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ABSTRACT 
The Progressive Deployment System (PDS) is a virtual execution 
environment and infrastructure designed specifically for 
deploying software, or “assets”, on demand while enabling 
management from a central location.  PDS intercepts a select 
subset of system calls on the target machine to provide a partial 
virtualization at the operating system level.  This enables an 
asset’s install-time environment to be reproduced virtually while 
otherwise not isolating the asset from peer applications on the 
target machine. Asset components, or “shards”, are fetched as they 
are needed (or they may be pre-fetched), enabling the asset to be 
progressively deployed by overlapping deployment with 
execution.  Cryptographic digests are used to eliminate redundant 
shards within and among assets, which enables more efficient 
deployment.  A framework is provided for intercepting interfaces 
above the operating system (e.g., Java class loading), enabling 
optimizations requiring semantic awareness not present at the OS 
level. The paper presents the design of PDS, motivates its “porous 
isolation model” with respect to the challenges of software 
deployment, and presents measurements of PDS’s execution 
characteristics. 

Categories and Subject Descriptors 
K.6.2 [Management of Computing and Information Systems]: 
Installation Management; K.6.3 [Management of Computing and 
Information Systems]: Software Management. 

General Terms 
Management.  

Keywords 
Virtualization, deployment, management, installation, streaming. 

1. INTRODUCTION 
Virtual machines, particularly those that attempt to capture an 
entire machine’s state, are increasingly being used as vehicles for 
deploying software, providing predictability and centralized 
control [14][21][22][30].   The virtual environment provides 
isolation from the uncontrolled variability of target machines, 

particularly from potentially conflicting versions of prerequisite 
software.  Skilled personnel assemble a self-contained software 
universe (potentially including the operating system) with all of 
the dependencies of an application, or suite of applications, 
correctly resolved.  They then have confidence that this software 
will exhibit the same behavior on every machine, since a virtual 
machine monitor (VMM) will be interposed between it and the 
real machine. 

Because software deployment is a relatively new motivation for 
using virtual machine technology, today’s VM-based software 
deployment efforts employ VMs that were originally designed for 
other purposes, such as crash protection, low-level debugging, 
process migration, system archival, or OS development, and are 
being re-purposed for software deployment.   This paper explores 
the characteristics of a virtual execution environment that was 
designed from the start as a software deployment vehicle. 

1.1 Why Deployment is Complicated 
Consider a scenario in which several different applications 
produced by separate organizations need to be integrated on the 
same machine. An example of such a scenario could be a suite 
such as MySQL[10]/JBOSS[12]/Tomcat[5]/Apache[1], a Java 
development tool such as Eclipse, and a J2EE application that 
needs to be developed using Eclipse and tested on the 
MySQL/JBOSS/Tomcat/Apache suite.  

1.1.1 Conflicting Pre-requisites Stimulate Code-
Bloat 
A complex collection of applications will inevitably have 
conflicting pre-requisites. For instance, each application may 
require its own version of the Java Virtual Machine, or depend on 
specific patch-levels of certain dependent components.  

Virtual machine monitors can help tame such conflicts by 
allowing each application’s dependencies to be embedded in its 
private VM image.  To understand why a more specialized kind of 
virtualization is needed, first consider that vendors are already 
attempting to deal with dependency conflicts in more or less the 
same way. 

Increasingly, vendors are trying to reduce dependency conflicts by 
embedding the application’s dependencies into the application 
installed image, usually without the benefit of VM technology. 
For example, Eclipse versions 2.x and above come bundled with 
Tomcat, which is used for rendering the Eclipse help pages; 
similarly JBoss distributions also include an embedded Tomcat 
version. Many commercial Java middleware products sold today 
embed one or more Java Virtual Machines in their images. This 
trend is even reflected within a single software product.  For 
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example, the module org.apache.xerces is often duplicated in 
several different components in an effort to isolate these 
components more fully from one another.  What a VMM adds is a 
hard guarantee that the isolation between conflicting software 
stacks is “provably complete,” lacking in subtle holes. 

But, whether assisted by a VMM or not, incorporation of 
dependencies without any compensating measures results in 
increasing software bloat. From a disk space perspective, one 
could argue that tolerating such bloat is no big deal. But an 
isolation strategy accomplished through physical code duplication 
creates other problems. It slows down the deployment process, 
and increases the number of components that need to be 
configured at deployment time, or touched during subsequent 
updates. It also increases the customer’s perception of an 
application’s complexity, which in turn increases customers’ 
reluctance to update frequently. This results in a proliferation of 
software versions in the field and increasing support and services 
costs over time. 

Also, data center environments are increasingly moving toward a 
“scale-out” model where large farms consisting of several 
thousand commodity servers are becoming commonplace. In such 
scenarios, hardware failures can occur frequently, often several 
times a day. The cost of commodity hardware is now so low that 
operators deal with hardware failures by simply replacing the 
defective machine on a rack, and re-provisioning the new machine 
with the application suite. Large commercial software stacks can 
take hours to provision, thus increasing the cost of such failures.  

Using any VMM to help with provisioning will undoubtedly 
speed this up by replacing the normal installation process with an 
easily-moved image.  But, unless specific engineering steps are 
taken to deal with the underlying code bloat, just the process of 
moving the bits will cause significant slowdown.  Again, 
reversing the trend toward increasing bloat due to duplication-
based isolation techniques would be valuable in such situations. 
And, a properly engineered solution will also take into account 
that a software application can usually begin executing when only 
a fraction of its bits are present. 

1.1.2 Multi-sourced Software Still Needs to 
Cooperate 
A software deployment system must assume that the software it 
deploys in one offering is not the only software offering deployed 
on the target machine.  Each machine owner assembles a palette 
of offerings that suits his or her needs.  These offerings must be 
able to interoperate both via system-mediated communication 
channels (e.g., semaphores, pipes, shared memory) and via files in 
a common file system. 

Consider the implications for a VMM-assisted deployment.  If all 
offerings were run in the same VM instance, the isolation 
advantages of using a VM will be lost since the offerings might 
then conflict.  But, if each offering is run in a different VM 
instance using the usual hardware virtualization paradigm, the 
interoperation between offerings takes on characteristics of inter-
machine communication rather than intra-machine 
communication.  What seems like one machine to the user is now 
laced with “remote” file mounts and “distributed” protocols.  
Somehow, the degree of isolation must be relaxed to permit a 
more local style of interoperation.  The relaxation must be done 

while still managing conflicts and reducing variability in the areas 
that matter to correct execution.  

Making this change involves a tradeoff.  A more “porous” 
isolation between VMs enhances the user experience when 
integrating software on a single machine.  However, other 
characteristics that one might expect from a general-purpose 
VMM (such as crash protection or the ability to freeze and 
migrate processes) might be sacrificed. 

