
A Programmable Microkernel for Real-Time Systems ∗

Christoph M. Kirsch
University of Salzburg

ck@cs.uni-salzburg.at

Marco A.A. Sanvido
VMWare Inc.

Thomas A. Henzinger
EPFL and UC Berkeley

tah@epfl.ch

ABSTRACT
We present a new software system architecture for the im-
plementation of hard real-time applications. The core of the
system is a microkernel whose reactivity (interrupt handling
as in synchronous reactive programs) and proactivity (task
scheduling as in traditional RTOSs) are fully programma-
ble. The microkernel, which we implemented on a Strong-
ARM processor, consists of two interacting domain-specific
virtual machines, a reactive E (Embedded) machine and a
proactive S (Scheduling) machine. The microkernel code (or
microcode) that runs on the microkernel is partitioned into
E and S code. E code manages the interaction of the system
with the physical environment: the execution of E code is
triggered by environment interrupts, which signal external
events such as the arrival of a message or sensor value, and it
releases application tasks to the S machine. S code manages
the interaction of the system with the processor: the exe-
cution of S code is triggered by hardware interrupts, which
signal internal events such as the completion of a task or
time slice, and it dispatches application tasks to the CPU,
possibly preempting a running task. This partition of the
system orthogonalizes the two main concerns of real-time
implementations: E code refers to environment time and
thus defines the reactivity of the system in a hardware- and
scheduler-independent fashion; S code refers to CPU time
and defines a system scheduler. If both time lines can be
reconciled, then the code is called time safe; violations of
time safety are handled again in a programmable way, by
run-time exceptions. The separation of E from S code per-
mits the independent programming, verification, optimiza-
tion, composition, dynamic adaptation, and reuse of both
reaction and scheduling mechanisms. Our measurements
show that the system overhead is very acceptable even for
large sets of task, generally in the 0.2–0.3% range.

∗This research was done while all authors were at UC Berke-
ley and supported in part by the AFOSR MURI grant
F49620-00-1-0327 and the NSF grants CCR-0208875 and
CCR-0225610.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05,June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms
Languages

Keywords
Real Time, Operating System, Virtual Machine

1. INTRODUCTION
In [9], we advocated the E (Embedded) machine as a

portable target for compiling hard real-time code, and in-
troduced, in [11], the S (Scheduling) machine as a universal
target for generating schedules according to arbitrary and
possibly non-trivial strategies such as nonpreemptive and
multiprocessor scheduling. In this paper, we show that the
E machine together with the S machine, form a program-
mable, low-overhead microkernel for real-time systems. We
implemented the microkernel on a StrongARM SA-1110 pro-
cessor and measured the system overhead to lie in the 0.2–
0.3% range. The implementation has a very small footprint,
namely, 8kB.

The E machine is woken up by external interrupts caused
by environment events, such as the arrival of a message on
a channel, or the arrival of a new value at a sensor. Once
awake, the E machine follows E code instructions to do three
things: first, it may run some drivers for managing sensors,
actuators, networking, and other devices; second, it may
release some application software tasks for execution; third,
it may update the trigger queue, which contains pairs of the
form (e, a) indicating that the future environment event e

will cause an interrupt that wakes up the E machine with
its program counter set to the E code address a. Then, the
E machine goes back to sleep and relinquishes control of the
CPU to the S machine. The S machine is woken up by the
E machine, or by internal interrupts caused by processor
events, such as the completion of an application task, or
the expiration of a time slice. Once awake, the S machine
follows S code instructions to do three things: first, it takes
care of processor and memory management, such as context
switching; second, it dispatches a single task to the CPU,
which may be either an application software task or a special
idle task; third, it specifies pairs of the form (i, a) indicating
that the future processor event i will cause an interrupt that
wakes up the S machine with its program counter set to the
S code address a.

35

The E and S architecture partitions the microkernel code,
or simply microcode, into two categories: E code supervises
the “logical” execution of application tasks relative to envi-
ronment events; S code supervises the “physical” execution
of application tasks on the given resources. At any time,
E code may release several tasks, but if there is only a sin-
gle CPU, then S code can dispatch at most one released task
at a time. In other words, E code specifies the reactivity of
an embedded system independent of the hardware resources
and the task scheduler, and S code implements a particu-
lar scheduler. The scheduler implemented in S code is fully
programmable; it may be static or dynamic, preemptive or
nonpreemptive. Together, the E and S machines form a pro-
grammable microkernel for the execution of hard real-time
tasks.

There are several benefits this architecture offers over tra-
ditional real-time operating systems.

Real-time predictability of the application behavior. Since
E code specifies the reactivity and timing of the system in-
dependent of the hardware and scheduler, a change in hard-
ware or scheduler does not affect the real-time behavior of
the application. This is especially important in control ap-
plications, where both slow-downs and speed-ups may lead
to instabilities. By contrast, in a traditional RTOS, the real-
time behavior of an application depends on the scheduling
scheme, the processor performance, and the system load,
which makes both code validation and reuse very difficult.
In our setting, timing predictability depends, of course, on
the fact that the S code meets the timing requirements spec-
ified by the E code. Given worst-case execution times of
the application code, this can be checked either statically,
by scheduling analysis [10], or at run-time. In the latter
case, E code run-time exceptions may be used to handle so-
called “time-safety” violations (i.e., missed deadlines) in an
explicit, programmable way [9].

Composability of real-time applications. Suppose we want
to put two software components, each consisting of E, S,
and application code, on the same hardware. In a traditional
RTOS, the combined real-time behavior of both components
may differ significantly from their individual behaviors if
run in isolation. Not so in our setting, where the E code of
both components is always composable, because its execu-
tion is synchronous [6], that is, E instructions are executed
in “logical zero time” with interrupts turned off. However,
the S code of both components constitutes two threads that
may or may not be composable: if there is a single CPU,
then both S threads are composable provided whenever one
thread dispatches an application task, the other thread dis-
patches the idle task. Composability can, again, be checked
either statically or at run-time. In the latter case, a so-
called “time-share” violation occurs whenever two S threads
attempt to simultaneously control the CPU. Now, S code
(rather than E code) run-time exceptions may be used to
handle these situations in an explicit, programmable way.
This concept can be generalized to multiprocessor hardware,
which executes several threads of S code in parallel.

Dynamic adaptation of real-time code. As both E and
S code are interpreted, we can dynamically optimize, patch,
and upgrade them. A dynamic change in E code modifies
the reactivity of a system and can be used, for example, to
switch between different modes or contingencies of an em-
bedded controller [9]. Similarly, a dynamic change in S code
can be used to optimize or adapt the scheduling scheme

without bringing down the system. This permits, in partic-
ular, adjustments in the event of hardware failures and thus
provides a basis for achieving fault-tolerance without com-
promising the platform-independent reactivity specification
—the E code— of a real-time application.

The real-time microkernel architecture we introduce here
provides programmable timing and scheduling services. In
this sense, our work relates to other work on microkernels,
which typically provide basic thread and interprocess com-
munication services [16, 1, 19, 2]. System services imple-
mented on top of a microkernel have already been shown to
perform well, e.g., in [7]. We demonstrate here that high
performance is also possible using an even more flexible,
programmable microkernel.

