USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

Berkeley DB

Michael A. Olson, Keith Bostic, and Margo Seltzer

Sleepycat Software, Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

Berkeley DB

Michael A. Olson
Keith Bostic
Margo Seltzer
Sleepycat Software, Inc.

Abstract

Berkeley DB is an Open Source embedded database system with a number of key advantages over comparable sys-
tems. It is simple to use, supports concurrent access by multiple users, and provides industrial-strength transaction
support, including surviving system and disk crashes. This paper describes the design and technical features of
Berkeley DB, the distribution, and its license.

1. Introduction distributes, and supports Berkeley DB and supporting

The Berkeley Database (Berkeley DB) is an embedded;_oftware and documentation. Sleepycat released ver-

database system that can be used in applications requi?lon 2.1 of B?fke'ey DB in mid-1997 with important
ing high-performance concurrent storage and retrieva/'€W features, including support for concurrent access to

of key/value pairs. The software is distributed as ad_atabases. The company makes about three commer-
library that can be linked directly into an application. It cial releases a year, and most recently shipped version

provides a variety of programmatic interfaces, includ- 8.
ing callable APIs for C, C++, Perl, Tcl and Java. Users
may download Berkeley DB from Sleepycat Software’s 1.2. Overview of Berkeley DB

Web site, awww.sleepycat.com The C interfaces in Berkeley DB permitbm-style

Sleepycat distributes Berkeley DB as an Open Sourceecord management for databases, with significant
product. The company collects license fees for certairextensions to handle duplicate data items elegantly, to
uses of the software and sells support and services. deal with concurrent access, and to provide transac-

tional support so that multiple changes can be simulta-
1.1. History neously committed (so that they are made permanent)

)) or rolled back (so that the database is restored to its
Berkeley DB began as a new implementation of a hashyi5te at the beginning of the transaction).
access method to replace bbtearch and the vari-] .
ous dbm implementations dbm from AT&T, ndbm C++ and _]ava interfaces provide a smgll set of .classes
from Berkeley, andydbm from the GNU project). In for operating on a database. The main class in both

1990 Seltzer and Yigit produced a package called Hash@S€S is calle@b, gnd provides methodg that encapsu-
to do this [Selt91]. late thedbmstyle interfaces that the C interfaces pro-

vide.
The first general release of Berkeley DB, in 1991,

included some interface changes and a new Be+tred ¢! @nd Perl interfaces allow developers working in
access method. At roughly the same time, Seltzer an{105€ languages to use Berkeley DB in their applica-
Olson developed a prototype transaction system basetiPns: Bindings for both languages are included in the
on Berkeley DB, called LIBTP [Selt92], but never distribution.

released the code. Developers may compile their applications and link in

The 4.4BSD UNIX release included Berkeley DB 1.85 Berkeley DB statically or dynamically.
in 1992. Seltzer and Bostic maintained the code in the

early 1990s in Berkeley and in Massachusetts. Manyl .3. How Berkeley DB is used

users adopted the code during this period. The Berkeley DB library supports concurrent access to

By mid-1996, users wanted commercial support for thegatabases. It can be linked into standalone applica-
software. In response, Bostic and Seltzer formedions, into a collection of cooperating applications, or
Sleepycat Software. ~The company enhancesinto servers that handle requests and do database

operations on behalf of clients. include managing access control lists, storing user keys

Compared to using a standalone database manageméft @ Public-key infrastructure, recording machine-to-

system, Berkeley DB is easy to understand and Sirm)|é1etwork-address mappings in address servers, and stor-
to use. The software stores and retrieves recorddnd configuration and device information in video post-

which consist of key/value pairs. Keys are used toProduction software.

locate items and can be any data type or structure sug-inally, Berkeley DB is a part of many other Open
ported by the programming language. Source software packages available on the Internet. For
example, the software is embedded in the Apache Web

The programmer can provide the functions that Berke
server and the Gnome desktop.

ley DB uses to operate on keys. For example, B+tree
can use a custom comparison function, and the Hash

access method can use a custom hash function. Berk&, Access Methods
ley DB uses default functions if none are supplied.
Otherwise, Berkeley DB does not examine or interpret
either keys or values in any way. Values may be arbi-
trarily long.