1.2 The PDS Approach 
The Progressive Deployment System (PDS) provides a virtual 
environment for executing assets --- self-contained software 
universes in which all dependencies, except dependencies on the 
underlying operating system and hardware, are resolved.    

Assets are designed to be deployed progressively, meaning that 
the transfer of the asset’s bits to the target machine is overlapped 
with its execution.  This enables, for instance, replacement racks 
on a server farm to be rapidly provisioned, without waiting for an 
entire system image to be moved to the machine prior to starting 
its execution. 

Assets are isolated from each other in the sense that each one sees 
its own unique resources --- virtual files, directories, and system 
metadata --- and not resources that are unique to some other asset.   
While assets cannot see any of the host machine’s resources that 
were overlaid by their own virtual ones, they can see other local 
resources and can communicate with other programs running on 
the host machine (including other assets running under PDS) 
through the local file system and local IPC.  The PDS virtualizer 
puts its assets on the same plane as ordinary programs by running 
above the OS rather than below it, (see Figure 1).  As 
consequence, however, PDS assets cannot include device drivers 
and other kernel extensions. 

Assets are logically immutable entities, thus ensuring that every 
asset, once tested, will not later fail due to an incompatible 
update. Any change to an asset, no matter how small, results in a 
new asset (as shown in the “virtual view” in Figure 2).   

Without an effective mechanism for reducing redundancy between 
(as well as within) assets, the proliferation of virtual views would 
entail a prohibitive amount of space to store, and bandwidth to 
transport, many closely related assets (the “code bloat” problem 
mentioned previously). To address this difficulty, assets are 
partitioned into shards, variable-sized semantically determined 
“pages” that are the unit of transfer between a software repository 
and the host machine.  Shards may correspond to files, 
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semantically cogent portions of files, system metadata such as 
registry entries, or metadata used by PDS itself.  As shown in the 
“physical view” in Figure 2, shards are freely shared across assets.  
Bitwise identical shards are given the same physical name (in 
shard storage) and are only stored once.  A reference to C from 
asset X.1 is mapped to a different shard (shown as shard C.1 in 
Figure 2) than a reference to C from asset X.2 (shown as shard 
C.2) while references to A in either asset are mapped to the same 
shard.   

Shards help maintain an appropriately scaled working set as the 
repertoire of assets in use on a machine evolves over time.   Most 
significantly, since they are semantically determined, they allow 
redundant parts of highly similar assets to be detected and shared 
transparently (while maintaining the illusion that each asset has 
its own copy).  Thus, the duplication implied by the virtual view 
of an asset’s evolution is not reflected in its physical storage 
manifestation.   

The separation between virtual and physical views of asset 
composition also enables a software vendor to hide the internal 
structure of the asset (e.g. the fact that asset X contains 
components A, B and C) from the end-user. The end-user need 
only see whole assets (asset X.1, asset X.2, etc.), and never need 
deal with lower level component patches, upgrades, versions, and 
configurations. Thus, end-users simply execute the whole asset 
version they are interested in, and the additional shards required 
for its execution will be transported automatically. 

PDS currently exists as a prototype supporting the Windows OS, 
but was designed to extend to other operating systems.   The 
prototype has been successfully used to deploy commercial 
developer tools such as Eclipse [6] and WebSphere Studio [31], 
productivity environments such as Open Office [18] and Lotus 
Workplace Client [16], and server stacks like the Apache web 
server [1] and the Tomcat servlet engine [29].  

The balance of the paper is organized as follows.  Section 2 
details the design of PDS with emphasis on its virtual execution 
environment.  Section 3 presents some measurements of PDS’s 
execution characteristics using assets derived from different 
versions of Eclipse, Tomcat, and Java runtimes.  Section 4 

reviews related work.  Section 5 discusses future work and 
Section 6 concludes the paper.  

2. PDS SYSTEM DESIGN 
PDS is organized into three major components (see Figure 3). 

1. The preparer produces assets from software that has 
been installed in the conventional fashion on a “clean” 
machine (real or virtual) dedicated to the purpose.  

2. The deliverer makes assets present on a host machine by 
ensuring the appropriate shards are on hand when 
needed.  

3. The executor, PDS’s virtual execution environment, 
manages the execution of assets on the host machine. 

 We discuss the preparer and deliverer first to provide necessary 
context. 

2.1 The Preparer 
The preparer accepts as input an asset image and some 
instructions and it produces a shard repository and a launch 
document  as output. 

2.1.1 Asset Images 
To obtain an asset image, one starts with a machine in a known 
state (ideally, immediately after the OS was installed). Next, one 
runs conventional installation scripts to install all the software 
components that make up the asset.  Finally, one identifies 
everything that was added to the system by that series of 
installations.  Typical additions consist mainly of directories and 
files. However, they may include updates to various system 
databases, such as the registry in Windows, in which metadata is 
stored.   The additions form the asset image. 

2.1.2 Preparation Instructions 
The instructions given to the preparer consist of an inventory of 
what is in the asset image plus a startup directive. Typical asset 
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image inventories consist of just a few directory/file trees 
(hereafter, “file trees”), but other kinds of system metadata may be 
listed.  The startup directive is a command that executes on the 
target machine, but inside the virtual environment, in order to start 
the asset.  Most PDS assets have trivial startup directives, but 
others use the startup directive to set environment variables or 
perform environment preparation not covered by the asset image 
inventory. 

2.1.3 Shard Repositories 
A shard repository is a file tree within which each shard is a file.  
To PDS, a shard has no structure:  it is just bits. The 
cryptographic hash [24] of a shard, called its shard digest, is 
assumed to uniquely identify the shard1.  In a shard repository, the 
path names of shards can be algorithmically derived from their 
shard digests for efficient retrieval.  Bitwise-identical shards are 
only stored once. 
The shard repository produced by the preparer contains all the 
shards of one or more assets under preparation.  Primary shards 
are pieces of the original asset image. Metashards contain control 
information generated by the preparer and interpreted by the 
executor.  
The property that bitwise-identical shards are only stored once, 
has the advantage of automatically avoiding the redundancies 
implied by every asset containing all of its dependencies. The 
contents of two virtual files that share the same bit pattern will be 
represented by the same shard.  These files can however have 
different names, creation dates, permission attributes, etc.  PDS 
reconciles this by storing file metadata in the metashards, and 
have the primary shards contain only the file contents. 
The redundancy avoidance enabled by the shard design also 
allows separately prepared repositories to be merged to form 
larger ones containing the shards of many assets but still storing 
each shard at most once.  The deliverer (and sometimes the 
executor) reads shards from shard repositories but does not mutate 
them in place (as will be seen, the executor implements copy-on-
write semantics for objects in the asset image). 
Every primary shard of an asset is referred to in at least one of the 
asset’s metashards via its shard digest, and the metashards 
themselves form a tree linked by shard digests.  The digest of the 
metashard at the root of this tree uniquely identifies the asset and 
is called the asset id (Figure 4 shows a simplified view of this tree 
structure as an illustrative example).   Any change to an existing 
asset will produce a new asset with a different id.   Thus, all assets 
are immutable once prepared, but some assets may represent 
evolutions of others. 