The paper is organized as follows. In Section 2, we briefly
review the E machine. In Section 3, we introduce the com-
plementary S machine, in Section 4, we define the combined
E and S machines, and in Section 5, we present some of the
benefits of this way of architecting a real-time kernel. Sec-
tion 6 describes our implementation of the programmable
microkernel on the StrongARM, and Section 7 evaluates our
overhead measurements for many different scenarios. The fi-
nal Section 8 presents related works.

2. THE EMBEDDED MACHINE
This section is a summary of the E Machine presented

in [9]. The E machine is a mediator between physical pro-
cesses and application software processes: it executes E code,
which is system-level machine code that supervises the ex-
ecution of software processes in relation to physical events.
The E machine has two input and two output interfaces.
The physical processes communicate information to the E ma-
chine through environment ports, such as clocks and sensors.
The application software processes, called tasks, communi-
cate information through task ports to the E machine. The
E machine communicates information to the physical pro-
cesses and to the tasks by calling system processes, called
drivers, which write to driver ports. The E machine releases
tasks to an external task scheduler for execution by writing
to release ports. Logically, the E machine does not need to
distinguish between environment and task ports; they are
both input ports, while driver and release ports are output
ports of the machine.

A change of value at an input port, say, a sensor port ps,
is called an input event. Every input event causes an in-
terrupt that is observed by the E machine and may initiate
the execution of E code. Such an event interrupt can be
characterized by a predicate called a trigger. For example,
p′

s > ps is a trigger on ps, where p′

s refers to the current
sensor reading, and ps refers to a threshold. In general, a
trigger may observe environment and task ports, which we
call its trigger ports. Once a trigger is activated it is logi-
cally evaluated with every input event; an active trigger is
enabled if it evaluates to true. A time trigger is a trigger on
an environment (clock) port pc with a predicate p′

c = pc + δ

where pc is the clock port value at the time of the trigger
activation, and δ is the number of ticks to wait before the
trigger is enabled.

Tasks, drivers, and triggers are functional code that is
external to the E machine and must be implemented in
some programming language like C. Tasks, drivers, and trig-
gers are given as binary executables to which E code refers
through symbolic references. The execution of drivers and

36

p1

t1

t2

da

pa

ps

ds

dipc

p2

g

mode m() period 20 {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

Figure 1: A simplified controller

tasks is supervised by E code, which monitors input events
through triggers. There are three unique E code instruc-
tions. In an actual implementation of the E machine, E code
also has standard control-flow instructions such as condi-
tional and absolute jumps. A call(d) instruction initiates
the execution of a driver d. A driver may provide sensor
readings as arguments to a task, or may load task results
into actuators, or may provide task results as arguments to
other tasks. A driver may read from any port but writes
only to driver ports. In favor of a simpler presentation, we
assume that a driver has a fixed set of ports on which it
operates. A driver executes in logical zero time, i.e., before
the next input event can be observed. As the implementa-
tion of d is system-level code, the E machine waits until d is
finished before interpreting the next instruction of E code.
A release(t) instruction1 releases a task t to run concur-
rently with other released tasks by emitting a signal to an
external task scheduler on the release port of t. Then the
E machine proceeds to the next instruction. The task t does
not execute before the E machine relinquishes control of the
processor to the scheduler. A task is a piece of preemptive,
user-level code, which typically implements a computation
activity. A task has no internal synchronization points. A
task reads from driver ports and computes on task ports.
The set of ports on which a task operates is fixed. Each
task has a special task port, called completion port, which
indicates that the task completed execution. The release

instruction itself does not order the execution of tasks. If
the E machine runs on top of an operating system, the task
scheduler may be implemented by the scheduler of the op-
erating system [9]. An alternative implementation of a task
scheduler is the S machine of Section 3. The task sched-
uler is not under control of the E machine; like the physical
environment and the underlying hardware, it is external to
the E machine and may or may not be able to satisfy the
real-time assumptions of E code. A future(g, a) instruction
marks the E code at the address a for execution at some
future time instant when the trigger g becomes enabled. In
order to handle multiple active triggers, a future instruc-
tion puts the trigger-address pair into a trigger queue. With
each input event, all triggers in the queue are evaluated in
logical zero time. The first pair whose trigger is enabled
determines the next actions of the E machine.

1The release instruction corresponds to the schedule in-
struction in [9] but has been renamed here for clarity.

a0: call(da) a1: call(ds)
call(ds) release(t2)
call(di) future(g, a0)
release(t1)
release(t2)
future(g, a1)

20

0 10 20

4 14

Real
Time

Time
Soft

t1

t2

Figure 2: E code for the simplified flight controller
and an execution trace of the E code using an EDF
scheduler

E Code Example.Fig. 1 shows the topology of the pro-
gram and a high-level Giotto [8] description of the program
timing: we denote ports by bullets, tasks by rectangles,
drivers by diamonds, and triggers by circles. Consider the
mode m. There are two tasks, both implemented in na-
tive code: task t1, and task t2. Task t2 processes input
every 10 ms and provides the processed data to task t1.
Task t1 processes the date, and writes the result to actua-
tors. Task t1 is executed every 20 ms. The release port p1

of t1 indicates whether t1 has been released to run. Simi-
larly, p2 is the release port of t2. The data communication
requires three drivers: a sensor driver ds, which provides the
data to task t1; a connection driver di, which provides the
result of task t1 to task t2; and an actuator driver da, which
loads the result of task t2 into the actuator. The drivers may
process the data in simple ways (such as type conversion),
as long as their WCETs are negligible. There are two en-
vironment ports, namely, a clock pc and the sensor ps; two
task ports, one for the result of each task; and three driver
ports —the destinations of the three drivers— including the
actuator pa. The “actfreq 1” statement in the Giotto pro-
gram causes the actuator to be updated once every 20 ms;
the “taskfreq 2” statement causes the navigation task to
be invoked twice every 20 ms; etc. The E code generated by
the Giotto compiler [10] is shown in Fig. 2.

The E code consists of two blocks. The block at address
a0 is executed at the beginning of a period, say, at 0 ms:
it calls the three drivers, which provide data for the tasks
and the actuator, then releases the two tasks to the task
scheduler, and finally activates a trigger g with address a1.
When the block finishes, the trigger queue of the E machine
contains the trigger g bound to address a1, and the release
ports of the two tasks, t1 and t2, are set to ready. Now
the E machine relinquishes control, only to wake up with
the next input event that causes the trigger g to evaluate
to true. In the meantime, the task scheduler takes over
and assigns CPU time to the released tasks according to
some scheduling scheme. Fig. 2 shows an execution trace of
the E code using an earliest deadline first (EDF) scheduler,
which gives priority to tasks with earlier deadlines. The
deadlines of the tasks are given as E code annotations [9] in
the release instructions (not shown here).

