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ABSTRACT
Modern transactional response-time sensitive applications have
run into practical limits on the size of garbage collected heaps.
The  heap can only grow until GC pauses exceed the response-
time limits.  Sustainable, scalable concurrent  collection has be-
come a feature worth paying for.

Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to  run garbage collected virtual machines.  The
custom CPU includes a read barrier instruction. The read barrier
enables a highly concurrent  (no stop-the-world phases), parallel
and compacting GC algorithm.   The Pauseless algorithm is de-
signed  for  uninterrupted  application  execution  and  consistent
mutator throughput in every GC phase.

Beyond the basic requirement  of collecting faster than the allo-
cation  rate,  the  Pauseless  collector  is  never  in  a  “rush”  to
complete any GC phase.  No phase places an undue burden on
the mutators nor do phases race to complete before the mutators
produce more work.   Portions of  the  Pauseless algorithm also
feature a “self-healing” behavior which limits mutator overhead
and reduces mutator sensitivity to the current GC state.  

We present the Pauseless GC algorithm, the supporting hardware
features that enable it, and data on the overhead, efficiency, and
pause times when running a sustained workload.

Categories  and Subject Descriptors
D.3.4  [Processors]  –  Memory  management,  D.3.3  [Language
Constructs and Features] – Dynamic storage management, 

General Terms
Languages, Performance, Design, Algorithms.

Keywords
Read barriers, memory management,  garbage collection,  concur-
rent GC, Java, custom hardware

1. INTRODUCTION
Many of today's enterprise applications are based on garbage col-
lected  virtual  machine  environments  such  as  Java  and  .NET.

Most have response time sensitive components – for example, a
person may be waiting for  a web page to  load, or a credit-card
swipe needs to complete.  Stopping for an inopportune GC pause
can lead to unacceptable response times.  For these applications
it is unacceptable for collectors to drive high average throughput
numbers at the expense of occasional poor response times.

These  enterprise applications need a  low-pause time  collector
(pauses  on  the  order  of  human  reflexes,  10-100ms)  that  can
handle  very  large Java  programs (heap  sizes from  100MB to
100GB) and highly concurrent  workloads (100s  of  concurrent
mutator threads).  Such a collector needs to perform consistently
and predictably over long periods of time, rather than simply ex-
cel at short time-bursts of workload. 

Many modern garbage collectors rely on  write barriers imposed
on mutator heap writes, to keep track of references between dif-
ferent  heap regions.   This enables an efficient  generational or
region-based GC and is widely  used in  many  garbage-collected
languages  including  most  production  Java  implementations.
Read barriers, on the other hand, are rarely used in production
systems despite  a  wealth  of  academic research  because of  the
high mutator cost they usually incur.   

Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to  run garbage collected virtual machines.  The
custom CPU includes a read barrier instruction.  The read barrier
enables a highly concurrent,  parallel  and compacting GC algo-
rithm.   The  Pauseless GC algorithm  is  simple,  efficient  (low
mutator overhead), and has no Stop-The-World pauses.

2. RELATED WORK
The  idea of garbage collection  has been around for  a long time
[22][13][16][11].  We do not  attempt  to  summarize all relevant
GC work and instead we refer  the  reader to  several GC surveys
[30][31], and highlight a few papers.

GC pauses and their  unpredictable impact  on  mutators  was the
driving force  behind the  early  work  on  concurrent  collectors
[26][5].  The expectation  of the time was that  special GC hard-
ware would shortly  be feasible and commonplace.   This  early
work required such extensive fine-grained synchronization that  it
would only be feasible on dedicated hardware.  GC hardware con-
tinues to  be proposed to this day [23][29][24][18][20].  

The  idea of using common page-protection  hardware to  support
GC has also been around awhile [2].  Both Appel [2][3] and Ossia
[25] protect  pages that  may contain objects with non-forwarded
pointers (initially all pages).  Accessing a protected page causes
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an OS trap  which the  GC handles by forwarding all pointers on
that  page, then  clearing the  page protection.   Appel  does the
forwarding in  kernel-mode,  Ossia  maps  the  physical  memory
with  a second unprotected virtual  address for  use by GC.  Our
Pauseless collector  protects  pages  that  contain  objects  being
moved,  instead  of  protecting  pages  that  contain  pointers  to
moved objects.  This is a much smaller page set,  and the  pages
can be incrementally protected.  Our read-barrier allows us to in-
tercept  and correct  individual stale references, and avoids block-
ing the mutator to fix up entire pages.  We also support  a special
GC protection  mode to  allow fast,  non-kernel-mode trap  han-
dlers that  can access protected pages.

The  idea of an incremental collector  (via reference counting) is
not  new either  [15].   Incremental  collection  seeks  to  reduce
pause time by spreading the  collection  work out in time,  finely
interleaving  GC work  with  mutator  work.   Because reference
counting is expensive, and indeed all barriers (reference counting
typically  involves  a  write  barrier)  impose  some  mutator  cost
there is considerable research in reducing barrier costs [6][21][8]
[9].  Having the read-barrier implemented in hardware greatly re-
duces costs.  In our case the typical cost is roughly that  of a sin-
gle cycle ALU instruction.  

Incremental  and low-pause-time  collectors  are  becoming very
popular again – partly  because embedded devices have grown in
compute power to  the  point  where it's feasible to  run a garbage
collected language on them [19].  Metronome is an example of a
modern  low-pause time  collector  for  a uniprocessor  embedded
system, and the pause times reported for Metronome are indeed
smaller than  those reported here  [4].  However, Metronome as
currently  described is single-threaded and large business-class ap-
plications  have  enough  mutators  to  overwhelm  any  single-
threaded collector.   Pauseless is fully  parallel  and can  add GC
worker  threads at  any  time.   Metronome  requires an  oracle to
predict the future GC needs of running applications; this oracle is
easily supplied in embedded systems with a fixed application  set
(the  engineer  runs the  finite  application  set  and measures GC
consumption).  Servers typically do not  have a fixed application
set  and GC requirements  are highly unpredictable.  Metronome
mutator  utilization is around 50%.  In contrast  our mutator utili-
zation is closer to  98%, we use extra CPUs to  do the collection
work.  In exchange, Metronome provides hard real-time guaran-
tees while we provide only soft real-time guarantees.