2.1.4 Launch Documents 
A launch document is a small document (not a shard) containing 
the asset id of an asset together with additional information that 
allows the executor to interact with the deliverer to obtain the 
                                                                 
1 While a cryptographic hash is not a unique identifier in the 
mathematical sense, one can be chosen to make the probability of 
collision less than the non-zero probability that a disk read will 
deliver data from the wrong sector. The mathematical justification 
for cryptographic hashing is beyond the scope of this paper. 
However, it is a widely used mechanism commercially, and a 
recommended U.S. government standard. 

shards of the asset.   For example, this information may specify 
the location of a shard repository containing the asset’s shards. 

2.2 The Deliverer 
PDS is designed so that the deliverer is readily replaceable and 
may have a role in the overall system ranging from very large to 
almost trivial.    The interaction between the deliverer and the 
executor is typically file-based (although small shards can also be 
read directly into memory).   When the executor identifies the 
need for a particular shard, it passes the shard’s identity to the 
deliverer, which blocks the calling thread until it is able to 
manifest the shard as a file, at which point the path name of that 
file is returned to the executor.   The executor then uses standard 
OS interfaces, including memory-mapping, to utilize the shard.  
The executor does not modify the shard. 

Because the shard repositories are just file trees, a deliverer can 
use file system capabilities already present in the OS to map shard 
repositories into the local file space.  It can employ physical 
media such as DVDs, it can copy shard repositories to local disk, 
or it can mount them as remote file systems. The problem of 
actually moving the bits is left to the file system technology 
employed.   The deliverer simply returns paths in the appropriate 
file system for each shard requested. 

Alternatively, the deliverer can employ a specialized client-server 
algorithm to transfer shards from a remote shard-repository to a 
local shard cache that contains only those shards needed on the 
local machine.  In this case, the deliverer can implement 
sophisticated working set maintenance algorithms and pre-
fetching of shards based on learned execution patterns. It may also 
reorganize its shard repositories into alternate representations that 
do not use a file per shard, for efficiency.  
A separable delivery subsystem enables alternative 
implementations to be plugged in that may be suitable for specific 
situations. A remote file system that provides good caching and 
predictive fetching might obviate the need for a specialized 
deliverer.  The current PDS system uses two deliverers, one file 
based, the other using the HTTP protocol and a standard servlet 
engine.  The latter allows us to experiment with the pre-fetching 
strategies and operate in wide area networks without requiring the 
installation of specialized file system software.   Pre-fetching 
results are not presented in this paper but are discussed under 
future work. 

2.3 The Executor 
The executor consists of a small bootstrap mechanism to launch 
the asset on the client system, and the code to provide the virtual 
execution environment.  As will be seen, this code is divided into 
several virtualizers, each with its own task. 

PDS provides a virtualization that is both selective, to permit 
assets to interoperate with other local applications via system 
APIs, and hierarchical (in a sense to be explained), to obtain a 
close mapping between meaningful semantic units and shards. 

As previously described, PDS works by interposing a virtualizer 
between the application and the OS.  Exactly how the 
interposition is accomplished will vary from OS to OS, and there 
may be alternative strategies for some OS’s. The current PDS 
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prototype runs on Windows XP by intercepting a subset of the 
APIs provided via the kernel32 and advapi32 libraries. 

2.3.1 Selective Virtualization 
The APIs that are intercepted in PDS’s selective virtualization are 
just those needed to map the original asset image onto the target 
machine as a virtual asset image (VAI). That is, they include the 
APIs that deal with files, directories, system metadata, and 
anything else that is found to be stored persistently at installation 
time. 
Although the bulk of these APIs are file-related, some asset 
images include information stored in specialized system databases 
not accessed via the file APIs (e.g., the Windows registry). Asset 
images may also include scattered files in system-managed 
directories, a pattern that cannot be duplicated via the hierarchical 
mounting capabilities of most operating systems. Finally, dynamic 
loading and dynamic binding between modules, although rooted 
in file I/O, has semantic details (search paths, versioning, etc.) 
that require additional intervention to ensure that the asset 
operates within its VAI and isn’t contaminated by artifacts in the 
real system. These subtleties make it difficult to accomplish the 
kind of deployment PDS enables through alternative approaches 
such as remotely mounting the asset image file trees directly on 
the host machine. 
PDS only intercepts a small subset of the full Windows API, 
limiting its interception to certain file-related APIs, registry APIs 
and those related to dynamic loading and process creation. All of 
the graphics, interprocess communication, network I/O, thread 
synchronization, and message formatting APIs are left alone, 
causing a PDS asset to be, in most respects, a peer of other 
programs running on the OS. 
Even within the file APIs, we distinguish between path directed 
requests, in which files are designated by hierarchical names, and 
handle directed requests, in which files are designated by 
previously opened handles.   As is the case with many distributed 
file systems, we intercept the former but (usually) not the latter, 
performing the necessary actions (including copying if necessary) 
at open time to avoid having to interfere with reads, writes, seeks, 
locking and synchronization.   This is done not only for efficiency 

but also to permit the memory-mapping APIs of the OS to operate 
without the need for a fine-grained intervention by the virtualizer.  
Section 2.3.3 provides more details on how the VAI is controlled 
by the virtualizer. 
For those APIs that are intercepted at all, the virtualizer makes a 
rapid decision based on the path name, registry key, etc. as to 
whether the request falls within the VAI or not.   If it does, the 
request is handled as discussed in section 2.3.3.  But, if not, the 
request is passed through unchanged to the operating system.  
Thus, PDS assets can communicate via the local file system with 
each other, with non-PDS programs, and with OS utilities. 