There are two kinds of input events, one for each envi-
ronment port: clock ticks, and changes in the value of the
sensor ps. The trigger g: p′

c = pc + 10 specifies that the

37

E code at address a1 will be executed after 10 clock ticks.
Logically, the E machine wakes up at every input event to
evaluate the trigger, finds it to be false, until at 10 ms, the
trigger is true. An efficient implementation, of course, wakes
up the E machine only when necessary, in this case at 10 ms.
The trigger g is now removed from the trigger queue, and the
associated a1 block is executed. It calls the sensor driver,
which updates a port read by task t2. There are two possi-
ble scenarios: the earlier invocation of task t2 may already
have completed with a signal on the completion port of t2.
In this case, the E code proceeds to release t2 again, and to
trigger the a0 block in another 10 ms, at 20 ms. In this way,
the entire process repeats every 20 ms. The other scenario
at 10 ms has the earlier invocation of task t2 still incom-
plete, i.e., the completion port of t2 has not yet signaled
completion. In this case, the attempt by the sensor driver
to overwrite a port read by t2 causes a run-time exception,
called time-safety violation. At 20 ms, when ports read by
both tasks t1 and t2 are updated, and ports written by both
t1 and t2 are read, a time-safety violation occurs unless both
tasks have completed. In other words, an execution of the
program is time-safe if the scheduler ensures the following:
(1) each invocation of task t1 at 20n ms, for n ≥ 0, completes
by 20n + 20 ms; (2) each invocation of task t2 at 20n ms
completes by 20n + 10 ms; and (3) each invocation of task
t2 at 20n + 10 ms completes by 20n + 20 ms. Therefore,
a necessary requirement for schedulability is δ1 + 2δ2 < 20,
where δ1 is the WCET of task t1, and δ2 is the WCET of t2.
If this requirement is satisfied, then a scheduler that gives
priority to t2 over t1 guarantees schedulability.

The E code implements the Giotto program correctly only
if it is time-safe: during a time-safe execution, the navigation
task is executed every 10 ms, the control task every 20 ms,
and the dataflow follows Fig. 1. A schedulable E code pro-
gram will generate only time-safe executions, and thus the
Giotto compiler needs to ensure schedulability when pro-
ducing E code. In order to ensure this, the compiler needs
to know the WCETs of all tasks and drivers (cf., for exam-
ple, [5]), as well as the scheduling scheme used by the task
scheduler. With this information, schedulability for E code
produced from Giotto can be checked. However, for arbi-
trary E code and platforms, such a check is difficult [10],
and the programmer may have to rely on run-time excep-
tion handling.

3. THE SCHEDULING MACHINE
The S machine [11] is a virtual machine that determines

the temporal order of task execution: it interprets S code,
which is system-level machine code that dispatches tasks or
idles. In the following, we give an overview of the S machine
concepts. The S machine reads from three input interfaces
to determine a running task. The release of tasks is commu-
nicated to the S machine through release ports. The tasks
communicate information including their completion to the
S machine through task ports. An external clock writes to a
clock port that is read by the S machine to time-slice tasks.

The S machine uses timeouts to monitor input events. A
timeout is similar to a trigger: it is a predicate over the input
ports of the S machine. In particular, we are interested in
timeouts of the form p′

c ≥ pc + δ where pc is the clock port
of the S machine. For readability of the code examples,
we abbreviate timeouts to the δ value, e.g., 10ms denotes a
timeout p′

c ≥ pc +10ms. A timeout expires if it evaluates to

a0: dispatch(t2)
dispatch(t1)
idle(release(t2))
dispatch(t2)
idle(release(t1))
fork(a0)

a0: dispatch(t2)
dispatch(t1, release(t2), a1)
idle(release(t2))

a1: dispatch(t2)
dispatch(t1)
idle(release(t1))
fork(a0)

t2

0 10 20

4 8 14

Real
Time

Time
Soft

t1

Figure 3: Synchronous S code and an execution
trace of the S code, and preemptive S code

true. We also consider timeouts of the form release(t) where
t is a task: release(t) expires if t is released and has not yet
completed.

There are three unique S code instructions. Again, in an
actual implementation of the S machine, S code also has
standard control-flow instructions such as conditional and
absolute jumps. A dispatch(t, m, a) instruction resumes
the execution of a released task t until the timeout m ex-
pires. There are three outcomes: (1) the S machine proceeds
to the next instruction if t has already completed but has
not yet been released again, or else, (2) the S machine pro-
ceeds to the next instruction when t completes provided t

completes before the timeout expires, or else (3) the S ma-
chine proceeds to the instruction at the address a when the
timeout expires before t completes. An idle(m) instruc-
tion makes the S machine idle until the timeout m expires
even though there may be released tasks. The S machine
proceeds to the next instruction when the timeout expires.
A fork(a) instruction marks the S code at the address a

for execution in parallel to the S code that follows the in-
struction. The S code at a is a new S thread of execu-
tion. The running thread instances are kept in a thread set

from which instances are chosen non-deterministically to ex-
ecute. If multiple threads dispatch more than a single task
at any instant the S machine throws a run-time exception,
called time-share violation. We use dispatch(t) to abbrevi-
ate dispatch(t, false, a) as well as dispatch(t,m) to abbre-
viate dispatch(t, m, a), where a is the address of the next
instruction.

S Code Examples.We present several S code examples
that schedule the tasks t1 and t2 of Section 2 in different
ways. Recall that t1 is released once every 20ms while t2
is released once every 10ms. Fig. 3 shows S code that dis-
patches t1 and t2 as follows: the S machine starts executing
the S code at the address a0 after both tasks have been re-
leased for the first time. t2 is dispatched first. When t2
completes, t1 is dispatched. When t1 completes, the S ma-
chine idles until t2 is released again. Then t2 is dispatched
again until t2 completes at which point the S machine idles
until t1 is released again. Then the S machine forks back
to the S code at a0. Since there is no S code following the
fork(a0) instruction, the current thread is terminated. Even
in this case a fork is different than a jump to a0 because,
upon forking, the new thread instance is assigned the cur-

38

a0: dispatch(t2) a1: dispatch(t1)
dispatch(t1, release(t2), a1) dispatch(t2)
idle(release(t2)) idle(release(t1))
dispatch(t2) fork(a0)
idle(release(t1))
fork(a0)

16

0 10 20

4

Real
Time

Time
Soft

t1

t2

20

Figure 4: Non-preemptive S code and an execution
trace of the S code

rent clock value as its reference time for timeouts. This will
be explained in more detail below.