Our read-barrier is used for Baker-style relocation [5][23], where
the  loaded value is corrected before the mutator is allowed to use
it.  We focus collection efforts on regions which are known to be
mostly dead, similar to  Garbage-First  [14].  Our mark phase uses
an incremental  update style instead of  Snapshot-At-The-Begin-
ning  (SATB) style  [30].   SATB requires a modestly  expensive
write-barrier which first  does a read (and generally a series of de-
pendent  tests).   The  Pauseless collector  does not  require a write
barrier.

Concurrent  GCs are available in most  modern production JVMs;
BEA's JRockit  [7],  SUN's HotSpot  [28] and IBM's production
JVM [27] all have concurrent  collectors and we tested with the
latest  available versions of  Java 1.4  from  each  vendor.   How-

ever, in all cases these collectors are not  the defaults.  They ap-
pear to  not  be as stable as the parallel collectors and they some-
times put high overheads on mutator threads.  For some of these
collectors, worse-case transaction times were no better  than  the
default collectors.   

3. HARDWARE SUPPORT
3.1 Background
Azul Systems has built a custom system (CPU, chip, board, and
OS) specifically to  run garbage collected virtual machines such as
Java; the JVM is based on SUN's HotSpot  [28].  We describe ac-
tual production hardware, which had real costs to  design, develop
and debug.  Thus we were strongly motivated to  design simple
and cost-effective  hardware.  In  the  end, the  custom GC hard-
ware we built was quite minor.

The  basic CPU core is a 64-bit RISC optimized to  run modern
managed languages like Java.  It  makes an excellent  JIT  target
but does not  directly execute Java bytecodes.  Each chip contains
24 CPUs, and up to  16 such chips can be made cache-coherent;
the  maximum  sized system  has  384  CPU cores  and 256G of
memory  in  a flat,  symmetric  memory  space.   The  box runs a
custom OS and can run as many JVMs as memory allows.  A sin-
gle JVM can dynamically scale to  use all CPUs and all available
memory.

The hardware supports a number of fast user-mode trap handlers.
These trap handlers can be entered and left  in a handful of clock
cycles (4-10, depending) and are frequently used by the GC algo-
rithm; fast  traps are key.   The hardware also supports a fast  co-
operative  preemption  mechanism via interrupts that  are taken
only on user-selected instructions.  

3.2 OS-level Support
The  hardware TLB  supports  an  additional  privilege level,  the
GC-mode,  between the  usual user- and kernel-modes.  Usage of
this GC-mode is explained in the GC algorithm section.  Several
of the fast user-mode traps start  the trap handler in GC-mode in-
stead of  user-mode.  The  TLB also supports  1 megabyte  pages;
the  1M page thus becomes the  standard unit  of  work for  the
Pauseless GC algorithm and appears frequently below.

The  TLB is managed by the  OS in the  usual ways, with normal
kernel-level TLB trap handlers being invoked when normal loads
and stores fail an address translation.   Setting the  GC privilege
mode bit is done by the  JVM via calls into  the  OS.  TLB viola-
tions  on  GC-protected  pages generate  fast  user-level  traps  in-
stead of OS level exceptions.

HotSpot  supports  a  notion  of  GC  safepoints,  code  locations
where we have precise knowledge about register and stack loca-
tions [1].  The hardware supports a fast cooperative preemption
mechanism via  interrupts  that  are  taken  only  on  user-selected
instructions, allowing us to rapidly stop individual threads only at
safepoints.   Variants of  some common  instructions (e.g.,  back-
wards branches,  function  entries)  are  flagged as safepoints  and
will check for a pending per-CPU safepoint interrupt.   If a safe-
point  interrupt  is pending the  CPU will take  an exception  and
the  OS will call into  a user-mode  safepoint-trap handler.   The
running thread,  being at  a known safepoint,  will then  save its
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state in some convenient  format  and call the OS to yield.  When
the  OS wants to  preempt  a normal  Java thread,  it  sets this bit
and briefly waits for the thread to yield.  If the thread doesn't re-
port  back in a timely fashion it gets preempted as normal.

The result of this behavior is that  nearly all stopped threads are
at  GC safepoints already.  Achieving a global safepoint,  a Stop-
The-World (STW) pause, is much faster than  patch-and-roll-for-
ward schemes [1] and is without the runtime cost normally asso-
ciated with  software polling schemes.  While the  algorithm we
present  has no  STW pauses, our current  implementation  does.
Hence it's still useful to have a fast stopping mechanism.

We also make use of  Checkpoints, points where we cannot  pro-
ceed until all mutator  threads have performed some action.  In a
Checkpoint  each mutator  reaches a GC safepoint,  does a small
amount of GC-related work and then carries on.  Blocked threads
are already at  GC safepoints; GC threads perform the  action on
their behalf.  In a STW pause, all mutators must reach a GC safe-
point  before  any  of  them can  proceed; the  pause time  is gov-
erned by the  slowest thread.  In  a Checkpoint,  running threads
are never idled and the GC work is spread out in time.  The same
hardware  and  OS support  is  used for  both  STW  pauses  and
Checkpoints.

3.3 Hardware Read Barrier
In  addition  to  the  standard RISC load/store  instruction  set,  the
CPUs have a few custom instructions to  aid in object  allocation
and collection.   In  this  paper  we focus on  the  hardware  read
barrier.  It is instructive to  note that  this barrier strongly resem-
ble those from 20 years ago [23].

The read barrier performs a number of checks and is used in dif-
ferent  ways during different  GC phases.  Its behavior is described
briefly here,  and then  again in greater  depth  in the  context  of
the GC algorithm in the next  section.  The read barrier is issued
after a load instruction and executes in 1 clock.  There is a stan-
dard load-use penalty  which the  compiler  attempts  to  schedule
around.

The read barrier “looks like” a standard load instruction, in that
it has a base register, an offset and a value register.  The base and
offset  are not  used by the barrier checks but are presented to  the
trap  handler and are  used in  “self  healing”.   The  value in  the
value  register  is  assumed to  be  a  freshly  loaded  ref,  a  heap
pointer,  and is cycled through the  TLB just like a base address
would be.  If  the  ref refers to  a GC-protected page a fast  user-
mode trap handler is invoked, hereafter called the GC-trap.  The
read barrier ignores null refs.  Unlike a Brooks-style [10] indirec-
tion  barrier there  is no  null check,  no memory  access, no load-
use penalty,  no  extra  word in  the  object  header and no  cache
footprint.   This behavior is used during the concurrent  Relocate
phase.