In database terminology, an access method is the disk-
based structure used to store data and the operations
available on that structure. For example, many
database systems support a B+tree access method.
It is also important to understand what Berkeley DB isB+trees allow equality-based lookups (find keys equal
not. It is not a database server that handles networkp some constant), range-based lookups (find keys
requests. Itis not an SQL engine that executes queriegetween two constants) and record insertion and dele-
It is not a relational or object-oriented database mantjon.

agement system. Berkeley DB supports three access methods: B+tree,

It is possible to build any of those on top of Berkeley Extended Linear Hashing (Hash), and Fixed- or Vari-
DB, but the package, as distributed, is an embeddegdple-length Records (Recno). All three operate on
database engine. It has been designed to be portablgscords composed of a key and a data value. In the

small, fast, and reliable. B+tree and Hash access methods, keys can have arbi-
trary structure. In the Recno access method, each
1.4. Applications that use Berkeley DB record is assigned a record number, which serves as the

i .)] key. In all the access methods, the value can have arbi-
Berkeley DB is embedded in a variety of proprietary trary structure. The programmer can supply compari-

and Open Source software packages. This sectioQyn or hashing functions for keys, and Berkeley DB
highlights a few of the products that use it. stores and retrieves values without interpreting them.
Directory servers, which do data storage and retrieval| of the access methods use the host filesystem as a
using the Local Directory Access Protocol (LDAP), backing store.

provide naming and directory lookup service on local-

area networks. This service is, essentially, database

guery and update, but uses a simple protocol rather thad-1. Hash

SQL or ODBC. Berkeley DB is the embedded dataBerkeley DB includes a Hash access method that
manager in the majority of deployed directory serversimplements extended linear hashing [Litw80].
today, including LDAP servers from Netscape, Mes-Extended linear hashing adjusts the hash function as the
sageDirect (formerly Isode), and others. hash table grows, attempting to keep all buckets under-
Berkeley DB is also embedded in a large number offull in the steady state.

mail servers. Intermail, from Software.com, usesThe Hash access method supports insertion and dele-
Berkeley DB as a message store and as the backingon of records and lookup by exact match only. Appli-
store for its directory server. The sendmail servercations may iterate over all records stored in a table, but
(including both the commercial Sendmail Pro offering the order in which they are returned is undefined.

from Sendmail, Inc. and the version distributed by

sendmail.org) uses Berkeley DB to store aliases and2 > B

other information. Similarly, Postfix (formerly << tree
VMailer) uses Berkeley DB to store administrative Berkeley DB includes a B+tree [Come79] access
information. method. B+trees store records of key/value pairs in leaf
pages, and pairs of (key, child page address) at internal

In addition, Berkeley DB is embedded in a wide variety 5 -
nodes. Keys in the tree are stored in sorted order,

of other software products. Example applications

where the order is determined by the comparison funcby their application.

tion supplied when the database was created. Pages gf, example, when an application opens a database, it

the leaf level of the tree include pointers to their neigh-co geclare the degree of concurrency and recovery that
bors to simplify traversal. B+trees support lookup by it yequires. Simple stand-alone applications, and in par-

exact match (equality) or range (greater than or equal tqc 1ar ports of applications that usdtim or one of its
akey). Like Hash tables, B+trees support record inseryariants, generally do not require concurrent access or

tion, deletion, and iteration over all records in the tree. crash recovery. Other applications, such as enterprise-
As records are inserted and pages in the B+tree fill upglass database management systems that store sales
they are split, with about half the keys going into a newtransactions or other critical data, need full transac-
peer page at the same level in the tree. Most B+tredional service. Single-user operation is faster than
implementations leave both nodes half-full after a split.multi-user operation, since no overhead is incurred by
This leads to poor performance in a common caselocking. Running with the recovery system disabled is
where the caller inserts keys in order. To handle thisfaster than running with it enabled, since log records
case, Berkeley DB keeps track of the insertion orderneed not be written when changes are made to the
and splits pages unevenly to keep pages fuller. Thislatabase.