Fig. 3 shows an execution trace of the S code. The S code
guarantees the time-safe execution of the E code in Fig. 2 if
both tasks t1 and t2 complete within 10ms, i.e., if the tasks
are never preempted by the release of a task. We call S code
synchronous if, in any execution of the S code, all released
tasks always complete before another task is released. In
contrast, the S code in the right column of Fig. 3 allows the
task t1 to be preempted by the release of t2, e.g., the E ma-
chine, and then the execution of t2 itself. At startup, t2 ex-
ecutes until completion. Then the dispatch(t1, release(t2))
instruction executes t1 until either t1 completes or t2 is re-
leased again. If t2 is released before t1 completes, t1 is pre-
empted and the S machine continues executing the S code
at the address a1. Here, t2 is dispatched until completion
before t1 resumes its execution. If, however, t1 would have
completed before t2 was released, the dispatch(t1) instruc-
tion following the instruction at a1 would have no effect
on t1. The execution trace of the S code corresponds to the
execution trace of the E code using an EDF scheduler as
shown in Fig. 2. Thus the S code describes an EDF sched-
ule for the E code. We call S code preemptive if, in any
execution of the S code, tasks may be preempted by (1) the
release and (2) the execution of other tasks.

The S code in Fig. 4 again allows the task t1 to be pre-
empted by the release of t2 but then resumes the execution
of t1 instead of executing t2. If t1 does not complete before
t2 is released again, t1 is dispatched resuming its execution
before t2 is dispatched. Fig. 4 shows an execution trace of
the S code. We call S code non-preemptive if, in any ex-
ecution of the S code, tasks are at most preempted by the
release but not by the execution of other tasks. Synchronous
S code is non-preemptive but not vice versa.

In Section 7, we will show experimental evidence that ex-
ecuting E and S code of different classes occurs at different
administrative overhead because of scheduling and context
switching. It turns out that synchronous S code causes less
overhead than the other classes because there is neither dy-
namic scheduling nor context switching required. However,
the drawback of synchronous S code is that (1) tasks have
to compute faster than the basic unit of time, i.e., at least
as fast as the most-frequent system activity, and (2) system
utilization may be poor. At the other end of the spectrum,
there is E code using a task scheduler instead of S code. De-
pending on the scheduler, tasks may be preempted at any

time and system utilization may reach 100%, at the cost
of scheduling and context switching overhead. Preemptive
S code can reduce the overhead because fewer scheduling
decisions are made at run-time. However, context switch-
ing is still necessary. Non-preemptive S code can reduce
the overhead even further because context switching is only
necessary between system and tasks but not between tasks.
Generating non-preemptive S code, on the other hand, is an
NP-hard problem [12, 3] and can thus only be approximated.

4. INTERACTING E AND S MACHINES
We discuss an implementation of interacting E and S ma-

chines. Instead of implementing both machines side-by-side,
we propose an implementation that integrates the E and
S machine into a single machine, which constitutes the core
of the programmable microkernel (Alg. 1). An important
aspect of an integrated implementation is to determinize
correctly the logical order in which the E and S machine
are invoked. For example, logically, the E machine should
be invoked before the S machine when an E code trigger is
enabled at the same time instant when an S code timeout
expires because the E code may release tasks that require
immediate scheduling service from the S code. An integrated
E and S machine interprets microcode that may consist of
E code and S code instructions.

We need the following data structures for the integrated
implementation. A system program consists of ports, drivers,
tasks, triggers, and timeouts, as well as microcode. A config-

uration of a system program consists of a system program, a
trigger queue, a thread set, a reference time, a running task,
and a microcode program counter. Since there are instants
at which both the E machine and the S machine must be in-
voked, event interrupts are evaluated in the following, deter-
ministic order: (1) task completion in the thread instances
first, then (2) enabled triggers in the trigger bindings, and
finally (3) expired timeouts in the thread instances. There
are two motivations for this particular order. (1) before (2):
task completion may require special handling, e.g., through
driver calls in microcode, prior to executing any other mi-
crocode; and (2) before (3): enabled triggers may invoke mi-
crocode that releases tasks, which require scheduling service
from microcode. Note that the integrated E and S machine
may also use a task scheduler to schedule released tasks if
there are no thread instances in the thread set in order to
support the execution of E code without S code.

The integrated E and S machine uses a microcode inter-
preter (Alg. 2), which can execute any E and S code. The
interpreter implements a straightforward merge of the E and
S code interpreters. As a consequence, microcode is in fact
more general than interacting E and S code. For example,
a thread written in microcode, as opposed to S code, may
call drivers, which may actually be useful in practice. How-
ever, we have presented E and S code separately because
both types of code address equally important but orthogo-
nal aspects of real-time systems. Microcode is an efficient
representation of interacting E and S code but generating
microcode may still benefit from keeping the logical differ-
ence of E and S code in mind.

5. CAPABILITIES
Semantic structure and predictability are the key prop-

erties of microcode that form the foundation of the micro-

39

kernel’s capabilities. E and S code address semantically or-
thogonal issues. E code defines the reactivity of the system
with respect to the physical environment while S code de-
fines application task scheduling. Microcode is dynamic in
the sense that it can be replaced, modified, extended, and
communicated at run-time. Modifying an E code portion of
microcode changes the reactive behavior of the system while
modifying the S code part changes the scheduling scheme.
The semantic structure of microcode enables the analysis
and composition of real-time programs on the system level.
Microcode does not necessarily replace traditional real-time
scheduling technology. Partial microcode can be comple-
mented at run-time, e.g., by a real-time scheduler that ei-
ther executes application tasks not handled by microcode,
or generates the missing microcode on-the-fly. Predictabil-
ity and composability of microcode enables portability and
mobility of real-time programs.

Analyzing Microcode.Microcode is amenable to program
and schedulability analysis. There are at least two inter-
esting problems that involve checking schedulability: (1) is
some given E code schedulable, i.e., do all tasks released
by the E code are schedulable and complete on time, with
respect to a given scheduling strategy and WCETs; and
(2) does some given S code guarantee the time-safe execu-
tion of some given E code and does the S code follow a given
scheduling strategy? For general E code with conditional
branching, the first problem is difficult but becomes easier
if the E code has a particular structure, e.g., is generated
from Giotto or simply describes a set of periodic tasks [10].
In this case, the second problem can be solved fast even
for non-trivial scheduling schemes such as non-preemptive
scheduling [11]. Thus schedulability of E code combined
with S code can be verified by the microkernel at run-time,
e.g., as part of the integrity check in the idle task. Another
interesting problem is to improve schedulability checking us-
ing control-sensitive program analysis techniques. Note that
a control-insensitive check is a conservative approximation,
which may fail on a schedulable program because the check
considers program paths that are actually never taken.

Composing Microcode.An important feature of microcode
is its composability. E code may be composed with other
E code at compile time, or even at run-time through the
trigger queue of the E machine. Logically, the reactive be-
havior of E code does not change when composed with other
E code since E code execution is instantaneous. However,
operationally, the instantaneousness of E code execution de-
grades with the number of E code instructions executed at
the same instant. S code may also be composed with other
S code at compile time, or at run-time through the thread
set. In general, composing E code that uses S code for task
scheduling requires regenerating the S code from scratch un-
less the S code was generated according to a compositional
scheduling strategy. For example, if S code components are
assigned exclusive time slots in which tasks are dispatched,
then the composed S code is time-sharing, i.e., dispatches at
most a single task at the same time, provided each S code
component is already time-sharing. Thus S code can be
used to study and utilize compositional scheduling strate-
gies. The time-triggered architecture [14] offers a similar
but hardware-based mechanism to time-share a communi-
cation bus that connects a distributed system of computers.