We also steal  1  address bit  from  the  64-bit  address space; the
hardware ignores this bit (masks it  off).   This  bit  is called the
Not-Marked-Through (NMT)  bit and is used during the  concur-
rent  Marking phase.  The hardware maintains a desired value for
this bit  and will trap  to  the  NMT-trap if the  ref has the  wrong
flavor.  Null refs are ignored here as well.

Note that  the read barrier behavior can be emulated on standard
hardware at  some cost.   The  GC protection  check can be emu-
lated with standard page protection and the read barrier emulated
with a dead load instruction. The NMT check can be emulated by
double-mapping memory  and changing page protections  to  re-
flect  the  expected NMT bit value.  However, using the  TLB to
check  ref  privileges means  that  a failure will trigger a kernel-
level TLB trap  instead of  a fast  user-mode trap.   Turning this
into  a user-mode trap  will generally have some substantial cost
and may require altering the OS.  Our read barrier instruction will
not  trap on a null ref,  and null refs are quite common.   Emulat-
ing this on standard hardware will require a conditional test in the
barrier  code or  mapping page 0.   This  in  turn  precludes using
normal  memory  operations  from  doubling  as  null-pointer
checks, a common optimization in modern JVMs.

4. THE PAUSELESS GC ALGORITHM
The  Pauseless GC Algorithm is divided into  three  main phases:
Mark, Relocate and Remap.  Each phase is fully parallel and con-
current.   Mark bits go stale; objects die over time and the mark
bits do not  reflect  the  changes.  The  Mark phase is responsible
for  periodically refreshing the  mark  bits.   The  Relocate  phase
uses the most recently available mark bits to  find pages with lit-
tle live data, to relocate and compact  those pages and to free the
backing physical memory.   The  Remap phase updates every re-
located pointer in the heap.

There  is  no  “rush”  to  finish  any  given  phase.   No phase
places a substantial burden on  the  mutators that  needs to  be re-
lieved by ending the phase quickly.  There is no “race” to  finish
some phase before collection  can begin again – Relocation  runs
continuously and can  immediately  free  memory  at  any  point.
Since all phases are parallel,  GC can keep up with any number of
mutator  threads  simply  by  adding more  GC threads.   Unlike
other  incremental  update algorithms,  there  is no  re-Mark or fi-
nal-Mark phase; the  concurrent  Mark phase will complete  in a
single pass despite the  mutators busily modifying the  heap.   GC
threads do compete  with  mutator  threads for  CPU time.   On
Azul's hardware there  are generally spare CPUs available to  do
GC work.  However, “at  the limit” some fraction of CPUs will be
doing GC and will not  be available to the mutators.

Each of the  phases  involves  a “self-healing”  aspect , where
the  mutators immediately correct  the cause of each read barrier
trap  by updating the  ref in memory.  This  assures the  same ref
will not  trigger another  trap.   The  work involved varies by trap
type and is detailed below.  Once the mutators' working sets have
been handled they  can execute at  full speed with no more traps.
During  certain  phase  shifts  mutators  suffer  through  a  “trap
storm”, a high volume of traps that  amount  to  a pause smeared
out in time.  We measured the trap storms using Minimum Muta-
tor  Utilization, and they cost around 20ms spread out over a few
hundred milliseconds.

The algorithm we present  has no Stop-The-World (STW) pauses,
no  places  where  all  threads  must  be simultaneously  stopped.
However, for ease of engineering into the existing HotSpot JVM
our implementation  includes some STWs.  We feel these STWs
can be readily engineered to  have pause times below standard OS
context- switch times, where a GC pause will be indistinguishable
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from being context  switched by the OS.  We will mention where
the  implementation  differs  from  theory  as the  phases are  de-
scribed.  

4.1 Mark Phase
The Mark phase is a parallel and concurrent  incremental update
(not  SATB) marking algorithm  [17],  augmented with  the  read
barrier.  The  Mark phase is responsible for  marking all live ob-
jects,  tagging live  objects  in  some fashion  to  distinguish them
from dead objects.  In addition, each ref has it's NMT bit set to
the expected value.  The  Mark phase also gathers per-1M-page
liveness totals.  These totals give a conservative estimate of live
data on a page (hence a guaranteed amount of reclaimable space)
and are used in the Relocate phase. 

The  basic idea is straightforward: the  Marker  starts  from some
root  set (generally static global variables and mutator  stack con-
tents)  and begins marking reachable objects.  After  marking an
object  (and  setting  the  NMT  bit),  the  Marker  then  marks-
through the  object  – recursively marking all refs it  finds inside
the marked object.   Extensions to  make this algorithm parallel
have been previously published [17].  Making marking fully con-
current  is a little  harder and the  issues are described further  be-
low.

4.2 Relocate Phase
The  Relocate phase is where objects are relocated and pages are
reclaimed.  A page with mostly  dead objects is made wholly un-
used by relocating  the  remaining  live  objects  to  other  pages.
The  Relocate  phase starts  by selecting a set  of  pages that  are
above a given threshold of  sparseness.  Each page in this set  is
protected from mutator  access, and then  live objects are copied
out.  Forwarding information  tracking the  location  of  relocated
objects is maintained outside the page.

If a mutator  loads a reference to  a protected page, the read-bar-
rier instruction will trigger a GC-trap.   The mutator  is never al-
lowed to  use the  protected-page reference in a language-visible
way.  The  GC-trap  handler is responsible for  changing the  stale
protected-page reference to the correctly forwarded reference.  

After the page contents have been relocated, the Relocate phase
frees the physical  memory; it's contents are never needed again.
The physical memory is recycled by the OS and can immediately
be used for  new allocations.   Virtual  memory  cannot  be freed
until no more stale references to  that  page remain in the  heap,
and that  is the job of the Remap phase.

As hinted at in Figure 1, a Relocate phase runs constantly freeing
memory to keep pace with the mutators' allocations.  Sometimes
it  runs  alone  and  sometimes  concurrent  with  the  next  Mark
phase.

4.3 Remap Phase
During the  Remap phase, GC threads traverse the  object  graph
executing a read barrier against every ref in the heap.  If the ref
refers to  a protected page it  is stale and needs to  be forwarded,
just as if a mutator  trapped on  the  ref.   Once the  Remap phase
completes no live heap ref can refer to  pages protected by the
previous Relocate phase.  At  this point  the  virtual memory  for
those pages is freed.  

