations. In Con-
ference on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA '92). Vancouver, Canada, Oct. 1992

[22] McCarthy, J., Recursive functions of symbolic expressions
and their computation by machine. Communications of the
ACM, Vol. 3, 4 (April 1960), 184-195

[23] Moon, D. Garbage Collection in a Large LISP System.
1984 ACM Symposium on LISP and Functional Programming .
(Aug. 1984) 235-246

[24] Nilsen, K., Schmidt, W. Cost-effective object space man-
agement for hardware-assisted real-time garbage collection.
ACM Letters on Programming Languages and Systems (LO-
PLAS), Vol. 1, 4 (Dec. 1992)

[25] Ossia, Y., Ben-Yitzhak, O., Segal, M., Mostly concurrent
compaction for mark-sweep GC. In Proceedings of the 2004 In-
ternational Symposium on Memory Management, Vancouver,
Canada, 2004.

[26] Steele, G. Multiprocessing compactifying garbage collec-
tion. Communications of the ACM, Vol. 18, 9 (Sept. 1975), 495-
508

[27] Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T., Ka-
wahito, M., Ishizaki, K., Komatsd, H., and Nakatani, T. Over-
view of the IBM Java Just-in-Time Compiler, IBM Systems Jour-
nal, 39(1), 2000.

[28] Sun Microsystems. 2001. The Java HotSpot virtual ma-
chine. White paper. Sun Microsystems, Santa Clara, CA.

[29] Williams, I., Wolczko, M. An Object-Based Memory Ar-
chitecture. In Implementing Persistent Object Bases: Proceed-
ings of the Fourth International Workshop on Persistent Object
Systems, pages 114-130. Morgan Kaufmann Publishers, Inc.,
1991.

[30] Wilson, P. Uniprocessor Garbage Collection Techniques.
In 1992 Proceedings of the International Workshop on Memory
Management (IWMM 92). Saint-Malo (France), 1992

[31] Wilson, P., Johnstone, M., Neely, M., Boles, D., Dynamic
Storage Allocation: A Survey and Critical Review. In Proceed-
ings of the International Workshop on Memory Management
(IWMM 95), 1995

56