Partial Microcode. If the microkernel has a default task
scheduler, then it is not necessary that microcode describes
all behaviors of a real-time program. In fact, the microkernel
can generate missing microcode at run-time. For example,
S code may only dispatch a subset of all tasks. The task
scheduler of the microkernel can then either dispatch the
rest of the tasks whenever the S code execution completed,
or else generate additional S code that dispatches the re-
maining tasks. Once the additional S code has been gen-
erated, it can execute repeatedly without the need for the
task scheduler. Besides improved run-time performance, a
benefit at design time is that prototypes of microcode can
be developed gradually and executed before the code is com-
plete. We have already taken advantage of this feature in the
development and testing of the microkernel and the Giotto
compiler.

Microcode may also be optimized at run-time based on
information only available at run-time. For example, in the
spirit of dynamic code optimization at run-time [13], the
microkernel can reduce the number of task preemptions by
rearranging S code instructions. We have used this tech-
nique for our benchmarks to obtain non-preemptive S code
from preemptive S code.

Portable and Mobile Microcode.Portability and mobil-
ity of real-time programs are truly as challenging as they are
desirable. Here are two examples: embedded systems such
as control computers for satellites or power plants, which
cannot easily be rebooted, would benefit from portable and
mobile real-time code; or the performance of communica-
tion devices such as cell phones or network routers could be
software-calibrated remotely while speaking or downloading.
Predictability and composability of microcode enable porta-
bility and mobility. For example, environment-triggered mi-
crocode [9] whose triggers only refer to events such as the
system clock tick or external signals is portable code as long
as schedulability can be guaranteed. It is also mobile code
because microcode is represented hardware-independently
as byte code with symbolic references to functional code.

6. MICROKERNEL IMPLEMENTATION
In this section, we discuss the implementation of the pro-

grammable microkernel on a StrongARM SA-1110 proces-
sor running at 206MHz. We use a motherboard that was
designed originally at ETH Zürich as part of a model he-
licopter project and is now available from weControl, an
ETH spin-off company. The implementation is a patch of
the custom-designed real-time operating system HelyOS [18]
written in Oberon [20]. We have implemented a number of
optimizations that exploit features of the processor and the
compiler. We discuss the architecture-dependent aspects of
the implementation at the end of this section.

Architecture-Independent Implementation
We use the following data structures in the architecture-
independent part of the microkernel, which integrates the
E and S machine and the microcode interpreter (Alg. 1
and 2). The system state consists of two parts: (1) a sys-
tem program and its configuration; and (2) a kernel state,
which consists of a preempted task, a processor context, and
a set of task instances called task set. The running task
is preempted when an event interrupt occurs. The proces-

40

sor context is a set of variables that contain the values of
all registers of the processor. Typically, the stack and frame
pointers as well as the processor status are stored in reserved
registers. A task instance consists of a task and a processor
context. For efficiency, all sets and queues are implemented
by fixed-size arrays. At system startup, a bootstrap pro-
gram (Alg. 3) initializes the microkernel. To communicate
with the microkernel, we use a HelyOS I/O handler bound
to an input and an output interrupt that operates on two
cyclic buffers: (1) an input buffer that is read by the micro-
kernel and written by the I/O handler when data is received
from the host computer (on a serial link); and (2) an output
buffer that is written by the microkernel and read by the
I/O handler, which sends the content to the host computer.
The event interrupt handler of the microkernel (Alg. 5) is
bound to the system clock interrupt. When all interrupts
are enabled, the special idle task (Alg. 4) is invoked. The
idle task only returns when a shutdown command from the
host computer was received. Note that during system op-
eration the I/O interrupts remain enabled even when the
microkernel is running.

The idle task (Alg. 4) checks in a while loop whether com-
mands from the host computer were received and sends log-
ging information generated by the microkernel and the tasks
to the host computer. The idle task may receive microcode
from the host, and execute it if it passes an integrity check
of opcodes and arguments. The idle switches the system
program executed by the microkernel to the received mi-
crocode as soon as a safe instant is reached. Here, a safe
instant is any instant when all tasks have completed. Other,
less trivial choices are possible.

Now, suppose that the idle task is running and an event
interrupt (system clock tick) occurs. The event interrupt
handler (Alg. 5) is invoked, which immediately disables the
event interrupts and then saves the registers in the proces-
sor context variables. Then the running task is saved as the
preempted task before the event loop of the integrated ma-
chine checks for microcode to be executed and determines
the next running task. If the preempted task is again cho-
sen to be the next running task, the registers are restored
from the processor context variables and the handler returns
from the interrupt. For this (often frequent) case, we demon-
strate below in an architecture-dependent way that saving
and restoring the processor context can entirely be avoided.

Architecture-Dependent Optimization
We describe an architecture-dependent optimization that re-
duces the number of context switches when the microkernel
is invoked by an event interrupt. The StrongARM SA-1110
has 16 registers R0–R15 of which R0-R11 are general pur-
pose registers and R12–R15 are reserved for system-specific
use such as the stack and frame pointers. A context switch
on the StrongARM requires to save all 16 registers to mem-
ory and then restore the registers from memory. The pro-
cessor can operate in six different modes. In our implemen-
tation we use three of the six modes: (1) the HelyOS I/O
handler runs in the IRQ mode; (2) the microkernel runs in
the fast interrupt mode (FIQ); and (3) the tasks (including
the idle task) run in the supervisor mode (SVC). The im-
portant difference among these modes is that the FIQ mode,
unlike the IRQ and SVC modes, has a private set of registers
R8–R15 that cover the registers R8–R15 of the other modes
when the processor is in the FIQ mode. Thus a context

Figure 5: Context Switching on an Oscilloscope

switch in the FIQ mode can be avoided if the FIQ handler,
i.e., the microkernel, only uses the registers R8–R15 and if
the FIQ handler decides that, upon leaving the FIQ mode,
the processor should resume the execution from where it was
preempted.

In order to implement the optimization four modifications
of our code were required: (1) we modified the Oberon com-
piler to support a procedure annotation that restricts the
choice of registers the compiler can use to compile an anno-
tated procedure; then, (2) we annotated the microkernel and
compiled it to machine code that only uses the R8–R15 regis-
ters. Most importantly, drivers called by the microkernel are
excluded from this restriction because (3) we modified the
microcode interpreter to save all 16 registers before a driver
is called. This can easily be generalized such that the in-
terpreter distinguishes restricted from unrestricted drivers.
Finally, (4) we changed the event interrupt handler (Alg. 5)
as follows: we removed the code at the beginning and the
end of the handler that saves and restores the registers in
the processor context. Then, we inserted the code that saves
the registers right before the processor context is needed to
update the preempted task instance in the task set. Fi-
nally, we inserted the code that restores the registers right
after the next running task instance is retrieved from the
task set. Now, when an event interrupts occurs, the pro-
cessor enters the FIQ mode and invokes the event interrupt
handler, which first disables the event interrupts. Then,
the handler immediately saves the running task as the pre-
empted task and invokes the event loop of the integrated
machine without saving any of the registers in the proces-
sor context. When the event loop is finished and the next
running task and the preempted task are equivalent, the
handler immediately returns from the interrupt without the
need of restoring any registers. Otherwise, the registers are
saved and then restored for the next running task.