2.3.2 Hierarchical Virtualization 
Intercepting only at the OS level limits a virtualizer’s ability to 
optimize the storage and transfer of shards representing files.  
Files can be arbitrarily large, with a substructure opaque to the OS 
(e.g., archives and databases).  Intercepting only file opens would 
force shards to be whole files, even though those files may be 
accessed quite sparsely.  By intercepting more file APIs, or 
dropping down to the driver level, one might do somewhat better, 
but would still have to break files at arbitrary boundaries. 
Consider the case of two archives, differing from each other by a 
few constituent parts out of thousands.  If the archives are broken 
into arbitrary pages, the redundancy would go undetected, 
whereas if they are broken at constituent boundaries, the 
management of the resulting shards would be far more optimal. 
The only way to accomplish this is to exploit semantic knowledge 
about file structures that exists above the level of the OS.  For 
example, although the OS does not understand the archive formats 
used by Java, the Java Runtime Environment (JRE) does 
understand them. 
Consequently, PDS views the OS-level virtualizer as the base 
virtualizer (BV) within a hierarchy of virtualizers that can 
potentially operate at higher levels (see Figure 5).    An asset can 
include a set of non-base virtualizers (NBVs) that intercept the 
APIs of subsystems such as the JRE.  Deciding to implement an 
NBV for a particular subsystem is a pragmatic decision.  PDS 
provides a general mechanism for adding NBVs and provides a 
JRE virtualizer, both to serve as an example, and because it is 
useful in its own right.   This virtualizer ensures that shards 
correspond to the constituent parts of the various zip-format 
archives employed by Java and not to the archives as a whole. 
The BV gives each NBV control when its subsystem is activated, 
assisting the NBV in intercepting additional APIs not intercepted 
by the BV itself.  NBVs may interact directly with the deliverer to 
fetch shards.  Otherwise, NBVs operate entirely within the 
sandbox provided by the BV, and hence they can use information 
in the VAI (virtual asset image). 
In fact, the code of each NBV is itself added to the VAI of each 
asset during preparation, so that its version level is always correct 
for the asset it is servicing (Section 3.3.5 will elaborate on this 
issue). Digest-based shard storage ensures that the logical 
duplication implied by embedding the NBV code in every asset’s 
VAI doesn’t result in physical duplication.  
Because each non-base virtualizer may have its own preparation 
requirements, the preparer is designed in a modular fashion with 
plug-ins corresponding to virtualizers that need prepare-time 
support. 
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2.3.3 Base Virtualizer Details 
The chief goal of the BV is to make an asset’s post-install image 
visible to the asset without being visible to any other software 
running on the target machine.  NBVs rely on this also, because 
code and data needed by NBVs are simply added to the VAI 
(virtual asset image) at prepare time.  We have previously 
discussed how the BV filters API calls so as to handle only those 
that affect the VAI.  We now provide more detail on what 
happens after a VAI-relevant API call is intercepted. 
OS APIs are complex, so it is potentially error prone to interpose 
logic between applications and the OS.  To minimize errors, we 
make it a goal to minimize the amount of logic interposed, 
observing the principle of “redirect, don’t emulate.”  As much as 
possible, PDS observes a one-to-one correspondence between 
virtual API calls and real ones, with only the name of the resource 
(the file name, the registry key, etc.) being altered.  For example, 
when a file open request is intercepted, PDS’s response will be to 
open a shard in the cache, if the mode of opening prohibits 
modifications.  If the mode of opening permits modifications, 
PDS makes a one-time copy of the file to another location and 
opens the copy. 
Allowing shards to be opened directly in the cache improves 
efficiency, when it is possible to do so, and is a key to achieving 
low overhead.  However, some assets modify their VAI during 
execution, and count on being able to do so persistently.   Recall 
that the VAI is stored as a set of shards and that these shards may 
be in a shard repository that has been directly exposed to the 
executor.  This repository may be read-only and/or shared across 
machines.  Even if the shards are in a local writeable cache, they 
are potentially shared by multiple assets.  Even within an asset, a 
single shard may represent multiple virtual entities that happen to 
have the same bit pattern (as shown in Figure 4).  Thus, the BV 
cannot allow shards to be modified in place.   Instead, it uses 
shadow areas, which are persistent stores in the local machine 
containing virtual entities that started out as shards but have since 
been modified by the asset.  The file shadow area is a file tree on 
local disk, the registry shadow area is kept within the registry 
itself, and other forms of system metadata may require still other 
forms of shadow area. 

The most challenging part of the PDS executor design concerns 
those cases where we are forced to deviate from the “redirect, 
don’t emulate” principle.  We consider three such cases next. 

2.3.3.1 Separating Metadata from File Contents 
As pointed out earlier, a modest problem arises from the fact that 
a single shard can represent many virtual resources.  The contents 
of two virtual files that share the same bit pattern will be 
represented by the same shard.  These files can have different 
names, creation dates, permission attributes, etc.  Thus, APIs that 
involve the retrieval of metadata about files cannot just be 
redirected to a shard but must be emulated.   PDS stores file 
metadata in separate metashards generated from the file trees of 
the VAI (virtual asset image) at prepare time.   In fact, the shard 
containing the contents of the file does not have to be present in 
order to answer many queries about the file, and this can improve 
performance substantially, as will be seen in section 3. 
The need to provide accurate metadata forces us to deviate from 
our desire to intercept only path directed requests, because some 
APIs permit the retrieval of metadata from open handles.   Thus, 
PDS retains all handles that are open to shards in an efficient 
lookaside table.  While it allows most handle directed requests to 
pass immediately to the OS, those that retrieve metadata must be 
intercepted and emulated.  Handle-close operations are 
intercepted in order to remove handles from the table. 

2.3.3.2 Providing Accurate Sharing Semantics 
PDS’s asset execution model supports multiple processes 
executing within the same asset.  Such processes cannot be 
isolated from each other, but must be able to communicate 
through the VAI.   For example, all file sharing and file locking 
capabilities must execute correctly between the processes of an 
asset, even though spurious sharing violations must be avoided 
between processes in different assets.   
Adhering to the “redirect, don’t emulate” principle, we could try 
to ensure that two handles open to the same virtual file are always 
open to the same real file, while two handles open to different 
virtual files are always open to different real files.  Then, the OS 
would be responsible for all sharing semantics.   Unfortunately, 
this solution, if adopted, would mean that no handles could ever 
be open to shards. If all shards must be copied to the shadow area 
in order to be opened, performance is seriously degraded. 
Instead, we compromise as follows.   Recall that each asset has its 
own file shadow area, where any shards modified by that asset are 
copied.   PDS ensures that there is a one-to-one correspondence 
between virtual and real files within this area. This makes the OS 
responsible for all sharing semantics in the shadow area (and even 
for file metadata retrieval from this area, since there is no reason 
for PDS to be involved).   However, as long as a virtual file is 
mapped to a shard, PDS will emulate the sharing semantics, just 
as for metadata retrieval.   What makes this workable is that 
shards are copied to the shadow area, correct metadata assigned, 
and virtual operations shifted there, as soon as there is any 
potential for mutation.  Once this shift has occurred, it is 
permanent for that virtual file of that asset.  Thus, PDS is only 
required to provide correct read/read sharing, which is a much 
simpler problem than read/write and write/write sharing.   It 
would even be a trivial problem except that Windows allows a 
reading process to exclude other readers.  PDS’s emulation 