reduces tree size, yielding better search performancg, addition, some core subsystems, including the lock-

and smaller databases. ing system and the logging facility, can be used outside
On deletion, empty pages are coalesced by reversthe context of the access methods as well. Although
splits into single pages. The access method does nfew users have chosen to do so, it is possible to use
other page balancing on insertion or deletion. Keys arenly the lock manager in Berkeley DB to control con-
not moved among pages at every update to keep theurrency in an application, without using any of the
tree well-balanced. While this could ingwe search standard database services. Alternatively, the caller can
times in some cases, the additional code complexityntegrate locking of non-database resources with Berke-
leads to slower updates and is prone to deadlocks. ley DB’s transactional two-phase locking system, to
impose transaction semantics on objects outside the

For simplicity, Berkeley DB B+trees do no prefix com-
database.

pression of keys at internal or leaf nodes.

2.3. Recno 3.1. Programmatic interfaces

4 Berkeley DB defines a simple API for database man-
agement. The package does not include industry-stan-
rdlard programmatic interfaces such as Open Database
rrf_:onnectivity (ODBC), Object Linking and Embedding
Jor Databases (OleDB), or Structured Query Language

database, treating each line as a record. This permi&SQL)' The;e interface;_, while useful, were designed
fast searches by line number for applications like text!® prpmo_tg interoperability of database systems, and
editors [Ston82]. not simplicity or performance.

Berkeley DB includes a fixed- or variable-length recor
access method, calletiRecno The Recno access
method assigns logical record numbers to each reco

ber. Recno is able, for example, to load a text file into

Recno is actually built on top of the B+tree access'! €sponse to customer demand, Berkeley DB 2.5

method and provides a simple interface for storing'ntroduced support for the XA standard [Open94]. XA

sequentially-ordered data values. The Recno accesﬁer_mits Berkeley DB to pa_rticipate in d_istributeq tran_s-
method generates keys internally. The programmerctions under a transaction processing monitor like
view of the values is that they are numbered sequend Uxedo from BEA Systems. Like XA, other standard

tially from one. Developers can choose to have recorgdterfaces can be built on top of the core system. The
automatically renumbered when Iower-numberedStandar_dS _do not belong inside Berkeley DB, since not
records are added or deleted. In this case, new keys catll applications need them.

be inserted between existing keys.
3.2. Working with records

3. Features A database user may need to search for particular keys

This section describes important features of Berkele)).n a database, or may simply want to browse available
DB. In general, developers can choose which featureé_ecords' Berkeley DB supports both keyed access, to

are useful to them, and use only those that are requiref('.xnd one or more records with a given key, or sequential

access, to retrieve all the records in the database one at

a time. The order of the records returned duringdirectly into the Berkeley DB pages, writes cannot be
sequential scans depends on the access method. B+trpermitted. Otherwise, changes could bypass the lock-
and Recno databases return records in sort order, aridg and logging systems, and software errors could cor-
Hash databases return them in apparently random ordewpt the database. Read-only applications can use
Berkeley DB’s memory-mapped file service to improve

Similarly, Berkeley DB defines simple interfaces for :
performance on most architectures.

inserting, updating, and deleting records in a database.