Fig. 5 shows the performance gain of the optimization.
The measurement (A) shows an invocation of the event in-
terrupt handler without the optimization and (B) with the
optimization. An invocation begins with the first rising edge
and ends with the second falling edge. The time between the
two pulses is the time it takes the microkernel to determine
in the event loop whether microcode needs to be executed.
Here, microcode is not executed. The mean time it takes to
go through the event loop with a single trigger binding in
the trigger queue and a single thread instance in the thread
set is around 2µs in our experiments. The first pulse of (A)
shows the time (1.26µs) it takes to set the next timer inter-
rupt and to save the registers. Each pulse includes a 200ns
I/O overhead to toggle from zero to one and back, which we
exclude in the numbers. Thus the actual execution time of
the handler is 400ns shorter than shown in the figure. The
second pulse of (A) shows the time (1.05µs) it takes to re-
store the registers. Thus the minimum execution time to

41

0

100

200

300

400

500

600

700

EDF EDF S code EDF S code

opt

RM S code

single

Scheduler Type

In
s
tr

u
c
ti
o

n
s

S code

E code

Figure 6: E and S code
size for 100 tasks

0

20

40

60

80

100

0 25 50 75 100

Tasks

T
im

e
 (

u
s
)

Figure 7: E code execu-
tion overhead

handle a timer interrupt without the optimization is 4.31µs.
The first pulse of (B) shows the time (0.43µs) it takes to set
only the next timer interrupt while the second pulse of (B)
shows only the time (200ns) to toggle from zero to one and
back. Thus the minimum execution time to handle a timer
interrupt with the optimization is 2.43µs. The measurement
(C) shows a task completion followed by an invocation of
the microkernel that determines a next running task that
requires initializing the processor context. The first pulse of
(C) shows only the time (200ns) it takes to toggle from zero
to one and back while the second pulse of (C) shows the time
(0.94µs) it takes to initialize the processor context and load
the registers. Thus the minimum time it takes to complete
the execution of a task and to determine the next running
task (using S code) is 2.94µs. Here, the optimization has no
effect.

7. MICROKERNEL BENCHMARKS
The binary code size of the programmable microkernel is

8kB, which includes the I/O handling code of HelyOS. Thus,
due to its small size, the microkernel can even be used on
small embedded devices with limited CPU and memory re-
sources. For the benchmarks, the microkernel is invoked at
1kHz. Thus tasks are preempted every 1ms, called the mi-

crokernel period. We evaluated the microkernel on four pe-
riodic, non-harmonic task sets with 4, 10, 50, and 100 tasks.
Each set consists of four equally large task groups with
16.66Hz, 33.33Hz, 50Hz, and 100Hz tasks. The task sets
are described by E code. There is an E code block for each
instant in the hyperperiod of the task sets at which tasks
are released.

Micro-Code Size.Each task set is scheduled using four
different methods: (1) an EDF scheduler; (2) preemptive
(EDF) S code generated by the EDF scheduler; (3) non-
preemptive (EDF) S code; and (4) preemptive (RM) S code
generated by a rate-monotonic (RM) scheduler. We have
implemented the EDF scheduler as default task scheduler
of the microkernel. The non-preemptive (EDF) S code was
generated from the preemptive (EDF) S code by reordering
task execution, which was not always possible. The preemp-
tive (RM) S code was generated such that at each instant all
tasks are dispatched in the order of decreasing frequencies.

In order to avoid WCET analysis of task code, we gen-
erated all S code at run time and implemented the tasks
without branching such that the actual execution times are
close to the WCETs. The task code consists of integer oper-
ations (the StrongARM has no FPU) and I/O operations in
order to visualize the task behavior on an oscilloscope. For
each task set we used three different task implementations

0

5

10

15

20

25

30

35

40

4 10 50 100

Tasks

T
im

e
 (

u
s
)

EDF

EDF S code

EDF S code opt

RM S code single

Figure 8: Scheduling
overhead (EDF schedul-
ing and S code execution)

0

5

10

15

20

25

30

35

40

4 10 50 100

Tasks

M
e

a
n

 t
im

e
 (

u
s
)

EDF

EDF S code

EDF S code opt

RM S code single

Figure 9: E and S code
execution overhead

with short, medium, and long execution times. We ran a to-
tal of 48 different test cases. For each test, we measured (per
invocation of the microkernel): (1) the overall microcode ex-
ecution time as well as its parts: (2) the E code execution
time; (3) the S code execution time; (4) the EDF scheduler
execution time. We also measured the total CPU utiliza-
tion (U) and counted the number of task preemptions (P)
per hyperperiod (60ms) as well as the number of S code and
E code instructions. For the time measurements, we used
the internal 3.6864MHz OS timer of the StrongARM. The
test results are summarized in Table 1, 2, and 3.

Fig. 6 shows the microcode size (E code and S code) for
100 tasks that are scheduled according to the four different
scheduling methods (the E code is always the same). The
preemptive (RM) S code is shorter than the (EDF) S code
because the same code is re-used on all phases of the 16.66Hz
hyperperiod. The S code statically dispatches each task ac-
cording to its frequency but independently of its execution
time. In other words, tasks may have already completed
before they are (unnecessarily) dispatched again.

E code Execution Overhead.Fig. 7 shows E code execu-
tion times with respect to the number of tasks released by
the E code. Independently of the task scheduling method,
the increase of E code execution times is linear in the number
of tasks because the number of E code instructions grows in
a linear fashion with the number of tasks. The non-linearity
shown in Fig. 7 is due to the (fixed) microkernel overhead.

Scheduling Overhead.Fig. 8 shows the scheduling over-
head of the microkernel. The EDF scheduler maintains a
sorted list to determine the next running task. The S code
we consider here, on the other hand, determines the next
running task directly through current control locations in
S code, which explains the near constant growth. Note that
more efficient implementations of our EDF scheduler using
multiple lists [21] are possible but do not achieve S code
performance. The S code shown here trades space for time
although the S code size even for 100 tasks is still small.
The preemptive (RM) S code is slower than other S code
because the (RM) S code dispatches more often already com-
pleted tasks. The execution times of preemptive and non-
preemptive (EDF) S code for 50 and 100 tasks are equivalent
since preemptions do not occur in both cases.

System Overhead.Fig. 9 shows the total system overhead
in terms of microcode execution times (E code and S code

42

execution times plus the execution time of the EDF sched-
uler when used). With S code, it is possible to keep the
system overhead under 10µs even for 100 tasks.

CPU Utilization. CPU utilization improves with the num-
ber of tasks when switching from the EDF scheduler to pre-
emptive (EDF) S code. With 100 tasks, S code performs
35% better than the traditional EDF scheduler (51% uti-
lization versus 78% utilization).