Since both the Remap and Mark phases need to  touch all live ob-
jects, we fold them together.   The  Remap phase for  the  current
GC cycle is run concurrently  with the  Mark phase for  the  next
GC cycle, as shown in Figure 1.  

The  Remap phase is also running concurrently with the 2nd  half
of the Relocate phase.  The Relocate phase is creating new stale
pointers that  can only be fixed by a complete run of the Remap
phase, so stale pointers created during the  2nd  half of  this Relo-
cate  phase are only cleaned out  at  the  end of  the  next Remap
phase.   The  next  few sections will discuss each  phase in  more
depth.

5. MARK PHASE
The  Mark  phase begins by initializing any  internal  data  struc-
tures (e.g., marking worklists) and clearing this phase's mark-bits.
Each object has two mark-bits, one indicating whether the ref is
reachable (hence live) in this GC cycle, and one for it's state  in
the prior cycle.1

The  Mark phase then  marks all global refs, scans each threads'
root-set,  and flips  the  per-thread  expected  NMT  value.   The
root-set  generally  includes all refs in CPU registers and on  the
threads' stacks.  Running threads cooperate by marking their own
root-set.   Blocked (or  stalled) threads get marked in parallel by
Mark-phase threads.  This is a Checkpoint;  each thread can im-
mediately  proceed after  it's root  set  has been marked (and ex-
pected-NMT flipped) but the  Mark phase cannot  proceed until
all threads have crossed the Checkpoint.

After the root-sets are all marked we proceed with a parallel and
concurrent  marking phase  [17].  Live  refs are pulled from the
worklists, their  target objects marked live and their internal  refs
are  recursively  worked on.   Note  that  the  markers  ignore  the
NMT  bit,  it  is only  used by the  mutators.   When  an object  is
marked live, its size is added to  the amount of live data in it's 1M
page (only large objects are allowed to  span a page boundary and
they are handled separately, so the live data calculation is exact).
This phase continues until the  worklists run dry and all live ob-
jects have been marked.

New objects  created  by  concurrent  mutators  are  allocated  in
pages which will not  be relocated in  this  GC cycle,  hence  the
state  of  their  live bits is not  consulted by the  Relocate  phase.
All  refs being stored into  new objects (or  any  object  for  that
matter)  have  either  already been marked or  are  queued in  the
Mark phase's worklists.  Hence the initial state of the live bit for
new objects doesn't matter for the Mark phase.

5.1 The NMT Bit
One of the  difficulties in making an incremental  update marker
is  that  mutators  can  “hide”  live  objects  from  the  marking

1We use bitmaps for the marks, they're cheap to  clear and scan.

Figure 1: The Complete  GC Cycle
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threads.  A mutator  can  read an  unmarked ref  into  a register,
then clear it from memory.   The object remains live (because its
ref  is in a register)  but not  visible to  the  marking threads (be-
cause they are past the mutator stack-scan step).  The unmarked
ref can also be stored down into an already marked region of the
heap.   This  problem  is typically  solved by requiring another
STW pause at  the end of marking.  During this second STW the
marking threads revisit the root-set and modified portions of the
heap  and must  mark  any  new refs discovered.  Some GC algo-
rithms  have  used a  SATB invariant  to  avoid the  extra  STW
pause.  The  cost of SATB is a somewhat more expensive write-
barrier; the barrier needs to read and test  the overwritten value.

Instead of a STW pause or write-barrier we use a read barrier and
require the mutators do a little GC work when they load a poten-
tially unmarked ref by taking an NMT-trap.   We get the  trap-
ping  behavior  by  relying  on  the  read-barrier and  the  Not-
Marked-Through  bit: a bit we steal from each ref.  Refs are 64-
bit entities in our system representing a vast  address space.  The
hardware implements a smaller virtual address space; the  unused
bits are ignored for  addressing purposes.  The  read-barrier logic
maintains the notion of a desired value for the NMT bit and will
trap  if it  is set  wrong.  Correctly  set  NMT  bits cost  no  more
than the read-barrier cost itself.  The invariant is that  refs with a
correct  NMT have definitely been communicated to  the  Mark-
ing threads (even  if  they  haven't  yet  been  marked  through).
Refs with incorrect  NMT  bits  may have been marked through,
but the  mutator  has no  way to  tell.   It  informs  the  marking
threads in any case.

If  a mutator  thread loads and read-barriers a ref with the  NMT
bit set wrong, it has found a potentially unvisited ref.  The muta-
tor  jumps to  the  NMT-trap  handler.  In  the  NMT-trap  handler
the  loaded value has it's NMT  bit set  correctly.   The  ref is re-
corded with  the  Mark  phase logic.2  Then  the  corrected ref  is
stored back into  memory.   Since the  ref is changed in memory,
that  particular ref will not cause a trap in the future.  

This “self-healing” idea is key: without  it a phase-change would
cause all the  mutators to  take  continuous NMT  traps until the
Marker  threads can get around to  flipping the  NMT bits in the
mutators'  working  sets.   Instead,  each  mutator  flips  its  own
working set  as it  runs.  After  a short  period of  high-intensity
trapping (a “trap  storm”)  the  working set  is converted and the
mutator  proceeds at  its  normal  pace.   During the  steady-state
portion  of  the  Mark  phase,  mutators  take  only  rare  traps  as
their working set slowly migrates.

Changing the  ref  in  memory  amounts  to  a store,  even  if  the
stored value is Java-language-equivalent  to  the  original  value.
The  store  is transparent  to  the  Java semantics of  the  running
thread,  but the  store  is visible to  other  threads: without  some
care it  might  stomp  over  another  thread's store  effectively re-
versing it.   Instead of  unconditionally storing, the  trap  handler
uses a  compare-and-swap (CAS) instruction  to  only update the
memory if it hasn't  changed since the trap.   If the CAS fails the
handler  returns  the  value currently  in  memory  (not  the  value
originally loaded) and the read barrier is repeated.

2 Actually, they are batched for efficiency.

5.2 The NMT Bit and The Initial Stack-Scan
Refs in  mutators'  root-set  have  already passed any  chance for
running a read-barrier.  Hence the initial root-set stack-scan also
flips the  NMT bits in the  root-set.   Since the  flipping is done
with a Checkpoint  instead of a STW pause, for a brief time dif-
ferent  threads will have  different  settings for  the  NMT  desired
value.  It  is possible for two threads to  throb, to constantly com-
pete over a single ref's desired value NMT value via trapping and
updating in memory.   This situation can only last a short  period
of time, until the unflipped thread passes the next  GC safepoint
where it will trap, flip its stack, and cross the Checkpoint.