3.3. Long keys and values 3.6. Configurable page size

%5 2 Programmers declare the size of the pages used by their

Berkeley DB manages keys and values as larg
bytes. Since the time required to copy a record is pro_access methods when they create a database. Although

portional to its size, Berkeley DB includes interfaces Berkeley D,B provides reasonable defaults, developers
that operate on partial records. If an applicationM&Y override them to control system performance.

requires only part of a large record, it requests partialSmall pages reduce the number of records that fit on a

record retrieval, and receives just the bytes that it needsc'.ingle page. Fewer records on a pe_lge means_ that fgwer
The smaller copy saves both time and memory. records are locked when the page is locked, improving

) concurrency. The per-page overhead is proportionally
Berkeley DB allows the programmer to define the datahigher with smaller pages, of course, but developers

types of keys and values. Developers use any tyP@an trade off space for time as an application requires.
expressible in the programming language.

3.7. Small footprint

3.4. Large databases _

) Berkeley DB is a compact system. The full package,
f‘sz'[l‘g'e database managed by Berkeley DB can be Upycjyding all access methods, recoverability, and trans-
0

bytes, or 256 petabytes, in size. Berkeley DB y¢tion support is roughly 175K of text space on com-
uses the host filesystem as the backing store for thg,,n architectures.

database, so large databases require big file support
from the operating system. Sleepycat Software has
customers using Berkeley DB to manage single3.8. Cursors

databases in excess of 100 gigabytes. In database terminology, a cursor is a pointer into an
access method that can be called iteratively to return
3.5. Main memory databases records in sequence. Berkeley DB includes cursor

interfaces for all access methods. This permits, for

Applications that do not require persistent storage canyample, users to traverse a B+tree and view records in
create databases that exist only in main memory. Thesgyqer. pointers to records in cursors are persistent, so
databases bypass the overhead imposed by the /O SY$at once fetched, a record may be updated in place.

tem altogether. Finally, cursors support access to chains of duplicate
Some applications do need to use disk as a backingata items in the various access methods.

store, but run on machines with very large memory.

Berkeley DB is able to manage very large shared mem 9. Joins

ory regions for cached data pages, log records, and |OC§' '

management. For example, the cache region used fdp database terminology, a join is an operation that

data pages may be gigabytes in size, reducing the likelisPans multiple separate tables (or in the case of Berke-
hood that any read operation will need to visit the diskley DB, multiple separate DB files). For example, a

in the steady state. The programmer declares the siZzé0mpany may store information about its customers in
of the cache region at startup. one table and information about sales in another. An

application will likely want to look up sales informa-

Finally, many operatlng systems provide MEMOTY” tion by customer name; this requires matching records
mapped file services that are much faster than the'fn the two tables that share a common customer 1D

general-purpose flle_ system mterfapes. Berkeley DBfield. This combining of records from multiple tables is
can memory-map its database files for read-only alled a join

database use. The application operates on recordps o . o

stored directly on the pages, with no cache manageBerkeley DB includes interfaces for joining two or

ment overhead. Because the application gets pointergore tables.

3.10. Transactions performance.
Transactions have four properties [Gray93]:
. They are atomic. That is, all of the changes3-10.2. Crashes and recovery

made in a single transaction must be applied aBerkeley DB’s write-ahead log is used by the transac-

the same instant or not at all. This permits, for tion system to commit or roll back transactions. It also

example, the transfer of money between two gives the recovery system the information that it needs

accounts to be accomplished, by making theto protect against data loss or corruption from crashes.

reduction of the balance in one account and theBerkeley DB is able to survive application crashes, sys-

increase in the other into a single, atomic action. tem crashes, and even catastrophic failures like the loss
. They must be consistent. That is, changes to théf @ hard disk, without losing any data.

database by any transaction cannot leave thesurviving crashes requires data stored in several differ-

database in an illegal or corrupt state. ent places. During normal processing, Berkeley DB
. They must be isolatable. Regardless of the num-has copies of active log records and recently-used data

ber of users working in the database at the sam@ages in memory. Log records are flushed to the log

time, every user must have the illusion that nodisk when transactions commit. Data pages trickle out

other activity is going on. to the data disk as pageswethrough the buffer cache.
Periodically, the system administrator backs up the data
disk, creating a safe copy of the database at a particular
fhstant. When the database is backed up, the log can be
Sfruncated. For maximum robustness, the log disk and
data disk should be separate devices.