8. RELATED WORK
After ambiguous first experiences in the early 90’s, the mi-

crokernel approach now seems to become a successful and
mature technology. Several efficient microkernel implemen-
tations [16, 1, 2] have demonstrated the advantages of the
architecture. These microkernels were developed to be min-
imal and highly flexible, so that both conventional and non-
classical operating systems can be built or adapted to run
on top of them. Moreover, these microkernels support ex-
tensibility, customizability, robustness, reliability, fault tol-
erance, protection, and security. Supported by these demon-
strations that the performance and flexibility of microkernel-
based systems are usable in practice [7], we have extended
the microkernel idea to the real-time domain. In particu-
lar, we have focused on achieving the schedulability, porta-
bility, and composability of real-time systems. The core
paradigm we introduced for achieving these properties is the
separation of reacting (E code) from scheduling (S code).
Our microkernel architecture can be thought of as a simple,
highly optimized, programmable interrupt handler (E ma-
chine), and a programmable scheduler and dispatcher (S ma-
chine). There have been other systems that introduce a sin-
gle, system-wide, programmable event-handler [15, 4]. How-
ever, our approach differs by explicitly supporting the com-
posability and predictability of real-time behavior. Com-
posability is the ability to compose different real-time pro-
grams (microcode) off-line, and more interestingly, during
run-time, while guaranteeing not only the schedulability but
also the unchanged behavior of the composite program.

There have been other microkernel investigations for the
real-time domain. For example, Real-Time Mach [19] tar-
gets distributed real-time operating systems. The RT-Mach
approach is built around resource reservation and allocation,
in that each application is allowed to use resources only if
the global real-time requirements can be guaranteed. Re-
cently RT-Mach ideas have been extended and ported to
the Linux/RK system [17]. However, these architectures do
address scheduling in system-centric manner. We propose
a different solution in which the scheduling and reactivity
of the system are decomposed. Consequently we achieve a
higher degree of portability and composability, by guaran-
teeing predictability and schedulability.

9. REFERENCES
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A new
kernel foundation for UNIX development. In Proc.

USENIX Summer Conference, pages 93–113, 1986.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers.
Extensibility, safety and performance in the SPIN
operating system. In Proc. SOSP. ACM Press, 1995.

[3] Y. Cai and M.C. Kong. Nonpreemptive scheduling of
periodic tasks in uni- and multiprocessor systems.
Algorithmica, 15(6):572–599, 1996.

[4] E. Cheong, J. Liebman, J. Liu, and F. Zhao. Tinygals:
A programming model for event-driven embedded
systems. In Proc. SAC. ACM Press, 2003.

[5] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Proc.

EMSOFT, LNCS 2211, pages 469–485. Springer, 2001.

[6] N. Halbwachs. Synchronous Programming of Reactive

Systems. Kluwer, 1993.

[7] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance of µ-kernel-based systems.
In Proc. SOSP. ACM Press, 1997.

[8] T.A. Henzinger, B. Horowitz, and C.M. Kirsch.
Giotto: A time-triggered language for embedded
programming. Proc. of the IEEE, 91(1):84–99, 2003.

[9] T.A. Henzinger and C.M. Kirsch. The Embedded
Machine: Predictable, portable real-time code. In
Proc. PLDI, pages 315–326. ACM Press, 2002.

[10] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and
S. Matic. Time-safety checking for embedded
programs. In Proc. EMSOFT, LNCS 2491, pages
76–92. Springer, 2002.

[11] T.A. Henzinger, C.M. Kirsch, and S. Matic.
Schedule-carrying code. In Proc. EMSOFT, LNCS
2855, pages 241–256. Springer, 2003.

[12] K. Jeffay, D.F. Stanat, and C.U. Martel. On
non-preemptive scheduling of periodic and sporadic
tasks. In Proc. RTSS, pages 129–139. IEEE Computer
Society Press, 1991.

[13] T. Kistler and M. Franz. Continuous program
optimization: Design and evaluation. IEEE

Transactions on Computers, 50(6):549–566, 2001.

[14] H. Kopetz. Real-Time Systems: Design Principles for

Distributed Embedded Applications. Kluwer, 1997.

[15] P. Levis and D. Culler. Maté: a virtual machine for
tiny networked sensors. In Proc. ASPLOS, 2002.

[16] J. Liedtke. Toward real microkernels. Communications

of the ACM, 39(9):70–77, 1996.

[17] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to
real-time systems. In Proc. MMCN, 1998.

[18] M.A.A. Sanvido. A computer system for model
helicopter flight control; technical memo nr. 3: The
software core. Technical Report 317, ETH Zürich,
Institute for Computer Systems, 1999.

[19] H. Tokuda, T. Nakajima, and P. Rao. Real-time
Mach: Towards a predictable real-time system. In
Proc. USENIX Mach Workshop, pages 73–82, 1990.

[20] N. Wirth and J. Gutknecht. Project Oberon - The

Design of an Operating System and Compiler. ACM
Press, 1992.

[21] K.M. Zuberi, P. Pillai, and K.G. Shin. EMERALDS: a
small-memory real-time microkernel. In Proc. SOSP,
pages 277–299. ACM Press, 1999.

43

Appendix
For more details on the E and S machine, we also refer to [9]
and [11], respectively. The figures 6–9 have been compiled
from the data shown in the tables 1–3.

Algorithm 1 The Event Loop of the Integrated Machine
YieldToTask := false

while ¬ YieldToTask do

if there is a completed task t in ThreadSet then

choose a thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the microcode interpreter
with ReferenceTime := s

and ProgramCounter := b

else if there is an enabled trigger in TriggerQueue then

choose the first enabled trigger binding (g, a, s)
and remove it from TriggerQueue

invoke the microcode interpreter
where ReferenceTime is the current clock value
and ProgramCounter := a

else if there is an enabled thread in ThreadSet then

choose an enabled thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the microcode interpreter
with ReferenceTime := s

and ProgramCounter := a

else

YieldToTask := true

end if

end while

if ThreadSet 6= ∅ then

if there is a task t 6= idle in ThreadSet then

RunningTask := t

else

RunningTask := idle

end if

else

invoke a task scheduler if present
end if

Algorithm 2 The Microcode Interpreter
YieldToThreads := false

while ProgramCounter 6= ⊥ and ¬ YieldToThreads do

i := Instruction(ProgramCounter)
if call(d) = i then

execute the driver d

else if release(t) = i then

emit signal on the release port of the task t

else if future(g, a) = i then

append the trigger binding (g, a, s) to TriggerQueue

where s is the current state of the trigger ports of g

else if dispatch(t, m, a) = i then

insert the thread instance
(t, Next(ProgramCounter), m, a, ReferenceTime)
into ThreadSet

YieldToThreads := true

else if idle(m) = i then

insert the thread instance
(idle,⊥, m, Next(ProgramCounter), ReferenceTime)
into ThreadSet