Note that  it  is not  possible for a single thread to  hold the same
ref twice in its root-set  with different  NMT settings.  Hence we
do  not  suffer  from  the  pointer-equality  problem;  if  two  refs
compare as bitwise not-equal, then they are truly unequal.

5.3 Finishing Marking
When  the  marking threads run out  of  work,  Marking is nearly
done.  The marking threads need to  close the narrow race where
a  mutator  may  have  loaded an  unmarked  ref  (hence  has  the
wrong NMT bit) but not yet executed the read-barrier.  Read-bar-
riers never span a GC safepoint,  so it suffices to  require the mu-
tators cross a GC safepoint  without  trapping.  The  Marking pass
requests a Checkpoint,  but requires no other mutator  work.  Any
refs discovered before the  Checkpoint  ends will be concurrently
marked as normal.  When all mutators complete the Checkpoint
with  none  of  them  reporting any  new refs,  the  Mark  phase is
complete.   If new refs are reported the  Marker  threads will ex-
haust them and the Checkpoint  will repeat.  Since no refs can be
created with the “wrong” NMT-bit value the process will eventu-
ally complete.

6. RELOCATE AND REMAP PHASES
The  Relocate  phase  is where  objects  get  relocated  and com-
pacted, and unused pages get freed.  Recall that  the Mark phase
computed the  amount  of  live data per 1M page.  A page with
zero live data can obviously be reclaimed.  A page with  only a
little live data  can be made wholly unused by relocating the live
objects out to other pages.   

As hinted at in Figure 1, a Relocate phase is constantly  running,
continuously freeing memory at a pace to  stay ahead of the mu-
tators.  Relocation uses the current  GC-cycle's mark bits.  A cy-
cle's  Relocate  phase  will  overlap  with  the  next  cycle's  mark
phase.  When the next  cycle's Mark phase starts it uses a new set
of marking bits, leaving the current cycle's mark bits untouched.

The  Relocate  phase starts  by finding unused or  mostly  unused
pages.  In theory full or mostly full pages can be relocated as well
but there's little to be gained.  Figure 2 shows a series of 1M heap
pages; live object space is shown textured.  There is a ref coming
from a fully live page into a nearly empty  page.  We want to  re-
locate the few remaining objects in the “Mostly Dead” page and
compact  them  into  a  “New,  Free”  page,  then  reclaim  the
“Mostly Dead” page.

Next  the  Relocate  phase builds side arrays  to  hold forwarding
pointers.   The  forwarding pointers  cannot  be kept  in  the  old
copy of the objects because we will reclaim the physical storage
immediately after copying and long before all refs are remapped.
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The  side array data isn't  large because we relocate  sparse pages.
We implement  it as a straightforward hash table.  Figure 3 shows
the side array.

The  Relocate  phase then  GC-protects  the  “Mostly  Dead” page,
shown in gray, from the mutators.  Objects in this page are now
considered stale; no  more  modifications of these objects are al-
lowed.  If a mutator  loads a ref into the protected page, it's read-
barrier will now take a GC-trap.  

Next  the  live objects are copied out and the  forwarding table is
modified to  reflect  the objects' new locations as shown in Figure
4.  Copying is done concurrently  with the  mutators;  the  read-
barrier keeps the  mutators  from seeing a stale object  before  it
has finished moving.  Live objects are found using the  most  re-
cent mark-bits available and sweeping the page. 

Once copying has completed, the  physical  memory  behind the
page is freed.  Virtual memory  cannot  be reclaimed until there
are no more stale refs pointing into the freed page.  Stale refs are
left  in the heap to be lazily discovered by running mutators using
the read-barrier,  and will be completely updated in the  next  Re-
map phase.  Freed physical memory  is immediately recycled by
the OS and may be handed out to  this or another process.  After
freeing memory,  the GC threads are idled until the next  need to

relocate  and free  memory,  or  until  the  next  Mark  and Remap
phase begins.  

6.1 Read-Barrier Trap Handling
If a mutator's read-barrier GC-traps, then the mutator has loaded
a stale ref.  The GC-trap handler looks up the forwarding pointer
from the side arrays and places the correct value both in the reg-
ister  and in  memory,  as shown in  Figure 5.   Similarly  to  the
NMT trap  handler's “self-healing” behavior,  updating the  ref in
memory  is crucial to  performance:  it  keeps the  same stale ref
from trapping again.  As before, the memory update is done with
a CAS to avoid stomping a racing store from another thread.  

It  is also possible that  the needed object has not  yet  been copied.
In this case the  mutator  will do the  copy  on behalf of the  GC
thread –  since  the  mutator  is otherwise blocked from  forward
progress.  The  mutator  can read the  GC-protected page because
the trap handler runs in the elevated GC-protection mode.  If the
mutator  must  copy  a large object,  it  may be stalled for  a long
time.   This normally isn't an issue: pages with a lot  of live data
are not  relocated and a ½-page sized object (512K) can be copied
in about 1ms.  

6.2 Other Relocate Phase Actions
At  the  time  we protected pages, running mutators  might  have
stale refs in their root-set.  These are already past their read-bar-
rier and thus won't  get directly caught.  The  mutators scrub any
existing stale refs from their root-set with a Checkpoint.   Relo-
cation can start  when the Checkpoint  completes.

The cost to modify the TLB protections (a kernel call and a sys-
tem-wide TLB shoot-down) and scrubbing the mutators' stacks is
the same for one page as it is for many.  We batch up these op-
erations to  lower costs, and typically protect  (and relocate  and
free) a few gigabytes at a time.

Notice that  there is no “rush” to finish the Relocation phase; we
need only relocate and free pages at a pace to  keep ahead of the
mutators.   Also notice it  is unlikely that  a mutator  stalls on an
unmoved stale object.   Relocated pages contain only a few older
objects, most likely they have moved out of the mutator's work-
ing set.   Virtual memory  is not  freed immediately,  but we have
lots  of  that.   The  final  step  of  scrubbing all stale refs and re-
claiming virtual memory is the job of the Remap phase.