Shard 
Cache

OS platform 

Native code 
(e.g. Java VM) 

Non-native code 
(e.g. Java bytecode) 

Base Virtualizer 

Non-Base Virtualizer

Figure 5  Virtualized execution stack 
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ensures that this exclusion operates only at the virtual file level 
and only within an asset. 
There are some additional complexities.  First, the act of shifting 
from the shard cache to the shadow area for a particular virtual 
file must be done transactionally.  Two processes of the same 
asset that independently decide to make this shift must not collide, 
and a process that is opening a file for reading must be directed to 
the shadow area copy if it exists, even though this shift may just 
have taken place in a different process.   This is readily 
accomplished using system-provided inter-process 
synchronization facilities. 
A more subtle problem involves the status of processes that open 
files for reading but with concurrent writing allowed.   It is 
impossible to determine whether this is being done so that 
concurrent writes can be observed, in which case the only safe 
course is to shift the virtual file to the shadow area immediately.   
Otherwise, another process could open the file for writing, 
shifting it to the shadow area and leaving the reading process’s 
handle still open to the shard.   The writing process would execute 
correctly, but the reading process would fail to see the changes. 
If we assume, conservatively, that all cases of read/write sharing 
require the readers to observe the writes, we will copy many files 
unnecessarily, since standard libraries tend to allow writing by 
default when opening for reading.   Instead, PDS assumes by 
default that a reader does not care about concurrent writes even if 
they are allowed.  The file is thus opened to the shard in this case.   
If the virtual file is later shifted to the shadow area while the 
original handle is still open, we detect this potential safety 
problem and report the fact in a log. The asset can then be 
reprepared with information from the log made available.  The 
preparer marks appropriate areas of the file tree for strict sharing, 
causing the more conservative algorithm to be used. 

2.3.3.3 Dynamic Linking 
Correct virtualization of the dynamic linking capabilities of the 
OS also requires work beyond merely redirecting file APIs.   This 
happens because aspects of this linking are accomplished 
implicitly without any visible call to a system API.   In Windows, 
executable images and libraries have import sections that refer to 
the export sections of other libraries (other OS’s have similar 
facilities).   So, lower level intercepts are needed to correctly 
ensure that imports are satisfied from the VAI instead of the real 
local file system when appropriate.  Fortunately, Windows 
provides the ability to load executables and libraries without 
resolving their imports and provides enough public information to 
allow some of this resolution to be performed manually.   So, PDS 
is able to analyze the imports and determine, for each one, the 
correct module to load, either from the VAI or from outside the 
VAI. 
Once the correct module to load has been identified, PDS can use 
normal system APIs to load the module under the usual “redirect, 
don’t emulate” principle.  But, subsequent APIs that query the 
names of loaded modules must be intercepted to maintain the 
virtualization (since the actual module loaded may be a shard in 
the shard cache, with an arbitrary name).  
Another noteworthy aspect of dynamic linking is its use of search 
paths to resolve the actual identity of the module to be loaded.   In 
a PDS asset, the virtual search path may include directories within 

the VAI that don’t actually exist in the local machine.  Thus, the 
search itself must also be emulated. 

2.3.4 Bootstrapping 
Recall that a PDS asset contains the correctly resolved closure of 
its dependencies, except dependencies on the OS.   But, correct 
execution of the asset will only have been verified for particular 
versions of PDS itself.   An important secondary goal, therefore, is 
to reuse PDS’s virtualization technology to ensure that the correct 
version of each PDS component is used with each asset that is 
executed.  We’ve already discussed how any NBVs (non-base 
virtualizers) used by the asset become part of the asset, which 
solves the problem for NBVs.  But, the BV (base virtualizer) and 
the deliverer are also part of PDS and can affect the execution of 
the asset. 
Making the BV and the deliverer be part of the asset would be, in 
some sense, circular, but we are able to get the equivalent by 
making these two low-level components into microload assets.  A 
microload asset is an asset with the following two characteristics.  
(1) Its logic is so simple that it doesn’t need the BV to execute 
correctly.   (2) When executed, it creates a directory (its 
microload directory) named for its own asset id and stores some 
number of files there (typically, code libraries).    The microload 
assets for each version of the deliverer and the BV simply make 
microload directories containing those components.   Because all 
assets have unique ids, every distinct version of these components 
will have a different id and hence a different directory. 
The PDS bootstrap is a tiny program that knows how to load a 
deliverer from its microload directory and pass a launch document 
to its startup function.  Thus, the bootstrap makes almost no 
assumptions about the rest of PDS, making changes to the 
bootstrap itself into very rare events.   The bare minimum 
installation of PDS consists of this bootstrap plus one microload 
directory containing a version of the deliverer. In the current 
prototype system, the bootstrap and microload pieces are about 
0.5 Mbytes is size. 
The startup function of every deliverer extracts from the launch 
document the asset id of the target asset plus the asset ids of the 
microload assets for the required deliverer and BV.  Assuming 
only that this deliverer knows how to locate the microload asset 
for the desired deliverer, it can execute a chain of microload asset 
executions followed by the target asset execution that will create 
the correct configuration. 

2.3.5 Executor Design Summary 
Interception at the level of the OS API boundary does introduce 
complexities and vulnerabilities that don’t exist at the hardware 
level.  However, PDS benefits from its own design goal of 
selective virtualization, which bounds the portion of the API that 
must be intercepted.   By steadfastly insisting on making the OS 
do as much of the work as possible, we are able to limit PDS’s 
actual OS emulation to a few key areas discussed in the previous 
subsections.  Although we cannot prove that these exhaust the set 
of issues that might arise, it is encouraging that PDS has been able 
to provide solid virtualizations of a number of useful assets 
already, with problems and failures being fewer and farther 
between. 
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3. MEASUREMENTS 
We first present some measurements of PDS’s execution time 
overhead, which gives a sense of what it costs to execute software 
under PDS even after all of the shards are present locally.  We 
then present measurements of the degree to which PDS’s use of 
shards is able to reduce working set size and detect and eliminate 
the redundant storage and transfer of bits when deploying 
software progressively.  