« They must be durable. Even if the disk that
stores the database is lost, it must be possible t
recover the database to its last transaction-consi
tent state.

This combination of properties — atomicity, consis- Different system failures can destroy memory, the log

fg%t |splatt|r(])n, l_z;ndtdurabgltykT |sD:3efe|r_rked to :'[as disk, or the data disk. Berkeley DB is able to survive
'ty In the fterature. berkeiey o K€ MOS0 Joss of any one of these repositories without losing

database S)_/stems, provides ACIDity using a collectlonany committed transactions.
of core services.

If the computer's memory is lost, through an applica-

Sion or operating system crash, then the log holds all
committed transactions. On restart, the recovery sys-
tem rolls the log forward against the database, reapply-
3.10.1. Write-ahead logging ing any changes to on-disk pages that were in memory

t the time of the crash. Since the log contains pre- and

Programmers can enable the logging system when theg .
start up Berkeley DB. During a transaction, the appli- ost-change state for transactions, the recovery system

cation makes a series of changes to the database. Ea@#o Uses the log to retsFore any pages_to their original
change is captured in a log entry, which holds the statState |_f they were modified by transactions that never
of the database record both before and after the chang(é(.)mm'tted'

The log record is guaranteed to be flushed to stabléf the data disk is lost, the system administrator can
storage before any of the changed data pages are writestore the most recent copy from backup. The recov-
ten. This behavior — writing the log before the dataery system will roll the entire log forward against the

pages — is calledrite-ahead logging original database, reapplying all committed changes.
When it finishes, the database will contain every

change made by every transaction that ever committed.

Programmers can choose to use Berkeley DB's transa
tion services for applications that need them.

At any time during the transaction, the application can
commit making the changes permanent,ralt back,
cancelling all changes and restoring the database to it the log disk is lost, then the recovery system can use
pre-transaction state. If the application rolls back thethe in-memory copies of log entries to roll back any
transaction, then the log holds the state of all changetincommitted transactions, flush all in-memory database
pages prior to the transaction, and Berkeley DB simplypages to the data disk, and shut down gracefully. At
restores that state. If the application commits the transthat point, the system administrator can back up the
action, Berkeley DB writes the log records to disk. In- database disk, install a new log disk, and restart the sys-
memory copies of the data pages already reflect thé¢em.

changes, and will be flushed as necessary during nor-

mal processing. Since log writes are sequential, but

data page writes are random, this improves

3.10.3. Checkpoints Berkeley DB can lock entire database files, which cor-

Berkeley DB includes a checkpointing service that€SPond to tables, or individual pages in them. It does
interacts with the recovery system. During normal pro-"© record-level locking. By shrinking the page size,
cessing, both the log and the database are changifgfWever, developers can guarantee that every page
continually. At any given instant, the on-disk versions Nolds only a small number of records. This reduces
of the two are not guaranteed to be consistent. The logontention.

probably contains changes that are not yet in thdf locking is enabled, then read and write operations on
database. a database acquire two-phase locks, which are held

When an application makesheckpointall committed until the transaction completes. Which objects are

changes in the log up to that point are guaranteed to p@cked and the order of lock acquisition depend on the

present on the data disk, too. Checkpointing is moderWorkload for each transaction. It is possible for two or
i ore transactions to deadlock, so that each is waiting

ately expensive during normal processing, but limits the™ .
time spent recovering from crashes. for a lock that is held by another.