6.3 The Remap Phase
The  Remap  phase updates all stale refs with  their  proper  for-
warded pointers.  It  must  visit  every ref in the  heap to  find all
the stale ones.  As mentioned before it runs in lockstep with the
next  GC cycle's Mark phase; the one piece of visitor  logic does
both the stale ref check and NMT check.

At the end of the Remap phase, all pages that  were protected be-
fore  the  start  of  the  Remap  phase have  now been completely
scrubbed.  No more stale refs to those pages remain so those vir-
tual memory pages can now be reclaimed.  We also free the side
arrays at this time, and a GC cycle is complete.

7. REALITY CHECK
Our implementation is a rapidly moving work-in-progress.  As of
this writing it suffers from a few STW pauses not required by the
Pauseless GC algorithm.   Over  time  we hope  to  remove  these

Figure  5: Updating  stale  refs
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STWs or  engineer their  maximum time below an OS time-slice
quanta.   We have proposed solutions for  each one,  and report
pauses experienced  by the  current  implementation  on  the  8-
warehouse 20-minute pseudo-JBB run described in Section 8.

7.1 At the Mark Phase Start
At the start  of the Mark phase we stop all threads to  flip the de-
sired NMT state.  We could flip the NMT bits via a Checkpoint;
the cost would be some amount of NMT-bit throbbing (repeated
NMT traps) on shared objects until all threads flip.  Also, global
shared resources (e.g., the SystemDictionary, JNI handles, locked
objects)  are  marked in  this  STW.   Engineering these  to  use a
Checkpoint  is straightforward.

The worse pause reported was 21ms and the average was 16ms.

7.2 At the Mark Phase End
At the end of the Mark phase we stop all threads and do (in par-
allel but not  concurrent) soft  ref processing, weak ref processing,
and finalization.  Java's soft  and weak refs present a race between
the  collector  nullifying a ref  and the  mutator  “strengthening”
the  ref.   We could process the  refs concurrently  by having the
collector  CAS down a  null  only  when  the  ref  remains  not-
marked-through.  The  NMT-trap handler already has the proper
CAS'ing behavior  – both  the  collector  and the  mutator  race to
CAS down a new value.  If the  mutator  wins the ref is strength-
ened (and the collector  knows it),  and if the  collector  wins the
ref is nullified (and the mutator only sees the null).

There  are  a number of  other  items handled at  this  STW that
could be engineered to  be concurrent,  including class unloading
and  code-cache  unloading.   Again  engineering  these  will  be
straightforward but tedious.

The worse pause reported was 16ms and the average was 7ms.

7.3 At the Relocation Phase Start
The  mutators'  root-sets  need scrubbing when  GC-protecting  a
page.  There  are two problems here: the  TLB shoot-down isn't
atomic  and there  are stale refs in the  root-set.   Since the  TLB
shoot-down is not  atomic, for a brief period some mutators can
be protected and not  others.  Unprotected mutators would con-
tinue to  read and write the object directly, so protected mutators
need to  as well.  However, reading and writing the protected ob-
ject  forces a GC-protection  trap.   Our current  implementation
stops all threads and performs a bulk TLB shoot-down and muta-
tor  root-set scrubbing under STW.  This can be engineered to  be
concurrent  and incremental in a straightforward manner.

We could use a Checkpoint  to  update the  TLBs and scrub the
root-sets.  To  maintain concurrency until all threads have passed
the relocation Checkpoint,  the read barrier's TLB trap handler is
modified to  wait  for  the  Checkpoint  to  complete  before  pro-
ceeding with  relocation  or  remapping  and propagating  a  cor-
rected ref in the  mutator.  Mutator  threads that  actually access
refs in protected pages will then  “bunch up” at  the  Checkpoint
with  other  threads  continuing  concurrent  execution  past  the
Checkpoint.  This effect  is mitigated by the  fact  that  we prefer-
entially relocate sparse pages.

The worse pause reported was 19ms and the average was 5ms.

7.4 Relocate doesn't run during Mark/Remap
Right now we have not  implemented a second set of mark bits to
allow the  Relocate  phase  to  run  concurrently  with  the  next
Mark/Remap phase  [14].  This  means we cannot  free memory
during the Mark/Remap phase.  We have heuristics which predict
how many  pages the  mutator  will need during marking and we
free  that  many  (plus some pad) before  marking begins.  If  we
predict low, as can happen if the mutators suddenly “accelerate”,
the  mutators will block until marking is complete.   Engineering
the  overlapped  Relocate/Mark  phases  will be straightforward.
Additionally, we currently do not  add threads dynamically in re-
sponse to  mutator  acceleration.   Each  phase completes with a
number of threads decided on at the phase start.

8. EXPERIMENTS
8.1 Methodology
The Pauseless algorithm is intended to  lower pause times in large
transaction-oriented programs running business logic.  There are
a  limited  number  of  representative  Java  benchmarks  for  this
class of  program.   The  most  realistic  and widely accepted  is
SpecJApp-Server '02 and '04.   This benchmark is extremely dif-
ficult  to  setup,  tune,  or  get  reliable numbers out  of.   It  is also
very  hard to  normalize  across different  hardware.   The  much
more  simplistic  SpecJBB benchmark  has  very  well-structured
(and unrealistic!)  object lifetimes and is ideally suited for  a gen-
erational collector.

In  an effort  to  have both  a reliable, understandable benchmark
and one that  is more representative  of  transactional  programs,
we added a large object  cache to  the  standard  SpecJBB bench-
mark.   This  cache  represents,  e.g.,  a  Java  bean  cache,  or  an
HTML  request  cache.   For  each  transaction,  400  bytes  were
added to  the cache and the oldest cached object was freed.  This
level of extra  objects is enough to  easily defeat  targeted tuning
of generational collectors to JBB.  

We also removed the  forced System.gc()  between runs and in-
creased the JBB run times from 2 minutes to 20 minutes.3  In the
standard benchmark it's common to  never need a full collection
during the timed portion of the run.  In practice, these large busi-
ness applications must run in a steady-state mode without an un-
timed window every 2 minutes for a System.gc().  