3.1 Execution Time Overhead 
We measured execution time overhead with two tests.   First, we 
ran the Apache web server [1] both under PDS (with the shard 
repository on a local file system) and natively.   We measured 
performance using the standard benchmark distributed with 
apache.   The benchmark starts multiple clients (we used 20 in our 
measurements), each of which repeatedly retrieves a web page 
from the server.  In our test, the clients did not run under PDS, 
only the server did, and all socket connections were local.  We 
found that this test ran very slightly faster under PDS than native 
(8.4 ms per request as opposed to 8.7). The reasons for this 
counter-intuitive result are discussed below. 
In a second test we measured the time to start up Eclipse 3.0 [6], 
with an empty workspace, both under PDS (with a local shard 
repository) and natively.  The startup time averaged 12.6 seconds 
in native mode, and 12.9 seconds under PDS, for an overhead of 
2.4%.  
The fact that PDS exhibits slightly negative overhead in one test 
and negligible overhead in another can be explained by the results 
of some microbenchmarks which we also ran. 
The first microbenchmark paired the CreateFile and 
CloseHandle calls, executing the pair repeatedly on a file 
(opening the file for reading, then closing it).   When this 
benchmark is run natively, it takes 375.9 microseconds per 
iteration.   When the same benchmark is run under PDS, but with 
the file residing outside the VAI (virtual asset image), it takes 
424.9 microseconds (13% overhead).  When the file is inside the 
VAI, PDS adds 56% overhead for a timing of 587.4 microseconds 
per iteration. 
The second microbenchmark paired the FindFirstFile and 
FindClose functions, executing the pair repeatedly on a file.   
This API is used very heavily by windows applications (due to its 
heavy use by the C runtime library) to test file existence and 
retrieve metadata.    When this benchmark is run natively, it takes 
124.4 microseconds.   When run under PDS with a file outside the 
VAI, it takes 168.4 microseconds (an overhead of 35%, but 
smaller in absolute terms than the overhead added to CreateFile 
in the same circumstances). But, when the file is inside the VAI, 
PDS executes each benchmark iteration in only 66.1 
microseconds, for a saving of 47%!   Recall that, in section 
2.3.3.1, we listed metadata retrieval as a case where we emulated 
the function rather than delegating to the OS.   Because PDS 
packs metadata efficiently into metashards which it then memory-
maps, it is apparently able to deliver the information substantially 
faster than the OS can. 
In both real benchmarks, the files resided inside the VAI, and so 
they incurred a 56% overhead for CreateFile but a 47% saving 
for FindFirstFile.   Since the latter API is one of the most heavily 
used ones in Windows, the average overhead of PDS was near-

zero.   We cannot claim that this will always be the case.  But, by 
accepting some overhead on less frequently used APIs and 
making up the difference on others it is possible, with this 
approach, to have a very low-cost virtualization. 

3.2 Working Set versus Asset Image Size 
A primary reason for PDS adopting the shard strategy was to help 
in managing working sets.    To measure the effectiveness of our 
solution, we defined a test asset consisting of Eclipse 3.0 and 
IBM’s version of Java 1.4.2 (this is the asset designated as E3 J2 
in Table 1 of the next section).    The asset’s original image was 
149 megabytes in size, and its effective size in the repository (see 
next section) was 106 megabytes.  But, after starting the asset on a 
machine with an empty shard cache, the asset was able to start up 
after transferring only 22 megabytes to the shard cache.  
Achieving this working set required the use of the JRE virtualizer.  
An alternative preparation of the asset which did not break up 
archives for use by the JRE Virtualizer required the transfer of 72 
megabytes to the shard cache. 

3.3 Redundancy Elimination 
Measurements of redundancy employed a PDS shard repository 
containing 12 assets.  These were constructed using three different 
versions of Eclipse (2.1.2, 2.1.3, and 3.0.1, designated as E1, E2, 
and E3, respectively) and three different versions of Apache 
Tomcat (4.1.29, 4.1.30, and 4.1.31, designated as T1, T2, and T3, 
respectively).   Eclipse is dependent on a Java Runtime, and 
Tomcat actually requires a full Java Development Kit including 
the compiler.   These dependencies were satisfied by pairing the 
original six products with two different versions of IBM’s Java 
product (1.4.1 and 1.4.2, designated as J1 and J2, respectively) to 
form complete assets.  All assets were prepared for the JRE 
Virtualizer as well as the BV.  
Table 1 gives the measurements for these assets.  All sizes are in 
megabytes rounded to the nearest megabyte. 
The image size column contains the size of each asset image after 
installation and before preparation (the sum of the sizes of the file 
trees containing both the Java version and Eclipse or Tomcat 
version employed).  The raw prepared size is the size that the 
asset would have in the shard repository if no attempt was made to 
recognize redundant shards.   
The act of preparation initially increases the size of the asset.   
This happens almost entirely due to the special preparation done 
to support the JRE Virtualizer.  Specifically, archives are broken 
up into individual members, which are uncompressed in the 
process.  Then, the same member may be counted multiple times 
due to its appearance on multiple classpaths.  Finally, the original 
archive is also left as a shard in its own right, since it may be 
manipulated by non-Java code.    We consider this initial growth 
acceptable, since it is in service of a smaller working set size, as 
discussed in the previous section. 
The raw prepared size is an artificial number, since PDS always 
detects redundant shards and stores them only once.  The actual 
prepared size shows the effects of this feature.  This is the size 
that each asset would have if stored in a shard repository by itself. 
The effective prepared size column gives the effective size of each 
asset when stored in a shard repository along with the others.  The 
number was computed by counting, as part of each asset, those 
shards that were unique to the asset, then amortizing across all 
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affected assets the sizes of those shards that are shared.  Notice 
that this represents a considerable savings over the actual prepared 
size, and more than compensates for the increase due to JRE 
preparation, resulting in an effective asset size smaller than the 
original asset image.   This effect only increases as the number of 
highly similar assets is aggregated.   We consider the example 
shown here to be realistic, since it includes some very similar 
assets (the three Tomcats), some only moderately similar assets 
(the two Javas and the three Eclipses), and coarse-grained 
component sharing (use of the same Java version by different 
assets). 
The significance of this measurement is not only, or even 
primarily, in the reduction of footprint in shard repositories or 
shard caches.  Rather, the times taken to transmit assets over a 
network are substantially reduced when some of the shards are 
already found in the local cache.  This can be particularly useful 
when updating from one version of an asset to a newer one. 

4. RELATED WORK 
The use of virtualization as a software abstraction of the 
underlying hardware machine was developed by IBM in the 1960s 
[28]. A spectrum of Virtual Machines of different sorts are in use 
today, ranging from runtime environments for high-level 
languages like Java [15] and Smalltalk [9] to hardware-level 
virtual machine monitors (VMMs) such as VMware [30] and Xen 
[4]. 

The level of indirection provided by the virtual machine layer 
enables the software running above it to be decoupled from the 
system beneath it. This decoupling enables the virtual machine 
layer to control or enhance the software running above it. 