YieldToThreads := true

else if fork(a) = i then

insert the thread instance (idle,⊥, true, a, s) into
ThreadSet where s is the current clock value

end if

ProgramCounter := Next(ProgramCounter)
end while

Algorithm 3 The Bootstrap Program
disable all interrupts
add (idle, InitialContext(idle)) to TaskSet

TriggerQueue := ⊥; ThreadSet := ∅
SystemProgram := ⊥; MicroCode := ⊥
RunningTask := idle; Run := true

bind HelyOS I/O handler to I/O interrupts
bind the event interrupt handler

to system clock interrupt
enable all interrupts
invoke the idle task
disable all interrupts
shutdown system

Algorithm 4 The Idle Task
while Run do

receive Command from host
if Command = switchcode then

receive NewMicroCode from host
if checking NewMicroCode integrity fails then

NewMicroCode := ⊥
end if

else if Command = shutdown then

Run := false

end if

if NewMicroCode 6= ⊥ then

disable event interrupts
if TaskSet = {(idle, c)} then

MicroCode := NewMicroCode; NewMicroCode := ⊥
TriggerQueue := 〈(true, 0, ∅)〉; ThreadSet := ∅

end if

enable event interrupts
end if

send logging information to host
end while

Algorithm 5 The Event Interrupt Handler
disable event interrupts
save registers in ProcessorContext

PreemptedTask := RunningTask

invoke the event loop (Alg. 1)
if RunningTask 6= PreemptedTask then

update (PreemptedTask, ProcessorContext) in TaskSet

if there is a RunningTask instance in TaskSet then

get (RunningTask , ProcessorContext) from TaskSet

else

ProcessorContext := InitialContext(RunningTask)
add (RunningTask , ProcessorContext) to TaskSet

set stack pointers according to ProcessorContext

leave interrupt handler by invoking RunningTask

with enabled event interrupts
disable event interrupts
remove RunningTask instance from TaskSet

invoke the event loop (Alg. 1)
invoke the completion handler
// never returns here

end if

end if

restore registers from ProcessorContext

return from interrupt with enabled event interrupts

Algorithm 6 The Completion Handler
if there is a RunningTask instance in TaskSet then

get (RunningTask , ProcessorContext) from TaskSet

restore registers from ProcessorContext

switch context and enable event interrupts
// never returns here

else

ProcessorContext := InitialContext(RunningTask)
add (RunningTask , ProcessorContext) to TaskSet

invoke RunningTask with enabled event interrupts
disable event interrupts
remove RunningTask instance from TaskSet

invoke the event loop (Alg. 1)
invoke the completion handler
// never returns here

end if

44

Tasks Mode Microcode (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.778 0.818 4 0 4.653 1.473 30 0
EDF sc 20.888 2.170 3.884 0.818 4 1.411 5.574 0 60 30
EDF sco infeasible 64 34
RM scs 14.377 1.356 3.545 0.817 5 1.475 5.356 0 28 4

10 EDF 21.159 1.356 6.129 0.917 4 0 8.792 3.658 54 0
EDF sc 26.855 2.170 4.472 0.850 4 1.565 9.510 0 107 53
EDF sco infeasible 111 57
RM scs 18.175 1.356 4.412 0.9001 5 1.724 9.330 0 58 10

50 EDF 129.120 1.356 21.767 0.950 4 0 44.972 18.508 174 0
EDF sc 120.710 1.899 6.822 0.750 0 2.207 52.882 0 347 173
EDF sco 115.020 1.899 6.843 0.750 0 2.212 52.885 0 351 177
RM scs 93.859 1.356 6.746 0.883 5 2.393 47.784 0 218 50

100 EDF 287.000 1.356 38.573 0.786 4 0 81.749 36.074 318 0
EDF sc 247.400 1.899 7.628 0.517 0 2.258 116.190 0 636 318
EDF sco 248.210 2.170 7.643 0.518 0 2.248 116.790 0 640 322
RM scs 159.780 1.356 8.361 0.550 2 3.604 98.175 0 412 100

Table 1: Tasks with long execution times

Tasks Mode Microcode (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.087 0.350 1 0 4.608 1.384 30 0
EDF sc 20.888 2.170 4.065 0.350 1 1.428 5.513 0 60 30
EDF sco 20.888 2.170 4.061 0.351 0 1.439 5.528 0 61 31
RM scs 13.292 1.356 3.123 0.350 1 1.639 5.356 0 28 4

10 EDF 21.159 1.356 4.730 0.350 1 0 8.647 3.460 54 0
EDF sc 27.127 2.170 4.676 0.350 1 1.595 9.588 0 108 54
EDF sco 27.127 27.127 4.682 0.350 0 1.601 9.668 0 109 55
RM scs 16.819 1.356 4.032 0.350 1 1.821 9.340 0 58 10

50 EDF 126.680 1.356 17.929 0.417 1 0 43.574 16.983 174 0
EDF sc 113.390 1.899 6.799 0.334 0 2.152 52.417 0 348 174
EDF sco 116.100 1.899 6.816 0.333 0 2.163 52.701 0 349 175
RM scs 87.077 1.356 6.466 0.350 1 2.442 46.375 0 218 50

100 EDF 281.850 1.356 36.765 0.601 2 0 81.655 35.190 318 0
EDF sc 247.120 1.899 7.584 0.368 0 2.229 113.880 0 636 318
EDF sco 251.740 1.899 7.591 0.367 0 2.230 115.550 0 638 320
RM scs 159.510 1.356 8.308 0.384 1 3.647 95.773 0 412 100

Table 2: Tasks with medium execution times

Tasks Mode Microcode (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.091 0.352 1 0 4.693 1.382 30 0
EDF sc 20.888 2.170 4.063 0.350 1 1.435 5.468 0 60 30
EDF sco 20.888 2.170 4.061 0.350 0 1.441 5.548 0 61 31
RM scs 13.292 1.356 3.123 0.350 1 1.639 5.356 0 28 4

10 EDF 21.159 1.356 4.730 0.350 1 0 8.661 3.460 54 0
EDF sc 27.127 2.170 4.677 0.351 1 1.595 9.606 0 108 54
EDF sco 27.127 2.170 4.682 0.352 0 1.601 9.683 0 109 55
RM scs 16.819 1.356 4.032 0.350 1 1.821 9.382 0 58 10

50 EDF 131.020 1.356 16.902 0.234 1 0 41.721 16.905 174 0
EDF sc 116.370 1.899 6.742 0.200 0 2.160 51.498 0 348 174
EDF sco 118.270 1.899 6.754 0.200 0 2.169 51.701 0 349 175
RM scs 89.247 1.356 6.366 0.200 0 2.460 45.442 0 218 50

100 EDF 300.560 1.356 34.913 0.349 1 0 81.572 34.844 318 0
EDF sc 242.510 1.899 7.580 0.200 0 2.216 115.570 0 636 318
EDF sco 243.600 1.899 7.580 0.200 0 2.211 115.700 0 637 319
RM scs 160.860 1.356 8.237 0.200 0 3.641 96.869 0 412 100

Table 3: Tasks with short execution times

45