All runs were done with 8 warehouses, i.e. 8 concurrent  threads
doing benchmark  work.   We  added “-Xmx1536m”,  allowing a
maximum heap  size of  1.5G, which is about  twice the  average
size of the live data.  We added “-server” to the SUN JVMs.  For
the  concurrent  GC timing runs, we added whatever  flag was ap-
propriate to  trigger using the concurrent  collector for that  JVM.
For  the  IBM JVM, it  was “-Xgcpolicy:optavgpause”.  For  the
BEA JVM, it  was “-Xgcprio:pausetime”.   For the  SUN JVM, it
was “-XX:+UseConcMarkSweepGC -XX:+UseParNewGC”.  For
the  Azul JVM, concurrent  collection  is the  default and no flags
are needed.  For the non-concurrent  GC timing runs we used the
best  parallel  (throughput-oriented)  collector  available.   This  is
the  default  for  the  IBM and BEA JVMs, for  the  SUN JVM we
added “-XX:+UseParallelGC”.  We used no other flags.
3 Except  for IBM's concurrent collector which was unable to  run

the full 20 minutes; we used a 10 minute run for it.
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We  ran  the  IBM and SUN  JVMs on  a  2-way 3.2Ghz  hyper-
threaded Xeon with 2G of physical memory,  running a Red Hat
Linux 2.6  kernel.   Unfortunately,  the  BEA JVM didn't  run on
this version  of  Linux so it  was run on  a 1-way 2.4Ghz  hyper-
threaded P4  with 512M of  physical memory  running Windows
2000.   The  BEA JVM heap was limited to  425M to  avoid pag-
ing.  The  simulated object cache added about 40M of long-lived
live data per warehouse; 425M isn't  a large enough heap to  run
with 8 warehouses.  We limited the  BEA JVM to  3 warehouses,
keeping the proportion of heap devoted to  long-lived data about
the same.  We also ran the SUN JVM in 64-bit mode on a 2-way
1.2Ghz US3 with 4G of physical memory running Solaris 9.  We
attempted  to  run  on  an  older  24-CPU Sparc  (450Mhz  US2).
Here we hoped the  Sparc would use the  spare CPUs to  good ef-
fect.   However,  the  single-threaded concurrent  collector  could
not  keep up with the  mutators  and the  benchmark  suffered nu-
merous 12-second full-GC pauses.  On the 2-CPU Sparc, a single
concurrent  collector  thread could use up to  half  the  total  CPU
resources in order to  keep  up.  We report  the  superior 2-CPU
Sparc  scores,  although  we would like  to  have  reported  scores
from another high-CPU count machine.  The Azul JVM is a 64-
bit  JVM running on  a 16-chip  (384-CPU)  Azul appliance with
128G of  physical memory.   As before,  we limited heap  size to
1.5G.  Only 8 CPUs are used to  run the actual benchmark, with a
handful more  running the  Pauseless collection  and doing back-
ground JIT compiles.  

We decided to  NOT report  SpecJBB score, which is reported in
units of  transactions/second,  both  because our run is not  Spec-
compliant and because of the wide variation in hardware and JIT
quality.   Even  on  the  same hardware,  the  JITs  from  different
vendors produce code of substantially different  quality.  For the
same 20  minute  run,  we saw JVMs execute  between 15  million
and 30 million transactions.  While transaction throughput is an
important  metric, this paper is focused on removing the biggest
reason  for  transaction  time  variability.   We report  transaction
times instead.

8.2 Transaction Times
We  measured both  transaction  times  and GC pause times  re-
ported with “-verbose:gc”.  We feel that  transaction times repre-
sent a more realistic measure than direct GC pauses as they more
closely correspond to  “user wait time”.  

Transaction times were gathered into buckets by duration, build-
ing a histogram.   Duration  was measured with  Java's  current-
TimeMillis() and so is limited to  millisecond resolution.   Most
transactions take 0 or 1 milliseconds, so we did not  gather accu-
rate times for these fast transactions.  However, we are more in-
terested  in  the  slow transactions.   All  the  collectors  except
Pauseless had a  significant  fraction  of  transactions  take  100-
300ms (100 times slower than the fast transactions), with spikes
to  1-4 seconds.  We kept  per-millisecond buckets from 0ms to
31ms.   After  that  we grew the  buckets  by powers-of-2  with
halves: 32-47ms, 48-63ms, 64-95ms, 96-127ms, and so on up to
16sec.  This allowed us to  compute the  bucket index with a few
shifts.   Buckets were replicated per  thread to  avoid coherency
costs then totaled together at the end of the run.  

A transaction  that  reports  as taking 0ms clearly takes some fi-
nite time.  The 0ms bucket's average transaction time is assumed
to  be 0.33ms, and the  1ms bucket's average transaction  time  is
assumed to be 1.33ms.  This is the largest source of measurement
error  we have.   Almost  no  transactions  landed in  the  3ms to
30ms buckets,  so a measurement  error  of  up to  1ms in  those
buckets will not  alter the data in any substantial way.

For all other buckets we simply totaled time for that  bucket.  We
summed the total transaction times (time per bucket by transac-
tions in the bucket),  and report  the percentage of total  transac-
tion time spent on transactions of each duration.

Figure 6 shows how many transactions the various JVMs kept  in
the  0ms and 1ms range (0ms is the  low bar, 1ms is the  middle
bar).   The  Pauseless algorithm  keeps  87%  (99.5%)  of  total
transaction time spent  in transactions of 1ms (2ms) or less; the
other  JVMs vary  between 80% down to  50%.  The  concurrent
version from each vendor faired slightly worse than  the parallel
collectors,  showing a  slightly  higher  percentage  of  total  time
spent in slow transactions.

Figure  7 shows cumulative  transaction  times  (not  wall-clock
time, which was 20 minutes) vs. transaction duration.  Times are
cumulative,  reaching 1.00  (100% of  total  transaction  time)  at
the top  edge.  Transaction duration runs across the  bottom in a
log scale.   Lines that  approach  1.00  quicker are  better,  repre-
senting  a  greater  percentage  of  processing time  spent  in  fast
transactions.

We can see a couple of trends in this chart.   Pauseless again does
quite well, with essential 100% of time spent  in fast transactions
and a worst-case transaction time of 26 milliseconds.  The other
JVMs are roughly grouped into pairs with the parallel throughput
collector line being slightly higher than the concurrent  collector
line for  most of the chart.   The  lines cross as we near 100% of
time and the slowest transactions; the concurrent  collectors gen-
erally have smaller worst-cast  times than  the throughput collec-
tors.

Table 1 shows the  worse-case transaction  times.  The  Pauseless
algorithm's worse-case transaction time of 26ms is over 45 times
better  than  the  next  JVM, BEA's parallel  collector.   Average
transaction times are remarkable similar given the wide variation
in hardware used.  