High-level languages use their runtime environments both to 
enhance the functionality of underlying hardware and OS and to 

achieve portability across hardware and OS implementations.  
While PDS does not have these aims, it does use virtualization to 
mask the idiosyncrasies that arise within an operating system 
instance as individual machines are configured differently. 

Virtual machine monitors like VMware exploit the decoupling to 
fully isolate the software stack running above it from the host 
environment, thus enabling sandboxed environments for testing, 
archival and security. The CMU/Intel work on Internet 
Suspend/Resume [13][14] and the Stanford Collective project 
[22][23] use the ability of a VMM to easily capture both the 
persistent and volatile state of a sandboxed environment to enable 
mobility of end-user environments over a network. Virtual 
Appliances (also part of the Stanford Collective project) exploit 
the VMware VMM for simplifying the deployment and 
maintenance of software environments [22]. A key difference 
between these approaches and ours is that PDS implements a 
weaker form of decoupling than a traditional VMM, by isolating 
only the non-OS dependencies of the asset from the host 
environment. While this does not provide the full isolation 
sandbox that a VMM does, it enables separately deployed 
applications to co-exist and interact as peers in the same host 
environment without the risk of conflicts (Figure 1). This allows 
PDS to be used in scenarios where separate vendors deploy 
different parts of a complex environment.  

Utilities like Debian apt [8] simplify the maintenance of software 
packages, but do not provide isolation in the sense of enabling 
conflicting versions of a component to co-exist in the same 
(virtual) namespace. 

Managed container frameworks like J2EE and .NET provide 
network deployment and management features, but they are 
language specific, and require the use of framework APIs. Other 
language-specific solutions for software deployment and 
maintenance are Java Web Start [11] and OSGi [19]. 

Zap [20] is an implementation of a virtualization layer between 
the operating system and the software. The goal of Zap is 
migration of process groups across machines, not software 
deployment and serviceability. 

A number of recent startups like AppStream [2], Endeavors [7], 
Softricity[25] use file-system based approaches to provide 
centrally managed software deployment and maintenance 
solutions for Windows desktops. Desktop applications are 
generally self-contained applications, whose non-OS 
dependencies are easily be bundled within a single file system 
mount point, or self-contained directory. 

5. FUTURE WORK 
Although PDS’s observed aggregate runtime overhead is usually 
low in practice, it was seen in section 3.1 that this is a 
consequence of running faster-than-native for some APIs, and 
hence it may not always be the case.  Microbenchmarks reported 
in that section indicate that other APIs still have significant 
overheads. Performance tuning has not been a priority until now, 
but we expect to put significant effort into reducing overheads 
further, especially when the asset is operating on files outside the 
VAI. 
The deliverer in the PDS prototype uses either servlets or off-the-
shelf file system software when demand-fetching shards from a 

Asset Image 
Size 

Raw 
Prepared 
Size (no 

redundancy 
removal) 

Actual 
Prepared 
Size (after 
redundancy 

removal) 

Effective 
Prepared Size 
(when stored in 

a common 
repository) 

E1 J1 110 356 211 66 

E1 J2 115 372 225 68 

E2 J1 110 356 212 66 

E2 J2 115 373 225 68 

E3 J1 144 280 268 103 

E3 J2 149 296 281 106 

T1 J1 88 224 156 38 

T1 J2 93 248 162 38 

T2 J1 89 227 156 38 

T2 J2 93 249 163 38 

T3 J1 89 228 157 41 

T3 J2 94 250 164 41 

Total 1279 3439 2380 711 

Table 1 Asset Sizes. E1, E2, E3 represent different versions of 
Eclipse. T1, T2, T3 represent different versions of Tomcat. 
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remote location.  Thus, we see high per-shard latencies when the 
shard repository is remote.  We intend to experiment both with 
better-performing servers and with the exploitation of network file 
serving technologies as we alluded to in section 2.2.  The highly 
preliminary nature of our deliverer prevented us from reporting 
network startup times in this paper, but we expect to present such 
results in a future paper.   Interestingly, despite suboptimal 
network performance in the prototype, experimental users of PDS 
still consider startup to be “fast”, because it is such a relief not to 
have to go through an installation step. 
The JRE Virtualizer significantly reduces the amount of data 
required to startup an asset (in some versions of Eclipse by as 
much as 60%).  However, this savings is achieved at the cost of 
introducing many more (smaller) shards.  Currently, the latency 
overhead of retrieving these shards overbalances the bandwidth 
savings.  After the deliverer is redesigned for lower per-shard 
latency, we expect to measure a positive gain from the use of 
hierarchical virtualization.   Until then, our claims of the benefits 
of this approach should be taken as preliminary. 
Even if demand-fetching of individual shards remains a high 
latency operation, we expect to exploit the fact that assets 
typically require shards (classes and files) in bursts.  Efficient 
prefetching based on previously observed sequences has been 
claimed by others in the network deployment business (e.g., [2]).  
We already have an experimental predictive prefetching system 
working, although it has so far been used only to optimize the 
transfer of the initial working set at asset startup, and we were 
unable to collect data from it for this paper.  Future research will 
focus on how prefetching can be optimized in a context that also 
includes virtualization (where information from the virtualizer can 
be used to tune and control the prefetch). 
To support hierarchical virtualization, the BV provides a general 
“interception assistance” mechanism for use by NBVs.   We are 
now considering whether this mechanism can be exploited for 
other purposes.  For example, could we utilize this technology to 
improve the serviceability of an asset by introducing probes and 
fixes dynamically?  Could it be used to provide a transparent 
licensing mechanism for applications (one that could be 
introduced without recoding those applications)?  We are pursing 
each of these thoughts in collaboration with other research groups 
in our organization. 
Currently, setting up to prepare an asset is a manual process.  A 
failure to properly inventory the asset image leads to errors that 
can only be found by executing the asset.  We are exploring tools 
to solve these problems.   For example, traditional VMMs can be 
used to simplify the collection of information about how 
installations change the system, thus automating the asset image 
inventory.   VMMs can also be used to at least speed up the cycle 
of prepare, then test, then re-prepare which is likely to be needed 
in practice no matter how well we automate things. 
Our current preparer assumes it knows nothing about how the 
asset image is used during execution:  every part of it is assumed 
to be equally important.  Static analysis and dynamic trace 
feedback techniques can be used to further optimize preparation.  
We already use a primitive form of dynamic trace feedback to 
automate preparation for the JRE virtualizer, but much more can 
be done in this area. 
Finally, efficient exploitation of the shard concept depends on our 
ability to identify semantically meaningful units within larger 

entities.   We have developed solutions for one of the most 
obvious cases (zip-format archives used by the JRE).   But we 
don’t know what other examples of this phenomenon may prove 
to have equal or greater pay-off in the future. 