Berkeley DB detects deadlocks and automatically rolls

back one of the transactions. This releases the locks
that it held and allows the other transactions to con-

tinue. The caller is notified that its transaction did not

checkpoints, there is no way to be sure how long ; .
X . . : complete, and may restart it. Developers can specify

restarting after a crash will take. With checkpoints, the L . :
the deadlock detection interval and the policy to use in

restart interval can be fixed by the programmer. Recov- . :
. . choosing a transaction to roll back.
ery processing can be guaranteed to complete in a sec-

ond or two. The two-phase locking interfaces are separately

Software crashes are much more common than diS?allable by applications that link Berkeley DB, though

: ew users have needed to use that facility directly.
failures. Many developers want to guarantee that soft- . . :

- Using these interfaces, Berkeley DB provides a fast,

ware bugs do not destroy data, but are willing to restore

from tape, and to tolerate a day or two of lost work inplatform—portable locking system for general-purpose

the unlikley event of a disk crash. With Berkeley DB, use. It also lets users include non—_database objects in a

; database transaction, by controlling access to them

programmers may truncate the log at checkpoints. As . L

: exactly as if they were inside the database.

long as the two most recent checkpoints are present, thé _ - _
recovery system can guarantee that no committed trans-he Berkeley DB two-phase locking facility is built on

actions are lost after a software crash. In this case, thée fastest correct locking primitives that are supported

recovery system does not require that the log and th8Yy the underlying architecture. In the current imple-

data be on separate devices, although separating thefientation, this means that the locking system is differ-

can still impoveperformance by spreading out writes. ent on the various UNIX platforms, and is still more
different on Windows NT. In our experience, the most

. difficult aspect of performance tuning is finding the
3.10.4. Two-phase locking fastest locking primitives that work correctly on a par-
Berkeley DB provides a service known as two-phaseticular architecture and then integrating the new inter-
locking. In order to reduce the likelihood of deadlocks face with the several that we already support.

and to guarantee ACID properties, database systemgne \worid would be a better place if the operating sys-
manage locks in two phases. First, during the operationg g community would uniformly implement POSIX
of a transaction, they acquire locks, but never releas%cking primitives and would guarantee that acquiring
them. Second, at the end of the transaction, theyy, yncontested lock was a fast operation. Locks must

release locks, but never acquire them. In practice, MoSf,ork both among threads in a single process and
database systems, including Berkeley DB, acquireamong processes.

locks on demand over the course of the transaction,
then flush the log, then release all locks.

After an application or operating system crash, the
recovery system only needs to go back two

checkpoint$ to start rolling the log forward. Without

3.11. Concurrency

" One checkpoint is not far enough. The recovery system can-Good performance under concurrent operation is a crit-
not be sure that the most recent checkpoint completed — it may hawv . .
been interrupted by the crash that forced the recovery system to ruﬁ:alI fje_s'gn point for _Berkeley DB_‘ _AIthOUgh Berkeley
in the first place. DB is itself not multi-threaded, it is thread-safe, and
runs well in threaded applications. Philosophically, we

view the use of threads and the choice of a threads

package as a policy decision, and prefer to offer mechasuperior, as an embedded database system, to any other
nism (the ability to run threaded or not), allowing appli- solution available.

cations to choose their own policies. Most database systems trade off simplicity for correct-

The locking, logging, and buffer pool subsystems allness. Either the system is easy to use, or it supports
use shared memory or other OS-specific sharing faciliconcurrent use and survives system failures. Berkeley
ties to communicate. Locks, buffer pool fetches, andDB, because of its careful design and implementation,
log writes behave in the same way across threads in affers both simplicity and correctness.

single process as they do across different processes ong,q system has a small footprint, makes simple opera-

single machine. tions simple to carry out (inserting a new record takes
As a result, concurrent database applications may stajtist a few lines of code), and behaves correctly in the
up a new process for every single user, may create #ace of heavy concurrent use, system crashes, and even
single server which spawns a new thread for everycatastrophic failures like loss of a hard disk.

client request, or may choose any policy in between.