Table 1: Worst-case and average times, in ms

Azul
txu
con

IBM
x86
con

SUN
x86
con

SUN
sun
con

BEA
x86
con

IBM
x86
par

SUN
x86
par

SUN
sun
par

BEA
x86
par

Trans 26 1245 1277 1674 1281 1419 3195 5376 1172

Pause 21 526 210 544 230 734 2217 3953 562

Ratio 1.24 2.37 6.08 3.08 5.57 1.93 1.43 1.36 2.09

Avg
Trans 0.65 0.60 0.71 0.93 0.53 0.57 0.71 0.82 0.52

Pause 9.4 137 63 71 70 414 317 704 348
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Figure  7: Cumulative  transaction  times  vs. duration  (ms)
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Figure  8: Reported pause  times  vs. duration  (ms)
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Figure 6: Short transaction  times  (0,1,2 ms) as a % of total
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8.3Reported Pause Times
We collected GC pause times reported with “-verbose:gc”.  We
summed all reported times and present  a histogram of  cumula-
tive pause times vs. pause duration.  Figure 8 shows the reported
pauses.  Most  of  the  concurrent  collectors  consistently  report
pause times in  the  40-50ms range; IBM's concurrent  collector
has 150ms as it's common (mode) pause time.  As expected, the
parallel collectors  all do worse with  the  bulk of  time  spent  in
pauses ranging from 150ms to several seconds.

Table 1 also shows the ratio  of worst-case transaction time and
worst-case reported pause times.  Note that  JBB transactions are
highly  regular,  doing a fixed amount  of  work per  transaction.
Changes in  transaction  time  can  be directly  attributed to  GC.4
Several of  the  worse-case transactions are  a full second longer
than  the  worse-case pauses.  We have some guesses as to  why
this is so:

It  is possible that  the concurrent collectors did not  keep up with
the allocation  rate,  stalling mutators until they  caught up.  Un-
fortunately,  this  information  was not  obvious from  the  “-ver-
bose:gc” output.   Also, during some phases of  some concurrent
GCs, the mutators pay a heavy cost while making forward prog-
ress.  This amounts to  an unreported pause smeared out in time.
Sometimes the  GC pauses come in rapid succession so that  the
same transaction will get paused several times.  Perhaps the un-
derlying OS timesliced the 8 mutator  threads very poorly across
the 4 hyper-threaded CPUs.  

In  any case,  reported  pause  times  can  be  highly  mislead-
ing .   The  concurrent  collectors  other  than  Pauseless under-re-
port  their effects  by 2x to  6x!   The  parallel collectors also un-
der-report,  but only by 30% to 100%.  Based on this data, we en-
courage the  GC research  community  to  test  the  end-to-end ef-
fects of GC algorithms carefully.  

We also attempted to  gather  Minimum Mutator  Utilization fig-
ures [12], especially to  track the “trap storm” effects.  MMU re-
ports the smallest amount of time available to  the mutators in a
continuous rolling interval.   Since our  largest  pause was over
20ms there exists a 20ms interval where the  mutators make no
progress, so MMU@20ms is 0.  Preliminary figures are in Table
2, and represent MMU figures for the entire 20 minute run worst
case across all threads.  Looking at  the  MMU@50ms figure, we
see about  40ms of  pause out  of  50ms.   We  know that  about
20ms of that  is reported as an STW pause, so we assume the re-
maining 20ms is due to the trap storm.

Table 2: Minimum  Mutator Utilization

MMU
@20ms

MMU@
50ms

MMU@
100ms

MMU@
200ms

MMU@
500ms

MMU@
1000ms

MMU@
2000ms

0% 21% 40% 52% 67% 77% 84%

4 We tested; all transactions are fast until the heap runs out.  For
the 64-bit JVMs we were able to  test with a 64G heap.

9.Conclusions
Azul Systems has taken  the rare opportunity  to  produce custom
hardware for  running a garbage collected language in a shipping
product.   This  custom hardware enables a very  potent  garbage
collection algorithm.  Even though the individual Azul CPUs are
slower  than  the  high-clocking  X86  P4's  compared  against,
worse-case transaction  times are over 45 times better  and aver-
age transaction times are comparable.  

Azul's Pauseless GC algorithm is a fully parallel and concurrent
algorithm engineered for  large multi-processor systems.  It  does
not  need any  Stop-The-World pauses, no places where all muta-
tor  threads must  be simultaneously stopped.  Dead object  space
can be reclaimed at  any  point  during a GC cycle; there  are no
phases where  the  GC algorithm  has to  “race”  to  finish  some
phase before the mutators run out of free space.  Also there are
no phases where the  mutators pay a continuous high cost  while
running.  There are brief “trap  storms” at  some phase shifts, but
due to the “self-healing” property  of the algorithm these storms
appear to be low cost.  

Azul's custom  hardware includes a  read-barrier,  an  instruction
executed against every ref loaded from the heap.  The  read-bar-
rier   allows global GC invariants  to  be cheaply  maintained.  It
checks for  loading of  potentially  unmarked objects, preventing
the  spread of  unmarked objects into  previously marked regions
of  the  heap.   This  allows the  concurrent  incremental  update
Mark  phase to  terminate  cleanly without  needing a final  STW
pause.  The read-barrier also checks for loading stale refs to relo-
cated objects and it does it  cheaper than  a Brooks' style indirec-
tion barrier.  

Section 7, Reality Check, includes ongoing and future work.  An-
other obvious and desirable feature is a generational variation of
Pauseless.  As presented,  Pauseless is a single-generation  algo-
rithm.   The  entire  heap  is scanned in each Mark/Remap cycle.
Because the  algorithm  is parallel  and concurrent,  and we have
plentiful CPUs the  cost  is fairly well hidden.  On a fully loaded
system the GC threads will steal cycles from mutator  threads, so
we'd like the  GC to  be as efficient  as possible.  A generational
version will only need to  scan the young generation most of the
time.   The necessary hardware barriers already exists.

On a final note, we were quite surprised at the difference between
reported pause times and the  “user  experience” delays seen by
the transactions.  We strongly encourage GC researchers and the
production JVM providers to pay close attention to  full GC algo-
rithm  costs,  not  just  those costs that  can easily have  a timer-
start/timer-stop wrapped around them.
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