6. CONCLUSION 
PDS is a novel solution to the problem of deploying and 
managing complex software stacks.   By treating assets as 
immutable and with their own view of their virtual file spaces, 
along with the ability to share components between assets, PDS 
allows multiple assets to simultaneously execute on the same 
machine.  The automated redundancy removal introduced through 
cryptographic hashes allows the efficient delivery of many assets 
which share common sub-components. 
Furthermore, with the exception of a small bootstrap code (about 
0.5 Mbytes in the current prototype), PDS’s own virtualizers are 
embedded in every asset. The shard design ensures that the 
duplication implied by this is avoided in the physical shard 
storage. This embedding allows assets to be unaffected by 
subsequent PDS virtualizer evolution, further enhancing the 
ability to service and support deployed assets in the field. 
There are at least two benefits that result from such a model. First, 
the end-user’s perceived complexity of the deployed environment 
is lowered, because its internal structure is hidden from the user. 
Second, it enhances the serviceability of deployed environments, 
because every asset represents an immutable state of some 
installed image, and no user can have an image that is in-between 
two supported asset versions. 
PDS uses a selective and hierarchical approach to process-level 
virtualization, which enables multiple assets to co-exist and 
interact as peers in the host machine environment, without 
incurring a significant performance penalty. This enables multiple 
vendors to deploy different parts of a complex commercial 
environment, which would be difficult to accomplish with a full 
isolation sandbox approach based on a virtual machine monitor. 
On the other hand, PDS cannot isolate environments at an OS 
level the way that virtual machine monitors can. Thus, the two 
approaches are fundamentally complementary to one another. In 
fact, the two approaches could be used together to get the benefits 
of both. 

7. ACKNOWLEDGMENTS 
We thank Frank Cavallito and Jobi George for making significant 
contributions to the implementation of the PDS prototype system, 
and to Nick Mitchell, Harold Ossher, Gary Sevitsky and the 
referees for their comments and suggestions on this paper. We are 
also grateful to Alfred Spector and the management at IBM 
Research for their enthusiastic support of this project. 

8. REFERENCES 
[1] Apache open-source web server. http://www.apache.org. 
[2] AppStream Inc. http://www.appstream.com. 
[3] Arthorne, J., Laffra, C. Eclipse 3.0 FAQs. Addison-Wesley 

2004. 
[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., 

Ho, A., Neugebauer, R., Pratt, I., Warfield, A. XEN and the 
Art of Virtualization. In Proceedings of the 19th ACM 
Symposium on Operating System Principles, Oct 2003. 

184



[5] Brittain, J. Darwin, I. Tomcat: The Definitive Guide. 
O’Reilly. June 2003. 

[6] Eclipse Open, Extensible IDE. http://www.eclipse.org. 
[7] Endeavors Inc. http://www.endeavors.com. 
[8] Debian open-source OS. http://www.debian.org. 
[9] Goldberg, A., Robson, D. Smalltalk-80: the language and its 

implementation, Addison-Wesley Longman Publishing Co., 
Inc., Boston, MA, 1983. 

[10] DuBois, P. MySQL (2nd edition). Sams press. March 2005. 
[11] Java Web Start. http://java.sun.com/products/javawebstart/. 
[12] The JBoss Group. JBoss 4.0 – The Official Guide. Sams 

press. April 2005. 
[13] Kozuch, M.A., Helfrich, C. J., Hallaron, D.O., 

Satyanarayanan, M. Enterprise Client Management with 
Internet Suspend/Resume. Intel Technology Journal, Vol 8, 
Issue 4, Nov 2004. 

[14] Kozuch, M. A., Satyanarayanan, M. Internet 
Suspend/Resume. In Proceedings of the 4th IEEE Workshop 
on Mobile Computing Systems and Applications, NY, June 
2002. 

[15] Lindholm, T., Yellin, F. The Java virtual machine 
specification, 2nd Ed. Addison-Wesley, Reading, MA, 2000. 

[16] Lotus Workplace Client. IBM Software Group. 
http://www.lotus.com/products/product5.nsf/wdocs/workplac
eclienttech. 

[17] Lowell, D.E., Saito, Y.Samberg, E.J.  Devirtualizable Virtual 
Machines Enabling General, Single-Node, Online 
Maintenance. In Poceedings of the 11th ASPLOS, Oct 2004. 

[18] Open Office suite. http://www.openoffice.org. 
[19] OSGi specification. http://www.osgi.org 
[20] Osman, S., Subhraveti, D., Su, G., Nieh, J. The Design and 

Implementation of Zap: A System for Migrating Computing 
Environments. ACM SIGOPS Operating System Review, Vol 
36, Issue SI, Dec 2002. 

[21] Rosenblum, M. The Reincarnation of Virtual Machines. 
QUEUE Vol 2, Issue 5, July 2004. 

[22] Sapuntzakis, C., Brumley, D., Chandra, R., Zeldovich, N., 
Chow, J., Lam, M.S., Rosenblum, M. Virtual Appliances for 
Deploying and Maintaining Software. In Proceedings of the 
17th Large Installation System Administration Conference, 
Oct 2003. 

[23] Sapuntzakis, C., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., 
Rosenblum, M. Optimizing the Migration of Virtual 
Computers. ACM SIGOPS Operating Systems Review. Dec 
2002. 

[24] Secure Hash Standard.  FIPS publication 180-2, National 
Institute of Standards and Technology. 

[25] Softricity Inc. http://www.softricity.com. 
[26] Sugerman, J., Venkitachalam, G., Lim, B-H. Virtualizing I/O 

Devices on VMWare Workstations’s Hosted Virtual 
Machine Monitor. In Proceedings of the USENIX Annual 
Technical Conference, Boston. June 2001. 

[27] Thain, D., Livny, M. Parrot: Transparent User-Level 
Middleware for Data Intensive Computing. In Proceedings 
of the Workshop on Adaptive Grid Middleware, 2003. 

[28] The IBM Mainframe, history and timeline. http://www-
1.ibm.com/servers/eserver/zseries/timeline/. 

[29] Tomcat open-source servlet engine. 
http://jakarta.apache.org/tomcat/. 

[30] VMWare Inc. VMWare ACE. http://www.vmware.com. 
[31] WebSphere Studio Application Developer. IBM Software 

Group. http://www-
306.ibm.com/software/awdtools/studioappdev/. 

[32] Whitaker, A., Shaw, M., Gribble, S.D. Scale and 
Performance in the Denali Isolation Kernel. In Proceedings 
of the 5th Symposium on Operating Systems Design and 
Implementation (OSDI 2002), Boston. Dec 2002. 

 
 
 

 

185