Berkeley DB has been carefully designed to minimize5, The Berkeley DB 2.x Distribution

contention and maximize concurrency. The cache marclg?)erkeley DB is distributed in source code form from

ager allows all threads or processes to benefit from 1/
. www.sleepycat.comUsers are free to download and
done by one. Shared resources must sometimes bbe

locked for exclusive access by one thread of control. uild the software, and to use it in their applications.
We have kept critical sections small, and are careful not

to hold critical resource locks across system calls thab.1. What is in the distribution

could deschedule the locking thread or process. Sleeprna distribution
ycat Software has customers with hundreds of concur
rent users working on a single database in production.

is a compressed archive file. It
includes the source code for the Berkeley DB library, as
well as documentation, test suites, and supporting utili-
ties.

4. Engineering Philosophy The source code includes build support for all sup-
Fundamentally, Berkeley DB is a collection of accessported platforms. On UNIX systems Berkeley DB uses
methods with important facilities, like logging, locking, the GNU autoconfiguration toohutoconf , to iden-
and transactional access underlying them. In both théify the system and to build the library and supporting
research and the commercial world, the techniques foktilities. Berkeley DB includes specific build environ-
building systems like Berkeley DB have been well- ments for other platforms, such as VMS and Windows.

known for a long time.

The key advantage of Berkeley DB is the careful atten-5.1.1. Documentation

tion.tha.t has been paid to engine(_aring details throughThe distributed system includes documentation in
out its life. We have carefully designed the system SOy L format. The documentation is in two parts: a

that the core facilities, like locking and I/O, surface the UNIX-style reference manual for use by programmers
right interfaces and are otherwise opaque to the caller,,q 5 reference guide which is tutorial in nature. ’

As programmers, we understand the value of simplicity
and have worked hard to simplify the interfaces we sur-]
face to users of the database system. 5.1.2. Test suite

Berkeley DB avoids limits in the code. It places no The software also includes a complete test suite, writ-

practical limit on the size of keys, values, or databasesten in Tcl. We believe that the test suite is a key advan-
they may grow to occupy the available storage space. tage of Berkeley DB over comparable systems.

The locking and logging subsystems have been careFirst, the test suite allows users who download and
fully crafted to reduce contention and iropethrough- ~ build the software to be sure that it is operating cor-
put by shrinking or eliminating critical sections, and rectly.

reducing the sizes of locked regions and log entries. Second, the test suite allows us, like other commercial
There is nothing in the design or implementation ofdevelopers of database software, to exercise the system
Berkeley DB that pushes the state of the art in databas#oroughly at every release. When we learn of new
systems. Rather, we have been very careful to get thBugs, we add them to the test suite. We run the test
engineering right. The result is a system that issuite continually during development cycles, and

always prior to release. The result is a much more reli-To preserve the Open Source heritage of the older
able system by the time it reaches beta release. Berkeley DB code, we drafted a new license governing
the distribution of Berkeley DB 2.x. We adopted terms
from the GPL that make it impossible to turn our Open

5.2. Binary distribution : i
Source code into proprietary code owned by someone
Sleepycat makes compiled libraries and general binarg|se.

distributions available to customers for a fee. Briefly, the terms governing the use and distribution of

Berkeley DB are:

5.3. Supported platforms « your application must be internal to your site, or
Berkeley DB runs on any operating system with a
POSIX 1003.1 interface [IEEE96], which includes vir-
tually every UNIX system. In addition, the software _
runs on VMS, Windows/95, Windows/98, and Win- * You mustgeta license from us.

dows/NT. Sleepycat Software no longer supportsFor customers who prefer not to distribute Open Source
deployment on sixteen-bit Windows systems. products, we sell licenses to use and extend Berkeley

DB at a reasonable cost.

your application must be freely redistributable in
source form, or

6. Berkeley DB 2.x Licensing We work hard to accommodate the needs of the Open

Berkeley DB 2.x is distributed as an Open Source prod—Source community. For example, we have crafted spe-

uct. The software is freely available from us at ourf:iall Iicensing_ arrangements with Gnome to encourage
Web site, and in other media. Users are free to downlts use and distribution of Berkeley DB.

load the software and build applications with it. Berkeley DB conforms to the Open Source definition
The 1.x versions of Berkeley DB were covered by the[Open99]. The Iicen_se has been carefully crafted.to
UC Berkeley copyright that covers software freely kegp the prqduct available as an Open Spurce offering,
redistributable in source form. When Sleepycat Soft-Whlle pr0\{|d|ng enough of a return on our investment to
ware was formed, we needed to draft a license consisf-und continued d(_avelopment and support Pf the prod-
tent with the copyright governing the existing, older uct. The current license has created a business capable

software. Because of important differences betweenOf funding three years of development on the software

the UC Berkeley copyright and the GPL, it was impos-that simply would not have happened otherwise.
sible for us to use the GPL. A second copyright, with
terms contradictory to the first, simply would not have 7. Summary

worked. Berkeley DB offers a unique collection of features, tar-

Sleepycat wanted to continue Open Source developgeted squarely at software developers who need simple,
ment of Berkeley DB for several reasons. We agreereliable database management services in their applica-
with Raymond [Raym98] and others that Open Sourceions. Good design and implementation and careful

software is typically of higher quality than proprietary, engineering throughout make the software better than
binary-only products. Our customers benefit from amany other systems.

community of develo_pers Who kpow aqd use Berk(?leyBerkeley DB is an Open Source product, available at

DB, and can help with application design, dGbuggmg’Www.sleepycat.coriu)r download. The distributed sys-

and performance tuning. Wldespread distribution andt m includes everything needed to build and deploy the
use of the source code tends to isolate bugs early, a ftware or to port it to new systems

to get fixes back into the distributed system quickly. As
a result, Berkeley DB is more reliable. Just as impor-Sleepycat Software distributes Berkeley DB under a

tantly, individual users are able to contribute new fea-license agreement that draws on both the UC Berkeley
tures and performance enhancements, to the benefit 0PYright and the GPL. The license guarantees that
everyone who uses Berkeley DB. From a business perBerkeley DB will remain an Open Source product and

spective, Open Source and free distribution of the softProvides Sleepycat with opportunities to make money
ware creates share for us, and gives us a market intfp fund continued development on the software.

which we can sell products and services. Finally, mak-

ing the source code freely available reduces our support

load, since customers can find and fix bugs without

recourse to us, in many cases.

8. References

[Come79]
Comer, D., “The Ubiquitous B-treeACM Com-
puting Survey§olume 11, number 2, June 1979.

[Gray93]
Gray, J., and Reuter, ATransaction Processing:
Concepts and TechnigyesMorgan-Kaufman
Publishers, 1993.

[IEEE96]
Institute for Electrical and Electronics Engineers,
IEEE/ANSI Std 1003,1996 Edition.

[Litw80]
Litwin, W., “Linear Hashing: A New Tool for
File and Table AddressingProceedings of the
6th International Conference on Very Large
Databases (VLDB)Montreal, Quebec, Canada,
October 1980.

[Open94]
The Open GroupDistributed TP: The XA+
Specification, Version,Zhe Open Group, 1994.

[Open99]
Opensource.org, “Open Source Definition,”
www.opensource.org/osd.htmiersion 1.4, 1999.

[Raym98]
Raymond, E.S., “The Cathedral and the Bazaar,’
www.tuxedo.org/ esr/writings/cathedral-
bazaar/cathedral-bazaar.htmlanuary 1998.

[Selt91]
Seltzer, M., and Yigit, O., “A New Hashing Pack-
age for UNIX,” Proceedings 1991 Winter
USENIX Conferengdallas, TX, January 1991.

[Selt92]
Seltzer, M., and Olson, M., “LIBTP: Portable
Modular Transactions for UNIX,Proceedings
1992 Winter Usenix Conferenc8an Francisco,
CA, January 1992.

[Ston82]
Stonebraker, M., Stettner, H., Kalash, J.,
Guttman, A., and Lynn, N., “Document Process-
ing in a Relational Database System,” Memoran-
dum No. UCB/ERL M82/32, University of Cali-
fornia at Berkeley, Berkeley, CA, May 1982.

